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1. Introduction

Let x(t)=x(t, Co), Co E S2(93, P ) be a stationary Gaussian process
with continuous sample paths. Then the mean a = E [x (t ) ]  is in-
dependent of t and the covariance function r(t)=E [(x (s  a ) ( x ( s )
— a)] is an even function o f t, independent of s, expressible in the
form

(1 ) r(t) =  Le tc1 F (X )

with a bounded measure dF symmetric with respect to O.
Let N=N(Co) be the number o f zeros of the sample path of

x (t) in  0 < t < T  and N c =N,(co) the number o f crossings of the
level c  by the sample path of x(t, co).

The purpose o f this paper is to prove

Theorem.

( 2 ) E ( N )  E (N ) _r"(0)  e x
 P

(

7r r(0) 

where r"(0 ) is  the second S chw arz  derivative, i.e.,

*  This work was supported in  part by the National Science Foundation, Grant 16319,
and in part b y  the Office of Naval Research, Contract Nonr 225 (28) at Stanford
University.
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( 3  ) r „ (0 ) =  urn
r  (h) —2r (0)+ r ( — h)

h  1 0

= — dF (X))

-
r"(0 ) is finite o r  — 00 according as X2dF(X)< 00 or 00 ;

in the latter case (2) shows that E(N)= E(IV c )= co.
Given a constant a  and a function r(t) in the form (1), there

exists essentially a unique separable stationary process with the
mean 0 and the covariance fouction r(t). If Hunt's condition [2] :

-
( 4 ) [log (1 +IX I ) ] 1 d  F (X) <  co for som e a > 0 ,

is fulfilled, then almost all sample functions o f x(t, co) are continuous
and so (2) holds.

Let us give a historical account of the formula (2).
In 1944 S. O. Rice [1 ]  (see pp. 271-3) proved (2 ) in case F(X)

increases only with a finite number o f jumps, i.e.,

( 5  ) r(t) = eixnt .

Noticing that (x(t), x'(t)) is Gauss distributed with

E(x(t)) = a ,E ( x ' ( t ) )  =  0

( 6 ) E(x(t)2) = r (0) , E(x' (t) 2 ) = — r"(0)
E(x(t)x' (t)) = r'(0) = 0

we have

(7 )E ( N )  =  
1

0 E(N(dt)) (N (d t)  = the number o f zeros o f x(t)
in (t, t+dt))

P(N(dt) = 1)0
T

"••.' P (x' (t) G dn, —  dt < x (t) <0)
0 0

0 .1--

T  ( 0 
P (x' (t) G 0 < x(t) <  dt)

1 2

_ 21
r ( 0 ) ) I n dy dt2 exp ( 0 - 6 1 ) 2

Jo o  —  r" (0) r(0) — 
2r (0)

T  _r" (0)  e x p a 2  
7 r V r(0) 2r(0)1 •

This is the outline of Rice's proof.
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In  1957 U. Grenander and M. Rosenblatt [3 ]  (see p. 271-3)
gave a neater proof to the formula in the same special cace using
the following formula on the number N  o f zeros of a function f (t )
due to M . Kac [4]

( 8 ) N 7  f ( t ) le ( _ „(f(t))d t
28 0

where e( _,,„ is the indicator function of the interval ( -6, 6).

There were some technical gaps in both the proof of Rice and
that of Grenander-Rosenblatt in connection with the estimation and
interchangeability of the limit and the expectation.

In 1960 V. A. Ivanov [5] gave the first rigorous proof to the
formula in cace

( 9  ) d F (X) < 00

carrying out the argument of Grenander-Rosenblatt carefully.
On 1961 E. V. Bulinskaya [6] proved it in a more general case

-
(10) log (1 + XJ ) 1±' A.2dF (I) <  00 for som e ce > 0 .

She used a lower estimate of the number o f zeros of f ( t ) :

(11) N :c (f ( (1 7  2 ! ) T ) '  f ( 62TP ))
(c(e, = 1 or 0 according as < 0  or >0 )

in addition to the estimate (8) which is actually an upper one.
Both Ivanov and Bulinskaya imposed the conditions ((9), (10))

to let almost all sample functions be continuously differential, but
a slight modification of their methods will enable us to prove the
formula in complete generality, as we can see in our paper.

W e w ish to express our thanks to Professor J. Choyer who
gave us a lot of information on this subject.

2. T h e  upper and lower bounds o f th e  number o f  zeros

Let n denote the number o f zeros of f ( t )  in 0 < t < T  and ne

the number o f crossings of the level c by f ( t ) .  The numbers n
and n, may be finite but n > n , is clear in any case.
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The following lemmas will be used later.

Lemma 1. I f  f ( t )  is continuous, then
( f ((q —2 ,1)T) , f  (q2T0 ))

q = j

( 1 ) n n, c (monotone limit)

where c(e, 97) is  the indicator function of the two-dimensional region:
97<0.

