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Abstract. The ever-increasing number of proteins
identified as belonging to the family of small heat-shock
proteins (shsps) and a-crystallins enables us to reassess
the phylogeny of this ubiquitous protein family. While
the prokaryotic and fungal representatives are not prop-
erly resolved, most of the plant and animal shsps and
related proteins are clearly grouped in distinct clades,
reflecting a history of repeated gene duplications. The
members of the shsp family are characterized by the
presence of a conserved homologous ‘‘oi-crystallin do-
main,”” which sometimes is present in duplicate. Predic-
tions are made of secondary structure and solvent acces-
sibility of this domain, which together with hydropathy
profiles and intron positions support the presence of two
similar hydrophobic -sheet-rich motifs, connected by a
hydrophilic o-helical region. Together with an overview
of the newly characterized members of the shsp family,
these data help to define this family as being involved as
stable structural proteins and as molecular chaperones
during normal development and induced under patholog-
ical and stressful conditions.
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Introduction

The small heat-shock proteins (shsps) are one of the four
most common groups of heat-shock proteins (Lindquist
and Craig 1988; Hendrick and Hartl 1993; Morimoto et
al. 1994). These low-molecular-weight proteins are evo-
Iutionarily related to the vertebrate lens protein o-crys-
tallin, as was first noted by Ingolia and Craig (1982). The
shsps are a diverse family of proteins of 15-30 kDa
which tend to form large aggregates. Most species have
multiple shsp genes, although in yeast and chicken only
one gene was detected (Susek and Lindquist 1989; Miron
et al. 1991). In plants, the shsp genes are most numerous
(Vierling 1991). Apart from two multigene families of
cytoplasmic shsps (Raschke et al. 1988), plants have also
nucleus-encoded shsps that localize to chloroplasts
(Chen and Vierling 1991). Recently, a fourth group of
plant shsps was found which are localized in the endo-
membrane systerm, most likely in the endoplasmic retic-
ulum (Helm et al. 1993).

o-Crystallin is an abundant eye lens protein in verte-
brates. It is usually found as large aggregates, consisting
of two types of subunits, A and oB. (For reviews see
Wistow and Piatigorsky 1988; Groenen et al. 1994.) It
has a structural function in the lens, warranting proper
refractive properties and transparency (Tardieu and De-
laye 1988). aB- and to a lesser extent aA-crystallin have
been shown to occur also in various tissues outside the
lens (Bhat and Nagineni 1989; Kato et al. 1991). Both
subunits are encoded by single-copy genes in humans.
Functionally, the shsps and o-crystallins share the prop-



erty of being molecular chaperones (Horwitz 1992; Ja-
kob et al. 1993), and both are able to convey thermotol-
erance (Landry et al. 1989; Klemenz et al. 1991).

Apart from the shsps and c-crystallins, this family
also includes more disparate members, like certain sur-
face antigens in parasitic eukaryotes and bacteria ( Nene
et al. 1986; Nerland et al. 1988; Verbon et al. 1992). All
members of the family are characterized by the presence
of a homologous sequence of about 80 residues, which
has been dubbed the ‘‘ci-crystallin domain’” and proba-
bly forms a distinct structural and functional unit. This
domain is preceded by an N-terminal region of variable
length, which shows little or no similarity between the
various branches of the family. A short and variable se-
quence, but containing a conserved motif, extends C-ter-
minally from the “‘o-crystallin domain’’ (Wistow 1985;
de Jong et al. 1988). Unfortunately, no direct information
about the three-dimensional structure of any member of
the shsp family is available, nor is there any deeper in-
sight into their structural roles and functional activities.

The a-crystallin/small hsp family is not related to any
other protein family, although Lee et al. (1993) noticed
some minor sequence similarities between the ‘‘0-
crystallin domain’’ and two separate regions in the hsp70
family. This might reflect the sharing of some structural
features, possibly pertaining to the shared chaperone
functioning, rather than an evolutionary relationship.

