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Abstract 

The use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diag-

nostic and therapeutic applications are generating remarkable interest from the scientific community and investors. 

Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health 

and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient 

cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome 

based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex 

biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. 

We delineate the major pathways and molecular players that influence each step of exosome physiology, highlight-

ing the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main 

controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma 

membrane. We also delineate the most common identified pitfalls affecting exosome research and development. 

Unravelling exosome physiology is key to their ultimate progression towards clinical applications.
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Background

Extracellular vesicles (EVs) are released by all cells, 

prokaryotes and eukaryotes, and regulate intercellular 

communication in health and disease [1, 2]. Exosomes 

are a subset of EVs that were initially identified as a cel-

lular mechanism to excrete unwanted cellular products 

[3]. �ey are now known to play significant roles in cel-

lular communication by transferring functional pro-

teins, metabolites and nucleic acids to recipient cells 

[4–6]. �ey influence a broad range of physiological pro-

cesses such as immune responses [7], tissue repair [8, 

9], stem cell maintenance [10], central nervous system 

(CNS) communication [6] and pathological processes in 

cardiovascular diseases [11, 12], neurodegeneration [13], 

cancer [14] and inflammation [15].

Exosomes have generated considerable interest for clin-

ical application as diagnostic biomarkers and therapeutic 

cargo carriers [16]. Reduced immunogenicity due to their 

biocompatibility and a bi-layered lipid structure, which 

protects the genetic cargo from degradation, makes 

them attractive as therapeutic vectors. �eir small size 

and membrane composition allow them to cross major 

biological membranes including the blood brain barrier. 

Production of engineered exosomes is an active research 

field, which fosters assessment of various therapeutic 

cargoes, enhancement of target selectivity and optimi-

sation of manufacturing [17, 18]. A major limitation for 

successful translation remains the difficulty to precisely 

target the cell type or organ of interest whilst limiting off-

target biodistribution. Another concern is the presence 

of naturally incorporated cellular genetic impurities with 
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potential immunogenicity [18–20]. To circumvent these 

difficulties, a better understanding of exosome biology in 

order to improve therapeutic exosome engineering is key.

In this review, we present the most up-to-date knowl-

edge of exosome biology detailing their biogenesis and 

secretion mechanisms, targeting of recipient cell, uptake 

and intracellular signalling. Although we acknowledge 

the complexity of multiple biological mechanisms for 

secretion and uptake, we highlight the main mechanisms, 

which could be relevant to exosome engineering for ther-

apeutic applications. We address as well current contro-

versies and common pitfalls impeding exosome research.

EV classi�cation

Extracellular vesicles (EVs) are classified into three 

groups typically based on their size and biogenesis: 

exosomes (30–200  nm), microvesicles (MVs) (100–

1000  nm) and apoptotic bodies (> 1000  nm) [5, 21–24] 

(Fig. 1). Exosomes are considered to be of endocytic ori-

gin, MVs are produced by budding and blebbing from 

the plasma membrane and apoptotic bodies are released 

by cells undergoing programmed cell death and sig-

nal cell engulfment [25]. EVs are further differentiated 

based on their density, composition and function [25, 

26] (Table  1). While all EVs have complex composition 

of proteins, nucleic acids, lipids and metabolites (Table 1, 

Fig. 1), sizes and marker overlaps between heterogeneous 

EVs can make their differentiation harder [2, 27]. In this 

review, the exosome terminology is used if clarified in the 

referenced publication and the term EV is used if the dif-

ferentiation is unclear.

Biological composition of exosomes

Exosomes are membrane bound carriers. �eir car-

goes can include proteins, nucleic acids and metabolites 

(Fig.  2) [28], reflecting the nature of donor cell and its 

physiological state [12]. Exosomes have a spheroid shape 

in solution but appear bi-concave or cup-shaped when 

produced by artificial drying during preparation [29]. �e 

main membrane bound and cytosolic proteins incorpo-

rated in exosomes are members of the tetraspanin fam-

ily (CD9, CD63 and CD81), endosomal sorting complex 

required for transport (ESCRT) proteins (Alix, TSG101), 

Fig. 1 Extracellular vesicles (EVs) classification. The three different 

classes of EVs are depicted. a Exosomes are generated through the 

endocytic pathway and are released via exocytosis, are spherical in 

shape and have size range of 30–200 nm of diameter. b Microvesicles 

(MVs) are released through budding from plasma membrane, 

are irregular in shape and range in size between 100–1000 nm of 

diameter. c Apoptotic bodies are released through blebbing by cells 

undergoing apoptosis and are > 1000 nm in size

Table 1 Extravesicles subtype characteristics

Exosomes Microvesicles Apoptotic bodies

Origin Endocytic origin Plasma membrane budding Blebbing

Size 30–200 nm 100–1000 nm  > 1000 nm

Density 1.13–1.19 g/ml 1.04–1.07 g/ml 1.16–1.28 g/ml

Shape Spheroid Irregular Variable

Composition Proteins, nucleic acids, lipids and metabo-
lites

Proteins, nucleic acids, lipids and metabo-
lites

DNA fragments and histone, chromatin rem-
nants, cytosol portions, degraded proteins

Typical 
constituent 
proteins

Tetraspanins, ESCRT proteins (Alix, TSG101), 
integrins, heat shock proteins

Integrins, selectins, CD40 ligand, flotillin-2, 
adenosine diphosphate ribosylation fac-
tor 6, phosphatidylserine

Annexin V, phosphatidylserine

Function Cell–cell communication Cell–cell communication Product of programmed cell death. Facilitate 
clearance of apoptotic cells

References [21, 25, 28, 185, 186] [5, 21, 22, 25, 185, 186] [21, 23–26]
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integrins, heat shock proteins (Hsp), actin and flotil-

lins [16, 30] (Table 2). While proteins such as heat shock 

proteins, CD63, ESCRT and cytoskeletal components 

are common among all exosomes, other proteins such 

as MHC Class I and II are specific to the donor cell type 

[31]. �e rigid bilayer membrane of exosomes also consist 

of lipid components such as sphingomyelin, cholesterol 

and ceramides, which influence cargo sorting, exosome 

secretion, structure and signalling [32, 33] (Table  2). A 

complex of nucleic acids such as DNA, mRNA and non-

coding RNA species as well form part of the exosome 

composition [2, 31]. MicroRNAs (miRs) are one of the 

most abundant RNA species in exosomes [16, 34]. MiRs, 

which play roles in multiple biological processes such as 

exocytosis, hematopoesis and angiogenesis, participate in 

exosome mediated cellular communication [16]. Other 

exosomal RNA species include ribosomal RNA (rRNA), 

long non-coding RNA (lncRNA), transfer RNA (tRNA), 

small nuclear RNA (snRNA), small nucleolar RNA and 

p-element-induced wimpy testis (piwi)-interacting RNA, 

all of which impact biological processes, particularly 

influencing tumor development [16, 35]. Studies have 

thus explored their potential for use as non-invasive dis-

ease diagnostic and prognostic tool.

