
Genome Biology 2005, 6:242

co
m

m
en

t
review

s
rep

o
rts

d
ep

o
sited

 research
in

teractio
n

s
in

fo
rm

atio
n

refereed
 research

Protein family review

The expansin superfamily
Javier Sampedro and Daniel J Cosgrove

Address: Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, PA 16870, USA.

Correspondence: Daniel J Cosgrove. E-mail: dcosgrove+1@psu.edu

Summary

The expansin superfamily of plant proteins is made up of four families, designated �-expansin,

�-expansin, expansin-like A and expansin-like B. �-Expansin and �-expansin proteins are known

to have cell-wall loosening activity and to be involved in cell expansion and other developmental

events during which cell-wall modification occurs. Proteins in these two families bind tightly to

the cell wall and their activity is typically assayed by their stimulation of cell-wall extension and

stress relaxation; no bona fide enzymatic activity has been detected for these proteins. �-Expansin

proteins and some, but not all, �-expansin proteins are implicated as catalysts of ‘acid growth’,

the enlargement of plant cells stimulated by low extracellular pH. A divergent group of

�-expansin genes are expressed at high levels in the pollen of grasses but not of other plant

groups. They probably function to loosen maternal cell walls during growth of the pollen tube

towards the ovary. All expansins consist of two domains: domain 1 is homologous to the catalytic

domain of proteins in the glycoside hydrolase family 45 (GH45); expansin domain 2 is

homologous to group-2 grass pollen allergens, which are of unknown biological function.

Experimental evidence suggests that expansins loosen cell walls via a nonenzymatic mechanism

that induces slippage of cellulose microfibrils in the plant cell wall.
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Gene organization and evolutionary history 
Expansins are plant cell-wall loosening proteins involved in

cell enlargement and in a variety of other developmental

processes in which cell-wall modification occurs [1]. They

are typically 250-275 amino acids long and are made up of

two domains (domain 1 and domain 2) preceded by a signal

peptide (Figure 1). On the basis of phylogenetic sequence

analysis (Figure 2), four families of expansins are currently

recognized in plants [2]. From the largest family to the small-

est they are designated �-expansin (EXPA), �-expansin

(EXPB), expansin-like A (EXLA) and expansin-like B (EXLB).

�-Expansin and �-expansin proteins have been demon-

strated experimentally to cause cell-wall loosening [3,4],

whereas expansin-like A and expansin-like B proteins are

known only from their gene sequences. 

It has not been established when expansins first appeared in

evolution, but the �-expansin and �-expansin families already

existed by the time the vascular plants and mosses diverged

(Figure 2) [5,6]. So far, the expansin-like A and expansin-

like B families can be traced back only to the last ancestor of

angiosperms and gymnosperms (Figure 2). More recently

the expansin families have continued to grow and diversify

in different plant lineages. Table 1 shows the number of

genes for each family found in the available angiosperm

genomes, as well as the numbers of genes estimated for the

last common ancestor of eudicots (including Arabidopsis)

and monocots (including rice). On the basis of this recon-

struction, we have recently proposed a subdivision of the

four expansin families of angiosperms into 17 clades (Figure

2) [7]. As shown in Table 1, the number of genes has doubled

in the Arabidopsis lineage and more than tripled in rice

since these two species diverged, approximately 150 million

years ago. The main reason for this difference is the larger

number of tandem duplications present in the rice genome

(Figure 3). The growth of the �-expansin family in grasses is



particularly impressive, with 18 genes in rice compared with

6 in Arabidopsis. 

Curiously, grasses (but only grasses) also have an additional

group of secreted proteins homologous only to expansin

domain 2; these are known in the immunological literature

as grass group-2 pollen allergens (G2As). They seem to have

evolved from a truncated copy of a �-expansin gene and they

share about 35-45% protein identity with their closest

�-expansin relatives; their native biological function is

uncertain. Although G2As evolved from a �-expansin ances-

tor, because of the loss of domain 1 they are considered a

separate family and not part of the expansin superfamily. 

Two other families of plant proteins show distant homology

to expansin domain 1, but as they lack domain 2 they are not

considered part of the superfamily. The closest (approxi-

mately 25-35% identity) has been variously called p12 and

plant natriuretic peptide (PNP). These proteins become

abundant in the xylem of blighted citrus trees [8], and they

have been ascribed a signaling function [9,10]. No wall-loos-

ening activity has been found in extracts containing p12

(D.J.C. and T. Ceccardi, unpublished observations). More

distantly related (about 20-30% identity) is the barwin-like

domain that defines the PR4 family of antifungal proteins

[11]. Both these protein families were already present in the

last ancestor of mosses and vascular plants. 

