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ABSTRACT

We present proper motions for 21 bright main shell and 17 faint, higher velocity, outer ejecta knots in
the Cas A supernova remnant and use them to derive new estimates for the remnantÏs expansion center
and age. Our study included 1951È1976 Palomar 5 m prime focus plates, 1988È1999 CCD images from
the KPNO 4 m and MDM 2.4 m telescopes, and 1999 HST WFPC2 images. Measurable positions
covered a 23 to 41 yr time span for most knots, with a few outer knots followed for almost 48 yr. We
derive an expansion center of (ICRS), witha(J2000) \ 23h23m27s.77 ^ 0s.05, d(J2000) \ 58¡48@49A.4 ^ 0A.4
little di†erence between centers derived using outer or main shell knots. This position is due north of3A.0
that estimated by van den Bergh & Kamper. It also lies almost due north (P.A. \ 354¡) of the6A.6 ^ 1A.5
remnantÏs recently detected central X-ray point source, implying a transverse velocity for the X-ray point
source ^330 km s~1 at a distance of 3.4 kpc. Using the knots which lie out ahead of the remnantÏs
forward blast wave, we estimate a knot convergent date of A.D. 1671.3 ^ 0.9 assuming no deceleration.
However, a deceleration of just D1.6 km s~1 yr~1 over a 300 yr time span would produce an explosion
date ^A.D. 1680, consistent with the suspected sighting of the Cas A supernova by J. Flamsteed.

Key words : ISM: individual (Cassiopeia A) È ISM: kinematics and dynamics È supernova remnants

1. INTRODUCTION

Cassiopeia A (Cas A) is the youngest Galactic supernova
remnant (SNR) known and, with the exception of the Sun,
ranks as the strongest discrete radio source in the sky at
100È1000 MHz. At radio, optical, and X-ray wavelengths,
Cas A consists of a ^2@ radius broken shell of SN debris
rich in O, S, Si, Ar, Ca expanding at 4000È6000 km s~1.
Within this shell lie about two dozen knots of much slower
moving, N-rich clumps of pre-SN, circumstellar mass loss
material. Outside of the shell, faint radio and X-ray emis-
sion extends to a radial distance of ^160A, where a faint,
Ðlamentary edge of X-ray emission marks the current loca-
tion of the remnantÏs forward shock front. At an estimated
distance of kpc (Reed et al. 1995), these angular3.4

~0.1
`0.3

dimensions correspond to main shell and outer shock front
radii of 2 and 2.7 pc, respectively. Several dozen faint optical
knots with velocities of 8000 to 15,000 km s~1 have been
detected outside some sections of the main shell, mainly in a
northeastern ““ jet ÏÏ of high speed ejecta (Fesen & Gunder-
son 1996 ; Fesen 2001).

The remnantÏs precise age is uncertain. From proper
motion studies for D100 of Cas AÏs optical knots during
1951È1980, Kamper & van den Bergh (1976, hereafter
KvdB76) and van den Bergh & Kamper (1983, hereafter
vdBK83) determined an explosion date of 1658 ^ 3 for the
remnant as a whole (assuming no deceleration) and a some-
what later date of 1671 for a few higher-velocity north-
eastern ““ jet ÏÏ knots. The di†erence between these derived

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 Based in part on observations with the NASA/ESA Hubble Space

Telescope, obtained at the Space Telescope Science Institute, which is oper-
ated by the Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS 5-26555.

dates probably reÑects a greater deceleration of bright main
shell knots caused by their interaction with the remnantÏs
reverse shock.

There are no unambiguous historical observations of a
bright nova or variable star in Cassiopeia that might be
associated with a late 17th century supernova. However, on
1680 August 16 John Flamsteed, the Ðrst Astronomer
Royal, reported seeing a 5thÈ6th magnitude star he desig-
nated ““ supra q ÏÏ and later renamed 3 Cassiopeiae in his
1725 Historia Coelestia star catalog (Ashworth 1980). Its
proximity to Cas A, together with the fact that he never
observed this star again, raises the possibility that he
sighted the Cas A supernova in the summer of 1680.

The positional di†erences between Cas A and the 3 Cas
position are, however, troublingly large. FlamsteedÏs loca-
tion for 3 Cas is o†set from Cas A by in right ascension12@.1
and in declination. Although refraction and sextant cor-8@.6
rections might decrease these residuals to ^6@ in both coor-
dinates (errors not unprecedented for Flamsteed), the case
for FlamsteedÏs sighting of Cas A is controversial
(Broughton 1979 ; Kamper 1980 ; Hughes 1980).

Without additional evidence, the signiÐcance of Flam-
steedÏs observation might well remain inconclusive.
However, the large proper motions of the remnantÏs ejecta
knots yr~1) can be used to set limits on(k \ 0A.4È0A.6
Cas AÏs age and thereby test the possible 1680 explosion
date. An accurate measurement of Cas AÏs age would in
turn provide key information about deceleration of its
high-speed knots and thus the phase of its evolutionary
development.

Accurate proper motion measurements can also be used
to improve determinations of the remnantÏs center of expan-
sion. KvdB76 determined the remnantÏs expansion center to
within an error radius of about 1A. No optical point source
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or extended emission is present at this location down to
I D 24 mag (van den Bergh & Pritchet 1986).

Knowledge of Cas AÏs precise expansion center has
recently gained greater interest with the Chandra X-Ray
Observatory discovery of an X-ray point source near the
remnantÏs center (Tananbaum 1999). This object, which
could be either a neutron star with magnetized polar caps
or an accreting compact object (Pavlov et al. 2000 ; Umeda
et al. 2000 ; Chakrabarty et al. 2001), lies signiÐcantly o†set
from estimates for the remnantÏs center of expansion (COE).
Point source coordinates derived from ROSAT and
Chandra data show a separation of 1AÈ5A from the KvdB76
and vdBK83 COE, and some 16AÈ20A from the COE
inferred by Reed et al. (1995) using knot radial velocities.
These o†sets imply transverse velocities of 50È250 km s~1
and 800È1000 km s~1, respectively, assuming d \ 3.4 kpc
and an age of 320 yr (Pavlov et al. 2000).

In this paper, we present proper motions of 17 outlying
high-velocity ejecta knots discovered over the last decade
(see Fesen 2001 and references therein) along with 21 selec-
ted main shell knots. Many of these 40 knots can be seen on
the earliest archival Palomar 5 m PF plates, giving proper
motion baselines of nearly Ðve decades, or about 1/7th of
the remnantÏs age. We use these proper motions to deter-
mine a more accurate position and date for the supernova.