Recently, a considerable number of sequences of di-
verse new members of the shsp family have been re-
ported. A comparison of the sequences and the structural
and functional properties of all members of the family
should contribute to a more detailed view of the diver-
gent evolution of this family. The objective of the present
paper is to give an update of the phylogenies presented
earlier (Plesofsky-Vig et al. 1992; de Jong et al. 1993), as
well as to analyze the structural and functional variation
and similarity of the proteins. The latter information
might be important for the future unravelling of the
structure~function of especially the conserved *‘‘a-
crystallin domain.”’

New Members of the Family

A description of the newly characterized members of the
shsp family further highlights the variety of features pre-
sented by this family, as revealed already earlier (de Jong
et al. 1993). The 16-kDa Escherichia coli IbpA and IbpB
proteins, which are 52.2% identical, were found to be
induced in response to expression of several heterolo-
gous proteins (Allen et al. 1992). They are tightly asso-
ciated with inclusion bodies formed during the expres-
sion of these foreign proteins. The presence of a high
level of certain unfolded heterologous proteins may in
fact be responsible for induction of IbpA and IbpB. Also,
induction occurred in wild-type Escherichia after heat
shock. A putative heat-shock promoter is indeed located
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upstream from the genes, which are separated by 110 bp
on the chromosome.

A Clostridium acetobutylicum hsp18 was shown to be
induced at the mRNA level by heat shock and the onset
of solventogenesis, a metabolical shift in which excreted
butyric acid and residual sugar are converted to acetone
and butanol shortly before entry into the stationary phase
(Sauer and Diirre 1993). The shift to solventogenesis
seems to be connected with the heat-shock response, but
the underlying molecular mechanisms are still largely
unknown. In the myxobacterium Stigmatella aurantiaca
a 21-kDa protein, SP21, is synthesized during heat
shock, fruiting body formation, and stress induced by
oxygen limitation (Heidelbach et al. 1993a,b). The pro-
tein sedimented with the membrane fraction. As there
were no indications of a direct interaction of SP21 with
the membranes, this suggests that SP21 forms aggregates
or is organized in larger complexes.

In the eukaryotic realm, several new plant sequences
were added to the set, including shsps of Arabidopsis
thaliana (Bartling et al. 1992), maize Zea mays (Jor-
gensen and Nguyen 1994), wheat Triticum aestivum
(Weng et al. 1991) and rice Oryza sativa (Tseng et al.
1992; R. Nishi et al., data base acc. nr. P31673). Most of
these sequences were determined at the cDNA level. The
gene of the Pharbitis nil 17.1-kDa shsp was induced by
light treatment and by heat shock, whereas its 18.8-kDa
gene was induced only by heat shock. Both are encoded
by one open reading frame. In the noncoding region of
both genes several heat-shock elements were found
(Krishna et al. 1992). The Chenopodium rubrum 18.3-
kDa shsp belongs to the cytosolic shsp subfamily (class
I). A structure with ‘‘positive DNA-binding regulatory
properties’” was predicted that would form a helix-turn-
helix region (Knack et al. 1992).

Maximal accamulation of the Helianthus annuus shsp
mRNA is detected in dry seeds and during embryo mid-
maturation stage in the absence of exogenous stress (Al-
moguera and Jordano 1992). In seedlings, mRNA accu-
mulation to lower levels is found in response to osmotic
stress and abscisic acid treatments. The protein has a
predicted weight of 17.6 kDa. A 22-kDa shsp from the
soybean Glycine max was found to be endomembrane
localized. It possesses an amino-terminal signal peptide
and a carboxyl-terminal sequence characteristic of an
endoplasmic reticulum retention signal (Helm et al.
1993). The expression of meiotic prophase repeat pro-
teins in Lilium sp. is developmentally induced in absence
of stress. A cDNA sequence for one of these proteins was
determined, and demonstrated it to be a shsp (Bouchard
1990).

