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1. Introduction. In this paper we prove the existence of travelling wave solutions
to phase field equations in a scaling regime for which a sharp interface model (en-
compassing surface tension and kinetic undercooling) is attained as a singular limit.
Furthermore, we prove that the distinguished limits which lead to sharp interface
models which neglect surface tension or kinetic undercooling do not support travel-
ling wave solutions with the same boundary conditions.

The phase field equations are a parabolic system describing the (dimensionless)
temperature, u(t, x), (which is scaled so that u = 0 is the ordinary planar equi-
librium melting or freezing temperature) and an "order parameter" or phase field,
tp(t, x) at time t e R+ and spatial point x e Q c llf. The phase field, <p , is scaled
so that cp near +1 is associated with the liquid phase and <p near -1 with the solid.
The interface is defined implicitly as the set of points for which (p vanishes. Further
discussion and references can be found in [1], [2]. The basic phase field equations
can be written as

a<f>, = £2A(p + a~lg(<p) + 2u, (1.1)

ut + t(pt= KAu, (1.2)

where / and K are positive constants representing (dimensionless) latent heat and
diffusivity, respectively. The function g is a derivative of a symmetric double well
potential with minima at ±1 , e.g., g(tp) = - tp3).

This double well can be viewed in terms of a probabilistic measure on the indi-
vidual atoms. The extent to which this measure discriminates against the interfacial
region and in favor of the liquid or solid phases depends on how close a is to zero.

The parameters a and ^ also have microscopic definitions as well as macroscopic
interpretations. In particular, z = a£~ is a microscopic relaxation time which can be
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related to macroscopic quantities by means of experiments such as light scattering.
The parameter £ is a dimensionless length scale which represents the strength of
microscopic interactions, since the (p term is derived from the original micro-
scopic interaction term J2X X'J(X ~ x')<p(x)<p(x'). Then Eq. (1.1) arises from a
Landau-Ginzberg free energy of the form

^{(p) = dx jy(V(9)2 - G(<p) - 2w^|

where G'(<p) = g{(p). In equilibrium, one expects tp to be a minimizer of & so that
50?/S (p = 0. When the material is not in equilibrium, it is assumed to be moving to-
ward equilibrium under the influence of a "force" which is proportional to the extent
it is away from equilibrium, i,e., n'pt = -8SF/Sep . For a wide spectrum of phase
boundary problems, including ordinary phase transitions for which the interfacial
width is not large, £ and a can be regarded as small parameters.

Equations (1.1), (1.2) can be studied subject to initial conditions

u{0,x) = u{x), <p{0, x) = <p(x), xeQ (1.3)

and appropriate boundary conditions such as

u(t, x) = u9(x), <p{t, x) = <p±(x), x € dQ, (1.4)

where <p± are the right and left roots of a~lg(<p) + 2u = 0. Since a is a small
parameter, these roots will be approximately ±1 . The second condition in (1.4) is
natural since it is compatible with <pt = Atp — 0 in (1.1), so that (p is constant when
it is far from the interface.

The macroscopic significance of the parameters is best observed by defining pa-
rameters

t=^a'2, a = £a~l/2. (1.5)

By multiplying (1.1) by a, it is evident that e is the length scale which measures
the width of the transition layer for cp , i.e., the width of the interface between solid
and liquid. This is borne out in the rigorous treatments of the stationary transition
layers as well.

The parameter a is related to the surface tension which can be defined by a local
interpretation of

^ 1}-^{ —1}
Interface area

so that a is the normalized difference between the free energies with and without an
interface.

If we define O(y) as the solution of the problem (see also Lemma 2.1)

+ £(0) = 0, O(±oo) = ±l, <Dv(±oo) = 0,

and let m = ||0v||^2fK,, then (1.6) can be calculated to leading order in e asy (R)

'J0 ~ 11 11Z,2 (R) 1/2 = ma. (1.7)
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We note that while a0 is independent of e if a is held constant, the exact surface
tension, a , involves the L2 norm of the true solution, (p , and therefore depends on
e . However, for our purposes, we may assume that surface tension is given by er0,
since a0 - cr(e) = 0(e) and lime^0 er(e) = aQ > 0.

