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Abstract 

The 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is the 

potential key to meet the exponentially increasing demand of the mobile end users. The 

entire LTE network architecture and signal processing is carried out at the enhanced 

NodeB (eNB) level, hence the increased complexity and cost. Therefore, it is not efficient 

to deploy eNB for the purpose of extending the network coverage. As a solution, 

deployment of relay node (RN), with radio-over-fibre (RoF) acting as the interface 

between eNB and RN is proposed. Due to the high path loss and multipath fading, wireless 

interface would not be the ideal channel between eNB and RN. A detailed investigation is 

carried out by comparing the Rayleigh multipath fading channel with the optical fibre 

channel, where the latter achieved a ~31 dB of signal-to-noise ratio (SNR) gain. The 

distributed feedback laser (DFB) is selected as the direct modulated laser (DML) source, 

where the modulation method introduces a positive frequency chirp (PFC). The existing 

mathematical expression does not precisely explain on how the rate equations contribute to 

PFC. Therefore, an expression for PFC is proposed and derived from the carrier and 

photon densities of the rate equations. Focusing on theoretical development of DML based 

RoF system, a varying fast Fourier transform (FFT) scheme is introduced into LTE-

Advanced (LTE-A) technology as an alternative design to the carrier aggregation. A range 

of FFT sizes are investigated with different levels of optical launch power (OLP), the 

optimum OLP has been defined to be within the range of ~-6 to 0 dBm, which is known as 

the intermixing region. It is found that FFT size-128 provides improved average system 

efficiency of ~54% and ~65% in comparison to FFT size-64 and FFT size-128, 

respectively, within the intermixing region. While fixing FFT size to 128, the investigation 
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is diverted to the optimisation of optical modulators. The author revealed that the 

performance of dual electrode-Mach Zehnder modulator (DE-MZM) is superior to both 

DML scheme and single electrode (SE)-MZM, where DE-MZM achieved a transmission 

span of 88 km and 71 km for 16-quadrature amplitude modulation (QAM) and 64-QAM, 

respectively. At the initial experimental link design and optimisation stage, an optimum 

modulation region (OMR) is proposed at the optical modulation index (OMI) of 0.38, 

which resulted in an average error vector magnitude (EVM) of ~1.01% for a 10 km span. 

The EVM of ~1.01% is further improved by introducing the optimum OLP region at –2 

dBm, where the observed average EVM trimmed to ~0.96%. There is no deviation found 

in the intermixing region by transmitting the LTE signal through a varying transmission 

span of 10 to 60 km, additionally, it was also revealed that the LTE RoF nonlinear 

threshold falls above the OLP of 6 dBm. The proposed system was further developed to 

accommodate 2×2 multiple-input and multiple-output (MIMO) transmission by utilising 

analogue frequency division multiplexing (FDM) technique. The studies procured that the 

resulting output quality of signal at 2 GHz and 2.6 GHz is almost identical with a twofold 

gain in the peak data rate and no occurrence of intermodulation (IMD). In order to emulate 

the complete LTE RoF solution, an experimental design of full duplex frequency division 

duplex (FDD) system with dense wavelength division multiplexing (DWDM) architecture 

is proposed. It is found that channel spacing of 50 MHz between the downlink (DL) and 

uplink (UL) introduces severe IMD distortion, where an adjacent channel leakage ratio 

(ACLR) penalty of 14.10 dB is observed. Finally, a novel nonlinear compensation 

technique utilising a direct modulation based frequency dithering (DMFD) scheme is 

proposed. The LTE RoF system average SNR gain observed at OLP of 10 dBm for the 50 

km transmission span is ~5.97 dB. External modulation based frequency dithering (EMFD) 

exhibits ~3 dB of average SNR gain over DMFD method. 
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A tremendous growth in information and communication technologies were observed 

as the end of the millennium approached. Lately, mobile communications matured rapidly 

from simple voice and text message services to more complex data-driven applications, 

namely live video streaming, multimedia message and cloud services [1]. Due to the 

luxurious data-driven applications in mobile communications as an addition to the existing 

voice application, from 2005 onwards, fixed telephony (wired) services experienced a slow 

growth pattern [2]. There are also two other fundamental reasons to the rapid evolution of 

the mobile communication technology, which are as follow [3]: 

 Popularization of IEEE 802 wireless technologies 

 Market globalization with improved vendors and operators coming from this new 

framework.  

1.1 Growth and Evolution in the Field of Communications 

Figure 1.1 illustrates the subscription growths measurement and prediction carried out 

by Ericsson [4], for both fixed and mobile services from 2008 to 2017. As depicted in 
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Figure 1.1, fixed line services experienced very minor growth, which has almost reached 

saturation throughout the year span. In contrast, the mobile broadband as a sub-segment of 

mobile subscriptions are expected to reach almost 2 billion subscriptions, with complete 

mobile subscriptions predicted at 7 billion. The reason behind the increase in mobile 

services subscription compared to fixed services is that mobile operators offer large 

bundles for free voice calling, and also in some cases, free data services [5].  

 The actively growing end user subscriptions with bandwidth hungry, high 

specification, real-time, and delay-sensitive applications have driven mobile 

communications and as well as the pure wireless communication technologies to 

continuously progress [3]. From the statistics shown by AT&T, from 2006 to 2009, the 

mobile data traffic has increased by 5000%. T-Mobile USA reported that the mobile data 

traffic increased by 45% between the second and third quarter of 2009. The rapid growth 

in mobile traffic is directly related to the user friendliness in accessing wireless internet via 
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smartphones and tablet computers [5]. In order to support the rapid increase in mobile 

traffic, mobile operators have introduced many different network topologies as shown in 

Figure 1.2. The 1st generation (1G) technology was the pioneer of mobile communications 

introduced by 3GPP and advanced mobile phone system (AMPS), which operated in the 

analogue domain, and the successor of 1G was followed by 2nd generation (2G) Global 

System for Mobile Communications (GSM) operated in the digital domain [6]. Both 1G 

and 2G were designed for voice transmission, thus an add-on technology was incorporated 

into GSM, known as general packet radio service (GPRS) to provide the data transmission 

or mobile broadband for long range communication [7]. All the aforementioned 

technologies were deployed for intermediate to high mobility scenarios. In parallel, there 

were also active pure wireless communication technologies, namely wireless local area 

network (WLAN) - 802.11 a/ b/ g/ n, Zigbee, Bluetooth, ultra-wideband, and the 

millimetre wave technology designed for short range communications with reduced 

mobility [8-11].  

The 3rd generation (3G) mobile communication technology known as the Universal 

Mobile Telecommunication System (UMTS) provided an integrated voice and data 

services [12]. But, as data requirement became increasingly critical, 3GPP established a 

standard known as LTE and build up frameworks as an evolution to the existing 3GPP 

radio technologies. The LTE frameworks precisely focus on a development path for GSM 

and UMTS. The frameworks were divided into two phases where the initial framework 

involved in the completion of first LTE standardisation and the following framework was 

focused on the LTE development path towards actual 4th generation (4G) specification 

known LTE-A. TeliaSonera launched the first commercial LTE service in Stockholm, 

Sweden, and Oslo, Norway [5]. The detailed specification of both mobile and wireless 
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communications are presented in Table 1.1, which clearly shows the technology evolution 

coordinating to the increasing data rate [13].   

1.1.1 The Infrastructure of LTE and LTE-A 

The principal emphasis of this thesis is on the physical layer of the LTE technology, 

denoted as the 4G network, shown in Figure 1.2. The first framework of LTE - release 8 

was commissioned in December 2008, followed with LTE-A - release 10 established in 

March 2011 with additional features. There are also controversies that LTE-A technology 

is the true 4G evolution from 3G, and the LTE technology being the 3.9G network 

venturing into the 4G domain. Due to the high number of mobile technologies, the labels 

are merely defined to classify every framework; the crucial matter here is the system 

evolution, capabilities and meeting the end-user demand. In other words, LTE and LTE-A 

are the same technology with the common infrastructure, and the latter being the 

advancement of LTE as a criteria of the International Telecommunication Union (ITU) 

[13].  

The radio access features of LTE and LTE-A technologies are listed in Table 1.2, 

where the given parameters highlight the explicit difference between the technologies. 

Since LTE and LTE-A shares the same infrastructure, thus the technologies are designed 

with some common features, namely the single carrier modulations (SCMs), multi-carrier 

modulations (MCMs) and receiver equalizer. However, LTE operates with symmetrical 

transmission, where at any given time, the DL and UL transmits the same bandwidth with 

uniform transmission parameters. For an example, if DL operates at 20 MHz bandwidth, 

the occupied subcarriers and FFT size will be 1200 and 2048, respectively, with a fixed 

cyclic prefix (CP) size and UL will maintain the same configurations. In the case of LTE-

A, carrier aggregation comes into play and the available bandwidth ranges from 40 to 100 



6 

 

MHz are shared asymmetrically with non-uniform transmitter parameters. In other word, 

the DL bandwidth could be 20 MHz and the UL bandwidth could be 100 MHz with 

enabling parallel transmission of multiple LTE signals [14].   

In the LTE network architecture, the design is altered with a cost efficient 2 node 

architecture, namely the access gateway (AGW) and eNB which operates as the core 

network and radio access network, respectively. Compared to the legacy GSM base 

transceiver station (BTS) and UMTS NodeB or otherwise known as home NodeB 

(hNodeB) specifically designed for indoor wireless applications with similar operating 

characteristics as NodeB [15], LTE eNB is by far more complicated than any of its 

counterpart. The reason behind this is that eNB have a huge built in density of all relevant 

signal processing equipments and major network architectures [16, 17]. 

 

Table 1.1: Overview of wireless technologies [7-11, 13]    

Technology Tendered Spectrum Peak Data Rate Signal Range Typical Usage 

GSM 900 / 1800 MHz 9.6 kbps 35 km Voice 

GPRS 900 / 1800 MHz 160 kbps 35 km Data 

UMTS 873 / 1900 MHz 2 Mbps 2 km Voice, Data and 

Multimedia 

802.11 a 5 GHz 54 Mbps 100 / 30 m WLAN 

802.11 b 2.4 GHz 11 Mbps 110 / 35 m WLAN 

802.11 g 2.4 GHz 54 Mbps 110 / 35 m WLAN 

802.11 n 2.4 / 5 GHz 150 Mbps 250 / 70 m WLAN 

ZigBee 2.4 GHz 250 kbps 10 m WPAN 

Bluetooth 2.4 GHz 2.1 Mbps 10 m WPAN 

LTE 1.8 / 2.6 GHz 100 Mbps 1 km High Speed Data 

LTE-A 1.8 / 2.6 GHz 1 Gbps 1 km High Speed Data 

UWB 3.1 - 10.6 GHz > 100 Mbps 10 m WPAN 

Mm-Wave 57 - 64 GHz > 1 Gbps 10 m WPAN 
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1.2 Problem Statement 

In the radio access network of LTE, eNB functions as the base station similar to GSM 

BTS and UMTS NodeB, but the contrast in eNB reflects via the 2 node architecture 

leading to an operating characteristic of not depending in a central controller. In the case of 

GSM BTS or UMTS NodeB, there is an independent central controller consists of the radio 

network controller (RNC) and a base station controller (BSC). Conversely, the eNB 

architecture is designed with all the built-in function of a central controller with the radio 

access network as well, which makes it a smart, costly and complex BS of LTE [17]. 

