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THE EXPECTED NORM OF A SUM OF INDEPENDENT RANDOM MATRICES:

AN ELEMENTARY APPROACH

JOEL A. TROPP

ABSTRACT. In contemporary applied and computational mathematics, a frequent challenge is to bound the
expectation of the spectral norm of a sum of independent random matrices. This quantity is controlled by
the norm of the expected square of the random matrix and the expectation of the maximum squared norm
achieved by one of the summands; there is also a weak dependence on the dimension of the random matrix.
The purpose of this paper is to give a complete, elementary proof of this important, but underappreciated,
inequality.

1. MOTIVATION

Over the last decade, random matrices have become ubiquitous in applied and computational math-
ematics. As this trend accelerates, more and more researchers must confront random matrices as part of
their work. Classical random matrix theory can be difficult to use, and it is often silent about the ques-
tions that come up in modern applications. As a consequence, it has become imperative to develop and
disseminate new tools that are easy to use and that apply to a wide range of random matrices.

1.1. Matrix Concentration Inequalities. Matrix concentration inequalities are among the most popu-
lar of these new methods. For a random matrix Z with appropriate structure, these results use simple
parameters associated with the random matrix to provide bounds of the form

E‖Z −EZ‖ ≤ . . . and P {‖Z −EZ‖≥ t} ≤ . . .

where ‖·‖ denotes the spectral norm, also known as the ℓ2 operator norm. These tools have already
found a place in a huge number of mathematical research fields, including

• numerical linear algebra [Tro11]
• numerical analysis [MB14]
• uncertainty quantification [CG14]
• statistics [Kol11]
• econometrics [CC13]
• approximation theory [CDL13]
• sampling theory [BG13]
• machine learning [DKC13, LPSS+14]

• learning theory [FSV12, MKR12]
• mathematical signal processing [CBSW14]
• optimization [CSW12]
• computer graphics and vision [CGH14]
• quantum information theory [Hol12]
• theory of algorithms [HO14, CKM+14] and
• combinatorics [Oli10].

These references are chosen more or less at random from a long menu of possibilities. See the mono-
graph [Tro15a] for an overview of the main results on matrix concentration, many detailed applications,
and additional background references.
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2 J. A. TROPP

1.2. The Expected Norm. The purpose of this paper is to provide a complete proof of the following im-
portant, but underappreciated, theorem. This result is adapted from [CGT12, Thm. A.1].

Theorem I (The Expected Norm of an Independent Sum of Random Matrices). Consider an independent

family {S1, . . . ,Sn} of random d1 ×d2 complex-valued matrices with ESi = 0 for each index i , and define

Z :=
∑n

i=1 Si . (1.1)

Introduce the matrix variance parameter

v(Z ) :=max
{∥

∥E
[

Z Z ∗]∥
∥ ,

∥

∥E
[

Z ∗Z
]∥

∥

}

=max
{∥

∥

∑

i
E
[

Si S∗
i

]∥

∥ ,
∥

∥

∑

i
E
[

S∗
i Si

]∥

∥

} (1.2)

and the large deviation parameter

L :=
(

Emaxi ‖Si‖2)1/2
. (1.3)

Define the dimensional constant

C (d ) :=C (d1,d2) := 4 ·
(

1+2⌈log(d1 +d2)⌉
)

. (1.4)

Then we have the matching estimates
√

c ·v(Z ) + c ·L ≤
(

E‖Z ‖2)1/2 ≤
√

C (d ) ·v(Z ) + C (d ) ·L. (1.5)

In the lower inequality, we can take c := 1/4. The symbol ‖·‖ denotes the ℓ2 operator norm, also known

as the spectral norm, and ∗ refers to the conjugate transpose operation. The map ⌈·⌉ returns the smallest

integer that exceeds its argument.

The proof of this result occupies the bulk of this paper. Most of the page count is attributed to a detailed
presentation of the required background material from linear algebra and probability. We have based
the argument on the most elementary considerations possible, and we have tried to make the work self-
contained. Once the reader has digested these ideas, the related—but more sophisticated —approach in
the paper [MJC+14] should be accessible.

1.3. Discussion. Before we continue, some remarks about Theorem I are in order. First, although it may
seem restrictive to focus on independent sums, as in (1.1), this model captures an enormous number of
useful examples. See the monograph [Tro15a] for justification.

We have chosen the term variance parameter because the quantity (1.2) is a direct generalization of
the variance of a scalar random variable. The passage from the first formula to the second formula in (1.2)
is an immediate consequence of the assumption that the summands Si are independent and have zero
mean (see Section 5). We use the term large-deviation parameter because the quantity (1.3) reflects the
part of the expected norm of the random matrix that is attributable to one of the summands taking an
unusually large value. In practice, both parameters are easy to compute using matrix arithmetic and
some basic probabilistic considerations.

In applications, it is common that we need high-probability bounds on the norm of a random ma-
trix. Typically, the bigger challenge is to estimate the expectation of the norm, which is what Theorem I
achieves. Once we have a bound for the expectation, we can use scalar concentration inequalities, such
as [BLM13, Thm. 6.10], to obtain high-probability bounds on the deviation between the norm and its
mean value.

We have stated Theorem I as a bound on the second moment of ‖Z ‖ because this is the most natural
form of the result. Equivalent bounds hold for the first moment:

√

c ′ ·v(Z ) + c ′ ·L ≤ E‖Z ‖ ≤
√

C (d ) ·v(Z ) + C (d ) ·L.

We can take c ′ = 1/8. The upper bound follows easily from (1.5) and Jensen’s inequality. The lower bound
requires the Khintchine–Kahane inequality [LO94].
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Observe that the lower and upper estimates in (1.5) differ only by the factor C (d ). As a consequence,
the lower bound has no explicit dimensional dependence, while the upper bound has only a weak depen-
dence on the dimension. Under the assumptions of the theorem, it is not possible to make substantial
improvements to either the lower bound or the upper bound. Section 7 provides examples that support
this claim.

In the theory of matrix concentration, one of the major challenges is to understand what properties
of the random matrix Z allow us to remove the dimensional factor C (d ) from the estimate (1.5). This
question is largely open, but the recent papers [Oli13, BH14, Tro15b] make some progress.

1.4. The Uncentered Case. Although Theorem I concerns a centered random matrix, it can also be used
to study a general random matrix. The following result is an immediate corollary of Theorem I.

Theorem II. Consider an independent family {S1, . . . ,Sn} of random d1×d2 complex-valued matrices, not

necessarily centered. Define

R :=
∑n

i=1 Si

Introduce the variance parameter

v(R) :=max
{∥

∥E
[

(R −ER)(R −ER)∗
]∥

∥ ,
∥

∥E
[

(R −ER)∗(R −ER)
]∥

∥

}

=max
{∥

∥

∑n

i=1E
[

(Si −ESi )(Si −ESi )∗
]∥

∥ ,
∥

∥E
[

(Si −ESi )∗(Si −ESi )
]∥

∥

}

and the large-deviation parameter

L2 := Emaxi ‖Si −ESi‖2 .

Then we have the matching estimates
√

c ·v(R) + c ·L ≤
(

E‖R −ER‖2)1/2 ≤
√

C (d ) ·v(R) + C (d ) ·L.

We can take c = 1/4, and the dimensional constant C (d ) is defined in (1.4).

Theorem II can also be used to study ‖R‖ by combining it with the estimates

‖ER‖ −
(

E‖R −ER‖2)1/2 ≤
(

E‖R‖2)1/2 ≤ ‖ER‖ +
(

E‖R −ER‖2)1/2
.

These bounds follow from the triangle inequality for the spectral norm.
It is productive to interpret Theorem II as a perturbation result because it describes how far the ran-

dom matrix R deviates from its mean ER . We can derive many useful consequences from a bound of the
form

(

E‖R −ER‖2)1/2 ≤ . . .

This estimate shows that, on average, all of the singular values of R are close to the corresponding singu-
lar values of ER . It also implies that, on average, the singular vectors of R are close to the corresponding
singular vectors of ER , provided that the associated singular values are isolated. Furthermore, we dis-
cover that, on average, each linear functional tr[C R] is uniformly close to Etr[C R] for each fixed matrix
C ∈M

d2×d1 with bounded Schatten 1-norm ‖C‖S1 ≤ 1.