In considering various singular limits of (1.1), (1.2) it is very useful to note the
behavior of e and aQ in terms of the effects on the resulting macroscopic equations.
In particular, it is clear that a sharp interface model requires a limit as e approaches
zero. However, one may have £ and a in various distinct scalings while e —>
0. If one chooses a scaling in which a approaches zero, then the surface tension
approaches zero as the interfacial thickness vanishes. However, it is clear from (1.5)
that the distinguished limit of finite surface tension (a held fixed as e —► 0) can also
be considered.

These distinguished limits of the phase field equations were considered in [1], [2]
with the formal asymptotic result that the major sharp interface problems (which are
defined below) are each distinct limiting cases of (1.1), (1.2). For this purpose, it is
convenient to rewrite (1.1) by using (1.5), (1.7) as

2 2. , , 2em D,ae (p=e Acp + g((p) H u. (1.8)
ao

We now define the relevant sharp interface models which assume that the two
phases, e.g., solid and liquid, are separated by a sharp interface, T(r). The heat
diffusion equation applies in each phase and the latent heat of fusion across the
interface must be dissipated into the two phases, leading to the equations,

ut = KAu, on H\r, (1.9)
lv = K[Vu-n]+, on T, (1-10)

where / and K are defined as before, v is normal velocity of the interface, and
[ ]~ denotes the jump in the normal derivative of u from solid to liquid. The
first mathematical model of solidification, known as the classical Stefan model [3],
stipulates the temperature condition

u = 0 on T (1.11)

as the additional interface condition.
In this classical problem, the temperature serves a double role in that the sign of

u determines phase. Once the physical phenomena of supercooling (and analogously
superheating), or the presence of liquid at subzero temperatures is introduced, it is
clear that this dual role is no longer possible. Nevertheless, replacing (1.11) with a
physically more accurate equation for the interface results in a system of equations
which has been studied recently in the physics and applied mathematics literature.
In particular, a modified Stefan problem is obtained by coupling (1.9), (1.10) with

G O . _.u = -—K-a — v (1-12)As As
where k is the sum of principal curvatures and As is the entropy difference between
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the two phases (assumed to be constant). An alternative modified Stefan problem is
obtained by neglecting the -acrv/As term in (1.12).

Equations (1.9), (1.10), (1.11) or (1.12) are subject to initial and boundary condi-
tions such as the u part of (1.3), (1.4).

It was shown in [1], [2] that the formal asymptotic limits of the phase field equa-
tions depending on each scaling regime are given as follows: (1.2), (1.8) approach the
classical Stefan model (resp. modified Stefan model) in the limit of e , a —> 0 (resp.
e —► 0, a held fixed) for a positive a . If a also tends to zero as well as e —> 0, a
held fixed, we obtain an alternative modified Stefan model.

It is well known that the surface tension ct0 is of crucial importance as a stabilizing
influence in the shape evolution of the macroscopic interface. Clearly, from (1.12),
a large surface tension tends to inhibit the development of a large curvature as the
interface evolves in time. The role of the kinetic undercooling term -aav/As in
(1.12) has also been of interest more recently [8], [9]. This term does not alter the
stability-instability spectrum but tends to decrease the magnitude of the instability for
the unstable modes. Another important feature of this term is that under appropriate
conditions, travelling wave solutions are possible for (1.9)—(1.12) if and only if a ±
0.

The relationship between the phase field equations (1.2), (1.8) and these sharp
interface problems is of both theoretical and practical interest. In addition to proving
the possibility of numerical approximation of sharp interface problems, the phase
field equations offer a new avenue for proving theorems on such sharp interface
problems. In particular, methods such as those of dynamical systems are applicable
to parabolic equations including the phase field model, but not directly to Stefan-type
problems since the latter involve interface conditions with discontinuous gradients.

The convergence of a system of parabolic equations such as (1.2), (1.8) in the
singular limit as e —► 0 is a delicate problem. In a scaling which formally approaches
the classical Stefan model, (1.9)—(1.11), one must also have a0 —► 0 in (1.8), thereby
creating an additional singular limit. Some of the theoretical difficulties and the
notorious instabilities of the interface in the classical Stefan model are clear from
this perspective.

