
THE EXPECTED ORDER OF A RANDOM PERMUTATION

WILLIAM M. Y. GOH AND ERIC SCHMUTZ

ABSTRACT

Let fin be the expected order of a random permutation, that is, the arithmetic mean of the orders of the
elements in the symmetric group Sn. We prove that log/in ~ c\/(n/\ogn) as n -> oo, where

c = 2 / ( 2 I °° log log I — — I dt\

1. Overview

If a is a permutation on n letters, let Nn{a) be the order of a as a group element.
For a typical permutation, Nn is about nlogB/2. To make this precise, we quote a
stronger result of Erdos and Turan [5].

THEOREM 1. For any fixed x,

# j cr e 5 n : log (A^n(a)) < | log2« + -^- log 3 / 2 « | ^

n-»oo v \^"'^J J — oo

Many authors have given their own proofs of this remarkable theorem. For a
survey of these and related results, see [2].

Let

un = —- V (order of a)
n\ ^^

be the expected order of a random permutation. The problem of estimating fin was
first raised by Erdos and Turan [6]. Note that x is fixed in Theorem 1. It will not help
us estimate //n because we cannot ignore the tail of the distribution. There are some
permutations for which Nn is quite large. In fact, Landau proved that

ma.\Nn(a) = eVnl0gn<1+0(1)).

It turns out that a small set of exceptional permutations contributes significantly to
fj,n. Erdos and Turan determined that log//n = O(\/(n/\og «)). (A proof appears in [12,
13].) This paper contains sharper estimates. We prove the following asymptotic
formula.
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THEOREM 2.

c - 2 7( 2 f
First we give a brief overview of the proof. Consider the generating function

ZBne-nt = (\-e-tr1 U (1 - log (1-«"*)).
n primes p

One can think of Bn as the sum of the weights of a certain set of weighted partitions.
By classical methods, one can easily prove that logi?n ~ c\/(n/\ogn). Our goal is to
prove that \og/in ~ logl?n.

The connection between permutations and partitions is that the cycle lengths of
a permutation on n letters form a partition X of the integer n (written X I— «). By a well-
known theorem of Cauchy, the number of permutations of n letters with ct cycles of
length / is

n\

Cl\c2\...cn\\ci2c*...ncn'

If X = {XvX2,...} = {\\2\...,nc»}, define

LCM(Al5/l2)...)w(xy.=
Since the order of a permutation is the least common multiple of its cycle lengths, we
have

Hn = E
X\-n

For each fixed integer s ̂  2, we shall construct a set P^ of partitions of n. Obviously,
a lower bound can be obtained by considering only the contribution from elements
of/*:

The idea is to choose P°n in such a way that the right-hand side of (•) is both easy to
estimate and large enough to give a good bound. Consider the generating function

( p-2pt p-3pt p-ipt f,spt\

l+e-»t + e—- + e-— + e—+... + e— .
j /

We shall choose P^ in such a way that

For large s, this is a good approximation; for any £ > 0, one can choose s so that, for
n > no(e, s), one has

2-2
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The upper bound is both more difficult and harder to outline. A sieve-
like argument is used to prove that the lower bound is sharp, that is, that

2. The lower bound

Let Gs
m be the set of partitions of m into distinct parts of the form (d-p), where

d ^ s,p is a prime that is larger than s, and each prime larger than s divides at most
one part. In other words, #Gs

m is the coefficient of xm in

n (\+xp+x2p+...+xsp).
primes p>s

For technical reasons, it is not convenient to estimate £AeCs W(X). (Roughly: the
Tauberian side conditions are difficult to verify.) Instead, we consider a closely related
set. Suppose that X e Gs

m for some m < n. Then one can obtain a partition of n by
adjoining a part of size (n — m). Think of partitions as multisets. Adjoining a part
corresponds to taking a multiset union (that is, with multiplicities). Let As

n be the set
of partitions that can be obtained in this way; in other words, let

As
n: = {X [){(n-m)}:m<n and XeG'J.

Of course, it may happen that a partition peAs
n can be formed in more than one

way; one can have p = X U {(n — m)} = X' U {(n — m')}. But we claim that p can be
formed in at most n ways. To see this, note that X is completely determined by p and
m. In other words, if X U {(n — m)} = X' U {(n — m)}, then X = X'. Since there are at most
n possible values of m, it follows that there are at most n decompositions of p of the
form p = X U {(n-m)}. Finally, let Fn = Gs

n U As
n. Then we have

Mn> L W(p)>- £ £ W(X[){(n-m)}) + - £ W(X).
peP°n

 nm<nXeGs
m " XeG'n

For X = {d1pl,d2p2,...}eGs
m,

dx d2 .. .
But then

Hence

Hn>^» £ £
Ln m^n XeG*m

> ^ C o e f f i c i e n t , - ^ / ) ) = *^-

To estimate Bn and B{*\ we need the following lemma.

