THE EXPECTED ORDER OF A RANDOM PERMUTATION

WILLIAM M. Y. GOH and ERIC SCHMUTZ

Abstract

Let μ_{n} be the expected order of a random permutation, that is, the arithmetic mean of the orders of the elements in the symmetric group S_{n}. We prove that $\log \mu_{n} \sim c \sqrt{ }(n / \log n)$ as $n \rightarrow \infty$, where $$
c=2 \sqrt{ }\left(2 \int_{0}^{\infty} \log \log \left(\frac{e}{1-e^{-t}}\right) d t\right) .
$$

\section*{1. Overview}

If σ is a permutation on n letters, let $N_{n}(\sigma)$ be the order of σ as a group element. For a typical permutation, N_{n} is about $n^{\log n / 2}$. To make this precise, we quote a stronger result of Erdős and Turán [5].

Theorem 1. For any fixed x,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{\sigma \in S_{n}: \log \left(N_{n}(\sigma)\right)<\frac{1}{2} \log ^{2} n+\frac{x}{\sqrt{ } 3} \log ^{3 / 2} n\right\}}{n!}=\frac{1}{\sqrt{ }(2 \pi)} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

Many authors have given their own proofs of this remarkable theorem. For a survey of these and related results, see [2].

Let

$$
\mu_{n} \stackrel{\text { def }}{=} \frac{1}{n!} \sum_{\sigma \in S_{n}}(\text { order of } \sigma)
$$

be the expected order of a random permutation. The problem of estimating μ_{n} was first raised by Erdős and Turán [6]. Note that x is fixed in Theorem 1. It will not help us estimate μ_{n} because we cannot ignore the tail of the distribution. There are some permutations for which N_{n} is quite large. In fact, Landau proved that

$$
\max _{\sigma \in S_{n}} N_{n}(\sigma)=e^{\sqrt{n \log n}(1+o(1))}
$$

It turns out that a small set of exceptional permutations contributes significantly to μ_{n}. Erdős and Turán determined that $\log \mu_{n}=O(\sqrt{ }(n / \log n)$). (A proof appears in [12, 13].) This paper contains sharper estimates. We prove the following asymptotic formula.

[^0]
Theorem 2.

$$
\log \mu_{n} \sim c \sqrt{ }\left(\frac{n}{\log n}\right) \text { where } c=2 \sqrt{ }\left(2 \int_{0}^{\infty} \log \log \left(\frac{e}{1-e^{-t}}\right) d t\right) .
$$

First we give a brief overview of the proof. Consider the generating function

$$
F(t)=\sum_{n} B_{n} e^{-n t}=\left(1-e^{-t}\right)^{-1} \prod_{\text {primes } p}\left(1-\log \left(1-e^{-p t}\right)\right)
$$

One can think of B_{n} as the sum of the weights of a certain set of weighted partitions. By classical methods, one can easily prove that $\log B_{n} \sim c \sqrt{ }(n / \log n)$. Our goal is to prove that $\log \mu_{n} \sim \log B_{n}$.

The connection between permutations and partitions is that the cycle lengths of a permutation on n letters form a partition λ of the integer n (written $\lambda \vdash n$). By a wellknown theorem of Cauchy, the number of permutations of n letters with c_{i} cycles of length i is

$$
\frac{n!}{c_{1}!c_{2}!\ldots c_{n}!1^{c_{1}} 2^{c_{\mathrm{e}}} \ldots n^{c_{n}}}
$$

If $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}=\left\{1^{c_{1}}, 2^{c_{2}}, \ldots, n^{c_{n}}\right\}$, define

$$
W(\lambda):=\frac{\operatorname{LCM}\left(\lambda_{1}, \lambda_{2}, \ldots\right)}{c_{1}!c_{2}!\ldots c_{n}!1^{c_{1}} 2^{c_{2}} \ldots n^{c_{n}}}
$$