In addition, the vastly allocated spectrum for LTE in urban locations throughout the 

world are either 2.6 GHz or 1.8 GHz, with the legacy 3G core band of 2 GHz might be re-

farmed for LTE applications in the near future [13, 18, 19]. The drawbacks of such a 

configuration would be [18-20]: 

 

Table 1.2: Overview of LTE and LTE-A [80] 

Parameters LTE LTE-A 

Single carrier modulations QPSK, 16-QAM and 64-QAM QPSK, 16-QAM and 64-QAM 

Multi-carrier modulations Downlink: OFDM, Uplink: SC-

FDM 

Downlink: OFDM, Uplink: SC-FDM 

Occupied subcarriers 72, 180, 300, 600, 900, and 1200 Carrier aggregation 

FFT size 128, 256, 512, 1024, 1536, and 

2048 
Carrier aggregation 

Cyclic prefix length Normal: 1/14, Extended: 1/4 Carrier aggregation 

Radio bandwidth 1.4, 3, 5, 10, and 20 MHz Carrier aggregation into 20 to 100 MHz 

Duplexing FDD and TDD, Symmetrical FDD and TDD, Symmetrical and 

asymmetrical 

MIMO Up to 4x4 Up to 8x8 

Capacity 800 active users per cell in 20 

MHz bandwidth 
Up to 3 times higher than LTE 

Receiver equalizer Zero forcing Zero forcing 
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 In the operating spectrum of urban locations, the LTE signal would face a high path 

loss from air transmission compared to the technologies operating at lower 

frequencies [19]. For an example, the typical free space isotropic path loss at 1 km 

transmission distance and an operating frequency of 2.6 GHz is ~100.75 dB. In 

addition, the extended Okumura Hata model demonstrates a 1 km path loss of ~107 

dB at 2.6 GHz band [21].   

 Urban locations have the nature of non-line-of-sight (NLOS) operating condition, 

which will result in multipath propagation and considering the aforementioned path 

loss, the defect would be highly severe to LTE signals in terms of the coverage area 

[19].  

 The cell size of eNB in urban locations is much smaller than any of its former 

technology where the typical cell radius is 1 km [18, 22, 23]. The user equipments 

(UE) at the cell edge will experience critical problems due to the deterioration in 

SNR owing to the high path loss and multipath propagation. A trivial solution for 

this problem is to employ a high density of eNB to achieve the satisfactory capacity 

[20], in other word, deploy eNB at every 1 km radius [18, 22, 23]. 

 The scenario of increased eNB deployment will lead to access growth of the capital 

expenditure (CAPEX) and operating expenditure (OPEX), hence higher cost per 

delivered bit [24].  

 Injecting more power from eNB and UE to overcome the path loss will add to the 

complexity and burdens the high-power amplifiers (HPA) at eNB. It also greatly 

effects the battery lifetime of the respective UEs due to the power consumption 

caused by HPAs [19].  
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Hence, the LTE structure is not realistic in terms of the capacity, coverage, quality-of-

service (QoS) and the deployment cost using the existing infrastructure, i.e. increasing 

eNB. Despite the fact that LTE radio access network employs complex technologies, 

including varying SCMs, orthogonal frequency division multiplexing (OFDM), and 

varying radio bandwidths as shown in Table 1.2, these complex technologies will not aid 

in improving the cell edge throughput. The urban LTE spectrum and NLOS connectivity 

induces severe loss and multipath propagation, respectively, which can be mitigated by 

transmitting lower order SCMs for reduced data rate, but such mitigation defeats the 

purpose of LTE technology. The criticalness of the path loss can be observed in [18, 22, 

23] where the cell size of eNB is limited to 1 km. Furthermore real-time data from [25] 

exhibits that UE potentially receives a data rate of less than 20 Mbps at the cell edge from 

eNB, with NLOS path in an urban environment due to multipath propagation. Figure 1.3 

illustrates the conceptual existing field deployment of LTE network in an urban area, 

where eNB is deployed at every consecutive cell with a 1 km radius to provide adequate 

eNB

UE

1 km

Cell 1

Cell 2

Cell 3

Figure 1.3: Conceptual full duplex LTE radio access network structure in urban area. 
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coverage and such scenario directly increases the CAPEX and OPEX due to the high 

complex structure of eNB. Cells are labelled as cell 1, cell 2, and cell 3, and the eNB is 

wirelessly connected to the UE within the respective cell. In order to avoid the increasing 

cost and to further improve the cell edge performance for LTE, a network extension 

solution with seamless integration is required for urban areas. Radio relaying with 

deploying RN at the cell edge and connected to eNB appears to be one of the most 

promising solutions.  

There are various types of relay schemes exist for physical layer realizations, including 

[26]:  

 The amplifying and forwarding (AF) type RN is widely known as a repeater, where 

a receiving signal is simply amplified and forwarded to UE. This AF scheme is 

very low in complexity, which reflects a lower cost and importantly only adds a 

small delay to the incident latency. The shortcoming of AF scheme is that it 

amplifies the noises that co-exist with the receiving signal.  

 Selective decode and forward type RN decodes and examines the received signal 

using cyclic redundancy check, where signals with high QoS will be forwarded to 

UE. This scheme is effective for avoiding the low QoS signal with a requirement of 

long processing delay and strongly increases the latency. 

 Demodulation and forward (DF) type RN demodulates the received signal, 

performs a hard decision, re-modulate and transmits the new signal to UE. DF 

method enhances the QoS of the new signal, but adds delay to the existing latency.     

The previously reported research on LTE cell extension only deployed DF type RN as the 

preferable relaying technique with wireless interface between eNB and RN [23, 25, 27, 
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28]. As wireless interface is limited by the path loss and multipath propagation, AF type 

RN is not the desired method. Nagata et al [27] demonstrated throughput gains of 6.1% 

and 10.3% at the cell edge, by employing AF and DF type RN with wireless interface, 

respectively, which shows the shortcoming of AF type RN. Peng et al [23] presented a 

throughput gain of 8.73 Mbps at cell edge of 1 km radius with DF type RN. The cell radius 

of LTE was extended to 3.9 km utilising DF type RN by Wirth et al [25], where at the cell 

edge a throughput of up to 70 Mbps was achieved. As mentioned earlier, DF type relay 

adds additional delay to the existing latency of LTE technology, as well as increased 

complexity and fails to seamlessly integrate RN into the LTE networking structure. The 

main objective of adding RN to the LTE network is to increase the QoS at the cell edge 

and at the same time to reduce the deployment of eNB, thereby reducing the CAPEX and 

OPEX. Thus, it is essential to maintain a low complexity RN, favourably AF type RN, 

however wireless interface cannot handle AF type RN efficiently, which effectively 

defeats the purpose of RN deployment.    

The problem with wireless interface can be countered by implementing RoF system as 

the interface between eNB and RN, the typical loss of a single mode optical fibre is 0.2 dB/ 

km with no characteristics of multipath propagation makes RoF an excellent candidate. 

Reduction of the bit error rate from 10-2 to 10-3 in optical fibre only takes 1 or 2 dB of SNR 

[29]. The low impairment properties nominates RoF as an appealing alternative for the 

wireless interface, and the SNR improvement characteristic makes it more suitable for AF 

type RN’s. In RoF system, the incoming radio frequency (RF) signal modulates the 

intensity or phase of the laser diode, which is then launched into an optical fibre in order to 

facilitate wireless access. Cell extension of eNB based on RoF was proposed in [30] with a 

multi-cooperative scheme and achieved an extension up to 2.1 km. In addition, commercial 

LTE-RoF integration has been realised for the indoor distributed antenna system by 
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Zinwave to overcome the RF signal penetration losses for in-building applications [31]. 

Chapter 2 is dedicated for further clarification of RoF. In Figure 1.4, the proposed method 

of this thesis is shown. The cell labelled as primary cell is the location for eNB connected 

to nearby UE via direct link (wireless), the eNB is connected to RN via RoF link which 

aids UE at the cell edge via access link (wireless). Due to the capability of RoF, RN is 

deployed at the adjacent cell to support distant UEs from the eNB. As a result, only a 

single eNB is required for this scenario in the primary cell and effectively reduces CAPEX 

and OPEX. In the RoF link for adjacent cells, the optical signals will split to deliver signal 

to adjacent cell, the split can be performed passively with a varying ratio of 10:90 to 50:50. 

It is important to specify that the proposed cell extension method will affect the capacity of 

the single eNB due to the sharing scenario among the users at every adjacent cell. 

However, since capacity is an issue dealt above the physical layer, and this thesis is 

completely focused in the physical layer, the analysis of the capacity impact and associated 

Figure 1.4: Proposed conceptual full duplex LTE radio access network structure in urban 

area with relay nodes 

RN

eNB

UE

Primary Cell

Adjacent Cell

Adjacent Cell

Direct link

RoF link

Access link
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improvements are beyond the scope of this thesis. All RN in the proposed method operates 

at the same frequency; i.e. the proposed network topology adopts in-band relaying.  

Implementation of RoF as the interface would give the idea of increased the cost and 

complexity from the new deployment of optical fibre and optical related equipments. 

However, the fact would be that the whole concept could be deployed with the existing 

legacy backhaul infrastructure, which was utilised by former technologies in the dense 

urban locations [32].  

Direct modulation (DM) is adopted as the dominant optical modulation method in this 

thesis, due to its low complexity, cost effective and commercial friendly nature. But, DM 

introduces a destructive impairment, known as the PFC. The intrinsic characteristic of PFC 

is similar to the chromatic dispersion (CD), thus the modulated signal experiences severe 

QoS degradation. Since LTE network operates with OFDM modulation with time domain 

noise-like feature, the existing PFC expression describes both adiabatic and transient 

chirps, but OFDM is only transient chirp dependent [33].  

As shown in Table 1.2, the LTE system is designed with varying occupied subcarriers 

and FFT sizes relative to the radio bandwidths. However, LTE-A system does not operate 

in a fixed condition as it adopts both symmetrical and asymmetrical carrier aggregation 

techniques, and that means LTE-A will be transmitting a composite of multi-type 

bandwidth signals within the limit of 40 to 100 MHz with the corresponding FFT sizes. 

Since carrier aggregation is substantially complex compared to the LTE transmitter, as an 

example, at 100 MHz bandwidth, generation of 5 simultaneous OFDM signals are required 

for 5×20 MHz bandwidth signals to fulfil the entire bandwidth. In order to minimize the 

complexity, an alternative method is proposed by adopting the LTE varying FFT sizes 

method into LTE-A. Investigations on the FFT size optimisation was initiated by Jansen et 



14 

 

al [34] and Adhikari et al [35] for coherent optical-OFDM (CO-OFDM) systems while 

taking all the optical propagation perspective, which resulted in the optimum OLP of -8 

dBm and -4 dBm, respectively across all FFT sizes. The optical receiver utilised in this 

thesis is based on the direct detection (DD) scheme and therefore the results given in [35] 

and [34] cannot be taken as a guideline. However, Pham et al [36] optimised FFT sizes for 

DD based optical OFDM (OOFDM) system, unlikely the investigation contains limited 

analysis in the optical propagation domain, hence this work did not cover the optimum 

OLP point. Since DM induces PFC that correlate with CD and jointly distorts the 

propagating signal, investigation on PFC effect is required in the perspective of 

performance evaluation for an end-to-end LTE RoF system.   

The motive of introducing OFDM into the LTE network is due to the inherent ability of 

providing better resilience to multipath propagation owing to the characteristic of long 

symbol duration, which is also a key advantage in the RoF system by providing improved 

tolerance to the inter-symbol interference (ISI) induced by PFC and CD [37]. On the 

contrary, the prominent problem of OFDM is its high peak-to-average ratio (PAPR), which 

will have a direct impact on the optical modulation and the relative OMI.  