An important set of problems is the rigorous justification that solutions to the
phase field equations within various scaling regimes have asymptotic limits that are
governed by solutions to sharp interface, Stefan-type problems. Such rigorous the-
orems have been limited thus far to steady state problems [4]-[7], In particular, it
has been proven that solutions to the steady state phase field equations (ut = <pt = 0)
converge to those of the steady state modified Stefan problem. The latter simply
involves finding a function u and a curve (or surface) T such that at any point
x e T, u(x) is proportional to the mean curvature at x. Part of the difficulty in
proving analogous theorems for the dynamical situations is the scarcity of results for
problems such as the time-dependent, modified Stefan problem.

In this paper we present the first rigorous convergence results in the dynamical set-
ting. Namely, we prove the existence of travelling waves for the phase field equations
(1.2), (1.3) for small e with a0 held fixed, and prove convergence to the modified
Stefan model (1.9), (1.10), (1.12).
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For the modified Stefan problem, one can verify the existence [8], [9] of the fol-
lowing travelling wave solution with velocity c* and u(t, +00) = ucool:

, \ f "C00i + le-(c',K){x-c't), x>c*t,
u{t,x) = { C001 (1.13)

{Ucool + l> X<ct,

The boundary condition, wcool, must satisfy the same constraint imposed on the
phase field solutions (see (2.11)).

The physical problem here is that the material is in a liquid state for x > c*t and
solid for x < c* t. By the constraint imposed on the boundary condition at +00, the
temperature is always negative, and the freezing continues as a result of the lower
temperature in the liquid. Thus the boundary condition u(t, +00) = wcool is the
driving force which maintains the constant velocity planar wave.

For travelling wave solutions to the phase field equations (see (2.2) and (2.3)), we
define the boundary conditions, with z = x - ct, as

u(-oc) = u, (p{-oo) = (pe_-00 '■

M(°°) = "cool < °» ¥»(°°) = ?4> (U4)
pz(±oo) = 0 = wz(±oo)

where is the left-most root of g{q>) + (2em/a0)ues = 0, and tp^ the right-most
root of g(q>) -(- (2ew/cJ0)wcool = 0. Note that the above boundary conditions are not
independent; in fact, we will see in Sec. 2 that once wcool is given, other data are
uniquely determined as functions of e .

Thus, the problem is to prove the existence of steady planar solutions to (1.2),
(1.8), (1.14) for small e , and to show that the temperature u converges in an appro-
priate norm to the solutions (1.13) as e approaches zero. To do this, we will employ
the alternative method to reduce the entire problem to solving the bifurcation equa-
tion B(c, e) = 0 (see (2.32)).

Mathematically it is not a priori clear how to choose the solution space which is
valid uniformly up to e = 0 since, when e j 0, the phase function cp approaches
a discontinuous function in the original coordinate z. Even if we take a stretched
coordinate y — f, then temperature, u, does not have a limit in &(R) which
satisfies the boundary conditions (see Remark 2.3). However we can show that the
scaled bifurcation equation B(c, e) = 0 is valid up to e = 0 (see Lemma 2.5) and
the limiting velocity c* is uniquely determined as the zero point of B(c, 0) = 0.

If £, and a tend to zero so that e and a defined by (1.5) both approach zero,
then the formal limit of the phase field equation is the classical Stefan model, for
which the travelling wave solutions of the form (1.13) are not possible under the
constraint considered (i.e., (2.11)). In Sect. 3 we prove within this scaling limit that
travelling waves cannot exist subject to the same conditions.

Recently, travelling wave solutions to phase field equations in a different scaling
regime (i.e., a = constant) have been studied numerically [13]. Also the transi-
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tion from planar travelling fronts to curved ones for phase field equations has been
obtained in [14] for a different scaling regime (i.e., a = constant and a = .