Since the order of a permutation is the least common multiple of its cycle lengths, we have

$$
\mu_{n}=\sum_{\lambda \vdash n} W(\lambda)
$$

For each fixed integer $s \geqslant 2$, we shall construct a set P_{n}^{s} of partitions of n. Obviously, a lower bound can be obtained by considering only the contribution from elements of P_{n}^{s} :

$$
\begin{equation*}
\mu_{n} \geqslant \sum_{\lambda \in P_{n}^{s}} W(\lambda) \tag{*}
\end{equation*}
$$

The idea is to choose P_{n}^{s} in such a way that the right-hand side of (*) is both easy to estimate and large enough to give a good bound. Consider the generating function

$$
F_{\varepsilon}(t)=\sum_{n} B_{n}^{(s)} e^{-n t}:=\left(1-e^{-t}\right)^{-1} \prod_{\text {primes } p>s}\left(1+e^{-p t}+\frac{e^{-2 p t}}{2}+\frac{e^{-3 p t}}{3}+\frac{e^{-4 p t}}{4}+\ldots+\frac{e^{-s p t}}{s}\right)
$$

We shall choose P_{n}^{s} in such a way that

$$
\sum_{\rho \in P_{n}^{s}} W(\rho) \geqslant\left(\frac{1}{2 n^{2}}\right) B_{n}^{(s)}
$$

For large s, this is a good approximation; for any $\varepsilon>0$, one can choose s so that, for $n>n_{0}(\varepsilon, s)$, one has

$$
\log \mu_{n} \geqslant \log \left(\frac{B_{n}^{(s)}}{2 n^{2}}\right) \geqslant(1-\varepsilon) \log B_{n} .
$$

The upper bound is both more difficult and harder to outline. A sievelike argument is used to prove that the lower bound is sharp, that is, that $\log \mu_{n} \leqslant(1+o(1)) \log B_{n}$.

2. The lower bound

Let G_{m}^{s} be the set of partitions of m into distinct parts of the form ($d \cdot p$), where $d \leqslant s, p$ is a prime that is larger than s, and each prime larger than s divides at most one part. In other words, \# G_{m}^{s} is the coefficient of x^{m} in

$$
\prod_{\text {primes } p>s}\left(1+x^{p}+x^{2 p}+\ldots+x^{s p}\right)
$$

For technical reasons, it is not convenient to estimate $\sum_{\lambda \in G_{n}^{s}} W(\lambda)$. (Roughly: the Tauberian side conditions are difficult to verify.) Instead, we consider a closely related set. Suppose that $\lambda \in G_{m}^{s}$ for some $m<n$. Then one can obtain a partition of n by adjoining a part of size $(n-m)$. Think of partitions as multisets. Adjoining a part corresponds to taking a multiset union (that is, with multiplicities). Let A_{n}^{s} be the set of partitions that can be obtained in this way; in other words, let

$$
A_{n}^{s}:=\left\{\lambda \cup\{(n-m)\}: m<n \text { and } \lambda \in G_{m}^{s}\right\} .
$$

Of course, it may happen that a partition $\rho \in A_{n}^{s}$ can be formed in more than one way; one can have $\rho=\lambda \cup\{(n-m)\}=\lambda^{\prime} \cup\left\{\left(n-m^{\prime}\right)\right\}$. But we claim that ρ can be formed in at most n ways. To see this, note that λ is completely determined by ρ and m. In other words, if $\lambda \cup\{(n-m)\}=\lambda^{\prime} \cup\{(n-m)\}$, then $\lambda=\lambda^{\prime}$. Since there are at most n possible values of m, it follows that there are at most n decompositions of ρ of the form $\rho=\lambda \cup\{(n-m)\}$. Finally, let $P_{n}^{s}=G_{n}^{s} \cup A_{n}^{s}$. Then we have

$$
\mu_{n} \geqslant \sum_{\rho \in P_{n}^{s}} W(\rho) \geqslant \frac{1}{n} \sum_{m<n} \sum_{\lambda \in G_{m}^{s}} W(\lambda \cup\{(n-m)\})+\frac{1}{n} \sum_{\lambda \in G_{n}^{s}} W(\lambda) .
$$