Lemma 2. I f  f ( t )  is absolutely  continuous an d  vanishes only
on a  t - s e t  which contains no interval, then

( 2 ) nc< n < urn 7 ' jf '(t)le ( _,,,,( f (t))dt ,
e t) 2 6  o

where e( _,,, ) (e) is  the indicator function of  the  interval ( - 6 , 6 ).

P ro o f .  Lemma 1 is evident by the intermediate value theorem
for continuous functions.

To prove Lemma 2, it is enough to show that

( 2 ) lirn T  In t) I e(-e,e)(f(t))dt >  in
e 0  2 6  o

for any finite number m < n .  I f  m < n , we can take a  sequence
of zeros t i < t,< •-•< t„ , of f ( t )  in  0 < t< T . Let u1 —u,(&) be the
greatest number u < t i w ith If (u)1 =8 (u i = — 00 if  there exists no
such u ) and v i —vi (8) b e  th e  least number v < t ,  with If (V)1
(y 1 = 00 if there exists no such y). Then we have some 5o>0 such
that, for any positive <8 „,

( 3 ) 0  <  u i < t, <  <  <  t 2 < v, < • • • <  <  <  v„, <T ;

if  otherwise, f ( t )  would vanish on a subinterval of (0, T ) in con-
tradiction with our assumption. It follows from (3) that

2
1
6

 r  I f f (0) dt
In .

-2 6 f  ( t ) I d t f' (t)Idt]

2-1
s Êz (t i) - f  (u  +  I f (v i) f  ( t  i ) I ] in ,

which completes the proof.
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3. Proof o f  Theorem in case VdF(1s.)<00.

We shall consider a stationary Gaussian process described in
the introduction and assume that

( 1 ) ÇIX.2 d F (X) <  •

We shall prove several preliminary propositions.

Proposition 1. x ( t )  is differentiable at every time point t  in the
sense o f  lim it in  the mean, i.e., limit with respect to the norm in
1,2 (S2, 33, P).

By our assumption we have

x(t +h)— x(t) _x(t + k)— x(t)
h

eiX  h —  1 eiAk —1
h

2

dF(X,)--. 0 (h, k 0)

  

since the integrand tends to 0  and is bounded by 4X2 .

Proposition 2. x(t), x'(t), t E  [ —  c o ,  0 0 )  form a Gaussian system
with

E(x(t)) = n ,E ( x ' ( t ) )  =  0

E((x(t)— a)(x(s)— a)) = r(t—  s) = eix ( t - ' ) dF(X)

E(x' (t)(x(s)— a)) = r '(t — s) = s) iX, dF (X)

E(x'(t)x '(s)) = — r"(t —s) = clF(X) .

This is clear, because x(t), t e ( — 00 , 00 ) is a Gaussian system
and x'(t) belongs to the closed linear subspace of D(12,, 53, P) spanned
by x(t), t E  (—  c c ,  0 0 ).

Proposition 3 . x'(t) has a measurable version, namely we can con-
struct a function y(t, co) measurable in  (t, co) such that P(x/(t)=y(t))
=1 fo r  every t.

Write y ( t )  for h - 1 (x(t + h)— x(t)). y h (t , co) is measurable in (t, co)

2

( 2 )
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because it is measurable in co for each value of t  and continuous
in  t  for almost every value of co. It fo llow s from  Proposition 2
that

Ilyh(t) - xV)112
— 1

 i Xh
2

dF (X) < —h 2 d F  (X) .
— 4

   

Writing y ( t )  for y2_n (t), we have, for every t,

11 37 n(t) —  x' (t)112 < 2 d F ( X )

and so
P(y n (t) ,  x/(t) a s  n co) = 1 ,

i.e.
P(lim y„(t) =  x'(t)) = 1 .

Thus y(t)=- 1im y„(t) is what we wanted to construct.

From now on we shall denote the measurable version y (t) of
x '(t) by x '(t) itself.

Proposition 4. For alm ost all co, x(t) 'is absolutely continuous
in  t  and dx(t)Idt=x'(t) f o r alm ost all t.

Noticing that x '(t) and x(t) are measurable in  (t, co), we have,
by Proposition 2  and simple computations,

f t x,(0)do_ x
3s(  ( t ) — x ( s ) )

and so

P O ' x'(0)c/0 =  x(t)—x(s)) = 1

for every pair (s, t) fixed. Therefore

x'(B)de = x(t)— x(s) for rational t, s ) =1 .

Since 1 x0)d6' and x(t)—x(s) are both continuous in t, s, w e  have

P ( s x/(15)d0 = x(t)— x(s) for re a l t, =  1

which proves our proposition.

2 = 00
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Proposition 5. F or almost all co, x ( t)=0  only o n  a  t-se t o f
Lebesgue measure 0 in  0 <t < T .

Let e0( ) be the indicator of the single point O. T h e n  eo(x(t, co))
is measurable in (t, co), eo(x(t , co))dt is the Lebesgue measures of

0
the t-set x(t, co) =O and

E (  0 e o(x (t, co))dt) = , E(e„(x(t, co))dt = c P (x (t) = 0)dt = O,

because x(t, co) is Gauss distributed.
By Proposition 4 and 5  we can apply Lemma 2 in Section 2

to the sample functions of our process.