Fig. 2 Composition of exosomes. Exosomes are composed of various proteins: transmembrane proteins such as tetraspanins, antigen presenting 

molecules, glycoproteins and adhesion molecules; proteins in exosome lumen such as heat shock proteins (Hsp), cytoskeletal proteins, ESCRT 

components, membrane transport, fusion proteins, growth factors and cytokines. Exosomes also comprise of multiple lipids such as cholesterol, 

ceramides, sphingomyelin, phosphatidylinostol (PI), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

gangliosides (GM) along with nucleic acids such as mRNA, miRNA, non-coding RNA and DNA in their lumen. Hsc = Heat shock cognate; 

TSG = tumor suspectibility gene; TNF = tumor necrosis factor; TGF = Transforming growth factor; TRAIL = TNF-related apoptosis-inducing ligand; 

FasL = Fas ligand; TfR = Transferrin receptor
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Exosome biogenesis in multivesicular bodies

Multivesicular bodies (MVBs) and late endosomes are 

a subset of specialised endosomal compartments rich 

in intraluminal vesicles (ILVs), which sequester specific 

proteins, lipids and cytosolic components. Secreted ILVs 

become exosomes. ILVs are generated by the inward bud-

ding of endosomal membranes, first discovered through 

the study of vesicular secretion of transferrin receptor 

(TfR) by mature reticulocytes [36]. MVBs get transported 

to plasma membrane via cytoskeletal and microtubule 

network and undergo exocytosis post fusion with the 

cell surface whereby the ILVs get secreted as exosomes 

[25]. Other MVBs follow a degradation pathway either 

by direct fusion with lysosomes or by fusion with 

autophagosomes followed by lysosomes [37]. MVBs are 

a heterogeneous population [38] and speculation remains 

whether the secretory and degradatory MVB pathways 

are distinct. It is also unknown if some specific markers 

or cargoes influence these pathways. To date, multiple 

mechanisms involved in exosome biogenesis have been 

identified. ESCRT machinery plays a prominent role in 

this process, with SNARE proteins and their effectors 

such as RAB GTPases playing important role in their 

secretion alongside [5, 31]. Furthermore, the importance 

of mechanisms relying on tetraspanins and lipids cannot 

be underestimated and have helped improve our under-

standing of dynamics of exosome generation and release 

(Fig. 3).

ILV biogenesis and secretion are mainly driven by the 

ESCRT machinery, a cytoplasmic multi-subunit system 

essential for membrane remodelling, which enables vesi-

cle budding and cargo sorting in MVBs and relies on five 

core ESCRT complexes: ESCRT-0, -I, -II, -III and Vps4 

[39]. Ubiquitinated cargoes are recognised and sorted 

by the key subunit hepatocyte growth factor-regulated 

tyrosine kinase substrate (Hrs) of ESCRT-0 to phos-

phatidylinositol-3-phosphate (PI3P) enriched endosomal 

compartments [39]. PI3P is a phospholipid found pre-

dominantly in early and late endosomes regulating cell 

signalling and membrane trafficking [40]. In the ESCRT 

pathway, PI3P promotes cargo organisation through Hrs 

interaction. Subsequently ESCRT-0 recruits ESCRT-I 

Table 2 Exosome composition and roles of main components

Exosome composition

Category Examples Role References

Proteins

Tetraspanins CD9, CD63, CD37, CD81, CD82, CD53 Exosome biogenesis, exosome cargo selection, 
targeting and uptake

[107, 187]

ESCRT machinery/MVB biogenesis Alix, TSG-101 Exosome biogenesis [49, 107]

Heat Shock Proteins (Hsp) Hsp90, Hsc70, Hsp60, Hsp20, Hsp27 Exosomes release, signalling [188–190]

Membrane transport and fusion GTPases, Annexins, Flotillin, Rab GTPases, 
dynamin, syntaxin

Exosome secretion and uptake [16, 66, 73, 140]

Major Histocompatibility Complex 
(MHC) molecules

MHC Class I, MHC Class II Antigen presentation to generate immunologi-
cal response

[191, 192]

Cytoskeletal proteins Actin, Cofilin, Tubulin Exosome biogenesis and secretion [16, 19, 30]

Adhesion Integrin-α,-β, P-selectin Exosome targeting and uptake [16, 19]

Glycoproteins β-galactosidase, O-linked glycans, N-linked 
glycans

Exosomes targeting and uptake [193, 194]

Growth factors and cytokine TNF-α, TGF-β, TNF-related apoptosis inducing 
ligand (TRAIL)

Exosome targeting and uptake, signalling [116, 162]

Other signalling receptors Fas ligand (FasL), TNF receptor, Transferrin 
receptor (TfR)

Exosome targeting and signalling including 
apoptosis induction and iron transport

[16, 36, 116]

Category Role References

Lipids

Cholesterol Exosome secretion [195, 196]

Ceramides Cargo sorting and exosome secretion [54, 197]

Sphingomyelin Exosome rigidity and signalling [111, 197]

Phosphatidylserine Exosome formation, signalling and uptake [32, 196, 198]

Phosphatidylcholine Exosome formation and structure

Phosphatidylethanolamine Exosome formation and structure

Phosphatidylinositol Exosome formation and structure

Gangliosides Exosome rigidity
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by interacting with the ESCRT-subunit tumor suscepti-

bility gene 101 (Tsg101). ESCRT-I along with ESCRT-II 

promotes endosomal inward budding around clusters of 

ubiquitinated proteins. �e charged multivesicular body 

protein-6 (CHMP6) subunit from ESCRT-III then binds 

to ESCRT-II and recruits CHMP4 which polymerises as 

a coil around the neck of the budding ILV pouch. Upon 

addition of CHMP3, the bud is cleaved forming ILVs, fol-

lowed by ESCRT-III disassembly using ATP catalysed by 

Vps4 [39].