For $\lambda=\left\{d_{1} p_{1}, d_{2} p_{2}, \ldots\right\} \in G_{m}^{s}$,

$$
W(\lambda) \geqslant \frac{1}{d_{1} d_{2} \ldots}
$$

But then

$$
W(\lambda \cup\{(n-m)\}) \geqslant \frac{\operatorname{LCM}\left(\lambda_{1}, \lambda_{2}, \ldots\right)}{2 \cdot \lambda_{1} \lambda_{2} \ldots \lambda_{n} \cdot n} \geqslant \frac{1}{2 n \cdot d_{1} d_{2} \ldots}
$$

Hence

$$
\begin{aligned}
\mu_{n} & \geqslant \frac{1}{2 n^{2}} \sum_{m \leqslant n} \sum_{\lambda \in G_{m}^{s}} W(\lambda) \\
& \geqslant \frac{1}{2 n^{2}} \text { Coefficient }_{e}-n t\left(F_{s}(t)\right)=\frac{B_{n}^{(s)}}{2 n^{2}} .
\end{aligned}
$$

To estimate B_{n} and $B_{n}^{(s)}$, we need the following lemma.
Lemma 1 (Hardy-Ramanujan [9]). Let $f(t)=\sum_{n} a_{n} e^{-n t}$, and suppose that (1) $a_{n} \geqslant 0$, and
(2) $\log f(t) \sim \frac{A}{t \log \left(\frac{1}{t}\right)}$ as $t \rightarrow 0^{+}$, where A is a fixed positive constant.

Then

$$
\log \left(\sum_{k=1}^{n} a_{k}\right) \sim 2 \sqrt{ }(2 A) \sqrt{ }(n / \log n) \quad \text { as } n \rightarrow \infty .
$$

Now let

$$
h_{s}(r):=\log \left(1+e^{-r}+\frac{e^{-2 r}}{2}+\frac{e^{-3 r}}{3}+\ldots+\frac{e^{-s r}}{s}\right)
$$

and let $h(r):=\log \left(1-\log \left(1-e^{-r}\right)\right)$. We need the following.

Lemma 2.

$$
\log F_{s}(t) \sim \frac{1}{t \log \left(\frac{1}{t}\right)} \int_{0}^{\infty} h_{s}(u) d u \quad \text { as } t \rightarrow 0^{+}
$$

Proof. First, we remark that this lemma is quite similar to Lemma 1 in [6]. At the suggestion of a referee, we are providing a fairly detailed proof. In this lemma, $\pi(x)$ denotes the number of primes less than or equal to x. We have

$$
\log F_{s}(t)=-\log \left(1-e^{-t}\right)+\sum_{\text {primes } p>s} h_{s}(p t) .
$$

Expressing this as a Stieltjes integral and integrating by parts, we obtain

$$
\int_{s}^{\infty} h_{8}(r t) d \pi(r)-\log \left(1-e^{-t}\right)=-\pi(s) h_{8}(s t)-\int_{s}^{\infty} \pi(r) t h_{s}^{\prime}(r t) d r-\log \left(1-e^{-t}\right)
$$

Using the prime number theorem in the form
we obtain

$$
\pi(r)=\int_{2}^{r} \frac{d r}{\log r}+O\left(r e^{-c \sqrt{ }(\log r)}\right)
$$

$$
-\int_{s}^{\infty} \int_{2}^{r} \frac{d x}{\log x} t h_{s}^{\prime}(r t) d r+E(t)
$$

where

$$
E(t)=-\log \left(1-e^{-t}\right)+O\left(t \int_{s}^{\infty} h_{s}^{\prime}(r t) r e^{-c \sqrt{ }(\log r)} d r\right)
$$