The importance of LTE technology is to yield high data rate transmission for end users, 

therefore 3GPP introduced the MIMO topology to enhance the data rate [38]. Transmitting 

MIMO signals over RoF system is not trivial because the group of signals in MIMO is 

configured at the same carrier frequency, hence the RoF system will not be able to provide 

the required diversity for MIMO signals. Jansen et al [39] introduced externally modulated 

optical polarization multiplexing (POLMUX) system with coherent detection to solve the 

diversity problem for MIMO modulation in optical systems. However, the POLMUX 

system significantly increases the cost of implementation and system complexity with 
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respect to the number of MIMO antennas. As an alternative for MIMO configuration, 

analogue electrical FDM seems convenient. Kobayashi et al [40] experimentally 

transmitted FDM-OFDM method up to 80 km of single mode fibre (SMF) with external 

modulation and coherent detection, which is also a highly regarded costly and complex 

system architecture. On the other hand, Liu et al [41] experimentally demonstrated FDM 

based directly modulated RoF system by utilising 550 m multimode fibre (MMF), which is 

limited to indoor applications.  

   All the aforementioned problems are part of the design and development process of 

LTE-RoF system with incorporating only the DL system of LTE. Letian et al [42] 

proposed the coverage extension of eNB with AF type RN and wireless interface for a full 

duplex LTE system, which achieved an extension of 2 km with a 13.05 Mbps throughput. 

The achieved throughput and coverage extension reported in [42] demonstrates that the 

wireless interface offers insignificant impact on the eNB coverage, as the actual LTE 

technology aimed to deliver a throughput of 100 Mbps.  

In order to transmit the LTE signals over the RoF system with a high OLP, the optical 

fibre nonlinear characteristic will be a major obstacle, which in this case is 6 dBm. 

Considering the LTE signal power required in RN for UE delivery, it is important for the 

LTE-RoF system to operate in the nonlinear propagation region to enhance the power 

budget. At a high level of OLP, a frequency dithering method was introduced in baseband 

optical applications by Yariv et al [43] and Willems et al [44] to mitigate nonlinearity 

induced distortion. However, the methodology of frequency dithering in the RoF system is 

substantially different compared to baseband optical systems. 
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1.3 Aims and Objective 

Enhancing the eNB coverage can be achieved with the implementation of RN in the 

networking structure of LTE. The aim of this research is to seamlessly integrate eNB and 

AF type RN by adopting RoF as the interface into the LTE networking structure. As a rule 

of thumb, RoF is aimed to be designed in a simple and least sophisticated technology for 

easy adaptability into LTE networking structure; or in other word as a commercial friendly 

RoF interface.  

The objective of this research includes: 

1. Proposing an analytical closed form expression for PFC via the derivation of the 

laser rate equation, which actually induces the phase distortion.  

2. Numerical modelling of the RoF system with incorporating all LTE and LTE-A 

requirements as a platform for eNB cell extension.  

3. Build an LTE RoF test-bed for experimental verification of the numerical 

modelling; propose an alternative method for the diversity problem in MIMO 

transmission over RoF and a full duplex LTE RoF system design with DWDM 

method. 

4. Propose a compensation method for nonlinear propagation in LTE RoF system to 

provide an enhanced power budget in RN. 

1.4 Original Contributions 

In order to address all the shortcomings in the Problem Statement of Section 1.2, this thesis 

introduces a number of original contributions to the knowledge that are summarised as 

follows:  
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 Investigation on the impact of wireless interface against RoF is analysed and 

discussed for eNB cell extension scenario with AF type RN in Chapter 2. 

 In a directly modulated RoF system, PFC is a major impairment that requires 

addressing. Chapter 3 presents a new closed form expression for OFDM 

modulation based chirping is derived from the laser rate equation to describe the 

nature of distortion introduced while performing numerical integration in a 

computer simulation. 

 Varying FFT scheme is proposed for LTE-A system as an alternative to carrier 

aggregation. The varying FFT sizes are optimised for directly modulated RoF 

system relative to all optical propagation characteristics in Chapter 4 to identify the 

theoretical optimum OLP range.  

  As a continuation in Chapter 4, an end-to-end LTE-A RoF system performance 

evaluation is carried out to investigate the impact of PFC in a transmission system. 

The investigation is carried out by introducing DM and two types of external 

modulators, namely SE-MZM and DE-MZM. It is well known that external 

modulators do not induce PFC during the modulating operation. Although the fact 

that external modulators are higher in cost and complexity [45], it is still important 

to exploit the advantage of external modulators for LTE-A RoF system. 

 As a solution to mitigate the high PAPR problem associated with OFDM signal 

while performing DM, a new modulation region is proposed in Chapter 5 by 

utilising the LTE RoF experimental link. In addition, the investigation is further 

carried out in the same LTE RoF experimental link with transmission spans ranging 
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from 10 km to 60 km. The wide transmission spans are important to identify the 

impact on the optimum OLP and the nonlinear limit of LTE-RoF system.  

 As a solution to the MIMO configuration for RoF transmission, the OFDM over 

analogue FDM (FDM-OFDM) scheme is proposed in Chapter 6 for LTE in the 

context of 2×2 MIMO. The objective of the proposed method is to practically 

implement a simple directly modulated link with DD for FDM-OFDM and 

achieving transmission span of 60 km. 

 In order to provide a complete LTE RoF solution, the design of a full duplex FDD 

LTE RoF system will be introduced in Chapter 7 with DWDM architecture.  

 The DMFD method is proposed for nonlinear propagation compensation. A new 

frequency range is discovered to reinstate this method for RoF system and is 

presented in Chapter 8. Since external modulator is PFC free, and frequency 

dithering method operates solely based on frequency chirping, the proposed method 

is further investigated with externally modulated LTE-RoF system. 

The overall contribution of this thesis is graphically illustrated with a research road map as 

depicted in Figure 1.5. 
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1.5 Research Outcome 

The below list represents the conferences and journals that are published and under 

review, based on the results obtained from the aforementioned contributions. 

1.5.1 Conference Papers 

 [C1] A. Bahrami. T. Kanesan, W. P. Ng, Z. Ghassemlooy, A. Abd El Aziz, S. 

Rajabhandari "Performance Evaluation of Radio-over-Fibre (RoF) System Using Mach-

Zehnder Modulator (MZM) and On-Off Keying (OOK) Modulation Schemes," in The 11th 

Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking 

& Broadcasting Conference (PGNET 2010), Liverpool, UK, pp. 1-4, 21-22 June 2010.  

[C2] A. Bahrami. T. Kanesan, W. P. Ng, Z. Ghassemlooy, C.Qiao, "Performance 

Evaluation of Radio-over-Fibre Systems Using Mach-Zehnder Modulator," in London 

Communication Symposium (LCS) London, University College London, pp. 1-4, 10 Sept 

2010.  

[C3] T. Kanesan, W. P. Ng, Z. Ghassemlooy, J. Perez, "Radio relaying for long term 

evolution employing radio-over-fibre," Networks and Optical Communications (NOC), 

IEEE 16th European Conference on , Newcastle upon Tyne, UK, pp.212-215, 20-22 July 

2011 

[C4] T. Kanesan, W. P. Ng, Z. Ghassemlooy, C. Lu, "FFT size optimization for LTE RoF 

in nonlinear fibre propagation," Communication Systems, Networks & Digital Signal 

Processing (CSNDSP), IEEE 8th International Symposium on, Poznan, Poland, pp.1-5, 18-

20 July 2012 
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[C5] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, "Theoretical and Experimental 

Design of an Alternative System to 2x2 MIMO for LTE over 60 km Directly Modulated 

RoF Link," in Global Telecommunications Conference (GLOBECOM 2012), IEEE, 

Anaheim, USA, pp.1-5, 03-07 Dec 2012. 

[C6] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, "Impact of Optical Modulators in 

LTE RoF System with Nonlinear Compensator for Enhanced Power Budget," in Optical 

Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference 

(NFOEC), Conference on (OFC/NFOEC), Anaheim, USA, 19-21 March 2013. 

[C7] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, "Experimental Demonstration of 

the Compensation of Nonlinear Propagation in LTE RoF system with Directly Modulated 

Laser," in Communications (ICC), IEEE International Conference on, Budaphest, 

Hungary, 09-13 June 2013. (Accepted for Publication) 

1.5.2 Journal Papers 

[J1] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and J. Perez, "Optimization of Optical 

Modulator for LTE RoF in Nonlinear Fiber Propagation," Photonics Technology Letters, 

IEEE, vol. 24, pp. 617-619, 2012. 

[J2] W. P. Ng, T. Kanesan, Z. Ghassemlooy, and C. Lu, "Theoretical and Experimental 

Optimum System Design for LTE-RoF Over Varying Transmission Span and 

Identification of System Nonlinear Limit," Photonics Journal, IEEE, vol. 4, pp. 1560-

1571, 2012. 

[J3] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, "Experimental Verification of 

Optimized LTE Signal over a Directly Modulated RoF System for eNB Cell Radius 

Improvement," Photonics Technology Letters, IEEE, vol. 24, pp. 2210-2213, 2012. 
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[J4] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, "Experimental Full Duplex 

Simultaneous Transmission of LTE over DWDM Directly Modulated RoF System," 

Optical Communications and Networking, IEEE/OSA Journal of, vol. -, pp. -, 2013. 

(Under Review) 

[J5] T. Kanesan, W. P. Ng, Z. Ghassemlooy, and C. Lu, "Optical Modulators Diversity for 

Optimized Nonlinear Compensator in a LTE RoF System," Lightwave Technology, 

IEEE/OSA Journal of, vol. -, pp. -, 2013. (Under Review) 

1.6 Thesis Organization 

This thesis is mainly focused on the research work dedicated to the LTE and RoF 

seamless integration. The literature reviews, original contributions, conclusions and future 

works are divided into 9 chapters.  

Chapter 1 provides the introduction of mobile communication growth and the relative 

technologies with the main emphasis on LTE and LTE-A, including the problem 

statement, aims and objectives with explanation on the original contributions of this 

research and the resulting publications. Chapter 2 gives an in-depth introduction on RoF 

and optical devices required to construct a RoF system, and as well as the advantage of 

RoF compared to wireless channel will be shown.  

Chapter 3 focuses on lasers with major concentration given to the DFB, rate equation 

analysis and mathematical derivation to explain the PFC characteristic. Chapter 4 is 

dedicated for the theoretical development of LTE-A with varying FFT sizes as an 

alternative to carrier aggregation, integration of the proposed LTE-A and RoF system with 

introducing the optimum OLP region and the results obtained from this integration. In 
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addition, a diversity scheme is introduced in terms of the optical modulators for the 

proposed LTE-A system along with performance optimisation. 

Chapter 5 introduces the experimental link designed for LTE-RoF system, with the 

development stage focused on the OMI, optimum OLP and its characteristic towards 

varying transmission span. Chapter 6 consists of the advance LTE-RoF system design, 

where an alternative solution is proposed to solve the diversity problem experienced by 

MIMO for RoF transmission. In addition, a full duplex system FDD based LTE-RoF 

system is designed and developed with all the relative results presented within Chapter 7. 