2. Existence of travelling wave solutions and their singular limit. We seek travelling
wave solutions to (1.2), (1.8), (1.14) which move at constant velocity c in the positive
x direction. With moving coordinate

z = x - ct (2.1)

Eqs. (1.8), (1.2) become

2 2 , . 2em
e <pzz + at C(p, + g(<p) + u = 0, (2.2)

CTo

Ku„ + c(uz+l-ip\= 0. (2.3)

Integrating the second equation (2.3) from z = -oo we have, upon utilizing the
boundary conditions (1.14)

i^«r + c|(M-Mj) + ^(fl>-?»l00)J =0. (2.4)

The associated first-order system for (2.2), (2.4) is given by

e9z=X, (2-5)

tlz = ~aecx - g(<p) - 2^", (2.6)

"z = -£ j("-"!) + ^(P-ploo)} • (2-7)

The travelling wave for (2.2), (2.3) corresponds to a heteroclinic orbit of (2.5)-
(2.7) which connects two distinct equilibria. The equilibria of (2.5)-(2.7) are given
by the intersection of two curves

£(P) + ^7^" = 0 and u - us + Utp - <p'_00) = °- (2.8)
°o z

The boundary conditions (1.14) imply that for sufficiently small e there are always
three equilibria L'', St, and V in the x = 0-plane as shown in Fig. 1. Note that the
condition wcoo) <0 (1.14) implies that the location of each equilibrium is uniquely
determined as a function of e . We are interested in a heteroclinic orbit connecting
L'' = °' Mcooi) t0 S" = (^-oo' °' "') • From (2-8) and (114) one clearly has
the limits

^ ±1 ' ul = "cool + 1 ■ (2-9a)' (2-9b)

More precisely, we have

(P(±0C =F 1 = c»7±(c), - ("cool+ /) = (2.10)

where rj±(e), p(e) are smooth and bounded functions up to e = 0.
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I iML u + g{cp) = 0

5e=(cp!„

LZ= (cpL «cool)

(u-u*) +y (cp-cp!-) = 0

when e < < 1

Fig.

It will be seen later that (2.9b) gives the temperature at the interface of the planar
travelling wave of the modified Stefan model (1.9), (1.10), (1.12). To ensure the
positivity of the velocity c, we will need to assume

"cool + /<0- (2-U)

That is, the temperature at infinity must be low in comparison with the latent heat.
Physically, this means that the supercooling must overcome the amount of latent heat
released at the interface in order to perpetuate the solidification at constant velocity.
To avoid the ambiguity of shift invariance, we subsequently fix the phase as

p(0) = 0.

Our main result is the following.

Theorem 2.1. Under (2.11) with a fixed (and positive) there exists e0 > 0 such that
(2.2), (2.3) has a unique e-family of classical solutions (^e(z), u{z)) for 0 < e < eQ
with velocity c = c(e) connecting L( = (^, 0, wcool) to Se = (^1^, 0, us) such
that c(e) is a continuous function of e on [0, e0] and {(p(, u) has the following
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limiting behavior for any A > 0 :

£ [-1 uniformly on z e (-oo, A],
lim <p = < (2.12)
eio [ 1 uniformly on z e , oo),

r f / "cooi + f. for z < 0,limw = < , . (2.13)
ei° \ Mcooi + le forz>0,

where the limit is uniform on R with respect to the distance measure given by the
travelling coordinate z = x - c(e)t. Here c* is the limiting velocity given by

c"=1^c(E, = -4<"t<""+/)' (Z14>

That is, ((pf, u) converges to the travelling wave solution of the modified Stefan
problem with velocity c*.

Remark 2.1. It will be clear in the proof of Theorem 2.1 that the stretched phase
field <J>' (y) = <p( (ey) converges to <I>0(.f) uniformly on 1 as e | 0 (see Lemma 2.1
for the definition of 0°). Here we define the stretched variable

y = z/e. (2.15)

The precise meaning of the uniqueness result in Theorem 2.1 will also become clear
in the proof by using this stretched coordinate. For small e , the equilibria of interest
will be near

£° = (l,0,«cool) and S° = (-l,0,Mcoo, + /)- (2.16)
Integrating (2.4) from z = -oo, one has

u(z) = ues-j£ e {C/K)(Z S)|[^(i)-Lj^. (2.17)

Substituting (2.17) into (2.2), one obtains

e2<pzz + ae2c<pz + g{<p)
2trn f e , c fz —(c/K)(z—s) I r , % t i j 1 n (2.18)

which is subject to boundary conditions

^±00) = ^ and pz(±oo) = 0. (2.19)

We note that the velocity c is also an unknown variable in (2.18).
For subsequent discussions, it will be convenient to rewrite Eqs. (2.2), (2.4) using

the stretched coordinate y defined by (2.15) and the "inner variables"