Among the invertebrates, an additional Schistosoma
mansoni egg antigen sequence, p40-2 (Cao et al. 1993),
has 57% amino acid identity to the previously reported
p40 antigen (Nene et al. 1986), and likewise contains a
duplicate “‘oi-crystallin domain.”” These stage-specific
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antigens are soluble calcium-binding proteins (Moser et
al. 1992). Expression of the gene for the shsp of the
gastrointestinal nematode Nippostrongylus brasiliensis is
developmentally regulated, but not upregulated by heat
shock or other stress conditions (Tweedie et al. 1993).
Another new nematode shsp sequence was found on
chromosome I1I of Caenorhabditis elegans (Wilson et al.
1994). Also two sequences of Onchocerca volvulus and
one of Acanthocheilonema viteae are now available (W.
Hoefle, acc. nrs. S29691-3).

A new shoot of the family is represented by the 29-
kDa protein HR-29 of the ascidian Halocynthia roretzi
(Takagi et al. 1993). The protein is abundant in body
wall muscle and localizes close to the plasma membrane.
In the physiological condition it forms oligomers, ob-
served by electron microscopy as globular aggregates
with a diameter of 16.6 nm, as is also the approximate
size for a-crystallin and shsps.

Finally, an additional shsp was recently reported in
mammals. Kato et al. (1994) found high levels of a 20-
kDa protein, p20, in rat soleus muscle, heart, and dia-
phragm. These tissues also contain high levels of oB-
crystallin and hsp27. The p20 protein is present at lower
levels in other tissues. It occurs both as high-molecular-
weight aggregates and in dissociated forms. Upon heat-
ing at 45°C of rat diaphragm in vitro, p20 was redistrib-
uted from the cytoplasm to the insoluble fraction, and
dissociation of the aggregated p20 to the small form was
enhanced. The primary structure of rat p20 and its human
homologue were determined at the amino acid level.

Sequence Comparisons and Gene Structure

To ensure that all available shsps and related sequences
were included in the present paper, a thorough database
search was performed. To that end a previous alignment
of 57 sequences of ‘‘o-crystallin domains’” (de Jong et
al. 1993) was used to create a profile (Gribskov et al.
1990) with which the NBRF, SwissProt, and EMBL da-
tabases were searched to identify new sequences with
similarities to the shsps. These were included in the ex-
panded alignment. As for the extensive set of available
o-crystallin sequences, only those for chicken olA- and
oB-crystallin (de Jong et al. 1984; Sawada et al. 1992)
were added to the previous alignment. Initial alignments
of the expanded set of 85 entries were made with a
multiple alignment program, followed by manual im-
provements, as described earlier (de Jong et al. 1993).
Because a clear similarity among all members of the
family is restricted to the C-terminal parts of the proteins,
only this region could be aligned satistactorily, as shown
in Fig. 1. In the expanded shsp family more gaps needed
to be introduced in the alignment of this conserved re-
gion. The region presented in Fig. 1 corresponds with the
putative C-terminal structural domain and extending tail
of the o-crystallins and shsps as proposed by Wistow

(1985). A considerable number of residues is highly con-
served throughout the family (indicated as *‘consensus’
on the bottom line in Fig. 1), and the conservative nature
of many other positions is conspicuous. The demarcation
between domain and tail is around position 110.

The positions of the conserved ‘‘oi-crystallin do-
main’’ in the various typical representatives of the shsp
family are schematically indicated in Fig. 2. Both Schis-
tosoma egg antigen sequences contain duplicate C-ter-
minal domains. The C-terminal domain of the Neuros-
pora shsp is interrupted by an insertion of 64 amino acids
(after position 47 in the alignment). This figure also re-
veals the length variation in the family. The length of the
N-terminal regions, preceding the o-crystallin-like do-
mains, varies from only 25 residues in the Caenorhab-
ditis 123 gene that was found in the course of the chro-
mosome III sequencing project (Wilson et al. 1994) to
148 residues in the Halocynthia roretzi 29-kDa body-
wall protein. Although no sequence similarity can be
detected between the N-terminal regions of all members
of the family, there are still some minor similarities be-
tween the N-termini of the o-crystallins, higher verte-
brate shsps, and Drosophila shsps, as well as between
plant class I shsps and vertebrate shsps (de Jong et al.
1988). It must be concluded that the rate of evolution has
been higher in the N-termini than in the C-terminal re-
gions.