Integrating by parts again, we have

$$
\int_{s}^{\infty} \frac{h_{s}(r t) d r}{\log r}+E(t) .
$$

Later, $E(t)$ will be shown to be negligible. For now, we concentrate on the main term, splitting the interval of integration into three parts. Let

$$
\xi_{1}:=\frac{1}{t \log ^{3} \frac{1}{t}} \quad \text { and } \quad \xi_{2}:=\frac{1}{t} \log ^{3} \frac{1}{t}
$$

Then

$$
\int_{s}^{\infty} \frac{h_{8}(r t) d r}{\log r}=\int_{\delta}^{\xi_{1}}+\int_{\xi_{1}}^{\xi_{2}}+\int_{\xi_{2}}^{\infty} .
$$

The idea is that $\log r$ is nearly constant on the middle interval, and this makes the integral easy to estimate. The other two intervals contribute negligibly. For $r \in\left[\xi_{1}, \xi_{2}\right]$ we have $\log r=\log (1 / t)+O(\log \log (1 / t))$. Hence

$$
\begin{aligned}
\int_{\xi_{1}}^{\xi_{2}} \frac{h_{s}(r t)}{\log r} d r & =\frac{1}{t \log \frac{1}{t}} \int_{\xi_{1} t}^{\xi_{2} t} h_{s}(u) d u+O\left(\frac{\log \log \frac{1}{t}}{t \log ^{2} \frac{1}{t}}\right) \\
& \sim \frac{1}{t \log \frac{1}{t}} \int_{0}^{\infty} h_{s}(u) d u \quad \text { as } t \rightarrow 0^{+}
\end{aligned}
$$

This is the main term. The appendix contains a proof that both $E(t)$ and the remaining two integrals are negligible.

Corollary.

$$
\log B_{n}^{(s)} \sim k_{s} \sqrt{ }(n / \log n) \quad \text { as } n \rightarrow \infty, \text { where } k_{s}=2 \sqrt{ }\left(2 \int_{0}^{\infty} h_{s}(r) d r\right)
$$

Proof. Apply Lemma 1 to $f_{s}(t):=\left(1-e^{-t}\right) F_{s}(t)$.
By arguments similar to those in Lemma 2, we obtain the following.
Lemma 3.

$$
\log F(t) \sim \frac{1}{t \log \frac{1}{t}} \int_{0}^{\infty} h(r) d r \quad \text { as } t \rightarrow 0^{+}
$$

Corollary.

$$
\log \left(B_{n}\right) \sim c \sqrt{ }(n / \log n) \text { as } n \rightarrow \infty \text {, where } c=2 \sqrt{ }\left(2 \int_{0}^{\infty} h(r) d r\right)
$$

Finally, we use the monotone convergence theorem to complete the proof of the lower bound:

$$
\lim _{s \rightarrow \infty} \int_{0}^{\infty} h_{s}(r) d r=\int_{0}^{\infty} \lim _{s \rightarrow \infty} h_{s}(r) d r=\int_{0}^{\infty} h(r) d r .
$$

Hence $\log \mu_{n} \geqslant\left(\log B_{n}\right)(1-o(1))$.

3. The upper bound

We had

$$
\mu_{n}=\sum_{\lambda \vdash n} \frac{\operatorname{LCM}\left(\lambda_{1}, \lambda_{2}, \ldots\right)}{c_{1}!\ldots c_{n}!2^{c_{2}} \ldots n^{c_{n}}} \leqslant \sum_{\lambda \vdash n} \frac{\operatorname{LCM}\left(\lambda_{1}, \lambda_{2}, \ldots\right)}{2^{c_{2}} 3^{c_{3}} \ldots n^{c_{n}}}
$$

Observe that $2^{c_{2}} 3^{c_{3}} \ldots n^{c_{n}}=\lambda_{1} \lambda_{2} \lambda_{3} \ldots$ (Recall that $c_{i}=c_{i}(\lambda)=$ the number of parts of size i in λ.) We therefore have

$$
\mu_{n} \leqslant \sum_{\lambda \vdash n} \frac{\operatorname{LCM}\left(\lambda_{1}, \lambda_{2}, \ldots\right)}{\lambda_{1} \lambda_{2} \ldots} .
$$