Multiple evidences support the critical role of ESCRT 

in exosome biogenesis through ILV formation. Loss 

of Hrs, ESCRT-0 subunit STAM1 (Signal Transduc-

ing Adaptor Molecule) and Tsg-101 all reduce exosome 

secretion in multiple cell types such as tumor and den-

dritic cells [41, 42]. Leptin, a hormone which regulates 

energy balance and hunger, enhances exosome release 

by increasing TSG-101 expression [43]. Hepatitis C 

virus (HCV) infected cells are dependent on CHMP4B 

(ESCRT-III component) for exosome-mediated trans-

fer of viral RNA [44]. ESCRT components, TSG101 

and ALIX, are commonly occuring exosome constitu-

ent proteins [16]. ALIX is an accessory ESCRT protein 

which binds ESCRT-III subunits and aid the budding 

Fig. 3 Exosome biogenesis. Within the endosomal system, [1] internalised cargoes are [2] sorted into early endosomes, [3] which then mature into 

late endosomes or multivesicular bodies. Late endosomes/multivesicular bodies are specialised endosomal compartments rich in intraluminal 

vesicles (ILVs), which sequester proteins, lipids, and cytosolic compartments and potential exosome cargoes. [4] Cargoes are also delivered from 

trans-Golgi network and possibly from cytosol. [5] Multivesicular bodies containing exosome cargoes get [5] transported to the plasma membrane, 

[6] fuse with the cell surface and [7] the ILVs then get secreted as exosomes. ER: Endoplasmic Reticulum; MVB: Multivesicular Bodies; PM: Plasma 

membrane
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and abscission process for ILV formation, and is shown 

to have prominent role in exosome formation particularly 

in tumor cells. ALIX interacts with syndecan heparan 

sulfate proteoglycan through its cytoplasmic adaptor, 

syntenin to drive ILV formation and hence exosome 

production [45]. �e ALIX-syndecan interaction also 

influences the sorting of syndecan interactor cargoes 

into ILVs [45–48]. �is syndecan-syntenin interaction 

is also exploited by oncogenic Src kinase in tumor envi-

ronment to induce exosomal promigratory activity [48]. 

ALIX also facilitates incorporation and secretion of tet-

raspanins into exosomal membrane by directly recruiting 

ESCRT-III to late endosomes [49]. ESCRT-III is recruited 

through direct interaction with lysobiphosphatidic acid 

(LBPA), independent of the classic ESCRT pathway [49]. 

However, in non-tumor cells such as dendritic cells, 

ALIX silencing increased MHC-II exosomal secretion 

but reduced CD63 presence in exosomes [41].

ESCRT is a ubiquitination dependent process and 

ubiquitin binding ESCRT proteins like Hrs, STAM1 and 

TSG101 all play important roles in exosome biogenesis. 

However the role of ubiquitination in exosome cargo 

sorting is unclear. Although ubiquitinated soluble car-

goes are enriched in exosomes [50, 51] and presence of 

ubiquitination sequence in cargoes such as Major His-

tocompatibility Complex (MHC)-II enhances their ILV 

incorporation [52], non-ubiquitinated MHC-II are still 

recovered in exosomes [53] suggesting ubiquitination 

independent exosome incorporation to also occur.

Alongside ESCRT dependent processes, the roles of 

complex lipids and other protein related pathways in exo-

some generation have also been highlighted [33]. Com-

plex lipids such as ceramide can self-associate to form 

raft-like structures and contribute to the initial mem-

brane curvature for inward budding to form intraluminal 

vesicles [54]. Loss of sphingomyelinase, an enzyme which 

breaks down sphingolipid to ceramide, impairs exosome 

secretion of Aβ- peptides in neurons [55] and exosomes 

containing CD63, CD81, Tsg101 and miRNAs in multiple 

tumor models [42, 56, 57]. Sphingomyelinase inhibition 

also reduces exosomal viral RNA transfer from hepa-

titis C infected cells [44]. Similarly, Zika virus relies on 

sphingomyelinase activity in cortical neurons to mediate 

infection and viral transmission through exosomes [58]. 

Curcumin, a hydrophobic polyphenol found in the plant 

Curcuma longa and the main compound of turmeric, 

also drives exosome secretion by increasing intracellular 

concentration of ceramide and reducing lipid concentra-

tion within endolysosomal compartments [59]. ESCRT-

dependent and ESCRT-independent lipid-mediated 

pathways co-exist in numerous biological processes like 

in the viral RNA transfer and invasive process of carci-

noma cells [42, 44]. However, lipid dependent regulation 

of exosome biogenesis is cell type dependent, for instance 

in melanoma cells where exosome production is unaf-

fected by the loss of ceramide production [60].

Tetraspanins are highly conserved membrane integral 

proteins, which play important roles in protein scaf-

folding and anchoring in cellular membranes [61]. Tet-

raspanins CD9, CD63 and CD81 are highly present in 

exosomes, are often used as exosome biomarkers and can 

influence exosome biogenesis and composition [61–63]. 

CD63 (LAMP-3) regulates exosome loading of the latent 

membrane protein 1 (LMP1), the main Epstein Barr 

Virus (EBV) related oncoprotein, which enables escape 

from lysosomal degradation [64]. CD63 interacts with 

apolipoprotein E to regulate loading of premelanosomes 

and ILV sorting during melanogenesis independently of 

ESCRT [60, 65]. Interestingly, tetraspanins influences 

cargo sorting for release or degradation as CD63 loss 

results in ESCRT-dependent lysosomal degradation of 

premelanosomes [60]. CD63 is one of the main proteins 

used in engineered exosomes to faciliate increased load-

ing of cargoes and reporters [6, 66–69]. Other tetraspa-

nins that play roles in exosome biogenesis include CD9 

which interacts with metalloproteinase CD10, a common 

leukemia antigen, to enhance exosomal loading of CD10 

[70] and CD81-enriched microdomains provide platform 

for cargo sorting [63]. Tetraspanin-mediated exosome 

biogenesis closely interact with complex lipids like the 

interplay of CD9 and CD82 with ceramide to secrete in 

exosomes β-catenin, a key protein in cell–cell adhesion 

and gene expression [56]. Contrastingly, exosome pro-

duction is negatively regulated by tetraspanin-6, which 

through its interacting partner syntenin influences ALIX-

syndecan-syntenin function and directs MVB cargoes for 

lysosomal degradation [71].