In plants, yeast, and most invertebrates, the shsp
genes are encoded by intronless genes. Four shsp genes
of Caenorhabditis contain only one intron, coinciding
precisely with the first intron of the o-crystallin genes
(Figs. 1 and 2). The aforementioned Caenorhabditis 123
gene contains two introns, of which the second coincides
approximately with the second intron of the o-crystallin
genes. The two introns of mammalian hsp27 are located
at different positions. The Halocynthia body-wall protein
gene contains three introns, of which the second is lo-
cated three nucleotides downstream from intron #1 in
Caenorhabditis shsps and in o-crystallins, thus directly
preceding the C-terminal domain. The other two introns
are located at different positions than those in other
genes of the family and are phase 2, rather than phase 0
as are all other ones (Takagi et al. 1993). Although in-
trons #1 and 3 in Fig. 2 demarcate the boundary between
the putative N- and C-terminal domains, there is little
evidence for the assumption that exon shuffling has
played a role in the evolution of this protein family (Pat-
thy 1994).

Phylogeny

Residues 1-104 of the alignment in Fig. 1, encompassing
the “‘o-crystallin domain,”” were used to construct a phy-
logenetic tree, using the neighbor-joining program (Sai-
tou and Nei 1987) from the PHYLIP package (Felsen-
stein 1993). The ‘‘o-crystallin domain’’ was considered
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Fig. 2. Location of the homologous domains and intron positions in
representative members of the shsp family. The homologous C-termi-
nal “‘o-crystallin domains’”’ are indicated by solid bars. N-terminal
domains and C-terminal extensions are indicated by lines, correspond-
ing in length to the number of residues. Intron positions in the corre-
sponding genes are marked by arrowheads. Whether introns are present
in the Schistosoma p40 genes is not known. Intron positions are more
precisely indicated in Fig. 1 and its legends. The position of the inser-
tion in Neurospora hsp30 is indicated by the open triangle. Names of
the sequences are as in Fig. 1.

not to extend beyond residue 104, because after this po-
sition a 15-residue insert in the Lilium sequence breaks
up the alignment. Since the structures of all members of
the family are not known at the DNA Ievel, the amino
acid sequences rather than the nucleotide sequences were
used in tree construction. The resulting tree is shown in
Fig. 3, where bootstrap values of 75% and higher are
indicated. Because of the large number of sequences, the
tree is depicted in three parts, comprising prokaryotes
and lower eukaryotes (Fig. 3a), and the higher plant and
animal subtrees (Fig. 3b and c, respectively). The se-
quences at the deepest branches of the tree, the prokary-
ote and fungal proteins, are very divergent and not reli-
ably resolved (Fig. 3a). Only the two Escherichia Tbp
proteins group significantly together. The Mycobacte-
rium antigens do not form a sister group, and neither do
the Neurospora and Saccharomyces shsps. However,
these proteins need not be orthologues; it is likely that
only a small subset of the existing shsp variation has
been discovered yet. The present findings indicate that
reconstruction of the earliest divergent evolution of the
shsps will be problematic.

The angiosperm sequences group together, although
at a low bootstrap value (Fig. 3b). A first divergence
occurs between the chloroplast sequences and the cyto-
plasmic shsps. The latter divide highly significantly into
the class I and class II sequences (Vierling 1991), which
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must have emerged before the divergence of monocots
and dicots. Repeated duplications have occurred, espe-
cially of class I genes. The Lilium meiotic prophase re-
peat protein appears to be most closely related to the
class II proteins. The endomembrane-localized Pisum
and Glycine shsps represent an early offshoot of the class
I proteins, as was also noted by Helm et al. (1993).