Think of partitions as multisets. For each partition λ, we shall choose partitions π and ω such that $\lambda=\pi \cup \omega$. (To make this paper self-contained, we repeat a few arguments from [12].) The decomposition will have the following two properties:
(1) the least common multiple of the parts of π is equal to the least common multiple of the parts of λ;
(2) if $\lambda=\pi \cup \omega$ and $\lambda^{\prime}=\pi^{\prime} \cup \omega^{\prime}$, then $\lambda=\lambda^{\prime}$ if and only if $\pi=\pi^{\prime}$ and $\omega=\omega^{\prime}$. One can think of π as a kind of minimal generating set. Suppose m is the least common multiple of the parts of a partition λ. Let $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ be the prime factorization of $m\left(p_{i}<p_{j}\right.$ for $\left.i<j\right)$. We define $\pi=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{t}\right\}$ as follows. Let π_{1} be the smallest part of λ that is divisible by $p_{1}^{e_{1}}$. Now suppose that $\pi_{1}, \pi_{2}, \ldots, \pi_{l}$ have been defined. If each $p_{i}^{e_{i}}$ divides some π_{j} with $1 \leqslant j \leqslant \ell$, then set $t=\ell$ and stop. Otherwise, let $k=\min \left\{i \mid p_{i}^{e_{i}}\right.$ divides none of $\left.\pi_{1}, \pi_{2}, \ldots, \pi_{\ell}\right\}$, and let $\pi_{\ell+1}$ be the smallest part of λ that is divisible by $p_{k}^{e_{k}}$. Finally, we define $\pi:=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{t}\right\}$. The procedure must terminate (in fact, $t \leqslant s$), so π is well defined. Given λ, let ω be the remaining parts, that is, $\omega=\lambda-\pi$ and $\lambda=\pi \cup \omega$. This is a convenient place to define a certain function α, which will play an important role later. Suppose $\pi=\left\{\pi_{1}, \pi_{2}, \ldots\right\}$, and suppose $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{8}^{e_{s}}$ is the least common multiple of the parts of π. Then define

$$
\alpha(i, j)=\alpha(i, j, \pi):= \begin{cases}e_{j} & \text { if } i=\min \left\{k \mid p_{j}^{e_{j}} \text { divides } \pi_{k}\right\} \\ 0 & \text { else }\end{cases}
$$

For future reference, we make the following simple observation: for each j, $\sum_{i} \alpha(i, j)=e_{j}$.

Continuing where we left off, we have

$$
\begin{aligned}
\sum_{\lambda \vdash n} \frac{\operatorname{LCM}\left(\lambda_{1}, \lambda_{2}, \ldots\right)}{\lambda_{1} \lambda_{2} \ldots} & =\sum_{\pi, \omega} \frac{\operatorname{LCM}\left(\pi_{1}, \pi_{2}, \ldots\right)}{\pi_{1} \pi_{2} \ldots \omega_{1} \omega_{2} \ldots} \\
& =\sum_{\pi} \frac{\operatorname{LCM}\left(\pi_{1}, \pi_{2}, \ldots\right)}{\pi_{1} \pi_{2} \ldots} \sum_{\omega} \frac{1}{\omega_{1} \omega_{2} \ldots}
\end{aligned}
$$

The inner sum is uniformly $O(n)$ by a theorem of Lehmer [10]. Since a factor of n is negligible, we need only estimate

$$
\sum_{\pi} \frac{\operatorname{LCM}\left(\pi_{1}, \pi_{2}, \ldots\right)}{\pi_{1} \pi_{2} \ldots}
$$