1.5. History. Theorem I is not new. A somewhat weaker version of the upper bound appeared in Rudel-
son’s work [Rud99, Thm. 1]; see also [RV07, Thm. 3.1] and [Tro08, Sec. 9]. The first explicit statement
of the upper bound appeared in [CGT12, Thm. A.1]. All of these results depend on the noncommuta-
tive Khintchine inequality [LP86, Pis98, Buc01]. In our approach, the main innovation is a particularly
easy proof of a Khintchine-type inequality for matrices, patterned after [MJC+14, Cor 7.3] and [Tro15b,
Thm. 8.1].

The ideas behind the proof of the lower bound in Theorem I are older. This estimate depends on
generic considerations about the behavior of a sum of independent random variables in a Banach space.
These techniques are explained in detail in [LT11, Ch. 6]. Our presentation expands on a proof sketch
that appears in the monograph [Tro15a, Secs. 5.1.2 and 6.1.2].
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1.6. Target Audience. This paper is intended for students and researchers who want to develop a de-
tailed understanding of the foundations of matrix concentration. The preparation required is modest.

• Basic Convexity. Some simple ideas from convexity play a role, notably the concept of a convex
function and Jensen’s inequality.

• Intermediate Linear Algebra. The requirements from linear algebra are more substantial. The
reader should be familiar with the spectral theorem for Hermitian (or symmetric) matrices, Rayleigh’s
variational principle, the trace of a matrix, and the spectral norm. The paper includes reminders
about this material. The paper elaborates on some less familiar ideas, including inequalities for
the trace and the spectral norm.

• Intermediate Probability. The paper demands some comfort with probability. The most impor-
tant concepts are expectation and the elementary theory of conditional expectation. We develop
the other key ideas, including the notion of symmetrization.

Although many readers will find the background material unnecessary, it is hard to locate these ideas
in one place and we prefer to make the paper self-contained. In any case, we provide detailed cross-
references so that the reader may dive into the proofs of the main results without wading through the
shallower part of the paper.

1.7. Roadmap. Section 2 and Section 3 contain the background material from linear algebra and proba-
bility. To prove the upper bound in Theorem I, the key step is to establish the result for the special case of
a sum of fixed matrices, each modulated by a random sign. This result appears in Section 4. In Section 5,
we exploit this result to obtain the upper bound in (1.5). In Section 6, we present the easier proof of the
lower bound in (1.5). Finally, Section 7 shows that it is not possible to improve (1.5) substantially.

2. LINEAR ALGEBRA BACKGROUND

Our aim is to make this paper as accessible as possible. To that end, this section presents some back-
ground material from linear algebra. Good references include [Hal74, Bha97, HJ13]. We also assume
some familiarity with basic ideas from the theory of convexity, which may be found in the books [Lue69,
Roc97, Bar02, BV04].

2.1. Convexity. Let V be a finite-dimensional linear space. A subset E ⊂V is convex when

x , y ∈ E implies τ ·x + (1−τ) · y ∈ E for each τ ∈ [0,1].

Let E be a convex subset of a linear space V . A function f : E →R is convex if

f
(

τx + (1−τ)y
)

≤ τ · f (x)+ (1−τ) · f (y ) for all τ ∈ [0,1] and all x , y ∈V . (2.1)

We say that f is concave when − f is convex.

2.2. Vector Basics. Let C
d be the complex linear space of d-dimensional complex vectors, equipped

with the usual componentwise addition and scalar multiplication. The ℓ2 norm ‖·‖ is defined on C
d via

the expression

‖x‖2 := x∗x for each x ∈C
d .

The symbol ∗ denotes the conjugate transpose of a vector. Recall that the ℓ2 norm is a convex function.
A family {u1, . . . ,ud } ⊂C

d is called an orthonormal basis if it satisfies the relations

u∗
i u j =

{

1, i = j

0, i 6= j .

The orthonormal basis also has the property
∑d

i=1 ui u∗
i = Id

where Id is the d ×d identity matrix.
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2.3. Matrix Basics. A matrix is a rectangular array of complex numbers. Addition and multiplication
by a complex scalar are defined componentwise, and we can multiply two matrices with compatible
dimensions. We write M

d1×d2 for the complex linear space of d1 ×d2 matrices. The symbol ∗ also refers
to the conjugate transpose operation on matrices.

A square matrix H is Hermitian when H = H∗. Hermitian matrices are sometimes called conjugate

symmetric. We introduce the set of d ×d Hermitian matrices:

Hd :=
{

H ∈M
d×d : H = H∗}

.

Note that the set Hd is a linear space over the real field.
An Hermitian matrix A ∈Hd is positive semidefinite when

u∗Au ≥ 0 for each u ∈C
d .

It is convenient to use the notation A 4 H to mean that H − A is positive semidefinite. In particular, the
relation 04 H is equivalent to H being positive semidefinite. Observe that

0 4 A and 04 H implies 0 4α · (A +H ) for each α≥ 0.

In other words, addition and nonnegative scaling preserve the positive-semidefinite property.
For every matrix B , both of its squares B B∗ and B∗B are Hermitian and positive semidefinite.

2.4. Basic Spectral Theory. Each Hermitian matrix H ∈Hd can be expressed in the form

H =
∑d

i=1λi ui u∗
i (2.2)

where the λi are uniquely determined real numbers, called eigenvalues, and {ui } is an orthonormal basis
for Cd . The representation (2.2) is called an eigenvalue decomposition.

An Hermitian matrix H is positive semidefinite if and only if its eigenvalues λi are all nonnegative.
Indeed, using the eigenvalue decomposition (2.2), we see that

u∗Hu =
∑n

i=1λi ·u∗ui u∗
i u =

∑n

i=1λi · |u∗ui |2.

To verify the forward direction, select u =u j for each index j . The reverse direction should be obvious.
We define a monomial function of an Hermitian matrix H ∈Hd by repeated multiplication:

H 0 = Id , H 1 = H , H 2 = H ·H , H 3 = H ·H 2, etc.

For each nonnegative integer r , it is not hard to check that

H =
∑d

i=1λi ui u∗
i implies H r =

∑d

i=1λ
r
i ui u∗

i . (2.3)

In particular, H 2p is positive semidefinite for each nonnegative integer p .

2.5. Rayleigh’s Variational Principle. The Rayleigh principle is an attractive expression for the maxi-
mum eigenvalue λmax(H ) of an Hermitian matrix H ∈Hd . This result states that

λmax(H )= max
‖u‖=1

u∗Hu. (2.4)

The maximum takes place over all unit-norm vectors u ∈C
d . The identity (2.4) follows from the Lagrange

multiplier theorem and the existence of the eigenvalue decomposition (2.2). Similarly, the minimum
eigenvalue λmin(H ) satisfies

λmin(H )= min
‖u‖=1

u∗Hu. (2.5)

We can obtain (2.5) by applying (2.4) to −H .
Rayleigh’s principle implies that order relations for positive-semidefinite matrices lead to order rela-

tions for their eigenvalues.

Fact 2.1 (Monotonicity). Let A, H ∈Hd be Hermitian matrices. Then

A 4 H implies λmax(A) ≤λmax(H ).
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Proof. The condition A 4 H implies that the eigenvalues of H −A are nonnegative. Therefore, Rayleigh’s
principle (2.5) yields

0 ≤λmin(H − A) = min
‖u‖=1

(

u∗Hu −u∗Au
)

≤ v∗H v −v∗Av

for any unit-norm vector v . Select a unit-norm vector v for which λmax(A) = v∗Av , and then rearrange:

λmax(A) = v∗Av ≤ v∗H v ≤λmax(H ).

The last relation is Rayleigh’s principle (2.4). �

2.6. The Trace. The trace of a square matrix B ∈M
d×d is defined as

trB :=
∑d

i=1 bi i . (2.6)

It is clear that the trace is a linear functional on M
d×d . By direct calculation, one may verify that

tr[BC ]= tr[C B ] for all B ∈M
d×r and C ∈M

r×d .

This property is called the cyclicity of the trace.
The trace of an Hermitian matrix H ∈Hd can also be expressed in terms of its eigenvalues:

tr H =
∑d

i=1λi . (2.7)

This formula follows when we introduce the eigenvalue decomposition (2.2) into (2.6). Then we invoke
the linearity and the cyclicity properties of the trace, as well as the properties of an orthonormal basis. We
also instate the convention that monomials bind before the trace: tr H r := tr[H r ] for each nonnegative
integer r .