2. EJECTA KNOT OBSERVATIONS

2.1. Image Data

Our observational material includes Palomar 5 m prime
focus (PF) plates dating back to 1951, CCD images taken
1988È1999 with the KPNO 4 m and MDM 2.4 m tele-
scopes, and a few 1999 HST WFPC2 images. Table 1 lists
information on the images that were used. Although
archival plates and modern CCD image data have, in many
cases, substantially di†erent spectral sensitivities, the
angular scale of knot emission stratiÐcation or ionization
structures lies well below all but the highest resolution HST
data (Fesen et al. 2002, in preparation) and thus does not
pose a signiÐcant problem for the intercomparison of knot
positions from these di†erent data sets.

To maximize the time base, we examined several dozen
archival Palomar 5 m PF plates beginning with R. Mink-
owski in 1951 and ending with S. van den Bergh in 1989.
Most of these plates were unsuitable for this project because
of poor image quality or weak knot detection, but four were
selected for use. These included two plates taken on back-
to-back nights in 1951, a better and deeper 1958 image (van
den Bergh & Dodd 1970, their Fig. 1), and a superb 1976
image (vdBK83).

Modern CCD interference and broadband Ðlter images
of all or portions of the Cas A remnant obtained from 1988
November through 1999 October were also measured.
Several of these have been used in prior studies, and a few
were taken expressly for this project. Some high resolution
1999 epoch WFPC2 HST images were also used for several
outlying northern and jet knots.

We selected for measurement a total of 38 ejecta knots
that had measurable positions on the Palomar 1976 and
later images (*t \ 23 yr). Many were outer knots, together
with some shell knots visible from 1958 through 1999
(*t \ 41 yr). Nearly a dozen knots, mostly among the outer
ejecta, were detectable from 1951 through 1999, a span of
almost 48 years, which is about 15% of Cas AÏs age.

It is unlikely that suitable earlier images exist. The
Palomar 5 m was completed in 1948, coincident with the
discovery of Cas A as a localized radio source (Ryle &
Smith 1948). Furthermore, the remnant has brightened sig-
niÐcantly over the last half-century (van den Bergh &
Kamper 1985), and the individual knots often have Ðnite
visibility lifetimes (KvdB76). These factors set a practical
limit of D50 yr for the time span over which the proper
motion can be studied at this time.

2.2. Knot Selection

Of the 38 knots selected, 21 were main shell features and
17 were outer, higher velocity knots in the NE jet or else-
where. Figure 1 shows the location of the selected knots.
Table 2 cross-lists our designations with those of earlier
studies where possible.

Our two main knot selection criteria were as follows. (1)
Distinct appearance with an absence of signiÐcant morpho-

TABLE 1

OBSERVATIONAL MATERIAL USED FOR PROPER MOTIONS

Scale Exposures

Date (UT) Telescope Plate No./Image ID (arcsec pixel~1) Emulsion/Bandpass Region Imaged (s)

1951 Nov 01 . . . . . . Palomar 5 m 553B 0.1406 103aE ] RG2 Whole SNR 1 ] 7200

1951 Nov 02 . . . . . . Palomar 5 m 563B 0.1406 103aE ] RG2 Whole SNR 1 ] 7200

1958 Aug 11 . . . . . . Palomar 5 m 3033S 0.1406 103aF ] RG2 Whole SNR 1 ] 5400

1976 Jul 02 . . . . . . . Palomar 5 m 7252vB 0.1406 098-04 ] RG645 Whole SNR 1 ] 7200

1988 Nov 10 . . . . . . KPNO 4 m . . . 0.297 [S II] j6725 Jet, east limb 5 ] 128

1988 Nov 10 . . . . . . KPNO 4 m . . . 0.297 Ha ] [N II] Jet, east limb 5 ] 192

1992 Jul 05 . . . . . . . MDM 1.3 m . . . 0.635 Broad [S II] j6725 Whole SNR 3 ] 1800

1992 Jul 05 . . . . . . . MDM 1.3 m . . . 0.635 Ha ] [N II] Whole SNR 3 ] 1800

1996 Oct 06 . . . . . . MDM 2.4 m . . . 0.275 Broad [S II] j6725 NW, SW, NE, SE 2 ] 1000

1996 Oct 07 . . . . . . MDM 2.4 m . . . 0.275 Ha ] [N II] NW, SW, NE, SE 2 ] 600

1996 Oct 07 . . . . . . MDM 2.4 m . . . 0.275 Cont. 6450 A� NW, SW, NE 2 ] 1000

1999 Jun 12 . . . . . . HST 2.4 m U52B0194RÈ0109R 0.0996 [S II] (F673N) Jet 6 ] 1000

1999 Jun 12 . . . . . . HST 2.4 m U52B010CRÈ010FR 0.0996 R (F675W) Jet 4 ] 600

1999 Jun 13 . . . . . . HST 2.4 m U52B0205RÈ0207R 0.0996 R (F675W) NW limb 3 ] 500

1999 Jun 13 . . . . . . HST 2.4 m U52B0205RÈ020BR 0.0996 R (F675W) West limb 2 ] 700

1999 Oct 15 . . . . . . MDM 2.4 m . . . 0.275 R Whole SNR 2 ] 720

NOTE.ÈOriginal Palomar 5 m plate scale : mm~1.11A.1
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FIG. 1.È[S II] jj6716, 6731 image of Cas A from 1992 July (Fesen & Gunderson 1996). The lower panel shows all the knots used in this study. The upper
panel is a magniÐed view of the main shell region. The positions marked are derived from the knot trajectories adjusted to the epoch of the image. Some of the
knots are not visible.

logical changes. We looked for knots which were compact
with steady morphologies that allowed secure identiÐcation
and centroiding. None of the knots was perfect, but some,
like the bright outer knot 15, provided excellent positional
measurements over the entire 48 yr time span surveyed.
Like most other outlying fast-moving knots, it has a rela-
tively stable morphology (see Fesen 2001). On the other
hand, main shell knots can show substantial changes in
appearance on images separated by just 5 to 10 yr. Conse-

quently, we included only the most distinct and persistent
main-shell features. The number of main-shell features we
used was therefore relatively small compared to prior
studies (KvdB76 and vdBK83). (2) T ime span of visibility.
The longer a knot is measurable, the greater weight it has
for determining the remnantÏs expansion center. We there-
fore biased our knot selection toward knots with long visi-
bility time spans (º20 yr). This resulted in a much smaller
knot sample than the 102 measured by KvdB76. Their