We exploit cancellation by factoring the parts of our partitions. For $i=1, \ldots, t$, let

$$
d_{i}=\prod_{j=1}^{s} p_{j}^{\alpha(i, j)} .
$$

The d_{i} have deliberately been defined in such a way that they are pairwise relatively prime and their product is $\operatorname{LCM}\left(\pi_{1}, \pi_{2}, \ldots\right)$. Note that d_{i} divides π_{i} for each i. Let $d_{i}^{\prime}=\pi_{i} / d_{i}$, and let $\vec{d}^{\prime}=\left\langle d_{i}^{\prime}\right\rangle_{i=1}^{t}$. Then, for any of our 'generating partitions' π, we have

$$
\begin{equation*}
\frac{\operatorname{LCM}\left(\pi_{1}, \pi_{2}, \ldots\right)}{\pi_{1} \pi_{2} \ldots}=\frac{d_{1} d_{2} \ldots}{\left(d_{1} d_{1}^{\prime}\right)\left(d_{2} d_{2}^{\prime}\right) \ldots} \tag{**}
\end{equation*}
$$

Remark. We can think of $D=\left\{d_{1}, d_{2}, \ldots\right\}$ as a multiset (partition), or alternatively as a vector (sequence, ordered partition). There is no inconsistency, because only one ordering of the parts of D can occur. This is discussed in our earlier paper [12], where we used the notation \vec{d} instead of D. (The notation has been changed to avoid writing unions of vectors.)

From (**) we have

$$
\sum_{\pi} \frac{\operatorname{LCM}\left(\pi_{1}, \pi_{2}, \ldots\right)}{\pi_{1} \pi_{2} \ldots}=\sum_{D} \sum_{\vec{d}^{\prime}} \frac{d_{1} d_{2} \ldots}{d_{1} d_{1}^{\prime} d_{2} d_{2}^{\prime} \ldots}=\sum_{D} \sum_{\vec{d}^{\prime}} \frac{1}{d_{1}^{\prime} d_{2}^{\prime} \ldots}
$$

In order to estimate this expression, we first decompose the $D \mathrm{~s}$. Let $z:=$ $\sqrt{ } n /\left(\log ^{2} n\right)$, and write $D=S \cup P \cup R$, where
S consists of those parts of D that are divisible by some prime less than z,
P consists of those parts of D that are primes greater than or equal to z, and
R consists of the remaining parts of D.
Then each D corresponds to a triple (S, P, R), and we have

$$
\sum_{(S, P, R)} \sum_{\vec{d}} \frac{1}{d_{1}^{\prime} d_{2}^{\prime} \ldots} \leqslant(\underbrace{\sum_{S} \sum_{\vec{j}} \frac{1}{j_{1} j_{2} \ldots}}_{T_{1}}) \cdot(\underbrace{\sum_{P} \sum_{\vec{J}} \frac{1}{j_{1} j_{2} \ldots}}_{T_{2}}) \cdot(\underbrace{\sum_{R} \sum_{\vec{j}} \frac{1}{j_{1} j_{2} \ldots}}_{T_{3}}) .
$$

In T_{1}, the inner sum ranges over all sequences $\left\langle j_{i}\right\rangle$ for which $s_{1} j_{1}+s_{2} j_{2}+\ldots \leqslant n$. Similarly for T_{2} and T_{3}. This overestimate gives an upper bound that is surprisingly sharp. We shall prove that T_{1} and T_{3} are small.

Estimates for T_{1} : Recall that $S \subseteq D$, and the parts of D are pairwise relatively prime. Hence each prime less than z divides at most one part of S. This implies that S has less than z parts. Thus there are at most n^{2} different possible S, and the inner sum of T_{1} is at most $\left(\sum_{j=1}^{n} 1 / j\right)^{2}$. We therefore have

$$
T_{1} \leqslant n^{2}\left(\sum_{j=1}^{n} \frac{1}{j}\right)^{2}=e^{o(\sqrt{ }(n / \log n))}
$$

Estimates for T_{3} : The parts of R have at least two prime divisors (counting multiplicities), each of which is greater than $z=\sqrt{ } n /\left(\log ^{2} n\right)$. They therefore have exactly two prime divisors, since the product of more than two such primes would be larger than n. Therefore R can have at most $\log ^{4} n$ parts (otherwise R would sum to more than n). Thus there are at most $n^{\log ^{4} n}$ possible R, and for each R the inner sum is at most $\left(\sum_{j=1}^{n} 1 / j\right)^{\log ^{4} n}$. Thus $T_{3}=e^{o(v(n / \log n)}$.