In terms of exosome secretion, Rab GTPases, the 

most abundant family of proteins in Ras superfam-

ily of GTPases, play a crucial role in intracellular vesi-

cle transport including endosome recycling and MVBs 

trafficking to lysosomes [72]. Rab GTPase modulation 

of exosome secretion is heteregenous, depending on 

cell-type and cargoes. Rab GTPases and SNARE pro-

teins interact to induce exosome secretion [5]. Rab27a 

is involved in the MVB docking at plasma membrane 

in Hela cells [73], neurons and podocytes [74] and in 

exosome-mediated invasiveness of carcinoma cells [42]. 

Rab27a also determines exosome size while Rab27b, 

which shares common function with Rab27a in endo-

somal trafficking, instead influences the intracellu-

lar distribution of MVBs in exosomal trafficking [73]. 

Rab11 and Rab35, which typically acts in the endosome 

recycling pathway [75, 76], also influence exosome 

cargo secretion [76]. Rab11 is required for the exoso-

mal secretion of evenness interrupted (Evi) within the 
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neuromuscular junction of drosophila, which facili-

tates synaptic development and plasticity [77]. Rab35 

is required for the exosomal secretion of myelin pro-

tein proteolipid (PLP) in oligodendrocytes [78, 79] 

by docking MVBs to plasma membrane. Loss of both 

Rab11 and Rab35 results in enhancement of intracel-

lular accumulation of endosomal cargoes, highlighting 

their important roles in the cargo secretion and also in 

recycling of late endosomal compartments [76]. Rab7, 

which regulates endosomal trafficking of MVBs to lys-

osomes [78], display contrasting role in exosome release 

dependent on the cell-type [45, 73, 80]. Additionally 

Rab2b, Rab5a and Rab9a enhance exosome secretion 

[73]. Hence, modulation of exosome secretion by Rab 

GTPases depends on both their distinctive trafficking 

functions and the cell-type. RAL1 (Ras related GTPases 

homolog) also mediates ILV budding and tethering of 

MVB to plasma membrane in breast cancer cells and 

Candida elegans [81]. RAL1 regulates exosome secre-

tion in co-ordination with T-SNARE syntaxin 5 and an 

unidentified V-SNARE [81]. R-SNARE Ytk6 interacts 

with ESCRT-dependent exosome secretion of active 

Wnt and hedgehog signalling proteins in drosophila 

and vertebrate cells [82, 83]. Study in HeLa cells also 

show MVB fusion to plasma membrane and subsequent 

secretion of exosomes regulated by T-SNARE SNAP23 

and syntaxin-4 [66]. As evident, the mechanisms of 

exosome biogenesis and secretion are heterogeneous 

with the main ESCRT pathway being seconded by other 

mechanisms involving lipid rafts and tetraspanins. Rab 

proteins further aid the cargo sorting and exosome 

secretion.

Finally, autophagy related protein-5 (Atg5) and 

autophagy-related-16 like-1 (Atg16L1) also regulate exo-

some biogenesis in breast cancer cells [84] and medi-

ate exosome secretion of prion proteins in central and 

peripheral neuronal cells [85]. Autophagy is a regulated 

self-degradative process that removes unnecessary and 

dysfunctional cellular components for recycling [86]. 

Interestingly mechanistic target of rapamycin complex 

1 (mTORC1), a highly conserved Ser/�r kinase and 

master regulator of autophagy, also negatively regulates 

exosome release in response to changes in nutrient and 

growth factors, in a manner similar to autophagy [67]. 

�e concurrent regulation of these two processes likely 

allows cellular waste management and recycling, particu-

larly under stress conditions. Such regulation of exosome 

release possibly occurs in stressful environment of glu-

cose starvation and hypoxia [30].

Hence exosome biogenesis is a finely tuned and reac-

tive pathway with multiple molecular players which are 

involved in other key cellular functions or vesicle related 

physiology.

Transport and biodistribution

Exosomes mediate cell–cell communication locally and 

systemically and are secreted by most cell types includ-

ing dendritic cells, macrophages, cancer cells and mesen-

chymal stem cells [87]. Exosomes are present in various 

biological fluids such as breast milk, blood, serum, urine, 

saliva, amniotic and synovial fluids [88]. Moreover 

exosomes might undergo multiple cell uptake and release 

cycles to allow access to several layers of tissues [89]. Bio-

distribution studies are commonly performed using het-

erologous exosomes delivered through various routes of 

administration, which are likely to behave differently than 

autologous exosomes, thereby influencing their kinetics 

and biodistribution [87]. Study using both cell-derived 

and body fluid-derived exosomes (like bovine milk-

derived exosomes) show biodistribution to most organs 

including liver, lung, kidney, pancreas, spleen, ovaries, 

colon, and brain after oral administration but an intrave-

nous administration causes a predominant sequestration 

in the liver followed by spleen, lungs and the gastroin-

testinal tract [87, 90, 91]. Intravenous injection results 

in rapid clearance of exosomes in the bloodstream while 

intratumoral injection allows longer exosome detection 

in tumors [92] and intranasal administration favors deliv-

ery to the brain [17, 93]. Macrophages commonly medi-

ate the uptake in most tissues, while endothelial cells 

preferentially mediate the uptake in lungs [94–96]. Exo-

some size also influences transport and biodistribution 

as larger EVs preferentially accumulate in bones, lymph 

nodes and liver [97].

Although a non-specific uptake is shared by all cell 

types [98], specific targeting to recipient cells is para-

mount to deliver exosome content and exert its func-

tion [99]. �is is mediated by the surface composition 

of the exosome (Table  2). For instance, integrating cen-

tral nervous system-specific rabies viral glycoprotein 

(RVG) [100], which specifically interacts with acetyl-

choline receptor enables exosome delivery to the brain 

[101, 102]. Another exosome targeting specificity is the 

conservation of tropism between donor and recipient 

cells. �is cellular signature conserved in the secreted 

exosomes acts as recognition motifs for uptake by the 

same recipient cell types in vitro and in vivo [103, 104]. 