A monophyletic origin of the animal sequences is
hardly supported (Fig. 3c). The duplicated N- and C-do-
mains within the two Schistosoma egg antigens are very
divergent. The two antigens are apparently the result of a
more recent gene duplication, long after the emergence
of the first antigen with two “‘a-crystallin domains.”’

All nematode sequences group together, as do all
Drosophila sequences, albeit poorly supported. It was
noted earlier that the Caenorhabditis shsp genes dupli-
cated at an early stage, followed by a more recent, further
duplication (Candido et al. 1989). The new Caenorhab-
ditis sequence (Wilson et al. 1994) appears to represent a
different lineage, as it is more closely related to the On-
chocerca and Acanthocheilonema sequences. It was tab-
ulated as most similar to oB-crystallin by Wilson et al.
(1994), but the present phylogenetic analysis reveals no
special relationship. The two Onchocerca shsps appear
to have arisen from a very recent gene duplication.

As was noted before, the Xenopus shsps are not
closely related to other vertebrate shsps, and may in fact
be paralogues of these (de Jong et al. 1988). Interest-
ingly, the body-wall protein of the ascidian Halocynthia
appears to be most closely related to the Xenopus shsps.
The other vertebrate shsps form a clade with the «A- and
oB-crystallins. In this clade, the recently discovered rat
and human p20 proteins form a sister group to the mono-
phyletic aA- and oB-crystallins. They are not closer to
aB-crystallins, as Kato et al. (1994) assumed. Three gene
duplications thus have led to the expression of four par-
alogous genes in higher vertebrates—hsp27, p20, and
oA~ and aB-crystallin. These duplications preceded the
earliest vertebrate radiation, since oA- and oB-
crystallins were already present before the dogfish
Squalus diverged from the other vertebrates. Additional
duplications must have occurred in the hsp27 lineage.
The human hsp27 gene family consists of four members
(Hickey et al. 1986), although only a single sequence has
been reported. Cooper and Uoshima (1994) found mul-
tiple hsp27 transcripts in murine osteoblasts, which may
be encoded by separate genes. Also a mouse hsp27
pseudogene has been characterized (Frohli et al. 1993).

Secondary Structure and Surface Residues of the
““a-Crystallin Domain’’

Insight into the properties of the shsp family is seriously
hampered by the lack of structural information. Using
advanced prediction methods on the accumulated se-
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Fig. 3. A phylogenetic tree based on the ‘‘o-crystallin domains’” of the shsp family
(residues 1-104 in Fig. 1). The tree was constructed according to the neighbor-joining
method, using the program NEIGHBOR from the PHYLIP package (Felsenstein 1993).
Input distance matrices were calculated according to Fitch and Margoliash (1967),
excluding gaps from the calculations (program HOMOLOGIES, J.A.M. Leunissen,
unpublished). Correction for multiple substitutions was made according to Jukes and
Cantor (1969). Relative bootstrap values (program SEQBOOT from the PHYLIP
package) of 75% and higher (from 1000 replicates) are indicated. Branch lengths are
proportional to the minimum number of mutations per residue (see scale). The tree is
depicted in three parts: (a) prokaryotes, fungi and green alga, (b) higher plants, (c)
animals. Within plants, Arabidopsis 16 to Oryza 17b belong to the class I shsps, and

Pharbitis 19 to Zea 18a to the class II shsps. Rattus 27 is not included in the tree,
being identical to Mus 27 and Cricetulus 27 in the *‘o-crystallin domain.”’

quences in Fig. 1 might allow us to reveal some major
structural features of this conserved domain.