Finally, recall that

$$
F(t):=\sum_{n} B_{n} e^{-n t}=\left(1-e^{-t}\right)^{-1} \prod_{\text {primes } p}\left(1+e^{-p t}+\frac{e^{-2 p t}}{2}+\ldots\right)
$$

Hence

$$
\begin{aligned}
T_{2} & =\text { Coefficient }_{e^{-n t}}\left\{\frac{1}{\left(1-e^{-t}\right)} \prod_{p \geqslant 2}\left(1+e^{-p t}+\frac{e^{-2 p t}}{2}+\frac{e^{-3 p t}}{3}+\frac{e^{-4 p t}}{4}+\ldots\right)\right\} \\
& <\text { Coefficient }_{e^{-n t}\{F(t)\}=B_{n}}
\end{aligned}
$$

One could certainly obtain slightly sharper estimates by a more careful treatment of the generating function $F_{s}(t)$ for an optimal choice of s. But a new idea will be
needed for a really significant improvement. It is probably too much to ask for an asymptotic formula for μ_{n}, but perhaps others can obtain upper and lower bounds that differ by a polynomial factor.

Appendix

Our estimates for the error terms depend on the following easily verified facts:
(1) $h_{8}(u)<h(u)$ for all $u>0$;
(2) $h(u) \sim \log \log \left(\frac{1}{u}\right)$ as $u \rightarrow 0^{+}$;
(3) $h(u)=O\left(e^{-u}\right)$ as $u \rightarrow \infty$;
(4) $h(u)$ is a non-increasing function of u.

The first of the three error terms is

$$
\int_{s}^{\xi_{1}} \frac{h_{s}(r t)}{\log r} d r
$$

Using first (1) and then (2), we have

$$
\int_{s}^{\xi_{1}} \frac{h_{s}(r t)}{\log r} d r<\int_{2}^{\xi_{1}} \frac{h(r t)}{\log r} d r<\frac{\xi_{1}}{\log 2} h\left(\xi_{1} t\right) \ll \xi_{1} \log \log \left(\log ^{3} \frac{1}{t}\right)=o\left(\frac{\log \log \frac{1}{t}}{t \log ^{2} \frac{1}{t}}\right)
$$

The second error term is

$$
\int_{\xi_{2}}^{\infty} \frac{h_{s}(r t)}{\log r} d r<\frac{1}{\log \xi_{2}} \int_{\xi_{2}}^{\infty} h(r t) d r
$$

By (3) this is

$$
\ll \frac{1}{\log \xi_{2}} \int_{\xi_{2}}^{\infty} e^{-r t} d r=o\left(\frac{\log \log \frac{1}{t}}{t \log ^{2} \frac{1}{t}}\right)
$$

Finally, we must show that $E(t)$ is negligible. Integrating by parts, we obtain

$$
\begin{aligned}
E(t) & \left.\ll h_{s}(r t) r e^{-c \sqrt{ }(\log r)}\right|_{s} ^{\infty}-\int_{s}^{\infty} h_{s}(r t)\left\{e^{-c \sqrt{ }(\log r)}-\frac{c e^{-c \sqrt{ }(\log r)}}{2 \sqrt{ }(\log r)}\right\} d r \\
& \ll \int_{s}^{\infty} h(r t) e^{-c \sqrt{ }(\log r)} d r=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where

$$
I_{1}=\int_{s}^{1 / \sqrt{ } t} I_{2}=\int_{1 / \sqrt{ } t}^{(1 / t) \log ^{2}(1 / t)} \text { and } \quad I_{3}=\int_{(1 / t) \log ^{2}(1 / t)}^{\infty}
$$