2.7. The Spectral Norm. The spectral norm of a matrix B ∈M
d1×d2 is defined as

‖B‖ := max
‖u‖=1

‖Bu‖ .

The maximum takes place over unit-norm vectors u ∈C
d2 . We have the important identity

‖B‖2 = ‖B∗B‖ = ‖B B∗‖ for every matrix B . (2.8)

Furthermore, the spectral norm is a convex function, and it satisfies the triangle inequality.
For an Hermitian matrix, the spectral norm can be written in terms of the eigenvalues:

‖H‖=max
{

λmax(H ), −λmin(H )
}

for each Hermitian matrix H . (2.9)

As a consequence,
‖A‖ =λmax(A) for each positive-semidefinite matrix A. (2.10)

This discussion implies that

‖H‖2p =‖H 2p‖ for each Hermitian H and each nonnegative integer p . (2.11)

Use the relations (2.3) and (2.9) to verify this fact.

2.8. Some Spectral Norm Inequalities. We need some basic inequalities for the spectral norm. First,
note that

‖A‖≤ tr A when A is positive semidefinite. (2.12)

This point follows from (2.10) and (2.7) because the eigenvalues of a positive-semidefinite matrix are
nonnegative.

The next result uses the spectral norm to bound the trace of a product.

Fact 2.2 (Bound for the Trace of a Product). Consider Hermitian matrices A, H ∈Hd , and assume that A

is positive semidefinite. Then

tr[H A]≤ ‖H‖ · tr A.
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Proof. Introducing the eigenvalue decomposition A =
∑

i λi ui u∗
i

, we see that

tr[H A] =
∑

i
λi tr[Hui u∗

i ] =
∑

i
λi u∗

i Hui ≤λmax(H ) ·
∑

i
λi ≤ ‖H‖ · tr A.

The first two relations follow from linearity and cyclicity of the trace. The first inequality depends on
Rayleigh’s principle (2.4) and the nonnegativity of the eigenvalues λi . The last bound follows from (2.9).

�

We also need a bound for the norm of a sum of squared positive-semidefinite matrices.

Fact 2.3 (Bound for a Sum of Squares). Consider positive-semidefinite matrices A1, . . . , An ∈Hd . Then
∥

∥

∑n

i=1 A2
i

∥

∥≤ maxi ‖Ai‖ ·
∥

∥

∑n

i=1 Ai

∥

∥ .

Proof. Let A be positive semidefinite. We claim that

A2 4 M · A whenever λmax(A) ≤ M . (2.13)

Indeed, introducing the eigenvalue decomposition A =
∑

i λi ui u∗
i

, we find that

M · A − A2 = M ·
∑

i λi ui u∗
i −

∑

i λ
2
i ui u∗

i =
∑

i

(

M −λi

)

λi ·ui u∗
i .

The first relation uses (2.3). Since 0 ≤ λi ≤ M , the scalar coefficients in the sum are nonnegative. There-
fore, the matrix M · A − A2 is positive semidefinite, which is what we needed to show.

Select M := maxi λmax(Ai ). The inequality (2.13) ensures that

A2
i 4 M · Ai for each index i .

Summing these relations, we see that
∑n

i=1 A2
i 4 M ·

∑n

i=1 Ai .

The monotonicity principle, Fact 2.1, yields the inequality

λmax
(
∑n

i=1 A2
i

)

≤λmax
(

M ·
∑n

i=1 Ai

)

= M ·λmax
(
∑n

i=1 Ai

)

.

We have used the fact that the maximum eigenvalue of an Hermitian matrix is positive homogeneous.
Finally, recall that, per (2.10), the spectral norm of a positive-semidefinite matrix equals its maximum
eigenvalue. �

2.9. GM–AM Inequality for the Trace. We require another substantial matrix inequality, which is one (of
several) matrix analogs of the inequality between the geometric mean and the arithmetic mean.

Fact 2.4 (GM–AM Trace Inequality). Consider Hermitian matrices H ,W ,Y ∈ Hd . For each nonnegative

integer r and each integer q in the range 0 ≤ q ≤ 2r ,

tr
[

HW q H Y 2r−q
]

+ tr
[

HW 2r−q H Y q
]

≤ tr
[

H 2 ·
(

W 2r +Y 2r
)]

. (2.14)

In particular,
∑2r

q=0 tr
[

HW q H Y 2r−q
]

≤
2r +1

2
tr

[

H 2 ·
(

W 2r +Y 2r
)]

.

Proof. The result (2.14) is a matrix version of the following numerical inequality. For λ,µ≥ 0,

λθµ1−θ+λ1−θµθ ≤λ+µ for each θ ∈ [0,1]. (2.15)

To verify this bound, we may assume that λ,µ> 0 because it is trivial to check when either λ or µ equals
zero. Notice that the left-hand side of the bound is a convex function of θ on the interval [0,1]. This point
follows easily from the representation

f (θ) :=λθµ1−θ+λ1−θµθ = eθ logλ+(1−θ) logµ+e(1−θ) logλ+θ logµ.

The value of the convex function f on the interval [0,1] is controlled by the maximum value it achieves
at one of the endpoints:

f (θ) ≤max
{

f (0), f (1)
}

=λ+µ.
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This inequality coincides with (2.15).
To prove (2.14) from (2.15), we use eigenvalue decompositions. The case r = 0 is immediate, so we may

assume that r ≥ 1. Let q be an integer in the range 0 ≤ q ≤ 2r . Introduce eigenvalue decompositions:

W =
∑d

i=1λi ui u∗
i and Y =

∑d

j=1µ j v j v∗
j .

Calculate that

tr
[

HW q H Y 2r−q
]

= tr
[

H
(
∑d

i=1λ
q

i
ui u∗

i

)

H
(
∑d

j=1µ
2r−q

j
v j v∗

j

)

]

=
∑d

i , j=1λ
q

i
µ

2r−q

j
· tr

[

Hui u∗
i H v j v∗

j

]

≤
∑d

i , j=1 |λi |q |µ j |2r−q ·
∣

∣u∗
i H v j

∣

∣

2.

(2.16)

The first identity relies on the formula (2.3) for the eigenvalue decomposition of a monomial. The second
step depends on the linearity of the trace. In the last line, we rewrite the trace using cyclicity, and the
inequality emerges when we apply absolute values. The representation |u∗

i
H v j |2 emphasizes that this

quantity is nonnegative, which we use to justify several inequalities.
Invoking the inequality (2.16) twice, we arrive at the bound

tr
[

HW q H Y 2r−q
]

+ tr
[

HW 2r−q H Y q
]

≤
∑d

i , j=1

(

|λi |q |µ j |2r−q +|λi |2r−q |µ j |q
)

·
∣

∣u∗
i H v j

∣

∣

2

≤
∑d

i , j=1

(

λ2r
i +µ2r

j

)

·
∣

∣u∗
i H v j

∣

∣

2.
(2.17)

The second inequality is (2.15), with θ= q/(2r ) and λ=λ2r
i

and µ=µ2r
j

.

It remains to rewrite the right-hand side of (2.17) a more recognizable form. To that end, observe that

tr
[

HW q H Y 2r−q
]

+ tr
[

HW 2r−q H Y q
]

≤
∑d

i , j=1

(

λ2r
i +µ2r

j

)

· tr
[

Hui u∗
i H v j v∗

j

]

= tr
[

H
(
∑d

i=1λ
2r
i ui u∗

i

)

H
(
∑d

j=1 v j v∗
j

)]

+ tr
[

H
(
∑d

i=1 ui u∗
i

)

H
(
∑d

j=1µ
2r
j v j v∗

j

)]

= tr
[

H 2 ·W 2r
]

+ tr
[

H 2 ·Y 2r
]

.

In the first step, we return the squared magnitude to its representation as a trace. Then we use linearity
to draw the sums back inside the trace. Next, invoke (2.3) to identify the powers W 2r and Y 0 = Id and
W 0 = Id and Y 2r . Last, use the cyclicity of the trace to combine the factors of H . The result (2.14) follows
from the linearity of the trace. �

Remark 2.5 (The Power of Abstraction). There is a cleaner, but more abstract, proof of the inequal-
ity (2.14). Consider the left- and right-multiplication operators

W : H 7→W H and Y : H 7→ H Y .