Chapter 8 is dedicated to the nonlinear compensation by proposing DMFD method for 

LTE-RoF system to improve the respective QoS while the system operates at a high level 

of OLP. Since DMFD operates based on PFC, the adherence of external modulation 

schemes is investigated. Finally, Chapter 9 concludes this thesis by summarising all the 

research findings with the future works that could bring the LTE-RoF system to the next 

level.  
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In the early 1980s, the United States introduced the integration of wireless and optical 

fibre to accommodate military requirements, such as radar systems where optical fibre 

were utilised as an interface between the central station (CS) and the wireless antenna. The 

conventional transporting interfaces for RF signals were copper cables and waveguides, 

which induce high losses. The advantages of optical fibre, namely lower loss and a large 

bandwidth made it an efficient alternative interface. The application of radar is what 

transpired into the widely known the RoF system, where Cooper [46] initially adopted RoF 

into cordless and mobile communications. 

This chapter is dedicated to the RoF system and its building blocks. The RoF system 

plays an important role in wireless communications due to the tremendous growth of end-

users that has lead to higher bandwidth and higher data transfer requirements. Furthermore, 

RoF system is an alternative solution when the wireless communication systems operate on 

a small cell size, where the utilised carrier frequencies are not adequate to be transported 

over co-axial cables or when the radio coverage experiences dead-zones [47]. Both of 

these requirements can be fulfilled by utilising the optical fibre that offers a bandwidth in 

excess of 50-THz [48]. In addition, RoF system is also known for extending the radio 

coverage of a CS for wireless applications [49]. This scenario could be achieved by 

extending the transmission link between CS and the base station (BS) to bring the access 

network closer to every mobile user by deploying optical fibre as the medium. Some of the 

real time applications for RoF systems were carried out in the 2000 Olympic Games in 

Sydney, Osaka Station in Japan and Bluewater Shopping Centre in the United Kingdom 

[47].  
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2.1 Overview of Radio-over-fibre 

A simple explanation for RoF system is that it connects a CS to many BSs by carrying 

the DL signal from CS to BSs for transmission to mobile users via wireless connectivity 

while at the same time RoF system also carries the UL signal from mobile users back to 

CS via BSs.  

Figure 2.1: The usage of RoF system in challenging RF signal penetration areas and 

distributed antenna systems. 
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The importance of the RoF system topology is that it could directly transmit RF signals 

over the fibre without any further processing at the BS. All the complicated RF modem 

and signal processing functions remain at the CS [49]. Therefore it directly introduces 

reduction in the system wide installation and maintenance costs, reduces and simplifies BS 

complexity, and allows a transparent and distributed system. Since the BS complexity is 

significantly reduced, a single high capacity CS could be utilised to handle multiple BSs to 

cover the dead zones or as a solution to the cell edge problem experienced by any CS. 

Figure 2.1 illustrates the CS connected to a RoF system, where the signal is distributed to 

dead zones via passive splitting, namely in-building and in-tunnel transmission, and as 

well as for BS cell extension purpose.  

On the other hand, there are also coexisting optical fibre communication architecture, 

namely the intermediate frequency (IF)-over-fibre system and the baseband-over-fibre 

system. Generally, IF-over-fibre system architecture are utilised when the optoelectronic 

devices in the CS is insufficient to support signals with high carrier frequency. However 

IF-over-fibre system architecture increases the complexity of BS. Since the original RF 

signals will be down-converted to an IF frequency in CS, when the signal reaches BS, an 

up-conversion will be required for wireless transmission. Thus, the element of distributed 

system that exists in the RoF system architecture is not viable with utilising IF-over-fibre 

system due to the increased complexity in BS [50].  

The baseband-over-fibre system is another well-known architecture that could be 

utilised as an alternative to RoF. The optoelectronic devices for the baseband transmission 

have matured over times and therefore offering reduced CS complexity. However, the BS 

complexity significantly increases as most mobile communication operates at high 

frequencies, thereby requiring costly components for up-conversion and down-conversion 
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for end-user transmission and CS delivery, respectively [50]. Since the complexity 

accumulates in BS, the distributed system applicable with the RoF system is not suitable 

for baseband-over-fibre system. Therefore, RoF system would be the most suitable 

solution for dead-zones and radio coverage extension.  

2.1.1 Typical System of Radio-over-fibre 

Figure 2.2 illustrates a simple full duplex RoF system deployed between the transceiver 

of a CS and BS. The CS receives the DL electrical data from a core network, up-converted 

to the frequency required for wireless transmission, and subsequently modulating a laser 

adopting intensity modulation (IM). This operation is known as the electrical-to-optical 
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conversion. The modulated optical signal is then coupled into a SMF for BS transmission. 

At the BS, the receiver is a simple photodetector (PD) performing optical-to-electrical 

conversion, subsequently transmitting the converted signal to mobile users via an antenna. 

The UL transmission is exactly the reverse process of DL. It is clear from Figure 2.2 that 

CS is designed with all the required features leaving BS with only an optical receiver and a 

laser for DL and UL connectivity, respectively.  

2.1.2 Radio-over-fibre Indoor and Outdoor Applications  

Throughout this thesis, the RoF system is only considered as an analogue signal 

distribution link. Some of the known commercial investigations utilising analogue RoF 

systems are in the area of mobile communications, namely the GSM and the UMTS. 

Single mode fibre based RoF system for the outdoor application was introduced by 

Andrew corporation [51]. In terms of in-building applications, the RoF system with MMF 

was introduced by Zinwave corporation [52], LGCWireless corporation [53], and ADC 

corporation [54]. Research on integrating mobile communication and the RoF system was 

mostly focused on the criteria of performance limit. Prior research work on the RoF system 

performance limit with mobile communication was carried out in [55] and [56], which 

investigated the interference of GSM with the wideband code division multiplexing access 

(WCDMA) system and WCDMA with WLAN, respectively.  

The traditional channel for an outdoor RoF system is SMF owing to the low 

attenuation and a high bandwidth. Typical RF signals are designed as a narrow-band, 

therefore SMF can provide a near ideal channel with almost no loss or distortion. The SMF 

only induces impairments at very high frequency and a long span transmission, namely the 

millimetre wave transmission and transoceanic links, respectively. The notable 

impairments are the exponentially increasing attenuation and the CD, which contributes 
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the most distortion at a low OLP level. On the other hand, MMF does not get much 

attention at this transmission condition due to its modal dispersion and a high attenuation 

that has a stronger effect on the propagating signal. The MMF has limited usable 

bandwidth, which is much lower compared to the SMF. This bandwidth limiting factor 

only allows a transmission distance less than 250 m for any the 3G cellular system signal 

distribution in MMF [57].  

2.2 Optical Modulation Methods and Transmitters 

As explained in the previous section, the RoF system is known for extending the radio 

coverage range. In this research, the focus is to modulate the LTE and LTE-A up-

converted analogue signal onto RoF and deliver it to a RN. Normally an analogue 

electrical signal will be converted into an optical signal by directly modulating (i.e. IM) the 

laser diode, or by means of external modulation. The latter method could be either IM or 

phase modulation (PM) and is most suitable for much higher data rates. All optical 

modulation methods reported here is converted back into the electrical domain at the 

receiver by means of the DD method. 

The laser diode is the most important element of the RoF system, as it could operate 

both as an optical transmitter or an optical carrier provider for external modulators. The 

prominent operating wavelengths of the laser diode lie at 1300 nm and 1550 nm, relative to 

the reduced dispersion and attenuation [58], respectively.  

2.2.1 Direct Modulated Laser 

Most commercially available RoF systems are designed with the DML with IM-DD 

[59]. This concept of electrical-to-optical conversion is done by applying a respective 

analogue signal with a sufficient bias current directly onto a laser via a bias-tee. The bias-
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tee is an important device needed to shift the bipolar analogue electrical signal to form the 

unipolar signal to drive the laser. This operation could be easily done with any 

commercially available bias-tee as shown in Figure 2.3. The fundamental of DM is 

illustrated in Figure 2.4 via the light current (LI) curve of a laser. The optical power 

increases weakly near the threshold region due to the spontaneous emission dominated 

process at low bias current. However, the optical power increases rapidly after the 

threshold region where the recombination process is quicker from the rapidly evolving 

stimulated emission and allows the laser to operate coherently. The rapid increase of 

optical power gradually stops due to the development of heat within the laser junction that 

results in the carrier leakage and internal losses, which effectively saturates the laser [60].  

In terms of modulation, the analogue electrical signal is summed with a sufficient bias 

current to ascertain the signal modulation being performed in the linear region as shown in 

Figure 2.4, where modulation of the electrical signal is basically switching the intensity of 

the laser to generate an optical modulated signal. It is important that the bias current is high 

enough so that the analogue electrical signal does not fall close to the vicinity of the 

threshold region to avoid nonlinear impairments, namely turn-off delay and lower peak 

clipping. On the other hand, the bias current should not be extensively high to evade the 

analogue electrical signal falling close to the saturation / back-off region, as shown in 

Figure 2.3: Procedure of directly modulating a laser with electrical signal  
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Figure 2.4. Modulating the signal close to the saturation region will induce a higher peak 

clipping. 

As with every electronic or optoelectronic devices, there are always shortcomings from 

various perspectives. In terms of a laser, there are a few limitations that need addressing 

for systems that operate solely based on DML: 

Modulation bandwidth: The major shortcoming of a laser is its available bandwidth to 

operate as a DML, where it is an important parameter in RoF system due to the high 

operating carrier frequency of RF signals. The frequency response of a laser improves 

relative to the bias current, and as a result increasing the carrier density and the laser 

modulation bandwidth. However excessive bias current will force the laser to operate in 

the saturation region and the stops the bandwidth growth due to gain compression. Laser 
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Figure 2.4: The fundamentals of laser light current curve 
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with high modulation bandwidth was reported in [61] by implementing the multiple 

quantum well method at the 1550 nm window. Bach et al [62] reported bandwidth 

enhancement of up to 37 GHz with the distributed Bragg reflector laser. There are also 

external methods on enhancing laser modulation bandwidth, primarily the injection locking 

method, where Chrostowski et al [63] and Lau et al [64] demonstrated extended laser 

modulation bandwidth with injection locking of up to 50 GHz and 44 GHz, respectively.  

Noise emission: Spontaneous emission is the major element that induces noise in a laser 

and most active at the near threshold region, because above threshold, stimulated emission 

is dominant. The phase and wavelength of spontaneous emission are completely random, 

which as adds to the phase noise and acts as a function of linewidth. The random nature of 

phase noise induces random fluctuation to the output power, commonly known as relative 

intensity noise (RIN) and is measured via the SNR. The RIN measurement with SNR can 

be obtained by the expression of SNR = m
2/2 RIN [65, 66], where m is the modulation 

index. As specified earlier, above threshold region, stimulated emission becomes dominant 

thus phase noise, linewidth and RIN reduces as the optical power increases.  

Frequency chirp: The natural phase noise, linewidth and RIN of a laser without any DM 

eventually reduces as the optical power increases. However, when DM occurs at high 

optical power, albeit it is the stimulated emission dominant area, a residual optical PM 

occurs which broadens the linewidth and shifts the emitting wavelength [67]. The DM 

induced optical PM is widely known as frequency chirping, which fundamentally arises 

from carrier density change within the cavity corresponding to the continuously varying 

input bias current. Frequency chirping is a critical problem in RoF system, as it magnifies 

the effect of CD due to the similar signal-distorting characteristic. Since the LTE-RoF 

integration proposed in this thesis is aimed at designing a commercial friendly system, 
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DML is the best choice due to its simplicity and cost effectiveness. The DFB is picked as 

the DML of the LTE-RoF system due to its inherent characteristic of narrow linewidth, 

thereby reducing the frequency chirp [68]. Additional details on the characteristics of 

various semiconductor lasers, including DFB laser are discussed in Chapter 3 where a new 

expression for frequency chirp will be presented. There are several techniques in reducing 

frequency chirp of a laser. The most well known method on almost completely eliminating 

the residual optical PM is by utilising external modulation. 