300 THORSTENSEN, FESEN, & VAN DEN BERGH Vol. 122

TABLE 2

PROPER MOTION KNOT IDENTIFICATION (ID) REFERENCES

Knot IDs Prior IDs for Knots Reference

Outer Knots

1, 4, 5, 8, 9 . . . . . . . . 1, 4, 5, 8, 9 FBB87, FBG88

11 . . . . . . . . . . . . . . . . . . 11 FBG88

15 . . . . . . . . . . . . . . . . . . KB91, 15 vdBK83; FBB87 ; FBG88

19 . . . . . . . . . . . . . . . . . . 19 Fesen 2001

Knots in NE Jet

82 . . . . . . . . . . . . . . . . . . 82 FB91

99 . . . . . . . . . . . . . . . . . . 115 vdBK83; FBG88

116 . . . . . . . . . . . . . . . . . 116 KvB76, vdBK83; FBG88

118, 120, 121 . . . . . . 118, 120, 121 FBG88

130 . . . . . . . . . . . . . . . . . 113 vdBK83

131 . . . . . . . . . . . . . . . . . . . . This paper

Shell Knots

93 . . . . . . . . . . . . . . . . . . 41 KvdB76, vdBK83

94 . . . . . . . . . . . . . . . . . . 7 KvdB76, vdBK83

95 . . . . . . . . . . . . . . . . . . . . . this paper

97 . . . . . . . . . . . . . . . . . . 111 vdBK83

200 . . . . . . . . . . . . . . . . . . . . this paper

201 . . . . . . . . . . . . . . . . . . . . this paper

302 . . . . . . . . . . . . . . . . . 102 KvdB76, vdBK83

303 . . . . . . . . . . . . . . . . . . . . this paper

304 . . . . . . . . . . . . . . . . . 101 KvdB76, vdBK83

305 . . . . . . . . . . . . . . . . . 105 KvdB76, vdBK83

306 . . . . . . . . . . . . . . . . . . . . this paper

308 . . . . . . . . . . . . . . . . . . . . this paper

401 . . . . . . . . . . . . . . . . . . . . this paper

403 . . . . . . . . . . . . . . . . . 65 KvdB76

404 . . . . . . . . . . . . . . . . . . . . this paper

405 . . . . . . . . . . . . . . . . . . . . this paper

41 . . . . . . . . . . . . . . . . . . 59 KvdB76

43 . . . . . . . . . . . . . . . . . . 14 KvdB76, vdBK83

44 . . . . . . . . . . . . . . . . . . . . . this paper

45 . . . . . . . . . . . . . . . . . . 63 KvdB76

501 . . . . . . . . . . . . . . . . . 1 ? KvdB76

981 . . . . . . . . . . . . . . . . . . . . this paper

REFERENCES.È(FB91) Fesen & Becker 1991 ; (FBG88) Fesen, Becker, &
Goodrich 1988 ; (FBB87) Fesen, Becker, & Blair 1987 ; (KvdB76) Kamper
& van den Bergh 1976 ; (vdBK83) van den Bergh & Kamper 1983.

knots covered time spans ranging from 3 to 24 yr, with 46%
of their knots visible for less than 15 yr.

3. ASTROMETRIC PROCEDURES AND MEASUREMENTS

3.1. Reference Star Grid

We began by constructing a grid of reference stars. First,
centroids for several hundred unsaturated stars were mea-
sured on the Ha and [S II] jj6716, 6731 images taken with
the MDM 1.3 m telescope in 1992 July, using the IRAF
incarnation of DAOPHOT (Stetson 1987). We then cross-
identiÐed these stars with the USNO A2.0 catalog (Monet
et al. 1996) and derived a six-constant linear plate model,
rejecting stars with large residuals. Because the centroids in
the CCD data have much better internal precision than the
USNO A2.0 coordinates, we transformed the CCD cen-
troids to right ascension and declination using the plate
model and averaged the results from the Ha and [S II]
exposures. This procedure yielded right ascensions and dec-
linations approximately on the International Coordinate
Reference System (ICRS) of the USNO A2.0, but with much

higher internal precision. The USNO A2.0 is based on the
original Palomar Observatory Sky Survey plates, which for
this Ðeld are epoch 1954.6, so the elimination of high-
residual stars removes stars with appreciable proper
motions, as well as blended images and other difficult cases.
For the Ðnal step, the reÐned celestial coordinates were
converted to tangent-plane coordinates, using the KvdB76
center of expansion as the tangent point. The Ðnal reference
grid consisted of 141 stars with red magnitudes (from the
USNO A2.0) from 15.2 to 19.1 covering an 8@ ] 8@ Ðeld.

Because this reference star grid is fundamental to all our
results, we checked it for various sources of error : (1) errors
in the gridÏs coordinate zero point which would a†ect com-
parisons with other results, (2) proper motion of the grid
stars, and (3) radial distortions in the grid which could cause
a systematic error in the age estimate. Below, we consider
each of these sources of error in turn.

3.1.1. Zero Point for Reference Grid

We performed two checks on the positional zero point of
the reference star grid.

First, we examined the twelve reference stars (for epoch
1965) tabulated by KvdB76. We measured these stars on all
the images on which they appeared, used our reference star
net to derive positions and proper motion as described
below for the knots, and compared the results to those
tabulated in KvdB76. Ten of the 12 KvdB76 reference stars
had sufficient observations in our data. For these, our right
ascensions were on average 485 mas larger than theirs, with
an rms scatter of 67 mas, while our declinations were 448
mas smaller, with a scatter of 112 mas.

Second, during the preparation of this work, the Tycho-2
astrometric catalog became available et al. 2000).(HÔg
Four Tycho-2 stars appear on enough images to derive
good positions for epoch J2000, and for three stars the time
base gives adequate proper motions. Because the stars were
highly saturated in nearly all our pictures, we estimated the
starÏ centers and their uncertainties by eye. Our derived
epoch 2000 positions for the four Tycho stars are, on
average 121 ^ 80 mas east and 82 ^ 79 mas south of the
catalog positions, well within the accuracy to which the
USNO A2.0 is expected to align with the ICRS.

The Tycho and USNO catalogs are based on Hipparcos
observations, which should provide much more reliable
all-sky positions than the catalogs available to KvdB76. We
conclude that our grid is in registration with the ICRS to
within at worst and that KvdB may have su†ered a^0A.2
barely signiÐcant zero-point error.

3.1.2. Proper Motions of Grid Stars

In deriving plate models, we did not adjust the positions
of our grid stars for proper motions. We implicitly assumed
that the proper motions of the grid stars were small. Our
grid stars are on average only a little brighter than the
dozen V D 19 mag reference stars used by KvdB76. They
remark that stars this faint should have intrinsic proper
motions from the solar motion and Galactic rotation of D1
mas yr~1. It is therefore likely that our grid starsÏ motions
are similarly small. A systematic o†set in properk

sys
motions can seriously a†ect the derived center for the SNR,
since it displaces the center by yr.k

sys
] D300

For the three Tycho-2 stars for which proper motions
could be derived on our reference grid, the weighted aver-
ages of were [3.5 ^ 2.5 mas yr~1 in right ascen-k

T2
[ k

grid
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sion and ]0.8 ^ 2.5 mas yr~1 in declination. Therefore,
there was no evidence for a signiÐcant motion with respect
to the ICRS.