Observe that powers of W andY correspond to left- and right-multiplication by powers of W and Y . Now,
the operatorsW andY commute, so there is a basis (orthonormal with respect to the trace inner product)
for Hd in which they are simultaneously diagonalizable. Representing the operators in this basis, we can
use (2.15) to check that

W
q
Y

2r−q +W
2r−q

Y
q 4W

2r +Y
2r .

Now, calculate that

tr
[

HW q H Y 2r−q
]

+ tr
[

HW 2r−q H Y q
]

= tr
[

H ·
(

W
q
Y

2r−q +W
2r−q

Y
q
)

(H )
]

≤ tr
[

H ·
(

W
2r +Y

2r
)

(H )
]

= tr
[

H 2 ·
(

W 2r +Y 2r
)]

.

We omit the details.
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2.10. The Hermitian Dilation. Last, we introduce the Hermitian dilation H (B ) of a rectangular matrix
B ∈M

d1×d2 . This is the Hermitian matrix

H (B ) :=
[

0 B

B∗ 0

]

∈Hd1+d2 . (2.18)

Note that the map H is real linear. By direct calculation,

H (B )2 =
[

B B∗ 0

0 B∗B

]

. (2.19)

We also have the spectral-norm identity

‖H (B )‖= ‖B‖ . (2.20)

To verify (2.20), calculate that

‖H (B )‖2 =
∥

∥H (B )2
∥

∥=
∥

∥

∥

∥

[

B B∗ 0

0 B∗B

]∥

∥

∥

∥

= max
{

‖B B∗‖ , ‖B∗B‖
}

= ‖B‖2 .

The first identity is (2.11); the second is (2.19). The norm of a block-diagonal Hermitian matrix is the
maximum spectral norm of a block, which follows from the Rayleigh principle (2.4) with a bit of work.
Finally, invoke the property (2.8).

3. PROBABILITY BACKGROUND

This section contains some background material from the field of probability. Good references include
the books [LT11, GS01, Tao12].

3.1. Expectation. The symbol E denotes the expectation operator. We will not define expectation for-
mally or spend any energy on technical details. No issues arise if we assume, for example, that all random
variables are bounded.

We use brackets to enclose the argument of the expectation when it is important for clarity, and we
instate the convention that nonlinear functions bind before expectation. For instance, EX p := E[X p ] and
Emaxi Xi := E[maxi Xi ].

Sometimes, we add a subscript to indicate a partial expectation. For example, if J is a random variable,
EJ refers to the average over J , with all other random variables fixed. We only use this notation when J

is independent from the other random variables, so there are no complications. In particular, we can
compute iterated expectations: E[EJ [·]] = E[·] whenever all the expectations are finite.

3.2. Random Matrices. A random matrix is a matrix whose entries are complex random variables, not
necessarily independent. We compute the expectation of a random matrix Z componentwise:

(E[Z ])i j = E[zi j ] for each pair (i , j ) of indices.

As in the scalar case, if W and Z are independent,

E[W Z ]= (EW )(EZ ).

Since the expectation is linear, it also commutes with all of the simple linear operations we perform on
matrices.

It suffices to take a naïve view of independence, expectation, and so forth. For the technically inclined,
let (Ω,F ,P) be a probability space. A d1 ×d2 random matrix Z is simply a measurable function

Z : Ω→M
d1×d2 .

A family {Zi : i = 1, . . . ,n} of random matrices is independent when

P {Zi ∈ Ei for i = 1, . . . ,n} =
∏n

i=1P {Zi ∈ Ei } .

for any collection of Borel1 subsets Ei ⊂M
d1×d2 .

1Open sets in M
d1×d2 are defined with respect to the metric topology induced by the spectral norm.
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3.3. Inequalities for Expectation. We need several basic inequalities for expectation. We set these out
for future reference. Let X ,Y be (arbitrary) real random variables. The Cauchy–Schwarz inequality states
that

|E[X Y ]| ≤
(

EX 2)1/2 ·
(

EY 2)1/2. (3.1)

For r ≥ 1, the triangle inequality states that
(

E |X +Y |r
)1/r ≤

(

E |X |r
)1/r +

(

E |Y |r
)1/r . (3.2)

Each of these inequalities is vacuous precisely when its right-hand side is infinite.
Jensen’s inequality describes how expectation interacts with a convex or concave function; cf. (2.1).

Let X be a random variable taking values in a finite-dimensional linear space V , and let f : V → R be a
function. Then

f (EX )≤ E f (X ) when f is convex, and

E f (X )≤ f (EX ) when f is concave.
(3.3)

The inequalities (3.3) also hold when we replace E with a partial expectation. Let us emphasize that these
bounds do require that all of the expectations exist.

3.4. Symmetrization. Symmetrization is an important technique for studying the expectation of a func-
tion of independent random variables. The idea is to inject auxiliary randomness into the function. Then
we condition on the original random variables and average with respect to the extra randomness. When
the auxiliary random variables are more pliable, this approach can lead to significant simplifications.

A Rademacher random variable ε takes the two values ±1 with equal probability. The following result
shows how we can use Rademacher random variables to study a sum of independent random matrices.

Fact 3.1 (Symmetrization). Let S1, . . . ,Sn ∈M
d1×d2 be independent random matrices. Let ε1, . . . ,εn be in-

dependent Rademacher random variables that are also independent from the random matrices. For each

r ≥ 1,
1

2
·
(

E
∥

∥

∑n

i=1εi Si

∥

∥

r
)1/r

≤
(

E
∥

∥

∑n

i=1(Si −ESi )
∥

∥

r
)1/r

≤ 2 ·
(

E
∥

∥

∑n

i=1εi Si

∥

∥

r
)1/r

.

This result holds whenever E‖Si‖r <∞ for each index i .

Proof. For notational simplicity, assume that r = 1. We discuss the general case at the end of the argu-
ment.

Let {S ′
i

: i = 1, . . . ,n} be an independent copy of the sequence {Si : i = 1, . . . ,n}, and let E′ denote partial
expectation with respect to the independent copy. Then

E
∥

∥

∑n

i=1(Si −ESi )
∥

∥= E
∥

∥

∑n

i=1

[

(Si −ESi )−E
′(S ′

i −ESi )
]∥

∥

≤ E
[

E
′∥
∥

∑n

i=1

[

(Si −ESi )− (S ′
i −ESi )

]∥

∥

]

= E
∥

∥

∑n

i=1(Si −S ′
i )

∥

∥ .

The first identity holds because E
′ S ′

i
= ESi by identical distribution. Since the spectral norm is convex,

we can apply Jensen’s inequality (3.3) conditionally to draw out the partial expectation E
′. Last, we com-

bine the iterated expectation into a single expectation.
Observe that Si −S ′

i
has the same distribution as its negation S ′

i
−Si . It follows that the independent

sequence {εi (Si − S ′
i
) : i = 1, . . . ,n} has the same distribution as {Si − S ′

i
: i = 1, . . . ,n}. Therefore, the

expectation of any nonnegative function takes the same value for both sequences. In particular,

E
∥

∥

∑n

i=1(Si −S ′
i )

∥

∥= E
∥

∥

∑n

i=1εi (Si −S ′
i )

∥

∥

≤ E
∥

∥

∑n

i=1εi Si

∥

∥+E
∥

∥

∑n

i=1(−εi )S ′
i

∥

∥

= 2E
∥

∥

∑n

i=1εi Si

∥

∥ .

The second step is the triangle inequality, and the last line follows from the identical distribution of {εi Si }
and {−εi S ′

i
}. Combine the last two displays to obtain the upper bound.
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To obtain results for r > 1, we pursue the same approach. We require the additional observation that
‖·‖r is a convex function, and we also need to invoke the triangle inequality (3.2). Finally, we remark that
the lower bound follows from a similar procedure, so we omit the demonstration. �

4. THE EXPECTED NORM OF A MATRIX RADEMACHER SERIES

To prove Theorem I, our overall strategy is to use symmetrization. This approach allows us to reduce
the study of an independent sum of random matrices to the study of a sum of fixed matrices modu-
lated by independent Rademacher random variables. This type of random matrix is called a matrix

Rademacher series. In this section, we establish a bound on the spectral norm of a matrix Rademacher
series. This is the key technical step in the proof of Theorem I.

Theorem 4.1 (Matrix Rademacher Series). Let H1, . . . , Hn be fixed Hermitian matrices with dimension d.