2.2.2 External Modulation 

In RoF system, external modulation with the MZM is a well-known technique for high 

frequency signals or long spans transmission. The complexity and cost of this method is 

higher than DML because it requires two different optical components, including a 

continuous wave laser and a MZM. However, a RoF system with MZM could offer 

improved immunity to noise and distortion compared to a conventional DML. The main 

advantage of MZM is the minimum frequency chirp based modulation, albeit it still has 

refractive index variation relative to the modulating signal, but the effect on the optical 

modulated signal is negligible. Therefore, MZM are widely used at microwave range 

frequencies or high bit rate systems. There are two types of MZM, the first type is SE-

MZM and the second type is DE-MZM. 

In SE-MZM, only IM can be performed, where as with DE-MZM both IM and PM can 

be performed [69, 70]. Figure 2.5 illustrates the modulation overview of SE-MZM and 

DE-MZM, both modulators are supplied with a continuous wave laser source. The 

analogue electrical signal after bias-tee is directly applied to SE-MZM for IM. In the case 

of DE-MZM, the analogue electrical signal will be split and applied to the first electrode of 

DE-MZM with no intentional phase change, and with 90° phase shift to another electrode. 
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Figure 2.6 shows the transfer function illustration of MZM which operates as a sinusoidal 

function [45].  

Similar to DML, MZM exhibits nonlinear characteristic for signal modulation 

performed at maximum or minimum biasing point. Therefore, it is advisable to always 

Figure 2.5: Procedure of external modulation of electrical signal with SE-MZM and DE-

MZM 
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operate MZM at quadrature biasing point for linear modulation, unless otherwise required. 

The electrical signals with different phases will be modulated onto DE-MZM and the 

optical modulated signals will have different refractive index with respect to each other. At 

the output of DE-MZM, the signals are rejoined with either constructive or destructive 

interference resulting in an optical PM signal. After the photodetection, the PM occurred 

between the two paths appears as an IM [71].  

2.2.3 Optical Fibre 

Optical fibre serves as the medium of RoF system and the wide interest in this medium 

is due to the ultimate advantage of both high bandwidth and low loss, which allows the 

propagation of high speed or high frequency signals over a long transmission span. 

Classifications of optical fibres are divided into two categories, MMF and SMF, where the 

former allows multimode propagation and the latter is suitable for single mode 

propagation. Since MMF constitutes multimode propagation, the modes arrive at the 

receiver at different time instants giving rise to phenomenon known as multimode 

dispersion or intermodal dispersion [72]. The multimode dispersion of MMF severely 

distorts the signal and imposes limitation on signal bandwidth, therefore the usage of MMF 

is suitable for indoor application [57]. Since this thesis completely concentrates on eNB 

cell extension for outdoor application that requires long span transmission, the discussion 

of optical fibre will be concentrated towards SMF. 

The multimode dispersion does not exist in SMF due to single mode propagation. An 

optical fibre's ability to handle the number of modes can be calculated from the V number, 

otherwise known as the normalized frequency [72]: 


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where a is the optical fibre core radius, λ is the propagating wavelength, and, n1 and n2 are 

the refractive indices of core and cladding of an optical fibre, respectively. The V number 

needs to be maintained ≤ 2.405 for mitigating multimode dispersion, or in other word to 

maintain a single mode propagating fibre. The V number can be maintained within the 

aforementioned limit by reducing the core radius with following the law of normalized 

index difference [72]: 





n

nn 
Δ        (2.2) 

where D  should between 0.2% and 0.3%.  

However, SMF do introduce impairments in many different forms and could be divided 

into linear and nonlinear distortions. The well-known linear impairments are attenuation 

and CD, these parameters vary according to the transmission window. 1300 nm and 1550 

nm are the widely utilised transmission windows in optical fibre communications, where 

the attenuation and CD at the former wavelength are ~1 dB/km and zero dispersion, and 

the latter wavelength are ~0.25 dB/km and 17 ps/(nm km), respectively. Recently, the 

interest has shifted more to the 1550 nm window, not only due to the low loss 

characteristic, but also owing to the availability of erbium doped fibre amplifier (EDFA) at 

this wavelength [73].  

Since the proposed work of this thesis completely operates in the 1550 nm window 

owing to low attenuation for a long transmission span, CD is the major linear impairment 

to arise from the variation of propagating velocities of different spectral components 

within the same mode. There are two elements involved in CD, namely material dispersion 

and waveguide dispersion. The dispersion induced by the material is subject to the 

variation of the optical fibre refractive index, which is a function of wavelength. In other 



38 

 

word, material dispersion causes different wavelength to travel at different velocity due to 

the change in refractive index, which is different to the intermodal dispersion as the modes 

in MMF travel through different paths and experience varying delay. On the other hand, 

the physical design of an optical fibre leads to waveguide dispersion, where normalized 

index difference is typically small resulting in almost equal core and cladding refractive 

indices, thus the propagation is not confined absolutely within the optical fibre core 

leading to a weakly guided signal [72].  

Apart from linear impairments, nonlinear distortions severely degrade signal quality at 

high OLP. The nonlinearities in optical fibre can be divided into two categories; i) 

propagation induced variation in the refractive index resulting in nonlinear PM, known as 

self phase modulation (SPM) and cross phase modulation (XPM), and generation of new 

frequencies via nonlinear optical mixing known as four wave mixing (FWM). All 

aforementioned phenomena are the Kerr effects of optical fibre, which corresponds to the 

refractive index change proportional to the square of the electric field rather than varying 

linearly with it; ii.) nonlinearities subject to vibration dynamics that results in scattering 

process, namely stimulated Raman scattering (SRS) and stimulated Brillouin scattering 

(SBS) [74]. 

The LTE systems operate based on OFDM as explained in Chapter 1, where the 

modulation scheme is designed with narrowly spaced subcarriers packed together. 

Furthermore, the LTE-RoF system design presented in this thesis utilises both SMF and 

1550 nm as the emission wavelength and the proposed work solely operates based on 

single wavelength transmission. Albeit OFDM has many subcarriers, the nature of its 

transmission is equivalent to a packet based orthogonally packed subcarriers altogether up-

converted to 2.6 GHz in LTE system, which is equivalent to a single mode in optical 
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spectral. Therefore, the system is only subject to SPM distortion and not XPM distortion 

[75-77]. On the other hand, the nature of highly dispersive transmission of the proposed 

work disables the effectiveness of FWM, because at high dispersion rate the optically 

transmitted signal would have uncorrelated phase [76, 78]. In terms of the scattering 

phenomena, SRS ineffectiveness in the proposed system is twofold, the first element is that 

SRS is only active in a wavelength division multiplexed (WDM) system and the second 

element is that the distortion is only applicable to transmission frequencies of less than 500 

MHz [76]. Thus, the only nonlinear distortions that affect the LTE-RoF system are SPM 

and SBS.  

2.2.4 Optical Receiver 

In a RoF system, the optical receiver portion consists of a PD with a bandwidth large 

enough to convert the optical RF signal back into an electrical signal. The common types 

of PD used in RoF system are either PIN PD or avalanche PD (APD). The PIN PD is 

constructed with a p-type and n-type layer and an intrinsic layer (i-layer) placed in 

between. When PIN PD is reversed biased, the output current generated is proportional to 

the intensity of the incident optical signal at the input of the PD. The output current is 

generated relative to incident optical signal with a ratio known as responsivity, where PIN 

PD's typical responsivity is around 0.5 - 0.7 A/W [79]. The optical receiver responsivity 

can be greatly improved with APD, because of an additional p-type layer inserted between 

i-layer and n-type layer. Under the reverse bias condition, the additional p-type layer 

exhibits a high electric field with the generation of secondary electron-hole pairs via the 

impact of the ionization process. The additional electron-hole pairs effectively increase the 

responsivity of an APD by several orders of magnitude higher than PIN PD.  
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The disadvantage of APD is the high generation of noise level and the temperature 

dependent gain. Furthermore, PIN PD is cheaper, has a reduced sensitivity towards 

temperature and requires lower bias level. Therefore, PIN PD will be adopted as the ideal 

receiver for the proposed LTE-RoF system [79].  

2.3 Implication of Radio-over-fibre over Wireless Channel 

So far in Chapter 2, a detailed overview of RoF and its properties were discussed. The 

major objective of the RoF channel is to operate as the interface of eNB and RN with an 

aim of replacing the wireless interface. Thus, it is important to analyse and discover the 

improvement that RoF can provide to the LTE technology compared to the wireless 

channel for the scenario of cell extension. The author has modelled two different systems 

as the interface between eNB and RN. The first system is inclusive of LTE signal from 

eNB and demodulation at RN with a wireless channel as the interface. Rayleigh fading 

channel is used as the wireless channel due to its inherent ability of simulating NLOS 

connectivity. The second system utilises similar transmitter and receiver configurations, 

but the interface is designed using a RoF system instead of a wireless channel for 

performance measure.  

The system model considered for this investigation is illustrated in Figure 2.7, 

which was mathematically modelled in MATLABTM. The incoming serial binary 

data sequence is mapped into a serial complex data using the 16-QAM modulation 

format and converted into parallel formation to represent the 180 subcarriers. The 

180 parallel subcarriers are converted to 256 parallel subcarriers by performing 

zero padding to meet the requirement of both LTE and FFT algorithm [80]. The 

composite subcarriers of zeros and modulated symbols can be expressed as X(m) 

where {X(m) : m = 0, 1, ….., Ns-1}, where m is the subcarrier index and Ns = 256 are the 
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subcarriers. An Ns-point inverse FFT (IFFT) is then applied to the 256 parallel 

subcarriers X(m) to generate OFDM signal S(n): 
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where {n=0, 1, ……, sN  -1} is the time domain index. After adding the CP at the rate 

of ¼, equation (2.3) can be expressed as: 
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where ncp is the index referring to the CP subcarriers. The addition of CP is important to 

avoid ISI. Finally the CP appended signal Scp(n) is passed through a parallel-to-

serial converter and a digital-to-analogue (DAC) converter. The continuous signal 

Scp(t) at the output of the DAC module is up-converted by a local oscillator (LO) at 

a carrier frequency fRF of 2.6 GHz, specified for LTE urban environment operation 

can be described as [81]: 

Figure 2.7: LTE system designed with wireless and RoF interface. Abbreviation: S/P: serial-

to-parallel conversion, IFFT: inverse fast Fourier transform, P/S: parallel-to-serial converter, 

DAC: digital-to-analogue converter, DFB: distributed feedback laser, PD: photodetector, 

ADC: analogue-to-digital converter, and FFT: fast Fourier transform 
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The modulated signal is transmitted via the Rayleigh fading wireless channel as 

well as being directly applied to the DFB module to produce an OOFDM signal 

with an IM. After the optical modulation, the signal is coupled into a SMF link and 

subsequently passed through a PD for optical-to-electrical conversion. Both 

channels are modelled to simulate a transmission span of 10 km. At the electrical 

receiver, additive white Gaussian noise is added before down-conversion to the 

signals that propagated through both paths. Identical LO are used at the transmitter 

and receiver to ensure perfect synchronisation. The remaining part of the receiver 

is exactly the inverse of the transmission process except for the equalization 

module. The equalizer implemented in the receiver is a single-tap least square filter 

which operates in the frequency domain utilised for the compensation of the phase 

distortion induced by wireless and the optical propagation.  