For instance cancer cells target cell types by harbour-

ing mannose- and sialic acid- enriched glycoproteins on 

exosome surface like ovarian cancer cells [105]. Integ-

rins α6β4 and α6β1 target lung metastasis and integrins 

αvβ5 target liver metastasis [106, 107]. Neuroblastoma 

cells release CD63 positive exosomes targeting neuronal 

dendrites and CD63 negative exosomes targeting whole 

neurons and glial cells simultaneously [108]. Equally, the 

presence of certain receptors facilitates evasion from the 

host immune system. For instance, CD47 at the surface 
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of engineered exosomes contributes to evasion from host 

immune cells during circulation in  vivo [109]. Complex 

lipids also influence exosome targeting as observed in 

cancer cells. Glioblastoma-derived exosomes enriched 

with phosphatidylethanolamine preferentially target glio-

blastoma cells along with fibrosarcoma and breast cancer 

cells [110]. Sphingomyelin enriched melanoma derived 

exosomes show enhanced targeting in the tumor micro-

environment [111]. Lipid targeting is also used by other 

cell types such as dendritic cells where reduced sphin-

golipid composition negatively regulates their exosomes 

uptake ability [96]. Phosphatidylinositol-enriched 

exosomes decrease macrophage targeting [112]. �ere-

fore cell origin, route of administration and exosome 

composition are all important factors influencing exo-

some biodistribution.

Reaching the recipient cell

When reaching the target cell, exosomes can either trig-

ger signalling by directly interacting with extracellular 

receptors or be uptaken by direct fusion with the plasma 

membrane or get internalised.

Direct interaction

�e transmembrane ligands on exosome surface can 

bind directly with the surface receptors on the recipient 

cell and generate downstream signalling cascade to acti-

vate the target cell (Fig.  4a). �is is a common route to 

mediate immunomodulatory and apoptotic functions. 

Exosomes released from dendritic cells activate T lym-

phocytes through MHC-peptide complex [113] and bind 

Toll-like receptor ligands on bacterial surface to activate 

bystander dendritic cells and enhance immune responses 

[114]. Umbilical cord blood-derived exosomes express-

ing tumor antigens such as MHC-I, MHC-II and tetras-

panins (CD34, CD80) also stimultate T cell proliferation 

to produce antitumor activity [115]. Ligands including 

tumor necrosis factor (TNF), Fas ligand (FasL) and TNF 

related apoptosis inducing ligand (TRAIL) expressed on 

exosome surface released by dendritic cells can bind to 

TNF receptors on tumor cells and trigger caspase activa-

tion for apoptosis [116].

Fusion with plasma membrane

Exosomes can also fuse with the plasma membrane and 

release their content directly into the cytosol of target 

cells (Fig. 4b). �is includes hemi-fusion stalk formation 

between hydrophobic lipid bilayers of the exosome and 

plasma membrane followed by expansion forming one 

consistent structure. Families of SNAREs and Rab pro-

teins likely mediate this fusion [117, 118] as shown in 

studies from cell membrane fusion [119]. Lipid raft like 

domains, integrins and adhesion molecules present on 

the exosome surface also mediate interaction, attachment 

and membrane fusion with the target cell [120–122]. 

Studies using exosomes incorporating lipophilic dye 

octadecyl rhodamine B (R18) help distinguishing endo-

cytosis from fusion. R18 is typically introduced into the 

exosome bilayer at self-quenching concentrations which 

is diluted upon fusion with unlabelled recipient mem-

branes resulting in concomitant fluorescence, thus allow-

ing to monitor membrane fusion [123]. �is process has 

been observed in dendritic and tumoral cells [124, 125]. 

Although evidences to support this mechanism remain 

weak, some authors have speculated that the low pH of 

tumor microenvironment resulting in higher rigidity 

Fig. 4 Exosome signalling by direct interaction or membrane fusion. Upon reaching the target cells, a membrane receptors within the exosome 

surface and plasma membrane of target cells can interact inducing downstream signalling cascade in the recipient cell. b Exosomes membrane can 

also fuse with the plasma membrane and release their contents into the cytosol directly
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and increased sphingomyelin, could facilitate exosome 

fusion [111], thus making it a likely route to be adopted 

by tumor cells.

Internalisation

Exosomes are primarily internalised by the recipient cell 

followed by cargo release [67, 126, 127]. �is uptake pro-

cess is rapid and temperature-sensitive, decreased by low 

temperature [105]. �e common endocytic pathways are 

involved in exosome internalisation.

Clathrin-mediated endocytosis is a stepwise assem-

bly of various transmembrane receptors and ligands, 

characterised by the involvement of triskelion scaffold 

(clathrin), forming clathrin-coated vesicles (Fig. 5a). �e 

internalised vesicles undergo uncoating and fuse with 

endosomes [128]. �is mode of exosome entry occurs in 

most cell types such as ovarian and colon tumor cells [66, 

99, 105], cardiomyocytes [129], macrophages [130, 131], 

hepatocytes [131] or neural cells [53, 115], epithelial cells 

[132], illustrated by their dependence on factors essential 

for clathrin mediated endocytosis. Dynamin-2, an impor-

tant player in clathrin-mediated endocytosis, forms a 

collar-like structure in the neck of invaginations required 

for scission. Dynamin-2 inhibition decreases exosome 

uptake by macrophages [130, 133] and microglia cells 

[134]. In cancer cells, the overexpression of transferrin 

Fig. 5 Exosome internalisation. Exosomes are internalised by the recipient cells and fuse with the intracellular compartments/endosomal pathway 

for cargo release. Exosomes can be internalised by a clathrin-mediated endocytosis, b lipid-raft mediated, c caveolin-mediated endocytosis, d 

phagocytosis or e micropinocytosis. These pathways are not always mutually exclusive and can co-exist for the internalisation of a same set of 

exosomes
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receptor, a major cargo for clathrin-mediated endocyto-

sis, facilitates enhanced exosome uptake [135]. Cumula-

tive evidence suggests clathrin-mediated endocytosis to 

be one of the canonical exosome uptake pathway. �is 

highly regulated process can also be influenced by the 

cargo and exosome composition [128].

Lipid raft-associated membrane invagination is a major 

endocytic mechanism to shift cargo into early endo-

some (Fig. 5b) and influence exosome uptake [136]. Lipid 

rafts are detergent-resistant membrane microdomains 

enriched in cholesterol, sphingolipids and glycosylphos-

phatidylinositol (GPI)-anchored proteins [121]. Meta-

bolic inhibition of complex lipids alters exosome uptake 

by lipid rafts. Methyl-β-cyclodextrin, which interferes 

with intracellular cholesterol transport reduces exosome 

uptake in breast cancer cells [137]. Exosome uptake by 

dendritic cells is impaired when the exosome producing 

cell is pre-treated with a sphingolipid synthesis inhibitor 

[138]. Pre-treating tumor cells with filipin, which binds to 

cholesterol and forms ultrastructural aggregates, results 

in reduced exosome uptake [111, 139]. Annexin AnxA2 

promotes lipid raft-mediated endocytosis by immobilis-

ing exosomes on the cell surface at specific adherent sites 

[137]. Flotillin, a component of lipid rafts, also positively 

regulates lipid raft-mediated endocytosis [140].