Let ε1, . . . ,εn be independent Rademacher random variables. Then
(

E
∥

∥

∑n

i=1εi Hi

∥

∥

2
)1/2

≤
√

1+2⌈log d⌉ ·
∥

∥

∑n

i=1 H 2
i

∥

∥

1/2
. (4.1)

The proof of Theorem 4.1 occupies the bulk of this section, beginning with Section 4.2. The argument
is really just a fancy version of the familiar calculation of the moments of a centered standard normal
random variable; see Section 4.8 for details.

4.1. Discussion. Before we establish Theorem 4.1, let us make a few comments. First, it is helpful to in-
terpret the result in the same language we have used to state Theorem I. Introduce the matrix Rademacher
series

X :=
∑n

i=1εi Hi .

Compute the matrix variance, defined in (1.2):

v(X ) :=
∥

∥EX 2
∥

∥=
∥

∥

∥

∑n

i , j=1E[εiε j ] ·Hi H j

∥

∥

∥=
∥

∥

∑n

i=1 H 2
i

∥

∥ .

We may rewrite Theorem 4.1 as the statement that
(

E‖X ‖2)1/2 ≤
√

(1+2⌈log d⌉) ·v(X ).

In other words, Theorem 4.1 is a sharper version of Theorem I for the special case of a matrix Rademacher
series.

Next, we have focused on bounding the second moment of ‖X ‖ because this is the most natural form
of the result. Note that we also control the first moment because of Jensen’s inequality (3.3):

E
∥

∥

∑n

i=1εi Hi

∥

∥≤
(

E
∥

∥

∑n

i=1εi Hi

∥

∥

2
)1/2

≤
√

1+2⌈log d⌉ ·
∥

∥

∑n

i=1 H 2
i

∥

∥

1/2
. (4.2)

A simple variant on the proof of Theorem 4.1 provides bounds for higher moments.
Third, the dimensional factor on the right-hand side of (4.1) is asymptotically sharp. Indeed, let us

write K (d ) for the minimum possible constant in the inequality
(

E
∥

∥

∑n

i=1εi Hi

∥

∥

2
)1/2

≤ K (d ) ·
∥

∥

∑n

i=1 H 2
i

∥

∥

1/2
for Hi ∈Hd and n ∈N.

The example in Section 7.1 shows that

K (d )≥
√

2log d .

In other words, (4.1) cannot be improved without making further assumptions.
Theorem 4.1 is a variant on the noncommutative Khintchine inequality, first established by Lust-

Piquard [LP86] and later improved by Pisier [Pis98] and by Buchholz [Buc01]. The noncommutative
Khintchine inequality gives bounds for the Schatten norm of a matrix Rademacher series, rather than for
the spectral norm. Rudelson [Rud99] pointed out that the noncommutative Khintchine inequality also
implies bounds for the spectral norm of a matrix Rademacher series. In our presentation, we choose to
control the spectral norm directly.
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4.2. The Spectral Norm and the Trace Moments. To begin the proof of Theorem 4.1, we introduce the
random Hermitian matrix

X :=
∑n

i=1εi Hi (4.3)

Our goal is to bound the expected spectral norm of X . We may proceed by estimating the expected trace
of a power of the random matrix, which is known as a trace moment. Fix a nonnegative integer p . Observe
that

(

E‖X ‖2)1/2 ≤
(

E‖X ‖2p
)1/(2p) =

(

E‖X 2p‖
)1/(2p) ≤

(

E tr X 2p
)1/(2p)

. (4.4)

The first identity is Jensen’s inequality (3.3), applied to the concave function t 7→ t 1/p . The second relation
is (2.11). The final inequality is the bound (2.12) on the norm of the positive-semidefinite matrix X 2p by
its trace.

Remark 4.2 (Higher Moments). It should be clear that we can also bound expected powers of the spectral
norm using the same technique. For simplicity, we omit this development.

4.3. Summation by Parts. To study the trace moments of the random matrix X , we rely on a discrete
analog of integration by parts. This approach is clearer if we introduce some more notation. For each
index i , define the random matrices

X+i := Hi +
∑

j 6=i
ε j H j and X−i :=−Hi +

∑

j 6=i
ε j H j

In other words, the distribution of Xεi i is the conditional distribution of the random matrix X given
the value εi of the i th Rademacher variable. This interpretation depends on the assumption that the
Rademacher variables are independent.

Beginning with the trace moment, observe that

E tr X 2p = E tr
[

X ·X 2p−1]

=
∑n

i=1E
[

Eεi
tr

[

εi Hi ·X 2p−1]]

=
1

2

∑n

i=1E tr
[

Hi ·
(

X
2p−1
+i

−X
2p−1
−i

)]

(4.5)

In the second step, we simply write out the definition (4.3) of the random matrix X and use the linearity
of the trace to draw out the sum. Then we write the expectation as an iterated expectation. To reach the
next line, write out the partial expectation using the notation X±i and the linearity of the trace.

4.4. A Difference of Powers. Next, let us apply an algebraic identity to reduce the difference of powers
in (4.5). For matrices W ,Y ∈Hd , it holds that

W 2p−1 −Y 2p−1 =
∑2p−2

q=0 W q (W −Y )Y 2p−2−q . (4.6)

To check this expression, just expand the matrix products and notice that the sum telescopes.
Introducing the relation (4.6) with W = X+i and Y = X−i into the formula (4.5), we find that

E tr X 2p =
1

2

∑n

i=1E tr
[

Hi ·
∑2p−2

q=0 X
q

+i

(

X+i −X−i

)

X
2p−2−q

−i

]

=
∑n

i=1

∑2p−2
q=0 E tr

[

Hi X
q

+i
Hi X

2p−2−q

−i

]

.
(4.7)

Linearity of the trace allows us to draw out the sum over q , and we have used the observation that X+i −
X−i = 2Hi .
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4.5. A Bound for the Trace Moments. We are now in a position to obtain a bound for the trace moments
of X . Beginning with (4.7), we compute that

E tr X 2p =
∑n

i=1

∑2p−2
q=0 E tr

[

Hi X
q

+i
Hi X

2p−2−q

−i

]

≤
∑n

i=1

2p −1

2
E tr

[

H 2
i ·

(

X
2p−2
+i

+X
2p−2
−i

)]

= (2p −1) ·
∑n

i=1E tr
[

H 2
i ·

(

Eεi
X 2p−2)]

= (2p −1) ·E tr
[(

∑n

i=1 H 2
i

)

·X 2p−2]

≤ (2p −1) ·
∥

∥

∑n

i=1 H 2
i

∥

∥ ·E tr X 2p−2.

(4.8)

The bound in the second line is the trace GM–AM inequality, Fact 2.4, with r = p −1 and W = X+i and
Y = X−i . To reach the third line, observe that the parenthesis in the second line is twice the partial
expectation of X 2p−2 with respect to εi . Afterward, we use linearity of the expectation and the trace to
draw in the sum over i , and then we combine the expectations. Last, invoke the trace inequality from
Fact 2.2.

4.6. Iteration and the Spectral Norm Bound. The expression (4.8) shows that the trace moment is con-
trolled by a trace moment with a smaller power:

E tr X 2p ≤ (2p −1) ·
∥

∥

∑n

i=1 H 2
i

∥

∥ ·E tr X 2p−2.

Iterating this bound p times, we arrive at the result

E tr X 2p ≤ (2p −1)!! ·
∥

∥

∑n

i=1 H 2
i

∥

∥

p · tr X 0

= d · (2p −1)!! ·
∥

∥

∑n

i=1 H 2
i

∥

∥

p
.

(4.9)

The double factorial is defined as (2p −1)!! := (2p −1)(2p −3)(2p −5) · · · (5)(3)(1).
The expression (4.4) shows that we can control the expected spectral norm of X by means of a trace

moment. Therefore, for any nonnegative integer p , it holds that

E‖X ‖≤
(

E tr X 2p
)1/(2p) ≤

(

d · (2p −1)!!
)1/(2p) ·

∥

∥

∑n

i=1 H 2
i

∥

∥

1/2
. (4.10)

The second inequality is simply our bound (4.9). All that remains is to choose the value of p to minimize
the factor on the right-hand side.