Turning to non-plant organisms, various proteins with

distant homology to full-length expansins or exclusively to

domain 1 are found from bacteria to nematodes and mollusks

[12-15]. Many of these are probably involved in the digestion

of plant cell-wall material. A family of expansin-like proteins

has been found in the slime mold Dictyostelium discoideum,

where they could help to maintain the fluidity of the cellu-

losic cell walls in the stalk structure [16]. Recent nomencla-

ture rules [2] recommend that only proteins with homology

to both expansin domains should be designated expansins.

The polyphyletic group of non-plant expansins, such as

those in Dictyostelium, can be referred to as expansin-like

family X (EXLX). The relationship of the various groups of

expansin-like X proteins with the plant expansins is unclear

at the moment. Their divergence could predate the origin of

land plants, or they could have been acquired later through

horizontal transfer of a gene from one of the plant expansin

families. The same applies to proteins with homology only to

domain 1, both in plants and other organisms, in that it is

possible that some of them originally evolved from an

expansin protein with both domains.

Characteristic structural features 
Expansin proteins from different families share only 20-40%

identity with each other. The degree of conservation is

highest in domain 1, as shown in Figure 4. Expansin domain

1 has a distant homology to glycoside hydrolase family 45

(GH45) proteins [17], most of which are fungal �-1,4-D-

endoglucanases. Proteins from this family have been crystal-

lized and their mechanism of action determined [18]: they

form a six-stranded �-barrel with a groove for substrate

binding (Figure 5a). Barwin also has a similar �-barrel struc-

ture [19]. On the basis of hydrophobic cluster analysis, we

expect this structural motif also to be present in expansins

(Figure 6). Furthermore, expansin domain 1 shares with

GH45 a number of conserved cysteines that form disulfide

bridges in the fungal enzymes. It is interesting that several

residues that make up the catalytic site of GH45 endoglu-

canases are also conserved in expansin (see Figures 4,5).

Despite the presence of these conserved GH45 motifs, no

hydrolytic activity has been detected for either �-expansin or

�-expansin proteins. 
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Figure 1
The domain structure of expansins and a comparison with that of
distantly related single-domain plant proteins (G2A, p12 and barwin). The
expansin signal peptide (SP) is 20-30 amino acids long, domain 1 is 120-
135 amino acids, and domain 2 is 90-120 amino acids. Some barwin
proteins have an additional chitin-binding domain after the signal peptide
(not shown). The positions of the introns that are present in more than
one expansin family are indicated by lettered triangles; homologous
introns are present in p12 and barwin proteins. Intron letters are as in
[7]. The position of intron B suggests that it could have participated in
exon shuffling.

Expansin

p12

Barwin

G2A

A C B F

SP Domain 1 Domain 2
Table 1

Sizes of the four expansin families in different plants

Species EXPA EXPB EXLA EXLB

Last common ancestor 12 2 1 2

Arabidopsis 26 6 3 1

Poplar 27 2 2 4

Rice 34 19 4 1

The number of genes in each family is listed for the three plant species
whose genomes have been sequenced. The number of genes in the last
common ancestor of monocots and eudicots was estimated from an
analysis of the rice and Arabidopsis genomes [7]. Numbers for poplar do
not include partial gene fragments and should be taken as minimum
estimates given that its genome is incompletely sequenced. EXPA, �-
expansin; EXPB, �-expansin; EXLA, expansin-like A; EXLB, expansin-like B.
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Figure 2
A phylogenetic tree of the expansin superfamily, including protein sequences from Arabidopsis thaliana (At), Oryza sativa (Os), Pinus species (pine) and
Physcomitrella patens (moss). These sequences were selected to showcase expansin diversity. They were aligned with CLUSTALW (see Additional data
file 1) and a neighbor-joining tree was constructed with MEGA 3. Bootstrap values above 60 are indicated next to the relevant node, and the four families
are labeled at their roots. Clades, defined as all the descendants of the same ancestral gene in the last common ancestor of monocots and eudicots, are
indicated by black bars to the right and given Roman numbers as in [7]. This tree does not correctly resolve clades EXPA-I and EXPA-II, possibly because
of changes in amino-acid usage between Arabidopsis and rice expansins [7]. The numbers for pine sequences are from TIGR Pinus Gene Index [70];
GenBank accession numbers are shown for moss sequences. EXPA, �-expansin; EXPB, �-expansin; EXLA, expansin-like A; EXLB, expansin-like B.
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�-Expansin proteins can be distinguished from other