O(y) = <p(ey); U(y) = u{ey). (2.20)

Then, (2.18), (2.19) are rewritten in the equivalent form (for small e) as

Q>yy + aec<Z>y + £(<D)

2[ e , £C f* -(ec/K)(y-s) I r/K, .. e , , | (2.21)
+ — \us+l-T e

^0 V J — OO ^
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0(±oo) = <p€±oo, Oy(±oo) = 0. (2.22)
In view of (2.9) and (2.21), it is natural to take the solution to the following

problem as a first approximation:

Qyy + g(®) — 0, O(±oo) = ±1, <Dy(±oo) = 0. (2.23)
The following result is well known (see, for instance, [15]).

Lemma 2.1. There exists a unique solution <E>° of (2.23) with 0°(0) = 0 which is
smooth, strictly increasing and satisfies the following

(a)

|O0(y)±l| < Cexp(-y|z|) asz—>=foo,

lO^QOI < Cexp(-y|z|) asz->=F°o,
where C and y are positive constants.

(b) With <p°{z) = O0(z/e) one has
o f -1 uniformly on z e (—oo, A],

lim^ (z) = <
no [1 uniformly on z e (A, oo) ,

for any A > 0.
We seek a solution of (2.21), (2.22) in the form

<D = <D° + ¥. (2.24)
Note that we do not put <l> = O0 + e*F, since such a setting will cause a difficulty
in our framework of the solution space (see Remark 2.3). The appropriate function
space for will be specified in the next lemma. Substituting (2.24) into (2.21) one
has

°)*F + aecOj + aecxVy + G(*F, O0)

2em [ e ec fy -(tc/K)(y-s) I r<T.0, \ it// \ f -i j 1 n (2-25)2 em ft. ec fy ~{ec/K){y-s) I 0, N , . e , , 1 A+ — |w,+/-—y e -[O (5)+4/(5)-^_oo]rf5j =0,

G(¥, <J>°) = g(O0 + ¥) - g(<X>°) - g'(O0)^,
V{±oo) = eri±(e), ^(±oo) = 0. (2.26)

We will solve (2.25) by utilizing the alternative method. Let the space &k(R) and
the associated norm ||/||fc be defined by

k38 (R) = {/ : K -+ M has bounded and continuous derivatives up to the klh order}

WfWk = HSUP 1^/(2)1-
j=o zeR

We simply denote &°(R), || • ||0 by &(R), || • || and define L : ̂ 2(R) -> £&(R) by
j2

L = —j + g'{®°) (2.27)
dy

so that L is a continuous linear operator whose null space we denote by yy{L). The
following lemma is basic [10, p. 31], [11],
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Lemma 2.2. The null space yV{L) is one-dimensional and yy{L) = span{0°} . For
any h e &(R), the equation

Lu + h - 0
has a solution in £&(R) if and only if

Ph = 0

where P is the projection onto yV{L), i.e.,

■I
Moreover, there is a bounded linear operator

X : (/ - P)3§{&) - (/ - P)&\E)

called the inverse of L such that L3? = I on (/ - P)&(R) and 3?L = I - P on
&2{R).

Using Lemma 2.2, one observes that (2.25) is equivalent to the following system:

x¥ + Jg,{I-P)F(,¥,c,e) = 0, (2.28)
PF{V, c, e) = 0, (2.29)

for ¥ e (/ — P)&2(W) and

/•"(¥, c, e) = aec<^y + aecxVy + G{xV, <D°)

2EtTl ( e , €C [y —(ec/K)(y—s) I r,*.0, , ,T/, , t , ,+ — +I~~kI e 2^ {s) + xV{s)-(p_oc]ds

(2.30)
Remark 2.2. In general the solution of (2.25) has the decomposition ¥ =

rj + /, *1 e ^(L), X e (/ - P)& {M). However, we do not lose any generality
in assuming that t] = 0 since the solution obtained with nonzero ^ is simply a
"translation," with respect to the y-direction, of that with t] = 0 .

The next lemma is a consequence of direct computation.