4.7. Calculating the Constant. Finally, let us develop an accurate bound for the leading factor on the
right-hand side of (4.10). We claim that

(2p −1)!! ≤
(

2p +1

e

)p

. (4.11)

Given this estimate, select p = ⌈log d⌉ to reach

(

d · (2p −1)!!
)1/(2p) ≤ d 1/(2p)

√

2p +1

e
≤

√

2p +1 =
√

1+2⌈log d⌉. (4.12)

Introduce the inequality (4.12) into (4.10) to complete the proof of Theorem 4.1.
To check that (4.11) is valid, we use some tools from integral calculus:

log
(

(2p −1)!!
)

=
∑p−1

i=1 log(2i +1)

=
[

1

2
log(2 ·0+1)+

∑p−1
i=1 log(2i +1)+

1

2
log(2p +1)

]

−
1

2
log(2p +1)

≤
∫p

0
log(2x +1)dx −

1

2
log(2p +1)

= p log(2p +1)−p.
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The bracket in the second line is the trapezoid rule approximation of the integral in the third line. Since
the integrand is concave, the trapezoid rule underestimates the integral. Exponentiating this formula,
we arrive at (4.11).

4.8. Context. The proof of Theorem 4.1 is really just a discrete, matrix version of the familiar calculation
of the (2p)th moment of a centered normal random variable. Let us elaborate. Recall the Gaussian
integration by parts formula:

E[γ · f (γ)] =σ2 ·E[ f ′(γ)] (4.13)

where γ ∼ NORMAL(0,σ2) and f : R → R is any function for which the integrals are finite. This result
follows when we write the expectations as integrals with respect to the normal density tand invoke the
usual integration by parts rule. Now, suppose that we wish to compute the (2p)th moment of γ. We have

Eγ2p = E
[

γ ·γ2p−1]

= (2p −1) ·σ2 ·Eγ2p−2. (4.14)

The second identity is just (4.13) with the choice f (t ) = t 2p−1. Iterating (4.14), we discover that

Eγ2p = (2p −1)!! ·σ2p .

In Theorem 4.1, the matrix variance parameter v(X ) plays the role of the scalar variance σ2.
In fact, the link with Gaussian integration by parts is even stronger. Consider a matrix Gaussian series

Y :=
∑n

i=1γi Hi

where {γi } is an independent family of standard normal variables. If we replace the discrete integration
by parts in the proof of Theorem 4.1 with Gaussian integration by parts, the argument leads to the bound

(

E
∥

∥

∑n

i=1γi Hi

∥

∥

2
)1/2

≤
√

1+2⌈log d⌉ ·
∥

∥

∑n

i=1 H 2
i

∥

∥

1/2
.

This approach requires matrix calculus, but it is slightly simpler than the argument for matrix Rademacher
series in other respects. See [Tro15b, Thm. 8.1] for a proof of the noncommutative Khintchine inequality
for Gaussian series along these lines.

5. UPPER BOUNDS FOR THE EXPECTED NORM

We are now prepared to establish the upper bound for an arbitrary sum of independent random ma-
trices. The argument is based on the specialized result, Theorem 4.1, for matrix Rademacher series. It
proceeds by steps through more and more general classes of random matrices: first positive semidefinite,
then Hermitian, and finally rectangular. Here is what we will show.

Theorem 5.1 (Expected Norm: Upper Bounds). Define the dimensional constant C (d ) := 4(1+2⌈log d⌉).

The expected spectral norm of a sum of independent random matrices satisfies the following upper bounds.

(1) The Positive-Semidefinite Case. Consider an independent family {T1, . . . ,Tn} of random d × d

positive-semidefinite matrices, and define the sum

W :=
∑n

i=1 Ti .

Then

E‖W ‖≤
[

‖EW ‖1/2 +
√

C (d ) ·
(

Emaxi ‖Ti‖
)1/2

]2
. (5.1)

(2) The Centered Hermitian Case. Consider an independent family {Y1, . . . ,Yn} of random d ×d Her-

mitian matrices with EYi = 0 for each index i , and define the sum

X :=
∑n

i=1 Yi .

Then
(

E‖X ‖2)1/2 ≤
√

C (d ) ·
∥

∥EX 2
∥

∥

1/2 +C (d ) ·
(

Emaxi ‖Yi‖2)1/2
. (5.2)
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(3) The Centered Rectangular Case. Consider an independent family {S1, . . . ,Sn} of random d1 ×d2

matrices with ESi = 0 for each index i , and define the sum

Z :=
∑n

i=1 Si .

Then

E‖Z ‖≤
√

C (d ) ·max
{

∥

∥E
[

Z Z ∗]∥
∥

1/2 ,
∥

∥E
[

Z ∗Z
]∥

∥

1/2
}

+C (d ) ·
(

Emaxi ‖Si‖2)1/2
(5.3)

where d := d1 +d2.

The proof of Theorem 5.1 takes up the rest of this section. The presentation includes notes about the
provenance of various parts of the argument.

The upper bound in Theorem I follows instantly from Case (3) of Theorem 5.1. We just introduce the
notation v(Z ) for the variance parameter, and we calculate that

E
[

Z Z ∗]=
∑n

i , j=1E
[

Si S∗
j

]

=
∑n

i=1E
[

Si S∗
i

]

.

The first expression follows immediately from the definition of Z and the linearity of the expectation;
the second identity holds because the random matrices Si are independent and have mean zero. The
formula for E

[

Z ∗Z
]

is valid for precisely the same reasons.

5.1. Proof of the Positive-Semidefinite Case. Recall that W is a random d ×d positive-semidefinite ma-
trix of the form

W :=
∑n

i=1 Ti where the Ti are positive semidefinite.

Let us introduce notation for the quantity of interest:

E := E‖W ‖= E
∥

∥

∑n

i=1 Ti

∥

∥

By the triangle inequality for the spectral norm,

E ≤
∥

∥

∑n

i=1ETi

∥

∥+E
∥

∥

∑n

i=1(Ti −ETi )
∥

∥≤
∥

∥

∑n

i=1ETi

∥

∥+2E
∥

∥

∑n

i=1εi Ti

∥

∥ .

The second inequality follows from symmetrization, Fact 3.1. In this expression, {εi } is an independent
family of Rademacher random variables, independent from {Ti }. Conditioning on the choice of the ran-
dom matrices Ti , we apply Theorem 4.1 via the bound (4.2):

E
∥

∥

∑n

i=1εi Ti

∥

∥= E
[

Eε

∥

∥

∑n

i=1εi Ti

∥

∥

]

≤
√

1+2⌈log d⌉ ·E
[

∥

∥

∑n

i=1 T 2
i

∥

∥

1/2
]

.

The operator Eε averages over the choice of the Rademacher random variables, with the matrices Ti fixed.
Now, since the matrices Ti are positive-semidefinite,

E

[

∥

∥

∑n

i=1 T 2
i

∥

∥

1/2
]

≤ E

[

(

maxi ‖Ti‖
)1/2 ·

∥

∥

∑n

i=1 Ti

∥

∥

1/2
]

≤
(

Emaxi ‖Ti‖
)1/2 ·

(

E
∥

∥

∑n

i=1 Ti

∥

∥

)1/2

=
(

Emaxi ‖Ti‖
)1/2 ·E 1/2.

The first inequality is Fact 2.3, and the second is the Cauchy–Schwarz inequality (3.1) for expectation. In
the last step, we identified a copy of the quantity E .

Combine the last three displays to see that

E ≤
∥

∥

∑n

i=1ETi

∥

∥+
√

4(1+2⌈log d⌉) ·
(

Emaxi ‖Ti‖
)1/2 ·E 1/2. (5.4)

For any α,β≥ 0, the quadratic inequality t 2 ≤α+βt implies that

t ≤
1

2

[

β+
√

β2 +4α

]

≤
1

2

[

β+β+2
p
α

]

=
p
α+β



16 J. A. TROPP

because the square root is subadditive. Applying this fact to the quadratic relation (5.4) for E 1/2, we
obtain

E 1/2 ≤
∥

∥

∑n

i=1ETi

∥

∥

1/2 +
√

4(1+2⌈log d⌉) ·
(

Emaxi ‖Ti‖
)1/2.

Square both sides to reach the conclusion (5.1).
This argument is adapted from Rudelson’s paper [Rud99], which develops a version of this result for

the case where the matrices Ti have rank one; see also [RV07]. The paper [Tro08] contains the first esti-
mates for the constants. Magen & Zouzias [MZ11] observed that similar considerations apply when the
matrices Ti have higher rank. The complete result (5.1) first appeared in [CGT12, App.]. The constants
in this paper are marginally better. Related bounds for Schatten norms appear in [MJC+14, Sec. 7] and
in [JZ13].