expansins by the presence of a large insertion and a nearby

deletion in domain 1; these are at either side of a conserved

motif that is part of the conserved GH45 active site (HFD in

the single-letter amino-acid code; Figure 4). Expansin-like A

and expansin-like B proteins lack the HFD motif, which sug-

gests that their action may differ from that of other

expansins. Furthermore, expansin-like A proteins have a

unique conserved motif (CDRC) at the amino terminus of

domain 1, and their domain 2 has an extension of approxi-

mately 17 amino acids that is not found in other expansin

families (Figure 4). The functional implications of these dif-

ferences among families are currently unknown.

No proteins homologous to expansin domain 2 have yet been

identified except for the G2A family. The structure of a G2A

protein consists of two stacked � sheets with an

immunoglobulin-like fold (Figure 5b) [20]. On the basis of
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Figure 3 
Genomic locations of expansin genes. (a) Arabidopsis; (b) rice. Genes in tandem are indicated by triangles and chromosome numbers are shown with
Roman numerals. EXPA, �-expansin; EXPB, �-expansin; EXLA, expansin-like A; EXLB, expansin-like B.
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this structure, some highly conserved aromatic residues

present in expansin domain 2 have been hypothesized to

form a binding strip for cell-wall polysaccharides [1,21], but

this speculative idea has yet to be tested experimentally. 

Localization and function 
Expansins were first identified as wall-loosening proteins in

studies of ‘acid-induced growth’ [3,22-24]. It was known

for years that low extracellular pH (< 5.5) causes cell-wall
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Figure 4
Sequence conservation in the expansin superfamily. Sequence logos for the four expansin families were generated with WebLogo [71] and manually
aligned. The signal peptide and the poorly conserved amino terminus of the mature proteins have been removed from the alignment; because some
expansins have exceptionally large signal peptides and amino-terminal extensions the alignment starts around position 60. In these sequence logos the
height of the stack of amino-acid symbols at each position indicates the degree of sequence conservation, and the height of each letter within the stack
indicates the frequency of the corresponding amino acid. Residues conserved between families are shaded, and the boundary between the two domains is
indicated by arrows. Key residues that are part of the catalytic site of GH45 proteins and that are conserved in domain 1 of some expansin families are
shown in circles above the logos. EXPA, �-expansin; EXPB, �-expansin; EXLA, expansin-like A; EXLB, expansin-like B.
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loosening in land plants as well as in a subset of green algae

that have walls of similar structure [25]. The process is

mediated in large part by wall-bound expansins with an

acidic pH optimum [3]. Wall pH is normally determined by

the activity of the plasma membrane H+ ATPase, which

pumps protons to the cell wall; the pH of the wall is typically

about 5.5 but may go below 4.5 in some circumstances

[25,26]. Acid-induced growth and expansin action are impli-

cated in the growth responses of plants to hormones and to

external stimuli such as light, drought, salt stress and sub-

mergence (anoxia) and in morphogenetic processes such as

root-hair formation [27-31].

Expansin activity is usually assayed as the ability of a protein

sample to induce extension of isolated cell walls (Figure 7). It

may also be measured in stress-relaxation assays, in which

the decay in wall stress is measured after the wall is rapidly

extended and then held to a constant dimension [22]. Plant

cell walls extend or relax by a process of molecular ‘creep’, in

which the cellulose microfibrils and associated matrix poly-

saccharides separate from one another [32]. The energy

needed to overcome the viscous resistance and entangle-

ment of wall polymers comes from cell-wall stress, which in

living plants arises from the turgor pressure within cells.

Such molecular creep occurs only when the cell wall is loos-

ened by expansins or by other factors (Figure 8); otherwise,

the cellulose microfibrils are firmly held in place by matrix

polysaccharides [27]. Artificial cell walls made of bacterial

cellulose and xyloglucan have also been used as materials to

investigate expansin action [33]. 