The comparison with the KvdB reference stars was a bit
more complex. They explicitly derived proper motions for
their reference stars and found a 9 mas yr~1 mean proper
motion in declination. They decided this was spurious and
later adjusted their derived Cas A center to account for the
drift in their reference grid. Reducing 10 of their reference
stars with respect to our grid gives mean di†erences k

KV
of [2.8 ^ 1.4 mas yr~1 in right ascension and[ k

ref] 8.3 ^ 1.4 mas yr~1 in declination. This is just as expected
on the basis of their remarks. Indeed, our procedure is logi-
cally similar to theirs, but less complex : we simply assumed
the faint grid to be motionless ab initio, while they derived
proper motions and corrected them at the end to achieve
the same result.

Finally, we checked our grid stars individually against
the reference grid, deriving proper motions for each star
based on all the images on which it appeared. Formally, this
was Ñawed by the inclusion of the star itself in the plate
models, but with our sample of 140 stars, the e†ect should
be negligible. Grid stars observed over the whole range of
dates had typical estimated proper motion uncertainties of
^D1.7 mas yr~1, and relatively few showed signiÐcant
proper motions. In the Ðtting procedure used for the images
(described below), grid stars with large residuals were iter-
atively clipped out, so the few stars with signiÐcant proper
motions did not a†ect our results.

From all these tests, we conservatively estimate the grid
to be inertial to within D2 mas yr~1.

3.1.3. Field Distortions

The procedure used to set up the reference grid is valid
provided that distortions in the Ðeld of the MDM 1.3 m
telescope are insigniÐcant. This is likely to be the case. Cud-
worth & Rees (1991) measured the Ðeld distortions of
several southern telescopes, including the CTIO 1.5 m
which, like the MDM 1.3 m, is an f/7.5 Ritchey-Chretien
reÑector. If one equipped the CTIO 1.5 m with a CCD
having the same size as that used in deriving our reference
grid, then their radial distortion term would contributea

9
only 7 mas at the corners of the Ðeld of view.

Nonetheless, we searched for Ðeld distortions in several
di†erent ways. (1) In Ðtting the USNO A2.0 stars, we did
not see any trends in the residuals from the six-constant
plate model. The USNO A2.0 typically has centroiding
errors in the 250È500 mas range. In view of the number of
stars used, this alone limits systematic trends to ¹200 mas.
(2) We examined archival CCD images of the globular
cluster M13 taken with the MDM 1.3 m and the same
camera as the Cas A images. Kyle Cudworth kindly provid-
ed us with a list of star positions in M13, which he estimated
were accurate to D20 mas for relative positions. A six-
constant Ðt of the CCD centroids to those positions gave an
rms residual of 70 mas, again showing no obvious system-
atic trends. When a more elaborate model was used, the
residuals were not improved signiÐcantly. The scatter is
somewhat larger than expected but does not seem to indi-
cate any Ðeld distortions. (3) In 1999 October we obtained a
set of short I-band CCD exposures of Cas A with the MDM
2.4 m telescope, covering an 8@ ] 8@ Ðeld. A six-constant Ðt
to the 124 standard reference stars included in this image
gave an rms residual of 60 mas, without any iteration ; iter-

ative clipping of high residuals brought this down to 34
mas, with 110 stars remaining. Again, a more elaborate Ðt
did not result in signiÐcant improvement.

Because the reference grid is based on exposures taken
with the MDM 1.3 m, this last test simply compares the two
telescopes. However, in 2000 January we also performed an
astrometric calibration of the 2.4 m by obtaining two sets of
short-exposure 2.4 m images of a portion of the Stone, Pier,
& Monet (1999) astrometric standard region E. In one set of
images, we Ðtted 172 stars to a six-constant plate model.
This gave a 153 mas rms residual. Iterative elimination of
the largest residuals brought this down to 53 mas with 114
stars. Similar results were found with the other set of
images. The residual maps of the two sets of images did not
show systematic distortions but were highly correlated with
each other. This suggests that most of the error arises from
the catalog positions, probably due to the (necessary) inclu-
sion of many stars near the faint limit of the catalog.

In summary, the tests we made did not show any geomet-
ric distortion in our reference grid. The results suggest that
systematic distortions are smaller than D60 mas and that
the centering precision of the reference stars is conserva-
tively D50 mas.

3.2. Image Solutions

We scanned the four Palomar PF plates (Table 1) on the
Yale Astronomy DepartmentÏs PDS microdensitometer.
We used a 13.3 km ] 13.3 km scanning aperture and
sampled every 12.656 km in a 3300 ] 4100 raster centered
on the remnant, the long dimension being east-west. The
plate scale was mm~1, yielding pixel~1. We used11A.1 0A.141
SExtractor (Bertin & Arnouts 1996) to derive star centers
for the Palomar plates.

The Palomar 5 m prime-focus camera used a corrector
which produced substantial radial distortions. Similar cor-
rector distortions have been discussed by Murray (1971)
and Cudworth & Rees (1991). Plate coordinates of the dis-
tortion center, enter the least-squares models in a(x

0
, y

0
),

nonlinear fashion, so following Murray (1971) and Cud-
worth & Rees (1991) we estimated in a separate step.(x

0
, y

0
)

We Ðrst Ðtted the reference stars with a simple six-constant
plate model of the form

X
0

\ a
0

] a
1

x ] a
2

y ,

where is the standard reference star coordinate, and xX
0

and y are the coordinates on the Palomar plate. This Ðt
gave root mean square (rms) residuals of D240 mas, with
maximum values D690 mas. The distortion center (x

0
, y

0
)

could then easily be estimated from the residual maps.
These were then used in a 16-constant model of the form

X
0

\ a
0

] a
1

x ] a
2

y ] a
3

x2 ] a
4

xy ] a
5

y2

] a
6

xr2 ] a
7

xr4 ,

where This model is similarr2 \ [(x [ x
0
)2 ] (y [ y

0
)2]1@2.

to that used by Cudworth & Rees (1991), but without mag-
nitude terms. As expected, these Ðts were much better ; after
a few of the highest-residual stars were rejected, rms
residuals ranged from 71 mas (P7252) to 133 mas (P553B).