Lemma 2.3. The mapping H( : £@(R) defined by

He(6)=€4 r e(tclK)(y~s)e{s)ds
^ J—oo

is uniformly bounded with respect to e , so that

\\H\6%<M\\e\\
where M is a positive constant independent of e . Moreover,

d H(
lim —— {6) = 0 in ^(R)-sense
6|o ay

holds for any given



TRAVELLING WAVES FOR PHASE FIELD EQUATIONS 157

Remark. 2.3. Note that for a given 9 € &(R), H*(d) itself does not generally
converge in 38 {W) as e J. 0. In fact, when 6 is a monotone increasing positive
function satisfying

lim d(y) = 0 and lim 6(y) = 6 >0
y—* — oo y—* — oc

then it is clear that

lim He{9) = 0 and lim He{d) = 6*.
y —► — oo y—v-foo

On the other hand, He{8) converges to a constant function on any compact set on
i as e | 0 since dHe(d)/dy —> 0 in &(R). This implies that He(6) has no limit
in ^?(R) when e j 0.

Now we solve (2.28) for ¥ as a function of c and e .

Lemma 2.4. Let I0 be an open bounded interval in R+ . Then there is a positive
constant e0 such that (2.28) has a unique solution ¥ = ¥(c, e) in &2(R) for

(c, e) e A0 = 70 x [0, e0]

and 4* is a continuous function of (c, e) in A0 and is continuously differentiable
with respect to c.

Moreover, ¥ (resp. d^/dc) has the form = e*? (resp. /dc = ed^/dc)
with ||*F||2 < M (resp. \\d^ldc\\2 < M) and hence satisfies

d*¥ 2lim^c, e) = Olim —— (c, e) = 0 in 38 (M)-sense.
e|0 ej.0 dc

Here, M is a positive constant independent of e .
Proof. The first part is clear from the uniform contraction arguments and the

smooth dependency of F(*¥, c, e) with respect to c. In fact, recalling (2.9), (2.10)
we see that the principal part of ^(c, e) for small e is given by

¥(c, e) ~-JT(/ - P) [aecO"

, f , , ce [y -(ec/K)(y-s) I ,-0, , 1N J V

(2.31)
and Y(c, e) can be constructed by an iteration procedure starting from the above
term. This also implies the bounds and limit for VF. Differentiating (2.28) with
respect to c and noting that from Lemma 2.3

>)ds

also remains bounded in &(R) as e j 0, one obtains analogously the result for
d*¥/dc.

Substituting the expression ^(c, e) from Lemma 2.4 into (2.29) we have the
bifurcation equation with respect to c and e ,

PF{V{c,t),c,t) = 0
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which we can write with { , ) denoting the L'-inner product,

B(c, e) = (aecOP + aecVyic, e) + G{x¥(c, e), 0>°)

2em ff , ec fy (ec/K)ly-s) I 0, \ s f n.l ^o\+ ̂ \u- + '-kJ.J
= 0. (2.32)

Although it follows from Lemmas 2.3 and 2.4 that B(c, e) and dB/dc(c, e) are
defined in A0, we cannot determine c as a function of e by using the implicit
function theorem because of the fact that

B(c,0) = ^(c,0) = 0.

However, by virtue of the exponentially decaying property of (Lemma 2.1) we
can show that

B{c,e) = B{c,e)/e (2.33)
is well defined in Ao and the implicit function theorem is applicable to it as follows.

Lemma 2.5. With A0 defined as in Lemma 2.4, and m defined by (1.7), B(c, e)
and dB/dc(c, e) are well defined and continuous in A0 . Moreover, one has

B{c, 0) = acm + ~~{ucool + /), (2.34)
°o

y^(c,0) = am>0. (2.35)

Before proving this lemma we need the following result which deals with the inte-
gral term in (2.32).
Proposition 2.1. Let 9e(y) be defined by

0e(y] = Y f e~{eC,K){y~S)^[®\s) + l]<fr. (2.36)

Then 6e(y) converges to zero uniformly on any compact set of E when e | 0.
Proof. Let we(z) be a family of arbitrary functions which converge to w°(z) in