The results described in the last paragraph are all matrix versions of the classical inequalities due to
Rosenthal [Ros70b, Lem. 1]. These bounds can be interpreted as polynomial moment versions of the
Chernoff inequality.

5.2. Proof of the Hermitian Case. The result (5.2) for Hermitian matrices is a corollary of Theorem 4.1
and the positive-semidefinite result (5.1). Recall that X is a d ×d random Hermitian matrix of the form

X :=
∑n

i=1 Yi where EYi = 0.

We may calculate that
(

E‖X ‖2)1/2 =
(

E
∥

∥

∑n

i=1 Yi

∥

∥

2
)1/2

≤ 2
(

E

[

Eε

∥

∥

∑n

i=1εi Yi

∥

∥

2
])1/2

≤
√

4(1+2⌈log d⌉) ·
(

E
∥

∥

∑n

i=1 Y 2
i

∥

∥

)1/2
.

The first inequality follows from the symmetrization procedure, Fact 3.1. The second inequality applies
Theorem 4.1, conditional on the choice of Yi . The remaining expectation contains a sum of independent
positive-semidefinite matrices. Therefore, we may invoke (5.1) with Ti = Y 2

i
. We obtain

E
∥

∥

∑n

i=1 Y 2
i

∥

∥≤
[

∥

∥

∑n

i=1EY 2
i

∥

∥

1/2 +
√

4(1+2⌈log d⌉) ·
(

Emaxi ‖Y 2
i ‖

)1/2
]2

.

Combine the last two displays to reach

(

E‖X ‖2)1/2 ≤
√

4(1+2⌈log d⌉) ·
[

∥

∥

∑n

i=1EY 2
i

∥

∥

1/2 +
√

4(1+2⌈log d⌉) ·
(

Emaxi ‖Yi‖2 )1/2
]

.

Rewrite this expression to reach (5.2).
A version of the result (5.2) first appeared in [CGT12, App.]; the constants here are marginally better.

Related results for the Schatten norm appear in the papers [JX03, JX08, MJC+14, JZ13]. These bounds
are matrix extensions of the scalar inequalities due to Rosenthal [Ros70b, Thm. 3] and to Rosén [Ros70a,
Thm. 1]; see also Nagaev–Pinelis [NP77, Thm. 2]. They can be interpreted as the polynomial moment
inequalities that sharpen the Bernstein inequality.

5.3. Proof of the Rectangular Case. Finally, we establish the rectangular result (5.3). Recall that Z is a
d1 ×d2 random rectangular matrix of the form

Z :=
∑n

i=1 Si where ESi = 0.

Set d := d1 +d2, and form a random d ×d Hermitian matrix X by dilating Z :

X :=H (Z )=
∑n

i=1 H (Si ).

The Hermitian dilation H is defined in (2.18); the second relation holds because the dilation is a real-
linear map.
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Evidently, the random matrix X is a sum of independent, centered, random Hermitian matrices H (Si ).
Therefore, we may apply (5.2) to X to see that

(

E‖H (Z )‖2)1/2 ≤
√

4(1+2⌈log d⌉) ·
∥

∥E
[

H (Z )2]
∥

∥

1/2 +4(1+2⌈log d⌉) ·
(

Emaxi ‖H (Si )‖2 )1/2. (5.5)

Since the dilation preserves norms (2.20), the left-hand side of (5.5) is exactly what we want:
(

E‖H (Z )‖2)1/2 =
(

E‖Z ‖2)1/2
.

To simplify the first term on the right-hand side of (5.5), invoke the formula (2.19) for the square of the
dilation:

∥

∥E
[

H (Z )2]
∥

∥=
∥

∥

∥

∥

[

E
[

Z Z ∗]

0

0 E
[

Z ∗Z
]

]∥

∥

∥

∥

= max
{∥

∥E
[

Z Z ∗]∥

∥ ,
∥

∥E
[

Z ∗Z
]∥

∥

}

.

The second identity relies on the fact that the norm of a block-diagonal matrix is the maximum norm of
a diagonal block. To simplify the second term on the right-hand side of (5.5), we use (2.20) again:

‖H (Si )‖= ‖Si‖ .

Introduce the last three displays into (5.5) to arrive at the result (5.3).
The result (5.3) first appeared in the monograph [Tro15a, Eqn. (6.16)] with (possibly) incorrect con-

stants. The current paper contains the first complete presentation of the bound.

6. LOWER BOUNDS FOR THE EXPECTED NORM

Finally, let us demonstrate that each of the upper bounds in Theorem 5.1 is sharp up to the dimen-
sional constant C (d ). The following result gives matching lower bounds in each of the three cases.

Theorem 6.1 (Expected Norm: Lower Bounds). The expected spectral norm of a sum of independent ran-

dom matrices satisfies the following lower bounds.

(1) The Positive-Semidefinite Case. Consider an independent family {T1, . . . ,Tn} of random d × d

positive-semidefinite matrices, and define the sum

W :=
∑n

i=1 Ti .

Then

E‖W ‖≥
1

4

[

‖EW ‖1/2 +
(

Emaxi ‖Ti‖
)1/2

]2
. (6.1)

(2) The Centered Hermitian Case. Consider an independent family {Y1, . . . ,Yn} of random d ×d Her-

mitian matrices with EYi = 0 for each index i , and define the sum

X :=
∑n

i=1 Yi .

Then
(

E‖X ‖2)1/2 ≥
1

2

∥

∥EX 2
∥

∥

1/2 +
1

4

(

Emaxi ‖Yi‖2)1/2
. (6.2)

(3) The Centered Rectangular Case. Consider an independent family {S1, . . . ,Sn} of random d1 ×d2

matrices with ESi = 0 for each index i , and define the sum

Z :=
∑n

i=1 Si .

Then

E‖Z ‖≥
1

2
max

{

∥

∥E
[

Z Z ∗]∥
∥

1/2 ,
∥

∥E
[

Z ∗Z
]∥

∥

1/2
}

+
1

4

(

Emaxi ‖Si‖2)1/2
. (6.3)

The rest of the section describes the proof of Theorem 6.1.
The lower bound in Theorem I is an immediate consequence of Case (3) of Theorem 6.1. We simply

introduce the notation v(Z ) for the variance parameter.
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6.1. The Positive-Semidefinite Case. The lower bound (6.1) in the positive-semidefinite case is rela-
tively easy. Recall that

W :=
∑n

i=1 Ti where the Ti are positive semidefinite.

First, by Jensen’s inequality (3.3) and the convexity of the spectral norm,

E‖W ‖≥ ‖EW ‖ . (6.4)

Second, let I be the minimum value of the index i where maxi ‖Ti‖ is achieved; note that I is a random
variable. Since the summands Ti are positive semidefinite, it is easy to see that

TI 4
∑n

i=1 Ti .

Therefore, by the norm identity (2.10) for a positive-semidefinite matrix and the monotonicity of the
maximum eigenvalue, Fact 2.1, we have

maxi ‖Ti‖ = ‖TI‖=λmax(TI ) ≤λmax
(
∑n

i=1 Ti

)

=
∥

∥

∑n

i=1 Ti

∥

∥= ‖W ‖ .

Take the expectation to arrive at

Emaxi ‖Ti‖≤ E‖W ‖ . (6.5)

Average the two bounds (6.4) and (6.5) to obtain

E‖W ‖ ≥
1

2

[

‖EW ‖+Emaxi ‖Ti‖
]

.

To reach (6.1), apply the numerical fact that 2(a +b) ≥
(p

a +
p

b
)2

, valid for all a,b ≥ 0.

6.2. Hermitian Case. The Hermitian case (6.2) is similar in spirit, but the details are a little more in-
volved. Recall that

X :=
∑n

i=1 Yi where EYi = 0.