Fitting the CCD images was more straightforward. We
centroided the reference stars with DAOFIND and
matched them to their standard star XY coordinates. For
the ground-based CCD images, there were always more
than 20 stars matched. Because distortions in the CCD
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TABLE 3

KNOT POSITIONS AND PROPER MOTIONS

k
a

k
d

p
x

p
k

First Last

Knot ID a d (mas yr~1) (mas yr~1) (mas) (mas yr~1) Epoch Epoch

1 . . . . . . . . 23 23 12.943 58 45 57.97 [341 [509 113 10 1958.61 1996.77

4 . . . . . . . . 23 23 47.327 58 48 26.40 454 [70 172 9 1951.83 1996.76

5 . . . . . . . . 23 23 48.455 58 48 15.05 488 [108 83 5 1951.83 1999.79

8 . . . . . . . . 23 23 12.202 58 51 24.06 [370 467 74 5 1951.83 1999.79

9 . . . . . . . . 23 23 08.738 58 50 46.53 [458 362 69 4 1951.83 1999.79

11 . . . . . . . 23 23 11.921 58 51 16.43 [391 454 143 15 1976.50 1999.45

15 . . . . . . . 23 23 31.727 58 51 33.51 97 500 77 4 1951.83 1999.79

19 . . . . . . . 23 23 03.424 58 49 05.79 [571 49 58 6 1976.50 1999.79

41 . . . . . . . 23 23 23.993 58 50 59.85 [92 380 181 12 1958.61 1999.79

43 . . . . . . . 23 23 25.187 58 50 52.39 [67 365 152 9 1951.83 1999.79

44 . . . . . . . 23 23 25.367 58 50 53.47 [44 376 148 10 1958.61 1999.79

45 . . . . . . . 23 23 24.891 58 50 55.07 [71 369 150 9 1958.61 1999.79

82 . . . . . . . 23 23 48.677 58 50 11.11 491 252 72 8 1976.50 1999.79

93 . . . . . . . 23 23 17.839 58 50 37.52 [222 331 114 6 1951.83 1999.79

94 . . . . . . . 23 23 18.480 58 50 39.43 [225 327 97 5 1951.83 1999.79

95 . . . . . . . 23 23 32.801 58 48 07.52 110 [111 76 10 1958.61 1999.79

97 . . . . . . . 23 23 43.194 58 48 20.64 345 [77 115 6 1958.61 1999.79

99 . . . . . . . 23 23 52.171 58 49 53.03 580 194 48 6 1958.61 1999.79

116 . . . . . . 23 23 53.316 58 50 44.52 604 358 78 6 1951.83 1999.79

118 . . . . . . 23 23 55.062 58 50 34.58 616 322 89 11 1976.50 1999.79

120 . . . . . . 23 23 58.184 58 50 47.51 719 360 107 10 1976.50 1999.79

121 . . . . . . 23 23 59.032 58 51 01.44 730 411 107 13 1958.61 1996.76

130 . . . . . . 23 23 49.665 58 50 08.48 508 242 141 9 1958.61 1999.79

131 . . . . . . 23 23 53.600 58 49 57.28 607 203 195 21 1976.50 1996.76

200 . . . . . . 23 23 41.778 58 50 03.71 321 215 69 10 1976.50 1999.79

201 . . . . . . 23 23 44.598 58 48 33.20 381 [46 60 6 1958.61 1999.79

302 . . . . . . 23 23 40.139 58 50 02.10 287 212 126 8 1958.61 1999.79

303 . . . . . . 23 23 39.275 58 50 01.73 260 205 157 10 1958.61 1996.76

304 . . . . . . 23 23 39.899 58 50 07.15 285 233 141 9 1958.61 1999.79

305 . . . . . . 23 23 40.732 58 50 06.15 307 225 162 10 1958.61 1999.79

306 . . . . . . 23 23 41.484 58 50 10.88 324 247 143 10 1958.61 1999.79

308 . . . . . . 23 23 41.525 58 50 08.33 307 222 170 18 1976.50 1999.79

401 . . . . . . 23 23 22.948 58 50 04.47 [108 219 124 8 1951.83 1999.79

403 . . . . . . 23 23 26.438 58 49 52.17 [22 188 140 10 1951.83 1999.79

404 . . . . . . 23 23 21.358 58 50 01.91 [142 217 136 8 1958.61 1999.79

405 . . . . . . 23 23 20.757 58 50 05.96 [172 232 158 11 1958.61 1999.79

501 . . . . . . 23 23 42.343 58 48 42.61 329 [16 157 14 1976.50 1999.79

981 . . . . . . 23 23 47.840 58 49 43.04 470 168 120 11 1951.83 1976.50

NOTES.ÈPositions are for epoch J2000 and are referred to the ICRS. Units of right ascension are hours, minutes, and
seconds, and units of declination are degrees, arcminutes, and arcseconds.

images were expected to be relatively small, we used the
six-constant model described above, with any unruly stars
omitted by iterative clipping.

Reduction of the few HST images was not as simple.
First, the images from the four CCDs of the WFPC2 were
interpolated onto a single grid using the ““ wmosaic ÏÏ task in
the IRAF STSDAS package, which approximately corrects
for Ðeld distortions. Unfortunately, the WFPC2 Ðeld of
view is so small that one of our Ðelds had only six reference
stars. To increase the number of reference stars we mea-
sured some fainter stars on the ““ wide [S II] ÏÏ 2.4 m image
from 1999 October, transformed these over to the standard
grid and used them in the Ðt to the HST data. With these
added stars, each HST Ðeld had at least 14 reference stars.
The rms scatter for the six-constant models was 50 to 55
mas. Holtzman et al. (1995) quote an rms scatter of 10 mas
in their Ðt to the WFPC2 Ðeld distortions. The larger
scatter found here probably arises from the errors in the
reference star positions. In particular, there was no pattern
indicating that the zero-point o†sets between the CCDs
were di†erent from those assumed by wmosaic.

3.3. Knot Measurements and Fits

We tried several methods to measure positions of the
selected 38 knots. This was a somewhat complicated
problem, since many of the knots were resolved in our
images. The dominant source of centering uncertainty
resulted from structure in the knots, rather than photon or
grain noise. In the end, we simply estimated the knot centers
by eye using a cursor on an image display. We allowed our
judgment to be informed by centroids from such tools as the
““ imexamine ÏÏ task in IRAF and (for the photographic
scans) the centers from SExtractor. The selected knots often
had ““ head-tail ÏÏ structures, in which case we estimated the
center of the head. Some of the shell knots were embedded
in nebulosity. In such cases, we tried to center on the
brightest part of the knot.