Each of these is easy to estimate:

$$
\begin{aligned}
I_{1} & <\frac{1}{\sqrt{ } t} \max _{r \in\left[s, t^{-1 / 2]}\right.} h(r t) e^{-c \sqrt{ }(\log r)} \ll \frac{h(s t)}{\sqrt{ } t} \ll \frac{\log \log \frac{1}{t}}{\sqrt{ } t}=o\left(\frac{\log \log \frac{1}{t}}{t \log ^{2} \frac{1}{t}}\right) \\
I_{2} & =\int_{t^{-1 / 2}}^{(1 / t) \log ^{2}(1 / t)} h(r t) e^{-c \sqrt{ }(\log r)} d r<\left(\frac{1}{t} \log ^{2} \frac{1}{t}\right) h(\sqrt{ } t) \exp \left[-c \sqrt{ }\left(\log \left(t^{-1 / 2}\right)\right)\right] \\
& \ll \frac{\left(\log ^{2} \frac{1}{t}\right) \log \log \frac{1}{t}}{t} \exp \left[-c \sqrt{\left.\log \left(t^{-1 / 2}\right)\right]}=o\left(\frac{\log \log \frac{1}{t}}{t \log ^{2} \frac{1}{t}}\right)\right. \\
I_{3} & \ll \int_{(1 / t) \log ^{2}(1 / t)}^{\infty} e^{-r t} e^{-c \sqrt{ }(\log r)} d r=o\left(\frac{\log \log ^{\frac{1}{t}}}{t \log ^{2} \frac{1}{t}}\right)
\end{aligned}
$$

References

1. M. Best, 'The distribution of some variables on symmetric groups', Indag. Math. 32 (1970) 385-402.
2. B. Bollobás, Random graphs (Academic Press, London, 1985), Ch. XIV.
3. J. Bovey, 'An approximate probability distribution for the order of the elements in the symmetric group', Bull. London Math. Soc. 12 (1980) 41-46.
4. J. Delaurentis and B. Pittel, 'Random permutations and Brownian motion', Pacific J. Math. 119 (1985) 287-301.
5. P. Erdös and P. Turán, 'On some problems of a statistical group theory III', Acta Math. Acad. Sci. Hungar. 18 (1967) 309-320.
6. P. Erdős and P. Turán, 'On some problems of a statistical group theory IV', Acta Math. Acad. Sci. Hungar. 19 (1968) 413-435.
7. P. Erdós and P. Turán, 'On some general problems in the theory of partitions I', Acta Arith. 18 (1971) 53-62.
8. H. Halberstam and H. Richert, Sieve methods (Academic Press, New York, 1974), p. 5.
9. G. Hardy and S. Ramanujan, 'Asymptotic formulae for the distribution of integers of various types', Proc. London Math. Soc. (2) 16 (1917) 112-132.
10. D. H. Lehmer, 'On reciprocally weighted partitions', Acta Arith. 21 (1972) 379-388.
11. J. Nicolas, 'Distribution statistique de l'ordre d'un élemente du groupe symétrique', Acta Math. Hungar. 45 (1985) 69-84.
12. E. Schmutz, 'Proof of a conjecture of Erdős and Turán', J. Number Theory 31 (1989) 260-271.
13. E. Schmutz, 'Statistical group theory', University of Pennsylvania Doctoral dissertation, 1988.
14. A. Vershik and A. Shmidt, 'Limit measures arising in the asymptotic theory of symmetric groups I', Theory of Prob. and Its Applications 22 (1977) 70-85.
15. A. Vershik and A. Shmidt, 'Limit measures arising in the asymptotic theory of symmetric groups II', Theory of Prob. and Its Applications 23 (1978) 36-49.

Mathematics and Computer Science Department
 Drexel University
 Philadelphia, PA 19104
 USA

[^0]: Received 25 August 1989; revised 1 July 1990.
 1980 Mathematics Subject Classification 11N37.
 Research supported by NSF (DMS-8901610) and a Drexel University Faculty Development Minigrant.