LEMMA 1 (Hardy-Ramanujan [9]). Let f(t) = £nane~n t , and suppose that
(1) an ̂  0, and
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(2) log/(0 ~ -rp- as t -> 0+, where A is a fixed positive constant.

<log(-

Then
( "log Efltl~^VU^)V(«/iog«j as n-* ao.
\fc-i

Now let
. , . . e~2r e~3r e~sr

:= log e + + + ... +

and let h(r): = log(1 - log(1 -e~r)). We need the following.

LEMMA 2.

log Fs{t) ^ P /.,(«) du as t^ 0+.

(I)J
Proof. First, we remark that this lemma is quite similar to Lemma 1 in [6]. At

the suggestion of a referee, we are providing a fairly detailed proof. In this lemma,
n(x) denotes the number of primes less than or equal to x. We have

log/v(0 = - l o g ( l - O + E K{pt).
primes p>s

Expressing this as a Stieltjes integral and integrating by parts, we obtain

hs{rt) dn{r) - log (1 - e~l) = - n(s) hg{st) - f° n{r) th's{rt) dr- log (1 - <r<).f
J s

Using the prime number theorem in the form

fr dr

we obtain

_ r r_̂_
where

£ ( 0 = - log (I - e"4) + O\t\ h's{rt) re-
c^loer) dr).

Integrating by parts again, we have

hs(rt)dr
logr

• + E(t).

Later, E{i) will be shown to be negligible. For now, we concentrate on the main term,
splitting the interval of integration into three parts. Let

t j - and £ 2 :=ylog 3 - .
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Then

C«h8(rt)dr= p l
+ ( \ f ° °

The idea is that logr is nearly constant on the middle interval, and this makes the
integral easy to estimate. The other two intervals contribute negligibly. For re[^ls^2]
we have logr = log(l/0 + #(loglog(l/0). Hence

h (rt) 1 fa

{, I o 8 r

hs(u) du as

/log log -\

\ "08*7 /

This is the main term. The appendix contains a proof that both E(t) and the remaining
two integrals are negligible.

COROLLARY.

log B? ~ ks V(«/log«) fl5 « -• oo, w/iere A:g = 2 / 2 h,{r) dr .
V V Jo /

Proof. Apply Lemma 1 to /,(*): = (1 - e~l) Fs(t).

By arguments similar to those in Lemma 2, we obtain the following.

LEMMA 3.

COROLLARY.

log 0BJ~

logfT[/)-

- cV(«/logn)

/logy"'

as n -*•

h{r)dr
0

CXD, whe

as

re i

t-

i —

•^0 + .

= 2 1// f00 \
= 2 / 2 h{f)dr\.

V V Jo /
Finally, we use the monotone convergence theorem to complete the proof of the

lower bound:

lim P\(r)</r= P" lim A,(r) </r = r/i(r)^r.
s-»oo Jo Jo s-»oo Jo

Hence log/zn

3. 77ie «/J/?er bound

We had
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Observe that 2C* 3C»... n°n = Xx X2 Xz.... (Recall that ct = ct(X) = the number of parts of
size / in X) We therefore have

Think of partitions as multisets. For each partition X, we shall choose partitions
n and co such that X = n U co. (To make this paper self-contained, we repeat a few
arguments from [12].) The decomposition will have the following two properties:

(1) the least common multiple of the parts of n is equal to the least common
multiple of the parts of X;

(2) if X = n U co and X' = n' U co', then X = X' if and only if n = %' and co = co'.
One can think of n as a kind of minimal generating set. Suppose m is the least
common multiple of the parts of a partition X. Let p\l p\* • •. pe

s
s be the prime

factorization ofm(pi <p^ for / <j). We define n = {n^n2,...,nt} as follows. Let nx be
the smallest part of A that is divisible by/?*1. Now suppose that nx, n2,...,n, have been
defined. If each/?*' divides some nj with 1 <y ^ <f, then set / = £ and stop. Otherwise,
let k = min{/\p\i divides none of n1}n2,...,n(), and let ne+l be the smallest part of X
that is divisible by pe

k
k. Finally, we define n: = {n^n2,...,nt}. The procedure must

terminate (in fact, t ^ s), so n is well defined. Given X, let co be the remaining parts,
that is, co = X — n and X = n(jco. This is a convenient place to define a certain function
a, which will play an important role later. Suppose n = {7r15 n2,...}, and suppose
m = p\lpe

z*-.-pi' is the least common multiple of the parts of n. Then define

if / = min {/: I pej divides 7rfr}

For future reference, we make the following simple observation: for each j ,

Continuing where we left off, we have

X1X2... n(On1n2...co1co2...