Our uncertainty estimates were also subjective, but we
attempted to err on the conservative side. When we later
Ðtted straight-line trajectories to the knots, we found that
the residuals were often smaller than one would expect on
the basis of our estimated uncertainties, demonstrating that
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our estimates were indeed conservative. For the photogra-
phic images, our estimated errors were guided by lower
bounds on the error based on the noise in the plate fog, the
central brightness of the knot, and the knotÏs angular size.
These bounds were calibrated with a Monte Carlo
simulation.

Once xy coordinates were measured on all the images,
they were transformed to the tangent-plane coordinate
system using the solutions described earlier. The rms scatter
in the plate solution was added in quadrature to each the
knotÏs estimated uncertainty. If the rms scatter was less than
40 mas, it was set to 40 mas to account for systematics.
Transformed knot positions were automatically collated
with the exposure epochs for the images, yielding a time
series of positions for each knot.

Finally, each knotÏs trajectory was Ðtted with a straight
line,

X(t) \ X
0
(t

0
) ] k

X
(t [ t

0
) ,

where is the weighted mean epoch of observation, andt
0

similarly for Y . Uncertainties were propagated into the
coefficients in a standard manner. Table 3 gives the results
of this procedure.

4. RESULTS AND DISCUSSION

4.1. Cas AÏs Center of Expansion

Figure 2a shows the trajectories of our selected knots
extrapolated back to A.D. 1600, somewhat before the esti-
mated explosion date. The dots are the individual knot
measurements with the width of each line indicating its sta-
tistical weight.

Because the knots may have decelerated by varying
amounts, we estimated the center using only the knotsÏ lines
of position and did not apply any constraints arising from
the time dependence (i.e., forcing the knots to start at the
same epoch). We constructed a trajectory for each knot and
computed its positional uncertainty near the time of thep

i0
explosion by propagating the estimated position and
proper motion errors. Because of the long time lever, the

proper motion uncertainty dominated the errors in all
cases. With this information we could compute, for any X
and Y , a likelihood function of the form

j(X, Y ) \ <
i

1

2p
i0

exp ([d
iM
2 /2p

i0
2 ) ,

where is the perpendicular distance between (X, Y ) andd
iM

the knotÏs line of position. The (X, Y ) which maximizes this
is our estimate of the expansion center.

This procedure gave X \ ]91 mas and Y \ ]2812
mas, referred to the KvdB76 center. This translates
into a(J2000) \ 23h23m27s.77 ^ 0s.05, d(J2000) \ 58¡48@49A.4

The center derived using only the outer knots nearly^ 0A.4.
coincided with that derived from the selected shell knots.
Table 4 lists our main shell and outer knot centroids
separately along with our Ðnal values for the whole sample.
The errors given are purely statistical, based on the Monte
Carlo calibration of the centering errors (see below).

4.1.1. Error Estimates

Because our expansion center di†ers from those of pre-
vious estimates (see below), we estimated our measurement
uncertainties in several ways.

Since we have computed a likelihood function, the
likelihood-ratio test described by Cash (1979) can be used to
form conÐdence contours. Such contours, however, assume
that the positional errors we estimated by eye are truly one
standard deviation. The resulting 95% conÐdence contour
is an oval slightly elongated northwest-southeast, with a
radius Figure 3 is a magniÐed view of the centerD1A.3.
region, showing the lines of position together with the 95%
to 99.5% conÐdence contours from this procedure.

We also used a Monte Carlo simulation of the proper
motion measurements to check our uncertainties and to
normalize our error estimates. We began by assuming that
the explosion occurred at the observed maximum-
likelihood position. Then, taking each knotÏs present posi-
tion as known and Ðxed (because the proper motions
dominate the errors), we computed an idealized proper

FIG. 2.È(a) Trajectories of the knots used in this study. The dots are individual measurements, and the lines are Ðts to the trajectories. The widths of the
lines increase according to the weight in the solution. (b) Trajectories of the 102 knots used by Kamper & van den Bergh (1976).
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TABLE 4

AGE AND CENTER OF EXPANSION MEASUREMENTS FOR CAS A

EXPANSION CENTER COORDINATES

T
0

OR

REFERENCE SNR REGION SNR AGE a(J2000) d(J2000)

Optical

van den Bergh & Dodd 1970 . . . . . . . . . . Brt. shell A.D. 1667 ^ 8 23 23 27.16 ^ 0.2 58 48 47.6 ^ 3.1

Kamper & van den Bergh 1976 . . . . . . . Brt. shell A.D. 1653 ^ 3 23 23 27.76 ^ 0.1 58 48 46.7 ^ 0.8

NE jet A.D. 1671 ^ 3

van den Bergh & Kamper 1983 . . . . . . . Whole SNR A.D. 1658 ^ 3 23 23 27.76 ^ 0.1 58 48 46.4 ^ 1.0

Fesen, Becker, & Goodrich 1988 . . . . . . Outer knots A.D. 1680 ^ 15

Kamper & van den Bergh 1991 . . . . . . . Outer knots A.D. 1671 ^ 3

Reed et al. 1995 . . . . . . . . . . . . . . . . . . . . . . . . . Brt. shell 23 23 26.55 ^ 0.09 58 49 00.7 ^ 0.8

This paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outer knots A.D. 1671.3 ^0.9 23 23 27.84 ^ 0.06 58 48 49.4 ^ 0.4

Shell knots A.D. 1662.3 ^1.7 23 23 27.71 ^ 0.09 58 48 49.5 ^ 0.7

Whole sample A.D. 1669.1 ^0.8 23 23 27.77 ^ 0.05 58 48 49.4 ^ 0.4

Radio

Tu†s 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brt. shell Age \ 949 yr 23 23 25.95 ^ 0.4 58 48 48.4 ^ 4.4

Green 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brt. shell Age D 400 yr

Anderson & Rudnick 1995 . . . . . . . . . . . . Brt. shell Age D 940 yr 23 23 26.05 ^ 0.2 58 48 54.3 ^ 3.1

Outer knots Age \ 550È900 yr

Agu� eros & Green 1999 . . . . . . . . . . . . . . . . . Brt. shell Age \ 400È500 yr

X-Ray

Vink et al. 1998 . . . . . . . . . . . . . . . . . . . . . . . . . Brt. shell Age \ 501 ^15 yr

Koralesky et al. 1998 . . . . . . . . . . . . . . . . . . . Brt. shell Age D 500 yr

NOTE.ÈUnits of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and
arcseconds.

motion for each knot, which extrapolated back exactly to
the observed maximum-likelihood position. We next
created 1000 artiÐcial data sets by adding Gaussian random
noise to the idealized proper motions. For each artiÐcial

FIG. 3.ÈMagniÐed view of the region in which the knot trajectories
intersect. The straight lines are the Ðtted trajectories, again with the line
weight indicating the statistical weight. The contours represent conÐdence
intervals for the centroid based on the likelihood ratio test, and represent
95% to 99.5% conÐdence. The dots are centroids determined from Monte
Carlo simulations of the measurement. A ““ fudge factor ÏÏ of 0.7 has been
applied to the estimated errors for this calculation (see text). The origin of
this plot is the KvdB76 estimate of the center of expansion ; note the
signiÐcant o†set of the new determination from this position.

data set, we computed the maximum-likelihood center and
its associated maximum j.