E(N,.) <E (N )

< E  (lim  1 ST X V ) ec _ e,e) (X(t))dt)— 26 0

<  li mT E [ l x / ( t )  e(--e,e)(x(t))] dt
—  e  o  2 &  o

(by Lebesgue-Fatou's theorem)

= lim E  x ' (0 )1  — 2, e)(X(0 ) ) ]  •
e o  2&

By Proposition 2, (x(0), x'(0)) is Gauss distributed with

E(x(0)) = a,E ( x ' ( 0 ) )  =  0

E((x(0)— a) 2) = r (0) , E(x' (0) 2) = — r " (0)

E (x' (0) (x (0) — a)) = r ' (0) = 00 iX dF (X) = O,

and so we have

x'(0) I e(--e,e)(x(0 ))]
1

e 
yn (e -

 (1 )2 _ ]In I ec-e,e)(e)cl27EV  —  r"(0) r (0) L 2r (0) — 2r " (0)R2
1  (  r" (0 ) 1/2 r e x p

r(0) I 2r(0)

Thus we have

( 3 ) E (N ) <  T  A l  r" (0 )  e x a 2   1
r(0) P  L 2r (0)i
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By Lemma 1 in Section 2 , we have

( 4 ) E (N )> E (N  c ) > E [lpim c (4 ( 1
 2 1

1;) T ), x ( 1
2

T
p ) ) ]

= urn c ((1 —
2 ! ) T  ,  x  (q T ]

=  Ern T  
2 "

 E[c(x (0), x (2 -  T ) )] .
P  "  T

If we can prove

1limE [c ( x ( 0 ) ,  x ( t ) ) ] r "(0)—  •  e x p [
a2 1

.“) t r (0) 2r (0)

then it follows from (4) that

( 6 ) E ( N )  —T r i " )  
exP L

r 
n- V r(0) 2r (0)]

which, combined with (3), completes the proof of our theorem in
cace X2 dF (),) < 00 .

B y Proposition 2, (x(0), x (t)) is  Gauss distributed with

E(x (0)) = E(x (t)) = a
E((x(0)— a) 2) = E((x(t)—  a) 2) = r(0) ( = a)
E((x(0)— a)(x(t)— a)) = r (t) ( =

and so

1 E[c(x (0), x (t))]

=
1

277A/a2 —
eX P  [ a ( (   a Y  ± (11 a ) 2 ) - 2 '8 (  a ) ( 9 7  — a ) ]2(a2_/92)

a_  21c6+p 1 r ,72) —2,(397 +17)1c/c/97= e
t 27rA/ a2 — 0 2 e x P  L 2(a2-02) ce+0tn<o

= e -  2 1 1  —1 1
2 7 "  

exp [— u 2  d v
iqul< t/T f y

2 -\/

=  a+13 , =a — ,     v—  + 2 ) )

V28' V2-7/

= e - " 11  1 e - P212 p dp i e x p 2 P sin dû.
2 7 r 0

Itan01<-1/a/y
V77

 0 a]

( 5 )

en<o
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Since I sin Ol<  tan 0 I , we have

1 E[c(x(0), x (t))]

exp ( — a2 17) - L  e - P 2  p dp exp N/28 p a
a r c t a n , V

27r 0

4
7  

) 
 t 'Y

As t - 0, we have

7 --> 2r(0) , 8 -*O ,
1 arctan 

8   --
1 A/  8r  ( 0 ) —  r  ( t )  

t 7 t 7 A (r(0)+r(t))t 2

Apr (0)— r (t) — r (— t) A I 1  
t 2V  2 ( r  ( 0 )  +  r (t))

(notice r ( -0 = r (0 )
1 — r "(0)
2 A  r(0)

and so

12 1 —r"(0) -Ern E[c(x (0), x (t))] exp  —  a )    e x p  ( - 192
/ 2)p dp

14.0 t 2r (0 ) 7z r (0) 0

1  4 /—r"(0)
7r A r (0 )  e x P 2 r ( 0 ) /  •

4. Proof o f  Theorem  in  case 72dF(X)

In this case
l i m r ( h )

-

2 r ( 0 )  +  r (
—  

h )  _

X2 d F (X) —  0 •

h 4,0 h2

Therefore it is enough to prove

E(N ) = E(N  c ) =

By virtue of the continuity of the sample paths, we can apply
Lemma 1 to get

N >  N , >  l i m  c (  x ( (q x ( q T ) )
q = ' \ 2 P

)
\ 2 P  )/

and so, using the same arguments as in the last part of Section 3,
we get
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E(N) _>_ E(N c) > E[lim c(x((1  1 ) 7 )
)

, x (q2 Tp ))1
P-).0. q = 1 2P 

— Ern T — 2  ±' E[c(x(0), x(2 -  P T))]
P - - ° T

> 2T  l i m  A pr (0)— r (t) — r (— t) Al 1  
—  n -  ty,o Y t2 2(r (0)+r (t))

0 0 •
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