2.3.1 Rayleigh Fading Channel 

Wireless propagation is very complex in nature, especially in urban 

environment with widely populated high rise buildings that mostly implicate NLOS 

propagation paths. The scenario of NLOS paths will introduce heavy distortions to 

the propagating signal, namely reflection, diffraction and scattering. The three 

distortion phenomena happen at random locations, which are known as multipath 

propagation. In the NLOS environment, the instantaneous received signal will 

experience rapid power fluctuation subject to the summation of signals arriving 

from different paths with random phases, where the summed components act as a 

noisy signal. Hence, the Rayleigh fading channel can be represented as stat istical 
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model assuming that the magnitude of propagating signal passed through a medium 

will vary randomly. Furthermore, Rayleigh fading is suitable to simulate wireless 

transmission of 1 to 20 km, thereby meets the requirement of the investigation [82-

84].  

The most utilised spectrum for LTE is at 2.6 GHz, which induces phenomenal 

loss in wireless propagation. In addition to Rayleigh fading, isotropic path loss 

between two antennas for 10 km span is considered in the simulation [82-84]. 

2.3.2 Optical Layer 

The optical layer in this investigation consists of DFB laser for IM, SMF as the 

channel and PD operates as the receiver. The description of DFB laser will be 

presented in detail as part of Chapter 3. However, the interest in utilising DFB laser 

as the optical modulator is due to its inherent advantages of low cost, reduced 

power consumption, compactness, and high output power. The corresponding 

advantages are very important for commercial deployment [33].  

The transmission medium is composed of SMF where the transfer function is 

given as [85]: 
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where α is the SMF attenuation (0.25 dB/km); L is the transmission length; D is the 

CD parameter 17 ps/(nm km); λ is the operating wavelength (1550 nm), Bd is the 

data rate and f is the operating frequency. For simplicity, only the linear 

impairments of optical fibre are considered in this investigation, which is 
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achievable in real-time transmission by lowering OLP. The optical receiver 

adopted in this investigation is based on DD with square-law detection.  

Following this investigation, the author has published the resulting output in 

[86]. Figure 2.8 shows the constellation of received symbols after transmitting for 

10 km through Rayleigh fading channel and SMF. Figure 2.8(a) is the constellation 

of the received symbols at a SNR of 16 dB prior to equalization. The constellation 

points are spread all over the phase angles due to high multipath fading. The 

constellation for equalized case using the frequency response of Rayleigh fading is 

illustrated in Figure 2.8(b). In terms of RoF, Figure 2.8(c) depicts the received 

symbols of the un-equalized optical fibre channel showing only a phase shift due to 

Figure 2.8: Constellation of received symbols at 10 km of transmission distance. (a) and (b) 

are received symbols of Rayleigh fading channel, (c) and (d) are received symbols of 

optical fibre channel. (a) and (c) are un-equalised constellation, (b) and (d) are equalized 

constellation  
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the chirping effect of DFB laser and the fibre CD. Finally, the equalized 

constellation is shown in Figure 2.8(d). 

In order to further quantify the constellation points, EVM is utilised to measure 

the precision and spreading of the constellation points. The EVM metric can 

analytically expressed as [87]: 
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 where Sr(n) and St(n) are the received and transmitted OFDM signals, and Rmax is 

the maximum magnitude of the ideal transmitted symbol utilised for normalization.  

The EVM for both channels (Rayleigh and fibre) is shown in Figure 2.9 for a 10 km 

link span. At an SNR of 16 dB, which is the required value to achieve the optimum 

performance for RoF decided based on the bit error rate (BER) measurement, EVM 

for Rayleigh fading and optical fibre channels are 7.01% and 0.601%, respect ively.  

Figure 2.9: Error vector magnitude against the SNR for optical fibre and Rayleigh fading 

channels  
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In Figure 2.10, the BER performance against the SNR for both Rayleigh fading 

and optical fibre channels, as well as the predicted response of 16-QAM over a link 

span of 10 km are presented, where the BER measurement can be expressed as 

[72]: 
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where erfc(x) is the complementary error function, Q is the quality factor, I1 and I0 

are the average photocurrents corresponding to one- and zero-symbol levels, and σ1 

and σ0 are corresponding standard deviations. A BER of 10 -5 is the required value 

for an un-coded wireless communication system [88]. At a BER of 10-5 the 

additional gains required for optical fibre and Rayleigh fading channels compared 

to the predicted case are ~3 dB and ~34 dB, respectively. In the perspective of 

SNR, Rayleigh fading channel at 16 dB only achieved BER of slightly better than 

Figure 2.10: Simulated BER against the SNR for Rayleigh fading and optical fibre channels 

as well as the theoretical BER 
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10-2 showing the superiority of RoF system efficiency. Finally, using RoF system 

the improvement is 31 dB compared to the wireless channel to achieve BER of 10-5 

at 10 km transmission span.  

2.4 Summary 

This chapter was dedicated to the overview of RoF system and its in-build 

optoelectronic devices. Optical modulation methods are an important element of RoF 

system whereby detailed explanation was given with fair comparison between DM and 

external modulation. In terms of RoF channel, SMF was thoroughly investigated in 

comparison with wireless channel. Here, RoF improved the link viability with 31 dB of 

SNR gain, which is a remarkable gain in commercial application. Since the RoF system 

proposed in this thesis is mostly comprise of DML, an in-depth theoretical breakdown and 

a new frequency chirp expression will be presented in the following chapter.  
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Recent researches have shown much progress and interest in DML based analogue 

optical links, best known as IM scheme for RoF applications [57]. The possibility of low 

cost design has driven all interest to DML, which is also the main motivation of this 

project. Semiconductor lasers are proven as an appropriate transmission source by 

adopting DML concept into optical communication.  

In order to meet the long haul transmission requirement of RoF system in this research, 

a laser source with low noise, low distortion, and high output power with a relatively low 

bias current are required [33]. The dynamic single mode (DSM) is an important criterion 

for a laser that operates as a modulator in long haul transmission, which means the laser 

should have a large side mode suppression ratio (SMSR) (>30 dB) [89]. A DFB is a 

suitable candidate with all the required characteristics for a RoF system that aims at long 

haul transmission. A DFB generates high output power at 1550 nm wavelength (operating 

wavelength of this project) that is efficient enough for regenerator spacing of 80-100 km 

[90]. 

3.1 Theoretical Overview of Lasers 

The term laser is derived from the process of Light Amplification by Stimulated 

Emission of Radiation. As the process construes, a laser solely operates based on 

stimulated emission for high coherent radiation. The role of laser in RoF system is mostly 

to act as either an optical modulator or optical source for external modulation. The process 

of light generation in a laser is relative to the recombination of electron and holes in p-n 

junction with material such as Indium Gallium Arsenide Phosphide (InGaAsP) or other III-

V compound semiconductors sandwiched between the junctions [72, 79].  
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The nature of recombination process separates the light-emitting diode (LED) from a 

conventional laser. In LED, the recombination process results in spontaneous emission 

with broad spectral characteristic, thus the radiation field is large and operates as an 

incoherent source. On the other hand, the recombination process in laser is almost 

completely based on stimulated emission and allows a coherent operation with narrow 

field radiation [72]. The recombination process occurring from the bias current injection in 

a semiconductor material can be classified into three processes, namely absorption, 

spontaneous emission and stimulated emission. Figure 3.1 graphically illustrates the three 

processes. In the ground state N1 the number of electrons with energy E1 is substantially 

higher than the number of electrons in the excited state N2 with energy E2. At the uniform 

temperature state, the ratio between ground state and excited state can be described 

following the Boltzmann's statistics [91]:  
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where h is Planck's constant, v is the optical frequency, and hv represents a photon energy 

generated through the difference between the energy levels E2 - E1, kB is the Boltzmann's 

constant and T is the absolute temperature. The absorption rate dN1,abs/dt = A12Ρ(v)N1 is 

Figure 3.1: The three process of recombination, (a) Absorption, (b) Spontaneous emission 

and (c) Stimulated emission   
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shown in Figure 3.1(a), where A12 is the absorption coefficient, Ρ(v) is the spectral density 

of electromagnetic energy. Basically, absorption occurs to excite electrons, whereby 

initiating both the spontaneous emission rate dN2,spon/dt = A21N2, where A21 is the 

spontaneous emission coefficient and stimulated emission rate dN2,stim/dt = B21Ρ(v)N2, 

where B21 is the stimulated emission coefficient [72]. Figure 3.1(b) shows that the electrons 

in the excited state spontaneously decay and fall back to ground state, effectively 

generating a photon from the energy obtained via the transition. In terms of stimulated 

emission, Figure 3.1(c) illustrates that photons are emitted from the energy differences E2 - 

E1 between excited state and ground state.    

When the excited state is higher than the ground state, stimulated emission rate will 

exceed the absorption rate, where this phenomenon is known as population inversion and 

the gain of the laser will be above unity. Laser operates based on population inversion 

achieved via an external energy source pumping and raising the population from ground to 

the excited state. The stimulated emission is governed by three components, namely, the 

pump source, active region, and feedback mirrors. Conventionally, the pump is electrical, 

active region is solid, gaseous, or liquid in nature. These are the basic principles of Fabry-

Perot laser, which evolved into DFB and vertical cavity surface emitting lasers (VCSEL).   

3.2 Types of Lasers 

There are many ways in reflecting light through the active region into the cavities, with 

different materials serves as the gain mediums and light confining regions. The three well 

known semiconductor lasers that served widely in optical communication sector are: 1) 

Fabry-Perot lasers, 2) VCSELs and 3) DFB [89].  
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Fabry-Perot lasers, illustrated in Figure 3.2(a) are used in optical communication since 

1960’s and the structure is the simplest of all semiconductor lasers with radiation through 

the edge of the laser. The internal structure of Fabry-Perot lasers is built by epitaxially 
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Figure 3.2: Internal structures of (a) Fabry-Perot laser, (b) VCSEL, and (c) DFB laser. 
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growing the cladding and active layers for active region, while the cavity or mirrors are 

formed by cleaving the semiconductor. The mirrors at the both end of the optical cavity, 

within the active region, are used for reflections to produce constructive interference and 

form the longitudinal mode at the required wavelength. The resonating length of Fabry-

Perot cavity is normally in the order of several hundred micrometres, much larger than the 

corresponding lasing wavelength, thus many longitudinal modes will exist in the optical 

spectrum. Since many modes exist from the forward and backward reflecting waves over a 

long cavity, the SMSRs are very low and will be subject to heavy frequency chirp. 

Therefore, Fabry-Perot lasers do not satisfy the requirements of DSM transmission [89].  

There is another important type of semiconductor laser that emits light vertical with 

respect to the active plane layer, known as VCSELs as shown in Figure 3.2(b). Fabry-Perot 

laser structure is modified into VCSEL, where its lasing axis is now placed vertical to the 

cavity instead of in-plane. The highly complex VCSELs structure consists of a distributed 

Bragg-reflector section, a multiple quantum wells in the active layer and finally with 

another distributed Bragg-reflector section. Although VCSELs demonstrate the ability of 

emitting DSM output due to the short cavity structure, the VCSEL-to-fibre coupling is 

very sensitive that might result in misalignment and subsequently emitting multimode 

optical spectrum [73, 92].  

The only semiconductor laser that is proven to be highly efficient with DSM 

characteristic is the DFB, which was first proposed by Kogelnik et al [93]. The first step of 

DFB fabrications is epitaxially growing the p-i-n structure, similar to a Fabry-Perot laser. 

A periodic Bragg grating is formed in the DFB cavity by applying holographic exposure or 

by electron beam lithography [68]. Figure 3.2(c) provides the overview of a typical DFB 

structure. Since Fabry-Perot laser exhibit multimode characteristic due to high resonating 
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length, DFB is designed with a Bragg grating within the laser cavity to effectively select 

one longitudinal mode and suppress the rest [73]. Owing to this enhanced capability of the 

DFB with demonstrating high output power, it became the ultimate choice as the DML of 

this project.   