Expansin activity is most often associated with cell-wall loos-

ening in growing cells [34]; this connection has been con-

firmed and extended by experiments in which expansin gene

expression is manipulated in transgenic plants [35-38]. In

most cases, silencing of expansin genes leads to inhibition of

growth, whereas excessive ectopic expression leads to faster or

abnormal growth. Localized expression of expansins is associ-

ated with the meristems and growth zones of the root and

stem, as well as the formation of leaf primordia on shoot

apical meristems [39] and the outgrowth of the epidermal cell

walls during root-hair formation [40]. Additionally, expansins

are implicated in other developmental processes during which

wall loosening occurs, such as fruit softening [41-46], xylem

formation [47], abscission (leaf shedding) [48], seed germina-

tion [49], penetration of pollen tubes through the stigma and

style [4,50], formation of mycorrhizal associations with sym-

biotic fungi in root tissues [51], development of nitrogen-fixing

nodules in legumes [52], development of parasitic plants

[53,54], and rehydration of ‘resurrection’ plants, which curl up

tightly when dry and expand when wet [55]. Some plants that

are adapted to an aquatic environment respond to submer-

gence with a pronounced elongation. This depends on wall

acidification [56] and is correlated with activation of expansin

gene expression [57-59]. 

In cell-fractionation studies, expansins are found bound to

the cell wall, as expected from their activity [23,60,61]. With

immunolocalization by light and electron microscopy,

expansin proteins were localized to the cell wall [51,61,62],

where they were found to be distributed throughout the

thickness of the walls rather than concentrated in specific

strata. There is at least one report that expansin mRNA can

be found specifically at the polar ends of developing xylem

cells [63]; transcript localization may be a means for ensuring
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Figure 5
Structure of proteins homologous to expansin domains. (a) Expansin
domain 1 (the catalytic domain of a GH45 endoglucanase from Humicola

insolens; Protein Data Bank (PDB) code 2ENG). (b) Expansin domain 2
(a G2A protein from Phleum pratense; PDB 1WHO). In (a), the domain
forms a � barrel; amino-acid residues that are conserved in expansins are
indicated in the single-letter amino-acid code.

H
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that protein production and secretion is directed to the ends

of these cells. It is not clear whether this mRNA targeting is

unique to expansins in xylem or whether it is a more general

phenomenon. Finally, grass pollen produces and secretes

specialized �-expansin proteins in copious amounts (they

are known as grass pollen group-1 allergens) [4,64], but this

is an unusual situation: expansins in other tissues have been

found only at low concentrations. 

Mechanism and regulation 
All the �-expansin proteins that have been characterized so far

have a pH optimum for cell-wall extension of about 4

[3,23,60]. This situation permits the cell to regulate �-expansin

activity rapidly by modulating wall pH. The pH optimum of

only one class of �-expansin proteins has been characterized,

namely the group-1 grass pollen allergens (such as EXPB1 from

maize), and it has a broad pH optimum centered at about 5.5

[65]. These pollen proteins are probably not involved in acid

growth but rather in the wall loosening that is associated with

invasion of maternal tissues by pollen tubes. It is expected that

�-expansin proteins in somatic tissues have a pH dependence

more similar to that of �-expansins, but so far �-expansin pro-

teins in an active state have not been extracted from somatic

tissues, so this expectation remains to be tested experimen-

tally. Also, both �-expansin and �-expansin proteins are acti-

vated by reducing agents [3,4,65]; this could be biologically

significant, as the cell-wall redox potential can be modulated

by electron transport across the plasma membrane.
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Figure 6 
Aligned hydrophobic cluster analysis (HCA) plots of the catalytic domains of two GH45 proteins and domain 1 of an �-expansin protein, Arabidopsis

EXPA15, with additional annotation based on the crystal structure of Humicola GH45. The GH45 sequences are from Humicola insolens (GenBank
accession number P43316) and Trichoderma reesei (AAQ21385). HCA plots were constructed with DrawHCA [72]. In these plots, the amino-acid
sequence of each protein is written out in duplicate in a helical representation that puts together amino-acid residues that would be next to each other
in an � helix. The six � sheets that form a barrel in the GH45 from Humicola (see Figure 5a) are indicated by boxes above the plot. Cysteine residues
involved in intramolecular bridges and conserved in expansins and GH45 proteins are shown by blue dots connected by blue lines, also above the plot.
Selected conserved motifs are highlighted in pink and the differences in their relative positions between proteins are indicated by black lines between the
plots. The interpretation of HCA plots is summarized in [73]. HCA uses the standard one-letter amino acid abbreviations except for four amino acids, as
shown in the key. Hydrophobic residues are outlined. Clusters of hydrophobic residues are usually associated with regular secondary structures (�
helices or � sheets). Zigzagging vertical lines of hydrophobic residues indicate alternating hydrophobic and non-hydrophobic residues, typical of exposed
� sheets (for example, �2, �3, �5 and �6). Continuous hydrophobic clusters are more common in internal � sheets (for example, �4). Conservation of
clusters and sequence motifs suggests that the core �-barrel structure with stabilizing cysteine bridges is conserved in the three proteins and that the
differences are mostly in the size of the intervening loops. In Humicola GH45, the loops between �1 and �2 and between �5 and �6 have expanded
considerably, while the other loops appear reduced in comparison with Trichoderma GH45. The latter appears more similar to expansin domain 1, which
has an even more compact structure. 
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Expansins do not have hydrolytic activity or any of the other