_ y LCM(7r1,n2, . . . )

n1n2...

The inner sum is uniformly O(n) by a theorem of Lehmer [10]. Since a factor of n is
negligible, we need only estimate

L C M ( 1 , n2,...)

We exploit cancellation by factoring the parts of our partitions. For / = 1 , . . . , / ,
let

d^flpf'*.

The dt have deliberately been defined in such a way that they are pairwise relatively
prime and their product is LCM(7r15 n2,...). Note that dt divides nt for each /. Let
d[ = nt/d0 and let 2' = (d'tyt_v Then, for any of our 'generating partitions' n, we have

, T T 2 , . . . ) _ dxd2...

nxn2
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REMARK. We can think of D = {dvd2,...} as a multiset (partition), or
alternatively as a vector (sequence, ordered partition). There is no inconsistency,
because only one ordering of the parts of D can occur. This is discussed in our earlier
paper [12], where we used the notation 2 instead of D. (The notation has been changed
to avoid writing unions of vectors.)

From (**) we have

LCM(7t1,7T2,...) _ y y dld2... _ y V
nxn2... D 5, d1d[d2d2... D -,

In order to estimate this expression, we first decompose the Ds. Let z: =
V«/(log2 «), and write D = S U P U R, where

S consists of those parts of D that are divisible by some prime less than z,
P consists of those parts of D that are primes greater than or equal to z, and
R consists of the remaining parts of D.

Then each D corresponds to a triple (S, P, R), and we have

y y * ) | v V L
P 7 J1J2 •••/ \ R 7 J1J2 •

-*1 -*2 -*3

In 7i, the inner sum ranges over all sequences <yf> for which slj1 + sj2 + ... ^n.
Similarly for T2 and 7 .̂ This overestimate gives an upper bound that is surprisingly
sharp. We shall prove that Tx and 7̂  are small.

Estimates for Tx: Recall that S c D, and the parts of D are pairwise relatively
prime. Hence each prime less than z divides at most one part of S. This implies that
S has less than z parts. Thus there are at most nz different possible S, and the inner
sum of Tx is at most (£"-1 \/j)z. We therefore have

™ j)

Estimates for T3: The parts of R have at least two prime divisors (counting
multiplicities), each of which is greater than z = \/n/(log2 ri). They therefore have
exactly two prime divisors, since the product of more than two such primes would be
larger than n. Therefore R can have at most log4 n parts (otherwise R would sum to
more than n). Thus there are at most nloe n possible R, and for each R the inner sum
is at most (^;i_x l//)

log4n. Thus Tz = e?W{nliogn)\
Finally, recall that

F(t):= Ys^n e~nt = (1 — e^y1 J~|
n primes p

Hence

T2 = Coefficiente-n«

< Coefficiente-««{/t0} = Bn-

One could certainly obtain slightly sharper estimates by a more careful treatment
of the generating function Es(t) for an optimal choice of s. But a new idea will be
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needed for a really significant improvement. It is probably too much to ask for an
asymptotic formula for /zrt, but perhaps others can obtain upper and lower bounds
that differ by a polynomial factor.

Appendix

Our estimates for the error terms depend on the following easily verified facts:

(1) hs{u)<h{u) f o r a l l w > 0 ;

(2) h(u) ~ log log I - ) as u -> 0+;

(3) h(u) = O(e~u) as u -> oo;

(4) h{u) is a non-increasing function of u.

The first of the three error terms is

Using first (1) and then (2), we have

J, T5F

The second error term is

[cohs(rt)J 1

J«, l
By (3) this is

1

Finally, we must show that E{t) is negligible. Integrating by parts, we obtain

where

A = I /. = and /, =
i/vt J ait) log" (i/o
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Each of these is easy to estimate:

m/t) log2 <i/t) /i i\

/ , = h(rt)e-cV(loer)dr < -log2- WV0exp[-cV(log(r1/2))]

log2-I log log- /log log-
/ ^..r« r „ /i _ _ / .—1 /9\n « Iy

exp[-cVlog(r1/2)] = 0
1

Too /

e-
rte-cV{ioer)dr = o I

J(l/Olog2(l/t) \

log log-

' ( l /Oiog'U/t) • "*•\ /log2y
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