In the Ðrst trials, the standard deviation used for the
Gaussian noise was simply the estimated proper motion
uncertainty of each knotÈin e†ect, we took our estimated
position errors to be realistic. For nearly all the trials, this
choice led to maximum values of j larger than observed,
indicating that the errors in the proper motions were over-
estimated (as expected since our error estimates were
believed conservative). In the Ðnal Monte Carlo calculation,
we multiplied the proper motion standard deviations by a
global ““ fudge factor ÏÏ f D 0.7.

These simulated data sets yielded maximum values of
j(X, Y ) very similar to that of the real data. The spread in
the positions generated by this procedure should be a realis-
tic indicator of the uncertainty in the centroid. The cloud of
Monte Carlo positions is also shown in Figure 3 and has
standard deviations in X and Y of 398 and 366 mas, respec-
tively. Half of the points lie within 448 mas of the mean
position and 95% within 946 mas. This agrees well with the
likelihood-ratio test described above once the scaling factor
of 0.7 is taken into account and provides a cross-check on
the likelihood-ratio procedure.

As an additional check, we divided our data into two
samplesÈshell knots and outer knots. The outer knots gave
X \ 599 mas, Y \ 2809 mas with half the Monte Carlo
points within 508 mas of the mean ; the shell knots gave
X \ [388 mas and Y \ 2840 mas, with half within 783
mas. The disagreements between these and the combined
data are about as expected given the estimated statistical
errors.

In a Ðnal statistical experiment we repeatedly selected
half the knots at random found the maximum likelihood
center of the subsample. For this we used the observed
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trajectories without adding artiÐcial noise. The distribution
of the centers produced by 1000 such trials was rather elon-
gated east-west mas, mas) but did not(p

X
\ 666 p

Y
\ 410

extend toward a particular direction (e.g., the KvdB76 and
vdBK83 center). This shows that our center determination
is not thrown o† by a few stray knots.

4.1.2. Comparison to Previous Results

Previous center of expansion values from optical and
radio data are listed in Table 4. The Ðrst accurate estimate
of Cas AÏs expansion point was made by van den Bergh &
Dodd (1970) using Palomar 5 m PF plates of 27 ““ fast-
moving knots ÏÏ covering the time period 1951 through 1969.
KvdB76 later updated this to include a total of 102 knots
covering the additional period 1970È1975. This study itself
was supplemented by 1976È1980 measurements of 46 espe-
cially long-lived knots by vdBK83. The last two studies
reached essentially the same central position estimate
within measurement errors. More recently, Reed et al.
(1995) found a signiÐcantly di†erent expansion point based
on a least-squares spherical Ðt to a plot of main shell knot
radial velocities. However, this displaced center reÑects
radial velocity di†erences between back and front hemi-
spheres and is thus unlikely to be an accurate measure of
the remnantÏs expansion center.

Our estimated center lies only 3A due north of the center
derived by KvdB76 and vdBK83, but this is well outside
their estimated uncertainty. Although our study^0A.8È1A.0
includes far fewer knots (38) than they used, our results have
smaller formal errors and the trajectories have a smaller
dispersion. For comparison we show in Figure 2b trajec-
tories of the 102 knots measured in the KvdB76 study at the
same scale as the trajectories in Figure 2a. The larger spread
in knot trajectories in the KvdB76 data largely reÑects
inclusion of fewer outlying knots and more main shell knots
in their study.

Finally, we note that the two reported centers derived
from radio measurements lie signiÐcantly (D15A) east of the
centers estimated from the optical knots. Because the
remnantÏs radio emission does not exhibit a smooth, glob-
ally coherent radial expansion (Bell 1977 ; Tu†s 1986 ;
Anderson & Rudnick 1995), we believe that radio-derived
centers are less meaningful.

4.1.3. X-Ray Point Source

First-light Chandra observations of Cas A revealed the
presence of a pointlike X-ray source near the center
(Tananbaum 1999). The source was subsequently conÐrmed
through inspection of archival ROSAT (Aschenbach 1999)

FIG. 4.ÈImage of the center of the Cas A supernova remnant taken
with the MDM 2.4 m Hiltner telescope and a [S II] jj6716, 6731 Ðlter in 1A
seeing. The positions of the Chandra X-ray point source, the KvdB76
expansion center, and our revised expansion center are indicated.

and Einstein data (Pavlov & Zavlin 1999). The X-ray
sourceÏs position has been reÐned slightly using further
Chandra observations (Murray et al. 2001, in preparation ;
Kaplan, Kulkarni, & Murray 2001). Table 5 lists this reÐned
Chandra position, together with those estimated from inves-
tigations of ROSAT and Einstein HRI data. Figure 4 shows
the Chandra position, and both KvdB76Ïs and our expan-
sion centers superposed on an optical image of the central
region.

The Chandra X-ray point source lies some south6A.6
(position angle ^354¡) of our derived center of expansion
for Cas A. Our new expansion center actually lies farther
away from the Chandra position than does the KvdB76
center. Both the ROSAT and Einstein observations,
however, place the X-ray point source a few arcseconds
farther to the west and north, thus closer to our expansion
center. Assuming a common origin for the ejecta knots and
the point source, our center and the Chandra position
together imply a transverse velocity of ^330 km s~1 at a
distance of 3.4 kpc. This velocity is not unusual for a young

TABLE 5

DERIVED CENTER OF EXPANSION VERSUS X-RAY POINT SOURCE

COORDINATES

OBJECT REFERENCE a(J2000) d(J2000)

Center of expansion . . . . . . . . . . . . . . . This paper 23 23 27.77 ^ 0.05 58 48 49.4 ^ 0.4

X-ray point source . . . . . . . . . . . . . . . . Chandra ACISa 23 23 27.86 ^ 0.13 58 48 42.8 ^ 1.0

X-ray point source . . . . . . . . . . . . . . . . ROSAT HRIb 23 23 27.57 ^ 0.75 58 48 44.0 ^ 6.0

X-ray point source . . . . . . . . . . . . . . . . Einstein HRIb 23 23 27.83 ^ 0.50 58 48 43.9 ^ 4.0

X-ray point source . . . . . . . . . . . . . . . . Einstein HRIb 23 23 27.89 ^ 0.50 58 48 43.7 ^ 4.0

NOTE.ÈUnits of right ascension are hours, minutes, and seconds, and units of declination are
degrees, arcminutes, and arcseconds.

a Tananbaum 1999 ; Kaplan, Kulkarni, & Murray 2001 ; Murray et al. 2001, in preparation.
b From Pavlov et al. 2000.
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pulsar, if this is indeed what it is (Umeda et al. 2000 ; Chak-
rabarty et al. 2001 ; McLaughlin et al. 2001).