Conflicting reports have involved caveolin-dependent 

endocytosis as another potential exosome uptake route. 

Caveolin-dependent endocytosis is mediated by integral 

membrane proteins named caveolins, which create a 

small flask or omega shaped plasma membrane invagi-

nations called caveolae [141]. Caveolae enable internali-

sation of caveosomes, large vesicles enriched by highly 

hydrophobic and detergent-resistant membrane lipids 

containing cholesterol and sphingolipids (Fig.  5c) [141]. 

Caveolin-1, 2 and 3 are the main structural proteins of 

caveolae [141]. Caveolin-1 positively regulates exosome 

uptake in epithelial cells [142] but negatively regulates 

exosome uptake in fibroblasts and glioma cells [143]. 

Both clathrin- and caveolin-mediated endocytosis share 

molecular players such as dynamin-2, which hinder their 

differentiation [135] and warrant further studies. �is is 

for instance the case in macrophage activation mediated 

by exosomal Wnt5a for invasion of breast tumor cells 

[128, 138]. However, using specific clathrin inhibitors 

can help differentiate between the two uptake pathways 

[125].

Phagocytosis typically engulfs large particles like bac-

teria and dead cells but can also internalise small parti-

cles like exosomes. Phagocytosis is a stepwise process 

where cell membrane deformations encircle the bulk 

extracellular particles forming phagosomes eventually 

directing internalised cargo to lysosomes [144] (Fig. 5d). 

Phosphatidylinositol-3-kinase (PI3K) and phospholipase 

C (PLC) enzymes are necessary for the phagosome clo-

sure. Unsurprisingly, this route of exosome uptake is pre-

dominantly used by immune cells such as macrophages 

and dendritic cells, demonstrated by their dependence on 

PI3K and actin cytoskeleton activity [124, 130].

Macropinocytosis uses actin-driven lamellopodia to 

induce inwards plasma membrane invagination that get 

pinched off to form intracellular compartments called 

macropinosomes (Fig.  5e). �ey are growth factors 

dependent and result in non-specific uptake of extracel-

lular soluble molecules, nutrients and antigens [145]. 

Cholesterol-mediated Rac1 GTPase recruitment, Na+/

H+ exchanger function and in some cases dynamin regu-

late macropinocytosis [146]. �e subsequent macropino-

some matures and is then internalised by fusion with the 

lysosome for degradation or recycling back to the plasma 

membrane [147, 148]. Exosome uptake can rely on 

macropinocytosis in HeLa cells [149], subsets of micro-

glial cells [134] highlighted by an Na + /H + exchanger 

activity dependent uptake [134] and partially in epithe-

lial cells [32]. Anecdotical micropinocytosis, dependent 

on growth factors, has been reported in Ras-expressing 

carcinoma cells. �e secretion of growth factors could 

induce micropinocytosis by the use of EGFR stimula-

tion [150]. Uptake of engineered exosomes targeting 

oncogenic KRAS was also facilitated by RAS-mediated 

macropinocytosis [151].

�ese different modes of exosome entry can co-exist. 

Exosome uptake in ovarian tumor and melanoma cells 

occurs mainly through-cholesterol associated lipid rafts 

but clathrin-mediated endocytosis, phagocytosis and 

micropinocytosis are concomitantly used [105, 152, 153]. 

Macrophage-derived exosomes use both macropinocyto-

sis and clathrin-mediated endocytosis to penetrate hepat-

ocytes and transfer interferon (IFNƴ) induced resistance 

to Hepatitis A virus [154]. Clathrin-mediated endocy-

tosis and macropinocytosis are used concomitantly for 

the uptake of PC12-derived exosomes by bone marrow-

derived MSCs [155]. Phagocytosis of exosome by mac-

rophages is also lipid-raft dependent [130]. Similarly 

caveolin-dependent uptake of exosomes by bone marrow 

stem cells is also partially mediated by macropinocytosis 

and membrane fusion [125]. Rarely these routes can play 

opposite roles as observed in glioblastoma cells, which 

stimulate and inhibit exosome uptake by lipid rafts and 

caveolin mediated endocytosis, respectively [143].

Recently a specific filopodial mode of entry has been 

described in fibroblasts [156]. Filopodia are thin, actin-

rich cytoplasmic protrusions that allow cells to probe 

their environment by increasing cellular surface area and 

interaction with the extracellular ligands [157]. �ey can 

influence various cellular processes including exosome 

uptake in a manner similar to the uptake of pathogenic 
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bacteria and viruses [158]. Exosomes surf on filopodia at 

constant speed preceding their internalisation as intact 

vesicles, while some exosomes encounter laterally mov-

ing filopodia with grabbing or pulling motions. �is 

actin-dependent process relies on F-actin dependent 

retrograde flow [156]. �e filopodial motion might hap-

pen immediately upstream of the endocytic uptake to 

facilitate exosome internalisation and adhesion via trans-

membrane molecules such as integrins possibly acting as 

coupling receptors [158]. However, whether this filopo-

dial base acting as endocytic hotspot for exosome uptake 

is specific to fibroblasts, what mediates these filopodial 

surfing motions and whether they precede or replace 

other uptake routes are not known.

Exosomes intracellular signalling

Exosomes which fuse with the plasma membrane release 

their contents into the cytosol [121] while direct inter-

action of exosomes with the surface receptors of recipi-

ent cells induces downstream signalling cascades [115]. 

�e intracellular fate of exosomes post internalisa-

tion follows the typical endosomal pathway, from early 

endosomes as sorting compartments to acidic vesicles i.e. 

late endosomes and MVBs, which fuses with lysosomes 

[111, 159], eventually undergoing degradation. Lysosome 

targeting requires active transport along the cytoskel-

eton, a process mediated by the lipid composition [160], 

SNARE proteins [20] and intracellular pH. Supporting 

this, motion of exosomes and their cargo along intracel-

lular filamentous structures has been recently confirmed 

[161]. Exosome membrane lipids are directed to other 

cellular locations for supposed recycling while trans-

membrane exosome proteins remain in the perinuclear 

space suggesting degradation [126, 127].