3.3 Rate Equation Approach for Distributed Feedback Laser 

In DFB, input bias current, coupled with a RF signal if required, will enter the laser as 

the pump source. It is important to determine the carrier density growth relative to the 

input bias current for analysing any modulation-induced impairment. The laser dynamics 

can be modelled and analysed by utilising the rate equations of a laser. A few coupled 

nonlinear differential equations can be adopted as the DFB rate equations to describe the 

interactions between input signal Id, rate of change of carrier density dN/dt and the relative 

carrier density N, and rate of change of photon density dS/dt and the relative photon 

density S. The initial form of rate equation could be described as [94]: 

ratedecay Photon -rateemission  sSpontaneourateemission  stimulatedNet 

rateemission  stimulatedNet  - ratedecay Carrier  - rate signalInput 
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dt

dS

dt

dN

 

  The detailed form of the rate equations that were adopted into this thesis is given by 

[95]:  
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where P, Φ, and ω are the optical power, optical phase, and optical frequency, 

respectively.; the volume of the DFB is described as the thickness d, width w, and 

length l; e is the electronic charge; τc is the carrier decay rate; B is the bimolecular 

carrier recombination coefficient; C is the Auger carrier recombination coefficient; 

G is the linear optical gain coefficient; Nt is the transparency carrier density; ε is 

the nonlinear gain coefficient; Г is the mode confinement factor (MCF); ζ 

represents the fraction of spontaneous emission; τp is photon decay rate; x is the 

coupling efficiency from the laser chip to the SMF; wv and wh are the vertical and 

horizontal widths of the guided mode power distributions; h is the Planck’s 

constant; c is the speed of light in vacuum; LW is the linewidth enhancement 

factor; vg is the group velocity; ωo is the central optical frequency; np is the phase 

refractive index. Refer to Table 3.1 for all parameter values.  

Equations (3.2) and (3.3) are numerically modelled to modulate the RF signal 

onto an optical carrier that can be observed via equation (3.4). In addition, 

equations (3.5) and (3.6) can be modelled to observe the optical phase and optical 

frequency at the output facet. Numerical calculation of the rate equations of (3.2), 

(3.3) and (3.5) in MATLABTM can be performed using equation (3.7), where x(t) 
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represents carrier density, photon density, and optical phase in conjunction to the 

temporal boundary condition tB. 

BB )()( t
dt

dx
txttx        (3.7) 

3.3.1 Rate Equation Based Chirp Analysis 

DM of laser results in IM with respect to the input signal, where saliently it also 

induces laser phase fluctuations. Such phenomenon occurs because DM leads to changes in 

the laser active region, thus affecting the refractive index and consequently the phase of the 

generated optical signal [96]. This phenomenon is known as PFC. The dynamic chirp 

Table 3.1: Parameters Used in Simulation [33, 94]. 

     Parameter Parameter Symbols Parameter values 

N Carrier density - 
S Photon density - 

P Optical power - 
Φ Optical phase - 
ω Optical frequency - 
ωo Central frequency 193.5 THz 
Id Input current - 
d Thickness 0.033 µm 
w Width 2 µm 
l Length 300 µm  
e Electronic charge 1.6x10-19 C 
τc Carrier decay rate 10 ns 
B Bimolecular carrier recombination coefficient 1x10-16 m3/s 
C Auger carrier recombination coefficient 6.5x10-41 m6/s 
G Linear optical gain coefficient 1.1x10-12 m3/s 
Nt Transparency carrier density 1.5x1024 m-3 
ε Nonlinear gain coefficient  7.4x10-23 m-3 
Г Mode confinement factor 0.8 
ζ Fraction of spontaneous emission 1x10-5  
τp Photon decay rate 3.6 ps 
χ Coupling efficiency 37% 

wv Vertical widths 0.47 µm 
wh Horizontal widths 1.80 µm 
h Planck’s constant 6.63x10-34 m2kg/s 
c Speed of light 3x108 m/s 

LW Linewidth enhancement factor 3 
vg Group velocity 8.1x107 m/s 
np Phase refractive index 3.7 
Ne Excess carrier density 1.1x1025 m-3 

 



57 

 

characteristic of a DFB is in the form of blue rising edge and red trailing edge, which 

means rising edge propagates quicker than the trailing edge resulting in a spread out signal. 

In other word the rising edge of the time domain pulse will experience a upward shift and 

the falling edge will experience a downward shift. Such shifts in the rising and falling edge 

of a pulse due to PFC will couple with the pulse spreading effect of CD of optical fibre, 

and induces severe distortion to the propagating signal and massive reduction in 

transmission distance via SMF [33].  

Figure 3.3 illustrates the 16-QAM constellation with an average phase shift of ~8º. This 

phase shift and the spread of constellation points indicate the noise factor introduced by the 

chirping effect alone without any CD effects. Therefore, modulating the RF signal onto the 

Figure 3.3: Constellation of 16-QAM with frequency chirp effect 
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DFB via the given rate equations of (3.2) and (3.3) are contributing to the PFC effect that 

results in a phase distortion and noise. Earlier work in this particular area only derived a 

closed form expression for PFC via equations (3.5) and (3.6), given as [33] [97-99]:  
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where Δv is the instantaneous frequency deviation, k is the adiabatic chirp coefficient. The 

integral of the instantaneous frequency deviation is relative to the integral of equation (3.5) 

[97]: 

dttvtΦ
t

)(2)(
0

         (3.9) 

and the solution to equation (3.9) is: 
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The end result to describe the PFC is defined by the equation (3.10). From theoretical 

point of view, equation (3.10) is adequate to describe the impact of PFC on the modulated 

optical signal. But, the actual PFC affect that arises in a numerical simulation initiates from 

integrating equations (3.2) and (3.3). Therefore, the author proposes to investigate on the 

relationship between equations (3.2) and (3.3), which happens to be the core for PFC 

affect, observed in Figure 3.3. Since equation (3.2) is complex for further analytical 

investigation, the author adapted the unmodified rate equations of DFB which was 

employed by Bjerkan et al [100]: 
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 The differences between equations (3.2) and (3.3) compared to equations (3.11) and 

(3.12), respectively, is the reduction of decay rate in equation (3.11), and the modified 

spontaneous emission factor in equation (3.12). The result of these changes only 

contributes to increased output power from integrating equation (3.11) and (3.12) due to 

not considering the non-radiative recombination.  

3.3.2 Carrier and Photon Density Relationship 

Investigation of PFC requires detailed derivation of equations (3.11) and (3.12). The 

derivation is carried out based on the relativity of stimulated emission between equations 

(3.11) and (3.12) arising from coupled wave theory. The author has published the resulting 

output of the derivation in [101]. Starting from defining equation (3.11) as the equivalent 

of stimulated emission and substitute it into equation (3.12) results in: 
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Now, equation (3.13) establishes the presence of the carrier density into the generation of 

the equivalent photon density. A simple rearrangement of equation (3.13) will introduce 

mathematically that the rate of change of carrier density is relative to the MCF and the rate 

of change of photon density:   
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Equation (3.15) is defined to concisely express the relationship unveiled in equation (3.14): 
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From the principal of laser emission, equation (3.15) represents the process of electron 

hole recombination with respect to the MCF. Theoretically, MCF is the ratio of the carrier 

volume/photon volume that is inversely proportional to the density factor based equations 

(3.11) and (3.12). Therefore, in the case of density, the MCF ratio changes to the aspect of 

photon density/carrier density. The detailed operation of Equation (3.15) basically 

demonstrates the rate of change of instantaneous process dZ/dt of total current injected, 

that result in carrier density relative to the MCF, then through the recombination process 

results in the photon density.  

The respective solution of equation (3.15) is: 

SΓNZ       (3.16) 

where Z is the instantaneous process that results from the direct integral of equation (3.15). 

By substituting equation (3.15) into equation (3.14), the following expression is obtained:  
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A few assumption need to be made to equation (3.17) to achieve equation (3.16). In order 

to perform that, equation (3.17) will be reformed with the aid of equation (3.16): 
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The final term of equation (3.18) can be effectively eliminated with some assumptions. 

The carrier decay rate is the inverse of bimolecular carrier recombination and excess 

carrier density, Ne, as shown [94]: 
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The photon decay rate incorporating bimolecular carrier recombination can be 

expressed as [94]: 

B
p

261085.8 
      (3.20) 

Substituting equations (3.19) and (3.20) into equation (3.18), with further 

derivation would lead to the elimination of the final term. Since optical modulation 

only occurs high above the threshold region, the fraction of spontaneous emission 

is neglected [94]. Thus, the resulting expression from the derivation will be:  
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Equation (3.21) is the new closed-form expression for the rate of change of 

electron hole recombination that generates a photon within the active region. The 

rate of change of carrier density and photon density is confined within equation 

(3.21). Hence, equation (3.21) carries the properties of both the rate of change of 

carrier density and photon density. The solution of equation (3.21) can be obtained by 

applying the integrating factor method, which yields: 
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where to is the beginning of a symbol period, tlim is the symbol period and t is the 

continuously varying time of the input signal. The 1st term of equation (3.22) represents the 

initial condition and the 2nd term shows the actual integral of the input signal that is 

bounded within the MCF. Transient chirping or general frequency chirping is related to the 

changes in carrier density, which in turn reflects the changes in the refractive index. In 

equation (3.8), the expression only describes chirping with respect to the optical power, but 
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the input current also induces chirping. The instantaneous process Z(t) explicitly shows 

that input current actually alters the carrier density, taking carrier decay rate into 

consideration. The LTE technology operates based on MCM, namely OFDM. Generally, 

OFDM has a noise-like envelope due to the Gaussian distribution arising from central limit 

theorem. Mathematically, an integral function of a sinusoidal signal is a cosinusoidal 

signal as a result of phase variation. Therefore, integral of an input current in equation 

(3.22) is composed of the noise-like time varying OFDM signal with Gaussian distribution. 

This phenomenon will directly affects the refractive index of DFB and deduce the 

characteristics of transient chirp.  

 3.4 Summary 

This chapter explained the core reasons for using DFB as the optical transmitter of this 

project. The DFB outperforms Fabry-Perot lasers and VCSELs in various technical 

aspects, including the most important requirement of DSM. In a DFB, PFC is an important 

impairment for long haul transmission because of its ability to coordinate with CD and 

jointly distort the optical signal. The existing mathematical expression does not precisely 

explain on how rate equations contribute to PFC that effectively distorts the modulated 

optical signal. This chapter explained the author's contribution on a new analytical 

expression to explain how the rate equations are actually the factor that produced PFC 

effect in a computer simulation. Withstanding on the focus of laser transmitter, next 

chapter will unfold the optimisations of LTE transmitter relative to laser transmitter. In 

addition, new optical transmitters will be introduced to further investigate on the actual 

impact of PFC to the LTE-RoF link. 
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The advantage of RoF compared to wireless channel was shown in Chapter 2 for the 

application of LTE, where RoF demonstrated high power efficiency. As a detailed design 

step for LTE-RoF system, Chapter 3 was dedicated to the introduction of DFB and the 

frequency chirping characteristic that occurs from the DML technique.  