£&(R) with u>°(0) = 0. Rewriting we(z) with the stretched coordinate y = z/e ,
i.e., Wt(y) = we(ey), one sees that We converges to zero uniformly on any compact
set as e | 0. Thus, if we define #e(z) = 6e{z/e) and <p°{z) = O0(z/e) we see that

and <p° satisfy

^(z) = Z S e {C/K){Z S2[(p0{s)+ 1]^5' (2'37)

Using the uniform convergence on compact sets in conjunction with Lemma 2.1 one
has

0, for z e (-oo, 0],
eio x y l(l-e~(c/K)z), forze(0,oo)

which completes the proof of Proposition 2.1.

lim# (z) = # {z) = \ i t —(c/K)z c_ \ in (M)-sense (2.38)
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Proof of Lemma 2.5. In view of (2.32), it is clear that the terms which must
be examined are the integral term and G{y/(c, e), O0)/e . Since G is at least of
quadratic order with respect to ^, it follows from Lemma 2.4 that G(*¥(c, e), O0)/e
is well defined in A0 and satisfies

limG(4/(c, e), O0)/e = 0 in ^(R)-sense
ej.0

and consequently, one has

lim(G(4'(c,e),00)/e,^) = 0.
e J.0 '

In a similar way one can show by Lemma 2.4 that

§^Gmc, e), 4>°)/c, e), <&°)||(c, e)/e, 4>°y

is well defined in A0 and tends to zero when e j 0.
The integral part, i.e.,

-kLy e-(tclK)(y-s)t[<&\s) + V{c,e)-<pt_00\ds,<sP}, (2.39)

is clearly continuous for positive e and c. In view of Remark 2.3 we cannot expect
this term to converge a member of <^(R). Nevertheless, Proposition 2.1 is sufficient
for our purpose in examining the continuity at e | 0, since <D° decays exponentially
as |y| —>• oo .

Utilizing Proposition 2.1, (2.10), and Lemmas 2.3 and 2.4, we see that (2.39)
converges to zero as e | 0. Similarly, we can verify that the derivative of (2.39) with
respect to c is also well defined for (c, e) e A0 and converges to zero as e j 0.

Thus, from (2.32) it is clear that

lim S(c, e) = + ̂ (u^ + 1) f° 4>°iy
e±u u0 ^ -oo

4m
= aCm + — (wcool + /).°0

This establishes (2.34). In a similar way, one can obtain (2.35), which completes the
proof of Lemma 2.5.

Proof of Theorem 2.1. We are now ready to solve B(c, e) = 0 by using the implicit
function theorem. In view of (2.34) it is natural to choose the limiting velocity, c*,
to be

^^("cool + 'l P-4°)ao0

which is the velocity selected by the travelling wave in the modified Stefan problem
[8], [9].

An application of the implicit function theorem to B(c, e) at (c, e) = (c*, 0)
implies a unique continuous solution c(e) which satisfies B(c{e),e) and c* =
limfi0c(e). This implies the existence of unique solutions Oe(y) to (2.21) and

2 0(2.22) in 3§ (R) which converge to O (y) as e j 0. Returning to the original prob-
lem in the (unsealed) moving coordinate z = x - ct, recalling Lemma 2.1 and that
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tp = (z>° + 4/, [^(z) = ¥(|)] we obtain an e-family of travelling wave solutions of
(2.18), (2.19) which satisfy

£ f -1 uniformly on z e (-oo, -A],
lim (p = { (2.41)
£ 10 ( 1 uniformly on z 6 (Z , +oo),

for any A > 0, and

.. e f"c00l + /0n^°. .....
lirnw = < , . (2.42)
€i° \ «cool+ on z>0,

uniformly on E with respect to the measure induced by the travelling coordinate z .
It follows from (2.40) and (2.42) that u converges to the planar travelling wave

solution of the modified Stefan problem (surface tension and kinetics) (1.9), (1.10),
(1.12) with v = c* and As = 4 and a0 = is the surface tension parameter
(1.7).