However, exosome cargoes likely bypasses degrada-

tion as various studies demonstrate exosome-mediated 

functional changes in recipient cells [15, 19]. �e grad-

ual acidification through the endosomal compartments 

can facilitate the exosome cargo function. For instance, 

exosomes incorporating the pH sensitive latent trans-

forming growth factor (TGF) β-1 are activated in the 

acidic endosomal environment and induce phenotypic 

changes in the recipient cell [162]. TGF β-1 cargo is 

retained in the endosomal compartments during signal-

ling, allowing sustained cellular signalling compared to 

free TGF β-1 [162] �e fusion of endosome and lyso-

some compartments also allows cytosolic cargo expo-

sure through acidification and in a cholesterol-dependent 

manner [67]. Some exosome content can also passively 

diffuse across the cytoplasm, potentially creating an exo-

some leakage [126, 127].

Endoplasmic reticulum (ER) which is a nucleation 

site for translation [163], could be a route for lysosomal 

escape enabling cargo release as ER scanning can occur 

after exosome sorting into the endosome trafficking cir-

cuit [156]. �is would be a route of choice for exosomes 

carrying mRNA and miRNAs to release their cargoes 

in ER for rapid translation and mediation of altered 

gene expression. Rab5/Rab7 positive endosomal vesi-

cles interact with ER, highlighting the coupling between 

endosomal maturation and trafficking [164]. Ultimately 

exosomes fuse with lysosomes possibly degrading excess 

cargoes.

Nucleoplasmic reticulum is a sub-nuclear compart-

ment consisting of nuclear associated invaginations pen-

etrating into the nucleoplasm, where the nuclear transfer 

of exosomes can occur. �e nuclear envelope associated 

invaginations linked with the late endosomes can allow 

delivery of exosome components into the nucleoplasm 

and is likely a route for nuclear cargoes [165, 166].

Exosomes are also able to use pathways similar to 

viruses to avoid lysosomal degradation. In dendritic cells 

internalised exosomes can bypass lysosomal degradation 

by being routed to a specialised, surface-accessible CD81 

positive LAMP-1 negative intracellular compartment 

contiguous with the plasma membrane, in a manner 

similar to HIV-1 particles [138, 167]. However whether 

this property is specific to a cell type or to the exosomes 

themselves is not known. Fusion with late endosomes 

also provide an optimal environment for cargo uncoat-

ing and release into cytosol via endosome penetration 

aided by the high concentrations of anionic lipids in late 

endosomes. Notably the anionic lipid LBPA, which facili-

tates the cytosolic entry of viruses and viral vectors [168, 

169], also allows exosome fusion with the late endosomes 

in macrophages, followed by cargo uncoating and poten-

tial cytosolic release of contents [154, 169].

Other possible routes that allow exosomal escape from 

lysosomal degradation include redirection of exosome 

cargoes from endosomal pathway to trans-Golgi network 

through retrograde trafficking [170], cargo release into 

the cytosol through release of partially degraded materi-

als from ruptured endosomal or lysosomal compartments 

[90] or membrane fusion between exosomes and endo-

somal membrane [67]. Exosomes can also be redirected 

back to the plasma membrane from early endosomes via 

recycling endosomes [171]. �is uptake and release cycle 

possibly allows dissemination to multiple cellular layers 

and paracrine effect [89].

Hence, exosome cargoes can undertake multiple routes 

to bypass direct lysosomal degradation to fulfil their sig-

nalling functions and the routes can be determined by the 

cell type, exosome composition and/or the cargoes. It is 

equally plausible that some exosomes are fated for direct 

degradation. �is seems to be the case in the constitu-

tive macropinocytotic internalisation of oligodendroglial 
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exosomes by subset of microglia lacking antigen-pres-

entation capacity, thereby acting as a mechanism for oli-

godendroglial membrane clearance in a ‘silent’ manner 

[134]. Of note, most of the studies determining intracel-

lular exosome fate use labelled exosome membrane lipids 

and proteins making it challenging to study the cargo fate 

itself. Despite progress in cargo loading efficacy, direct 

evidence of cargo release is limited. Labelled membrane 

bound cargoes combined with high resolution imag-

ing have allowed the detection of cargo exposure in the 

cytosol of acceptor cells [67]. However, development of 

better tools to understand the intracellular pathways 

of exosomes and their cargoes is key to improve our 

understanding of how exosomes deliver their signalling 

function.

Controversies in exosome research

Exosome biogenesis at plasma membrane

EVs of endosomal origin are identified as exosomes. EVs 

produced directly from outward plasma membrane bud-

ding are classified as ectosomes/MVs and display a size 

range from 50  nm to 1  µm [2, 37]. Some controversial 

studies however have suggested that exosome forma-

tion can happen directly at the plasma membrane within 

discrete domains. Plasma membrane of Jurkat T cells 

have domains enriched in exosome proteins and lipids, 

referred to as “endosome-like”, potentially to allow rapid 

and direct exosome biogenesis [172]. Outward vesicle 

budding from plasma membrane rich in exosomal pro-

teins like CD63 and CD81 can also be observed within 

these domains [172, 173]. Another study demonstrated 

exosome markers CD9 and CD81 to bud out fivefold 

more efficiently from plasma membrane than from endo-

somal compartments [174]. Still debated, further evi-

dences are necessary to support exosome biogenesis at 

plasma membrane. Whether this is due to limited char-

acterisation of vesicles studied and/or lack of definite 

markers to differentiate between different vesicles is also 

arguable.

Exosomes heterogeneity and characterisation

Heterogeneity of exosomes due to their varied size, com-

position, function and cellular origin adds complexity 

to their characterisation. Distinct exosome subpopula-

tions have been identified, differentiated by their sizes 

and density [97, 175]. Advanced fractionation sepa-

rated exosomes by their size, classifying them as large 

exosomes (90–120  nm) or small exosomes (60–80  nm) 

[97], while additional density centrifugation separated 

high and low density exosomes [175]. It is likely that 

the limiting membrane of MVBs during ILV formation 

or differences in molecular routes uptaken for exosome 

biogenesis contribute to these differences [37]. Such 

heterogeneity can result in differential exosome contents 

as such the exosome subpopulations are distinct in both 

their biophysical properties and in their composition [97, 

175]. Overall > 4400 proteins, ~ 200 lipids, > 1600 mRNA 

and > 750 miRNA have been identified from exosomes 

[176]. Proteomic analysis further reveal that not all exo-

some proteins are shared among all exosomes regard-

less of parent cells. Only a small fraction is cell-specific 

reflecting cell type and physiological condition [177]. 