enzymatic activities yet assayed [64,66,67]. A report that

they are proteases was later refuted [64]. Expansins also

act very quickly - they induce rapid extension within

seconds of addition to wall specimens, but they do not

affect the plasticity or elasticity of the cell wall [68]. In con-

trast, cell-wall creep caused by an endoglucanase has a long

lag time and is accompanied by large increases in wall plas-

ticity and elasticity, indicative of major structural changes in

the cell wall (cutting of cross-links) [68]. Thus, expansin’s

effects on cell walls are distinct from those expected of

hydrolytic enzymes. 

A nonenzymatic mechanism has been proposed for expansin

action, in which expansin disrupts noncovalent bonds that

tether matrix polysaccharides to the surface of cellulose

242.8 Genome Biology 2005, Volume 6, Issue 12, Article 242 Sampedro and Cosgrove http://genomebiology.com/2005/6/12/242
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Figure 7 
A common method for measuring the cell-wall extension activity of
expansins. (a) Cell-wall specimens are excised from the growing region of
a young seedling that has been grown in the dark (etiolated). The
specimens are frozen and thawed in order to destroy the cells but leave
the cell walls intact (the cuticle is abraded to facilitate penetration of
proteins). The specimens are heat-treated to inactivate endogenous
expansins and then clamped under constant tension in an extensometer.
The extensometer measures the change in length of the sample, with or
without the addition of exogenous expansins. Walls may be collected in
parallel from other seedlings and extracted to obtain fractions with
expansin activity, assayed as an increase in cell-wall length. (b) Photograph
of a typical cell wall sample, placed on an index finger for scale, prior to
clamping in the extensometer. (c) Time course for irreversible wall
extension (creep) of heat-treated walls with and without the addition
of expansin. 
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(c) Figure 8
A simplified model of the plant cell wall and its loosening by expansins.
The cell wall consists of a scaffold of cellulose microfibrils (shaded areas)
to which are bound various glycans such as xyloglucan or xylan (thin
strands); together these polysaccharides form a strong, flexible, load-
bearing network based on hydrogen bonds (indicated by rows of short
lines). Extension of the cell wall entails movement and separation of the
cellulose microfibrils by a process of molecular creep. �-Expansins
(EXPA) may promote such movement by inducing local dissociation and
slippage of xyloglucans on the surface of the cellulose, whereas
�-expansins (EXPB) work on a different glycan, perhaps xylan, for similar
effect. Expansin-like A (EXLA) and expansin-like B (EXLB) proteins are
predicted to be secreted to the cell wall, but their activity has not yet
been established.
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microfibrils or to each other [1,66,69]. In this model, the

expansin is thought to act like a zipper that enables microfib-

rils to move apart from each other by ungluing the chains that

stick them together. This idea is also supported by experi-

ments in which an expansin is applied to artificial composites

made of bacterial cellulose and xyloglucan [33]. Whatever

their biochemical mechanism of action, expansins act in cat-

alytic amounts to stimulate wall polymer creep without

causing major covalent alterations of the cell wall [66]. 

Frontiers 
In the published literature on expansins, gene expression

has drawn the greatest amount of attention, but given the

large size of the superfamily, the expression and presump-

tive role of many expansin genes remains unexplored.

Although expression of specific expansin genes has been

shown to be induced by hormones, by submergence, by

drought stress, or by other stimuli, the signaling pathway

has not been worked out in detail in even a single case.

Major biochemical questions also remain regarding the spe-

cific wall polysaccharides on which expansins act, the

differences between the action of �-expansins and �-

expansins, and the molecular mechanisms underlying wall

loosening. Answering these questions will require a much

deeper understanding of cell-wall structure and in particu-

lar of how the cell wall is able to expand in a controlled

fashion. Finally, it remains to be established whether

expansin-like A and expansin-like B proteins have cell-wall

loosening activity or not. 

Additional data files 
An alignment of the sequences used to make the phyloge-

netic tree in Figure 2 is available as Additional data file 1. 
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