3. Physical interpretation and nonexistence of travelling wave solutions in the clas-
sical Stefan limit. We can interpret the bifurcation equation in a physical context.
For this purpose, it is convenient to rewrite B{c, e) (not B(c, e)) using the original
moving coordinate z , so that

b{c, e) = (aec<p°z + aecy/z{c, e) + G{y/(c, e); ip°)

2m f f . c f: —(c/K)(z—s) I, o, s , , 1 o
+ — \Us+1-kJ e 2 + ~

= 0
(3.1)

where yy and G correspond to and ~ in the z-coordinates. In view of Lemma
2.4 and the identity ed/dz - d/dy, we see that eif/z(c, e) and G as well as their
oderivatives tend to zero in the supremum norm when e J. 0. On the other hand,
it should be noted that <p]_ does not remain an ordinary function as e J. 0, but
converges to a "Dirac point mass." In fact,, <p_ has a sharp peak at z = 0 and its

r OO 0
Loo <Pz

one has the following results proved in Lemma 2.3 of [12]
total mass is constant, i.e., ipz(z)dz = 2 is independent of e . More precisely,

Proposition 3.1. The function <p° in Lemma 2.1 satisfies
olim© = 2dn in ^'(E)-sensee|0 u

where <50 is the Dirac point mass at z = 0, i.e., one has

lim(^°, h) = 2/2(0) for h 6^(1
e|0

Using Proposition 3.1, Lemma 2.1(b) and noting that

/OO
t{<p]{z))2 dz

-OO
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we reach the same results as in Lemma 2.5 for b(c, e), and hence Theorem 2.1. In
particular, recalling that the temperature distribution is given by

u(z) = Us + / - ~ j e~{c,K){z~s]t[<P°(s) + y/{c(e), e) - tpi^] ds

it is apparent from (2.9) and (2.38) that the inner product

{u'-iL e (c/K)(z ^L[(p°(ys) + v(C(e),e)-(pt_oo\ds^ ,<p]

converges to the temperature at the interface wcool + /. The bifurcation equation
b(c, e) = 0 then implies the temperature-velocity relation (2.40).

Thus the temperature across the interface satisfies this relation in an "averaged"
sense with respect to a measure induced by <p° .

Next, we consider the other distinguished limits mentioned in Sect. 1 which give
rise to different sharp interface models, e.g., the classical Stefan (CS) and the alter-
native modified Stefan (AMS) models. In the pure one-dimensional case these two
sharp interface models are identical although the stability properties of any planar
solution with respect to higher-dimensional space can be expected to vary between
the two models.

It is easy to verify [8], [9] that the CS and AMS models do not have planar travelling
(i.e., constant velocity) solidification waves, subject to (2.11) and hence one expects
the same situation in each distinguished limit of the phase field equations. In fact
one can prove the following nonexistence result.

Theorem 3.1. In the distinguished limit of the classical Stefan (1.9)—(1.11) or the
alternative modified Stefan ((1.9), (1.10), (1.12) with a = 0) limits, the phase field
model (1.2), (1.8) does not have an e-familyof travelling waves (^f, u , c(e)) which
satisfies (2.11) and remains bounded in terms of the stretched coordinate y = f in
&2(R) x J&(R) x R+ for e € (0, e0).

Proof. We prove this theorem by contradiction. First, in view of (2.21), Lemma
2.1 and that em/o0 (= e/d = a) tends to zero, we can assume without loss of
generality that Oe(y)(= {ey)) converges to <I>0 as e | 0. For if it does not, we
can extract a convergent subsequence from {Oe} by using the Ascoli-Arzela theorem.
Hence, we can write Oe as

(Df = d)0 + ^ (3.2)

where 4^ approaches zero in the ^2(R)-sense as e | 0. Now all but one of the
procedures and previous lemmas used in obtaining the bifurcation equation (3.32) are
also valid for these two distinguished limits. In particular, one needs a modification
of Lemma 2.4 consisting of replacing

¥ = 6$, ||<F||2 < M by V = ^, ||^||2<Af.

Recall again that e/a (= a) tends to zero. However, the resulting bifurcation
equation (2.32) is not valid for small e . In fact, dividing both sides of (2.32) for
the modified Stefan case by e/a we have

{aoc<Spy + qctc^, + G + 2{us + •••}, 4>J) = 0 (3.3)
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where G = G/(e/a). It is clear that (3.3) does not hold for small a , since the left-
hand side of (3.3) converges to 4(wcool + /) ^ 0 [by (2.11)] when a j 0. A similar
contradiction occurs when the scaling limit of AMS is considered. This completes
the proof of Theorem 3.1.
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