Exosome loading varies as reflected by differential quali-

tative and quantitative content of cargoes [178] influ-

enced by cellular biology and microenvironment [179]. 

Supporting this, study on cancer cells show differential 

miRNA packaging by selectively packing tumour induc-

ing miRNAs within exosomes [180]. Cancer cells also 

secrete higher quantities of exosomes compared to nor-

mal cells [181]. Such heterogeneity result in diverse organ 

biodistribution and distinct biological functions [97, 175, 

181].

Recognising exosome heterogeneity is essential to 

determine their content, functional role and to allow bet-

ter EV differentiation. Currently isolation methods such 

as ultracentrifugation, size exclusion, immunoaffinity 

isolation coupled with analysis methods such as nano-

particle tracking, electron microscopy, flow cytometry 

and western blots are employed for exosome generation 

and characterisation [2]. Employment of global and tar-

geted proteomics further aids this process [2]. However, 

lack of standardisation of these methods has led to sub-

stantial overlap in protein profiles of isolated EVs. Lack of 

specific or universal markers for EVs particularly for MVs 

and exosomes also complicates their differentiation [2]. 

Characterisation guidelines placed by the International 

Society for extracellular vesicles (ISEV) board are being 

continuously reviewed owing to the evolving nature of 

EVs and exosome research [182]. Nevertheless to help 

standardise the field, categories of markers to be ana-

lysed in all bulk EV preparations are listed in the Minimal 

Information for Studies of Extracellular Vesicles (MISEV) 

guidelines along with recommended changes in report-

ing of EV terminology [182]. �is include classifications 

based on size (small, medium/large), densities (low, mid-

dle, high), biochemical compositions (surface markers) 

and/or cellular origin [182]. �e constant improvement 

of isolation and purification methods along with continu-

ous research advancements in EV biology is providing 

increasing support. A recent study highlighted annexin 

A1, a membrane-associated protein, as exclusive marker 

for MVs and lack of glycolytic enzymes and cytoskel-

etal proteins as potential negative markers for exosomes 

[183]. Having a standard set of markers unique either to 

the isolation method used or the parental cell is also pro-

posed [2].



Page 13 of 19Gurung et al. Cell Commun Signal           (2021) 19:47  

Pitfalls in exosome research

Deciphering exosome biology has been challenged by 

some pitfalls that the research field aims to address. For 

instance, molecular players in exosome biogenesis are 

also involved in other cellular trafficking pathways. Loss 

and gain of function experiments implemented to study 

their roles can be exerting direct or indirect effects e.g. 

altering their function in another cellular vesicular path-

ways including Golgi, lysosomes and autophagy. �is 

can result in secondary effect on exosome production 

or secretion [37]. Variation in parent cell types, culture 

conditions, lack of standardised exosome generation and 

characterisation methods can all impact experimental 

reproducibility leading to an overlap in chemical and 

physical properties between EVs [2, 16]. Implementing 

multiple, complementary characterisation methods and 

tracking for any co-isolated non-EV/exosome compo-

nents is key for better classification [182]. However not all 

studies implement such rigorous characterisation leading 

to mixed population of vesicles [177], inadvertently ham-

pering studies on the effect of intended exosomes. More-

over, a survey showed that some researchers have studied 

the effect of exosomes from culture media rather than 

intended target cell derived exosomes [184].

Unintended effect of contamination from myco-

plasma and other microorganisms, which alters the 

Fig. 6 Exosome biology. [1] Exosomes are generated through the formation of ILVs in the late endocytic pathway and [2] gets secreted via 

exocytosis from the plasma membrane. Upon reaching the target recipient cell, [3] exosomes either interact with the surface molecules of recipient 

cell to induce downstream signalling or [4] fuse with the plasma membrane to release their contents into cytosol or [5] get internalised via various 

routes. [6] Upon internalisation, exosomes are addressed in the early endosome, then late endosomes or MVBs and undergo multiple fates. [7] The 

exosome contents can get released into the nucleus or ER, [8] leak into cytosol or [9] get degraded in the lysosomes. [10] Another possibility include 

release back to the extracellular space through the recycling endosome. ILV: Intraluminal Vesicles; EE: Early Endosomes, RE: Recycling endosomes, 

MVB: Multivesicular Bodies, ER: Endoplasmic Reticulum
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cellular physiology of donor cells and release their own 

exosomes, also need to be taken into account [182]. 

Effect of pre-analytical variables from biofluids and con-

ditioned media need to be explored. In analysing tissues, 

exosomes either from the extracellular space or artfac-

tual intracellular vesicles released during tissue process-

ing can flaw experimental outcomes [182]. Other factors, 

such as processing and storage, also alter exosome physi-

ology and affect exosome research [182]. Identifying and 

overcoming these experimental artefacts are keys for the 

reliable advancement of exosome research.

Conclusion

Studying exosome physiology is a novel and rapidly 

expanding field of cellular biology. �e important role 

of exosomes in cell–cell communication has been high-

lighted in multiple studies exploring their physiologi-

cal and pathophysiological functions. �is is essential 

as these vesicles once secreted can provide key infor-

mation from the cell of origin similar to a “cell biopsy”. 

Studies on their clinical application as biomarkers for 

diagnosis, disease severity and response to therapy 

along with engineering applications as delivery vec-

tors for therapeutic cargoes are actively being devel-

oped and rapidly translated for human applications. 

�ese perspectives emphasize the need of a better 

mechanistic understanding of exosome biology. Vari-

ous processes and interactions between numerous 

pathways highlighted in this review provide a frame-

work, which enables delineation of the main steps and 

routes of interest to enhance cell targeting, exosome 

uptake or lysosomal escape post internalisation (Fig. 6). 

If the main mechanisms of exosome biology have been 

delineated, numerous uncertainties remain about the 

regulation of these processes. Exosome heterogeneity, 

their differing content, their properties influenced by 

donor and recipient cells, lack of standardised exosome 

characterisation in the literature add to the complexity 

of unravelling the regulatory processes. Ongoing pro-

gress in isolation, characterisation and purification of 

exosomes in parallel with development of innovative 

dyes will help in advancing the knowledge of exosome 

physiology, an essential step for clinical translation of 

exosome applications.
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