Secondary structure predictions of the o-crystallin do-
main were done for subsets of the alignment, using the
program PHD (Rost and Sander 1993; Rost et al. 1994)
via the PredictProtein e-mail server at EMBL, Heidel-
berg. Solvent accessibility prediction was according to
Rost and Sander (1994), via the same e-mail server. The
results are shown in Fig. 4. For all subsets, the secondary
structure predictions start with a short o-helix, followed
by three B-sheet stretches, in the first half of the homol-
ogous domain. This opP motif is repeated in the second
half of the domain, although in plant shsps there are two
initial o-helices and an o-helix stretch is predicted in-

stead of the second B-sheet stretch. Experimental spec-
troscopic data support the prevalence of B-sheet confor-
mation in the mammalian shsps and o-crystallins (Li and
Spector 1974; Merck et al. 1993a).

The residues of the last B-sheet stretch of both motifs,
as well as the residues of the first B-sheet stretch of the
first motif, are predicted to be buried, while the o-helix
between the motifs is predicted to be in an exposed re-
gion. Surface residue predictions of the other parts of the
sequence are more equivocal. The location of introns, the
large insertion in Neurospora hsp30, and the extensive
presence of gaps in the region 43-71 (cf. Fig. 1) also
make it likely that this is a more flexible and exposed
region connecting the two more rigid B-sheet-rich motifs.
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Fig. 4. Secondary structure prediction
(PHD) and solvent accessibility
prediction (Acc) by the methods of Rost
and Sander (1993, 1994) for the
C-terminal “‘o-crystallin domain”’ of
subsets of the shsp family (animal,
animal sequences; plant, plant
sequences; overall, bacterial and fungal
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Schistosoma p40 N-terminal domain,
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This is also the position of the helix-turn-helix with
DNA-binding properties suggested to be present in Che-
nopodium shsp (Knack et al. 1992). The possible pres-
ence of two similar structural motifs in the C-terminal
domain of «-crystallin was first proposed by Wistow
(1985) and appears to be corroborated by the present
data.

The composite hydrophobicity profile (Fig. 5) con-
firms the two-motif structure of the ‘‘ci-crystallin do-
main.”” Peaks of hydrophobicity concur with the first
B-sheet stretches in both motifs, whereas also the other
B-sheet stretches are located in the more hydrophobic
regions, in agreement with the predicted buried position
of these stretches. The exposed o-helix that connects the
two motifs locates with the strongly hydrophilic region
around position 50. The C-terminal arm, beyond position
110, also has a more hydrophilic character. In o-crystal-
lins, the terminal eight to ten residues indeed form very
flexible extensions, as revealed by two-dimensional
NMR spectroscopy (Carver et al. 1992).

Evolution of Function

It is logical to assume that the conserved C-terminal
domain would be responsible for the common structural
and functional properties of the a-crystallin/shsp family.
(For review of the latter, see Arrigo and Landry 1994.)
Deletion of the last 42 amino acids of this domain in
Drosophila hsp27 indeed abolishes its capacity to protect
cells against heat stress (Mehlen et al. 1993). However,
in o-crystallins and mouse hsp25 this separate domain
with its C-terminal extension has no chaperone activity
in vitro (Merck et al. 1993b). It thus seems likely that
also the N-terminal domain is required for proper func-
tioning, and may moderate more specific functions for
various subgroups of shsps. Considering the multitude of

e-bebeb-eebbbbb-b
soebree and 2.

functions among the members of the shsp family, one
might wonder what the primordial function of the com-

‘mon ancestor was. The fact that also in bacteria, like

Escherichia and Clostridium, shsps are now found to be
induced by heat shock, suggests that these proteins, too,
function in chaperoning other proteins under conditions
of stress. The Escherichia Ibp proteins also appear to be
induced by a high level of unfolded proteins (Allen et al.
1992), which further strengthens the notion that chaper-
oning is the primordial function of the family, rather than
a secondarily developed feature.