First, using the identity (2.11), we have

(

E‖X ‖2)1/2 =
(

E‖X 2‖
)1/2 ≥

∥

∥EX 2
∥

∥

1/2
. (6.6)

The second relation is Jensen’s inequality (3.3).
To obtain the other part of our lower bound, we use the lower bound from the symmetrization result,

Fact 3.1:

E‖X ‖2 = E
∥

∥

∑n

i=1 Yi

∥

∥

2 ≥
1

4
E
∥

∥

∑n

i=1εi Yi

∥

∥

2

where {εi } is an independent family of Rademacher random variables, independent from {Yi }. Now, we
condition on the choice of {Yi }, and we compute the partial expectation with respect to the εi . Let I

be the minimum value of the index i where maxi ‖Yi‖2 is achieved. By Jensen’s inequality (3.3), applied
conditionally,

Eε

∥

∥

∑n

i=1εi Yi

∥

∥

2 ≥ EεI

∥

∥E
[
∑n

i=1εi Yi |εI

]∥

∥

2 = EεI
‖εI YI‖2 =maxi ‖Yi‖2 .

Combining the last two displays and taking a square root, we discover that

(

E‖X ‖2)1/2 ≥
1

2

(

Emaxi ‖Yi‖2 )1/2. (6.7)

Average the two bounds (6.6) and (6.7) to conclude that (6.2) is valid.
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6.3. The Rectangular Case. The rectangular case (6.3) follows instantly from the Hermitian case when
we apply (6.2) to the Hermitian dilation. Recall that

Z :=
∑n

i=1 Si where ESi = 0.

Define a random matrix X by applying the Hermitian dilation (2.18) to Z :

X :=H (Z )=
∑n

i=1 H (Si ).

Since X is a sum of independent, centered, random Hermitian matrices, the bound (6.2) yields

(

E‖H (Z )‖2)1/2 ≥
1

2

∥

∥E
[

H (Z )2]
∥

∥+
1

4

(

Emaxi ‖H (Si )‖2 )1/2.

Repeating the calculations in Section 5.3, we arrive at the advertised result (6.3).

7. OPTIMALITY OF THEOREM I

The lower bounds and upper bounds in Theorem I match, except for the dimensional factor C (d ). In
this section, we show by example that neither the lower bounds nor the upper bounds can be sharpened
substantially. More precisely, the logarithms cannot appear in the lower bound, and they must appear
in the upper bound. As a consequence, unless we make further assumptions, Theorem I cannot be im-
proved except by constant factors and, in one place, by an iterated logarithm.

7.1. Upper Bound: Variance Term. First, let us show that the variance term in the upper bound in (1.5)
must contain a logarithm. This example is drawn from [Tro15a, Sec. 6.1.2].

For a large parameter n, consider the d ×d random matrix

Z :=
∑d

i=1

∑n

j=1

1
p

n
εi j Ei i

As before, {εi j } is an independent family of Rademacher random variables, and Ei i is a d ×d matrix with
a one in the (i , i ) position and zeroes elsewhere. The variance parameter satisfies

v(Z )=
∥

∥

∥

∥

∑d

i=1

∑n

j=1

1

n
Ei i

∥

∥

∥

∥

=‖Id‖ = 1.

The large deviation parameter satisfies

L2 = Emaxi , j

∥

∥

∥

∥

1
p

n
εi j Ei i

∥

∥

∥

∥

2

=
1

n
.

Therefore, the variance term drives the upper bound (1.5). For this example, it is easy to estimate the
norm directly. Indeed,

E‖Z ‖2 ≈ E

∥

∥

∥

∑d

i=1γi Ei i

∥

∥

∥

2
= E max

i=1,...,d
|γi |2 ≈ 2log d .

Here, {γi } is an independent family of standard normal variables, and the first approximation follows
from the central limit theorem. The norm of a diagonal matrix is the maximum absolute value of one
of the diagonal entries. Last, we use the well-known fact that the expected maximum among d squared
standard normal variables is asymptotic to 2log d . In summary,

(

E‖Z ‖2)1/2 ≈
√

2log d ·v(X ).

We conclude that the variance term in the upper bound must carry a logarithm. Furthermore, it follows
that Theorem 4.1 is numerically sharp.
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7.2. Upper Bound: Large-Deviation Term. Next, we verify that the large-deviation term in the upper
bound in (1.5) must also contain a logarithm, although the bound is slightly suboptimal. This example
is drawn from [Tro15a, Sec. 6.1.2].

For a large parameter n, consider the d ×d random matrix

Z :=
∑d

i=1

∑n

j=1

(

δi j −n−1) ·Ei i

where {δi j } is an independent family of BERNOULLI
(

n−1
)

random variables. That is, δi j takes only the
values zero and one, and its expectation is n−1. The variance parameter for the random matrix is

v(Z )=
∥

∥

∥

∑d

i=1

∑n

j=1E
(

δi j −n−1)2 ·Ei i

∥

∥

∥=
∥

∥

∥

∑d

i=1

∑n

j=1 n−1(1−n−1) ·Ei i

∥

∥

∥≈ 1.

The large deviation parameter is

L2 = Emaxi , j

∥

∥

(

δi j −n−1) ·Ei i

∥

∥

2 ≈ 1.

Therefore, the large-deviation term drives the upper bound in (1.5):

(

E‖Z ‖2)1/2 ≤
√

4(1+2⌈log d⌉)+4(1+2⌈log d⌉).

On the other hand, by direct calculation

(

E‖Z ‖2)1/2 ≈
(

E

∥

∥

∥

∑d

i=1(Qi −1) ·Ei i

∥

∥

∥

2
)1/2

=
(

E max
i=1,...,d

|Qi −1|2
)1/2

≈ const ·
log d

log log d
.

Here, {Qi } is an independent family of POISSON(1) random variables, and the first approximation follows
from the Poisson limit of a binomial. The second approximation depends on a (messy) calculation for the
expected squared maximum of a family of independent Poisson variables. We see that the large deviation
term in the upper bound (1.5) cannot be improved, except by an iterated logarithm factor.

7.3. Lower Bound: Variance Term. Next, we argue that there are examples where the variance term in
the lower bound from (1.5) cannot have a logarithmic factor.

Consider a d ×d random matrix of the form

Z :=
∑d

i , j=1εi j Ei j .

Here, {εi j } is an independent family of Rademacher random variables. The variance parameter satisfies

v(Z )= max
{∥

∥

∥

∑d

i , j=1

(

Eε2
i j

)

·Ei j E∗
i j

∥

∥

∥ ,
∥

∥

∥

∑d

i , j=1

(

Eε2
i j

)

·E∗
i j Ei j

∥

∥

∥

}

= max{‖d · Id‖ ,‖d · Id‖} = d .

The large-deviation parameter is

L2 = Emaxi , j

∥

∥εi j Ei j

∥

∥

2 = 1.

Therefore, the variance term controls the lower bound in (1.5):

(

E‖Z ‖2)1/2 ≥
p

cd +c.

Meanwhile, it can be shown that the norm of the random matrix Z satisfies

(

E‖Z ‖2)1/2 ≈
p

2d .

See the paper [BH14] for an elegant proof of this nontrivial result. We see that the variance term in the
lower bound in (1.5) cannot have a logarithmic factor.
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7.4. Lower Bound: Large-Deviation Term. Finally, we produce an example where the large-deviation
term in the lower bound from (1.5) cannot have a logarithmic factor.

Consider a d ×d random matrix of the form

Z :=
∑d

i=1 Pi Ei i .

Here, {Pi } is an independent family of symmetric random variables whose tails satisfy

P {|Pi | ≥ t} =
{

t−4, t ≥ 1

1, t ≤ 1.

The key properties of these variables are that

EP 2
i = 2 and E max

i=1,...,d
P 2

i ≈ const ·d 2.

The second expression just describes the asymptotic order of the expected maximum. We quickly com-
pute that the variance term satisfies

v(Z )=
∥

∥

∥

∑d

i=1

(

EP 2
i

)

Ei i

∥

∥

∥= 2.

Meanwhile, the large-deviation factor satisfies

L2 = E max
i=1,...,d

‖Pi Ei i‖2 = E max
i=1,...,d

|Pi |2 ≈ const ·d 2.

Therefore, the large-deviation term drives the lower bound (1.5):
(

E‖Z ‖2)1/2
' const ·d .

On the other hand, by direct calculation,

(

E‖Z ‖2)1/2 =
(

E

∥

∥

∥

∑d

i=1 Pi Ei i

∥

∥

∥

2
)1/2

=
(

E max
i=1,...,d

|Pi |2
)1/2

≈ const ·d .

We conclude that the large-deviation term in the lower bound (1.5) cannot carry a logarithmic factor.
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