4.2. Explosion Date and Knot Deceleration

Limits on the date of the Cas A SN explosion bear on two
questions. First, could Flamsteed have seen it in A.D. 1680?
Second, how much have the knots decelerated over the last
300 yr?

The outer and shell knot trajectories give signiÐcantly
di†erent ages, in the sense expected if the shell knots have
decelerated more than the outer knots due to their inter-
action with a reverse shock. This trend is clearly visible in
Figure 5, which shows the times at which the individual
knots are computed to have passed closest to the center
(assuming no deceleration) ; we will refer to this quantity as
the crossing time. (Note : The center position used to
compute the crossing times is derived from the whole data
set. The knots move quickly enough that small variations in
the placement of the center do not a†ect the trend.)

Because of their smaller deceleration, the outer knots
o†er a better estimate of the date of the Cas A supernova
than ejecta in the bright shell. A straight average of the 17
outer knotsÏ crossing times yields an explosion date of
1671.3 ^ 0.9, while the 21 main shell knots yield 1662 ^ 1.7.
On the face of it, the outer knot data indicate a date 9 years
earlier than FlamsteedÏs 1680 sighting of 3 Cas. However, a
deceleration of only D0.1 mas yr~2 for the outer knots
would change the date by D10 years. In our best-observed
knots the 1 p uncertainty in the deceleration approaches
this value, but none of the knots show signiÐcant deceler-
ation. There is also no trend for the Ðtted acceleration
vectors to be pointed inward toward the center. Thus, we
can neither directly detect nor disprove decelerations large
enough to make FlamsteedÏs A.D. 1680 sighting coincide
with the explosion.

FIG. 5.ÈDates at which the extrapolated knot trajectories pass nearest
to the maximum likelihood center. The size of the symbol is inversely
proportional to the estimated uncertainty. Outer knots (squares) are
toward the top, and shell knots (circles) toward the bottom. Note the
retardation and increased scatter of the shell.

The dispersion in the knotsÏ crossing times also a†ects the
case for FlamsteedÏs 1680 sighting. As noted above, the
mean crossing time is displaced from 1680. If in addition the
dispersion in crossing times were small, then in order for
Flamsteed to have seen the explosion the di†erent knots
would need to have su†ered nearly identical decelerations.
This would be unlikely given the typical inhomogeneity of
the ISM. However, Figure 5 shows enough scatter in the
crossing times that a Flamsteed sighting remains plausible.

If we assume for a moment that the explosion date really
was 1680 and that the knots have decelerated uniformly
ever since, we can then compute an implied deceleration for
each knot. For the nine best shell knots (those with formal 1
p crossing time uncertainties less than 5 years), these
implied decelerations range from 0.04 mas yr~2 for knot 9
to 0.14 mas yr~2 for knot 120, with a mean of 0.10 mas
yr~1. At 3.4 kpc, 0.10 mas yr~1 corresponds to a transverse
acceleration of only 1.6 km s~1 yr~1 or a velocity change of
some 2%È5% over the age of the remnant.

Detecting velocity changes D1È2 km s~1 yr~1 in these
faint, outer ejecta knots to test plausible explosion dates
would be difficult, but perhaps not impossible. The sudden
brightening of knot 19 along the remnantÏs western limb
during the early 1970Ïs (Fesen 2001) suggests it may be
decelerating signiÐcantly at the present epoch. A direct
measurements of a knotÏs present-day deceleration could, in
principle, be used to explore the density of the interstellar or
circumstellar medium around the remnant. But at present
not enough is known about the knotsÏ masses, dimensions,
and structure to draw reliable conclusions about their
environment from their decelerations.

4.3. Explicitly T ime-Dependent Estimates

As a check on the center and explosion date estimates, we
also estimated these quantities jointly. Using the Ðtted knot
trajectories, we stepped through a range of dates t around
the explosion. At each date, we computed the weighted
mean position of the knots and then computed

S \ ;
i

Cd
i
(t)

p
i0

D2
,

where is the angular distance of knot i from the meand
i
(t)

center at date t. The estimated explosion date is then t
min

,
the date which minimizes S. The weighted mean position of
the knots at is an estimate of the explosion center. Thist

min
procedure yielded t \ 1671.5, X \ ]723 and Y \ ]2362
for the outer knots, t \ 1659.8, X \ ]585 and Y \ ]1623
for the shell knots, and t \ 1669.8, X \ ]856, and
Y \ ]2693 for the entire sample of knots. Because the
knots in our sample are distributed nonuniformly around
the remnantÏs periphery, di†erences in date translate into
di†erences in position in a complicated way. The likely dif-
ferential deceleration of the knots therefore makes this esti-
mate less reliable than the previous estimate, which is based
on lines of position. Nonetheless, the results are broadly
similarÈall the estimates put the best center signiÐcantly
north of KvdB76Ïs center, and the shell knots show evidence
of deceleration.

5. CONCLUSIONS

Our new proper motions of 21 main-shell and 17 higher
velocity, outer ejecta knots in Cas A leads to improved
estimates of the center of expansion and the age. We Ðnd the
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expansion center to be a(J2000) \ 23h23m27s.77 ^ 0s.05,
with little di†erence betweend(J2000) \ 58¡48@49A.4 ^ 0A.4,

the centers derived using outer or main shell knots. This
expansion point lies to the north of the recently6A.6 ^ 1A.5
recognized X-ray point source. If the point source orig-
inated in the explosion, the position o†set implies a trans-
verse velocity of ^330 km s~1 at a distance of 3.4 kpc.

Using the outer knots, most of which are in front of the
main blast wave, we estimate a date of explosion of
1671.3 ^ 0.9 assuming no deceleration. However, inter-
action with local CSM/ISM should decelerate the knots. If
the velocities have declined by only a few percent over the
age of the remnant, the remnant age would be consistent
with a suspected sighting of the supernova by J. Flamsteed
in 1680. The age derived from the main shell knots is greater
by 9 yr than that derived from the outer knots, implying a
greater deceleration of the main shell.
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