The abundant expression of shsps as surface antigens
in mycobacteria and in Schistosoma must then be one of
the various derived functions in the family. For the SP21
protein of the myxobacterium Stigmatella it is speculated
that it might help pack mRNAs necessary for the early
steps of germination or might protect mRNAs of house-
keeping genes during periods of development during
which other mRNAs are degraded (Heidelbach et al.
1993b). A tight association during heat shock between
shsps and a specific subset of mRNAs has earlier been
reported for tomato cell cultures (Nover et al. 1989).

Developmental regulation is also well documented in
many other members of the family, notably in animal
shsps and aB-crystallins (de Jong et al. 1993; Gernold et
al. 1993; Marin et al. 1993). Expression of the gene for
the shsp of the gastrointestinal nematode Nippostrongy-
lus brasiliensis is developmentally regulated (Tweedie et
al. 1993). mRNA peak expression is concomitant with
the onset of immune damage in the host, but expression
is regulated independently of stress stimuli, apparently
according to a strict developmental program. In plants,
like for Helianthus (Almoguera and Jordano 1992) and
alfalfa (Gyorgyey et al. 1991), the pronounced expres-
sion of shsp mRNA occurs during embryo midmatura-
tion. Shsp mRNAs are stored for long periods of time in
dry seeds of sorghum (Howarth 1990), wheat (Helm and
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Fig. 5. Composite hydrophobicity profiles of all ‘‘o-crystallin do- are as in Fig. 1. Hydrophobicity increases toward the top of the figure;

mains’’ of the shsp family, using the hydrophobicity scale of Sweet and
Eisenberg (1983), as produced by the program CAMELEON (version
3.0, Oxford Molecular Ltd, Oxford, UK). Amino acid position numbers

Abernethy 1990), and pea (Vierling and Sun 1987). All
this supports the notion that developmental expression of
shsps is quite universal (see Linquist and Craig 1988).
The shsps are apparently involved in cytomorphological
rearrangements, which may relate to their influence on
actin polymerization (Miron et al. 1991) and intermedi-
ate filament assembly (Nicholl and Quinlan 1994).

As pointed out by Bouchard (1990), we find an addi-
tional non-stress-related function in meiotic cells of
three eukaryotic kingdoms. Lilium meiotic prophase re-
peat protein expression is developmentally induced
(Bouchard 1990). Two of the four Drosophila shsps are
expressed in the egg chamber of the ovary during the
meiotic period of oogenesis (Zimmerman et al. 1983).
The controlling regions for the heat shock and the ovar-
ian induction are different (Hoffman et al. 1987). The
Saccharomyces shsp is induced during sporulation and
meiosis (Kurtz et al. 1986).

Gene duplication is a general mechanism to acquire
more functions. For example, in Pharbitis nil, one of the
shsp genes is induced by heat shock only, the other by
light as well (Krishna et al. 1992). The expression of
smaller hsp27 transcripts in murine osteoblasts, which
may be encoded by separate genes, was facilitated by
estrogen treatment prior to heat shock, whereas expres-
sion of the normal, longer, hsp27 was induced by heat
shock alone (Cooper and Uoshima 1994). Gene duplica-
tion must also be the mechanism which enabled an an-
cestral oi-crystallin gene to be recruited for its function as
a lens structural protein. Another structural function may
be found for the HR-29 protein of Halocynthia roretzi,
which is localized in body-wall muscle (Shirakata et al.
1986). It may be a component of myofibrils and may act

hydrophilicity toward the bottom. Predicted B-sheets (see Fig. 4) are
indicated by bars.

as a stabilizing protein like aB-crystallin does in skeletal
muscle (Atomi et al. 1991).

This brief and necessarily fragmentary account makes
it clear that gene duplications and divergent evolution
have produced a broad array of structural and functional
properties in the shsp family, using the common ‘‘o-
crystallin domain’’ as an essential building block. The
major challenge for the years to come is to elucidate the
tertiary and quaternary structure of members of this fam-
ily and relate these to their various intriguing functions.
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