Continuing the focus on theoretical development, this chapter is dedicated to the LTE-

A and RoF integration. The major differences between LTE and LTE-A are the 

introduction of carrier aggregation, and the maximum bandwidth of 100 MHz to support 

higher data rate, as shown in Table 1.2. In other word, LTE-A will be transmitting a 

composite of multi-type bandwidth signals within the limit of 40 to 100 MHz [14]. The 

carrier aggregation method is substantially complex compared to the conventional LTE 

transmitter. For an example, at 100 MHz bandwidth, 5×20 MHz simultaneous OFDM 

signals are required to fulfil the entire bandwidth [102, 103]. Furthermore, to achieve 

aggregation, 4 additional LOs at different frequencies are required to shift the baseband 

OFDM signals to passband domain. In order to minimize the complexity, this chapter 

proposes to adopt the varying FFT sizes scheme of LTE into LTE-A. The proposed method 

will effectively slice the 100 MHz bandwidth into narrow subcarriers, which potentially 

leads to the requirement of only a single OFDM signal generation at 100 MHz bandwidth 

and single LO for passband up-conversion.  

Both LTE and LTE-A utilises OFDM as the MCM technique. Weinstein et al [104] 

first proposed the usage of FFT instead of discrete Fourier transform (DFT) in OFDM, 

which revolutionized the modern communication world. The number crunching ability 

with the FFT algorithm is much more efficient, where a FFT size-1024 operation only 

takes a few seconds in conventional home computers [105]. The original DFT algorithm 

performs complex multiplications of approximately equivalent to Ns
2, while FFT algorithm 
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performs similar operation in the form of (Ns)*log2Ns, where Ns is the DFT/FFT size. The 

complex calculation carried out via (Ns)*log2Ns (FFT) imposes significant reduction in 

calculations compared to Ns
2 (DFT), particularly for large Ns. Thus, FFT algorithm is an 

efficient algorithm for OFDM modulation in LTE, with FFT sizes ranging from 128 to 

2048. However, in the case of LTE-A with carrier aggregation, the 100 MHz bandwidth is 

composed of 5×20 MHz signals with each 20 MHz bandwidth consists of FFT size-2048, 

see Table 1.2. Thus, the maximum bandwidth of 100 MHz will be composed of FFT-size 

10240, which shows the inefficiency of carrier aggregation process. Although FFT 

performs quick calculation, the proposed method of this chapter with single processor 

would provide a much efficient operation in commercial LTE-A deployment. 

4.1 LTE-A and RoF Link with Varying FFT sizes  

The LTE-A transmitter is configured with SCMs of quadrature phase shift keying 

(QPSK), 16, and 64-QAM. These SCMs are then modulated onto OFDM with scaled FFT 

sizes of 128, 256, 512 and 1024, as shown in equation (2.3) [106]. For a 100 MHz 

bandwidth, small FFT size generates large subcarrier frequency resulting in short symbol 

length, making it susceptible to ISI, and contrariwise for large FFT size. However, the 

shortcoming of large FFT size is that the subcarrier frequency will be significantly narrow 

and closely spaced, thus it will be more sensitive towards inter-carrier interference (ICI) 

[107].  

The linear impairments (linear propagation region), namely PFC and CD introduced by 

DML and SMF, respectively, will lead to ISI for small FFT size. Conversely, the nonlinear 

impairment (nonlinear propagation region) of SMF actuates nonlinear phase noise and 

introduces ICI for large FFT size. Therefore, it is important to optimise the FFT sizes 

relative to the impairments induced by the RoF system.   
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Jansen et al [34] and Adhikari et al [35] optimised the FFT size in CO-OFDM system, 

while taking the linear and nonlinear optical fibre propagation into consideration. In [34], 

the FFT size-1024 (the highest FFT size investigated) exhibits higher distortion compared 

to smaller FFT size in the nonlinear propagation region due to ICI. Likewise in [35], FFT 

size-4096 (highest FFT size investigated) experiences higher distortion compared to 

smaller FFT size in nonlinear region, which is a factor of ICI as well. In terms of ISI 

occurrence from linear impairments, [35] demonstrated that FFT size-512 (the smallest 

size investigated) is more susceptible to distortion compared to FFT-size 4096. The 

findings reported in [34, 35] are limited to coherent detection scheme and since this 

research concentrates on DD scheme, it is important to investigate the impact of FFT sizes 

in the DD scheme. Pham et al [36] optimised the FFT size for DD-OOFDM system for the 

linear impairments (PFC and CD). Hence, the analysis presented in [36] is not sufficient 

enough to address the contribution of nonlinear phase noise to the varying FFT sizes.  

In this chapter, the DD-OOFDM signal for LTE-A RoF system is proposed with FFT 

sizes of 64, 128, 256, 512 and 1024 over SMF. The optical propagation is evaluated in 

terms of A) linear, B) intermixing, and C) nonlinear regions. The intermixing region is part 

of the contribution proposed in this chapter. The detailed explanations of linear 

impairments were given in Chapters 2 and 3, namely CD and PFC, respectively. In 

addition, overviews of the nonlinear impairments were given in Chapter 2. Hence a 

dedicated section will be allocated to explain the phenomenon of the intermixing region 

which arises from the transition of linear to nonlinear propagation state and nonlinear to 

linear propagation state, with increasing and decreasing OLP, respectively. The author has 

published the outcome of the proposed method in [108]. 
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4.2 The Intermixing Region 

The interaction between the PFC and CD can be minimized with accurate control of 

OLP by utilising optical attenuator or amplifier, where the OLP is a switch-like mechanism 

that determines the nonlinearity level and controls the propagation state. The nonlinear 

characteristic of optical fibre with respect to the OLP, can be described through the 

dependence of the optical fibre refractive index nr on the optical signal power P(t) [109]: 

2

nlor )(tPnnn            (4.1) 

where no is the linear refractive index, nnl is the nonlinear index coefficient. The 

refractive index dependence on the optical signal envelope gives rise to nonlinear 

impairment, namely SPM. The combination of SPM with CD and the PFC can reduce 

the dispersion induced power penalty at an appropriate OLP, known as the intermixing 

region. 

The SMF model that governs the properties of linear and nonlinear impairments, 

associated with the propagation can be expressed by the generalized nonlinear Schrödinger 

equation [109]:  
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where P(z,t) is the OLP comprises of the distance propagated z, Ď(z,t) is the linear 

operator, Ň(z,t) nonlinear operator for SPM, β2 = (-λ2/2πc)*D is the second order 

dispersion coefficient with λ is the optical wavelength, c is the speed of light, and 

D is the optical fibre dispersion parameter, To = t - z/vg is the time in a step that 
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propagates at the group velocity vg, α is the SMF attenuation coefficient. Equation 

(4.2) can be numerically modelled using the symmetrical split-step method, as 

follows [110]:  
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where hs is the step taken to reach the actual propagated distance. 

The nonlinear phase distortion induce by SPM is shown in equation (4.4), the nonlinear 

phase impairment occur as a function distance propagated and the OLP. 
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It is important to be aware that operating at the 1550 nm transmission window in the 

SMF, the impairment associated with CD results in signal spreading, which is why it 

correlates with PFC, because both impairments saliently induces phase to amplitude 

distortion. However, as shown in equation (4.4), the SPM induced nonlinear phase 

distortion is based on negative chirping. In other word, PFC and CD evolve as blue shifted 

rising edge and red shifted trailing edge, leading to signal spreading. Contrariwise for 

SPM, where it exhibits red shifted rising edge and blue shifted trailing edge resulting in 

signal compression [111, 112]. When the mixing of PFC and CD with SPM occur, the 

system penalty will effectively reduce, which is known as the intermixing region. In other 

word, the intermixing region provides a range of optimum OLP by an interchangeable 

compensation between PFC and CD with the SPM, without any additional components. 

In terms of DD systems, Ramos et al [109] initially proposed the intermixing region 

based compensation. The finding reported in [109] is limited to the frequency-length 

product analysis for a simple binary transmission system. Park et al [113] utilised the 
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intermixing region, with highly dispersed pulses to compensate optical fibre nonlinearity 

and effectively achieved optimum OLP at around ~6 dBm. In [114], Ali et al demonstrated 

the nonlinearity impact on DD-OOFDM system, which arises from 5 dBm onwards. 

However, the analysis in [114] did not address the intermixing region, as the OLP analysis 

was carried out from 3 dBm to higher OLP. Interestingly, in [115], the DD-OOFDM 

system experienced nonlinearity from the OLP of -4 dBm onwards. It is unusual for DD-

OOFDM system to experience nonlinear distortion at such low OLP, due to the high rate 

of CD in DD scheme compared to coherent detection [107, 116]. However, the occurrence 

of nonlinearity is also dependent on the OFDM equalizer’s ability to compensate nonlinear 

phase rotation, which logically will change for every equalization method.      

In this chapter, as part of the proposed LTE-A with varying FFT size scheme and its 

optimisation, the intermixing region is introduced for efficient LTE-A RoF integration. 

The optical compensating scheme based on intermixing region is very attractive because 

there is no additional optical equalizer required. Hence, designing the LTE-A RoF system 

with intermixing region demonstrates cost effectiveness, since there is no additional optical 

equalizing device required as part of the system design.  

4.3 Transmission Link for LTE-A RoF 

The DD-OOFDM system shown in Figure 4.1 is the overview block diagram for LTE-

A RoF system. At the transmitter in eNB, 62, 126, 254, 510, and 1022 parallel data streams 

are generated, and mapped into a parallel complex data using QPSK, 16, and 64-QAM 

modulation formats within SCM module for all the respective number of data.  
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The OFDM modulator module is important as the FFT size scaling is carried out in this 

module during the operation, as shown in equation (2.3). Within this module, the 62, 126, 

254, 510, and 1022 modulated symbols are added with 2 zeros for direct current (DC) 

subcarriers. Then IFFT is applied to the parallel complex data in order to generate the 

OFDM symbols, and subsequently added with ¼ CP rate within the OFDM modulator 

module. The symbols are converted into a continuous signal using two DAC modules for 

the real and imaginary parts of the signal. The data rate for QPSK, 16-QAM and 64-QAM 

OFDM with all subcarrier configurations are shown in Table 4.1. The original LTE-A 

carrier aggregation at 100 MHz provides a minimum and maximum data rate of 160 Mb/s 

and 500 Mb/s, for QPSK and 64-QAM, respectively. The data rate of per 20 MHz 

bandwidth signal can be calculated by adapting the following expression, B = 

Ns×∆f×log2Mb/s, where B is the data rate of per 20 MHz bandwidth, ∆f is the subcarrier 

Figure 4.1: Overall block diagram of LTE-A RoF 
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frequency, and Mb/s is the bits/symbol that changes with modulation schemes. For the case 

of 100 MHz bandwidth, the total data rate is simply the multiplication of 5 and B that 

represents 5×20 MHz bandwidth signals. Therefore, the subcarrier allocation and FFT 

sizes are chosen to meet the minimum requirement. Undoubtedly, FFT size of 2048 and 

above will effectively increase the data rate, however, such design step is neglected. The 

rationale for avoiding higher FFT size will be explained with the aid of results in the 

upcoming section.   

After the DAC, the continuous signal is up-converted to a carrier frequency of 2.6 GHz 

by a LO according to the allocated spectrum for LTE and LTE-A in an urban location [81]. 

The combined real and imaginary electrical signals are then applied to the DFB laser 

directly to generate OOFDM signals. As explained earlier, the DM of DFB induces the 

PFC. The OOFDM signals are then coupled into the SMF with link spans of ~119 km, ~68 

km, and ~57 km, corresponding to the maximum achievable distances of QPSK, 16-QAM 

and 64-QAM, respectively. An EDFA is utilised for link span L of above 80 km with 15 

dB gain and 5 dB noise figure (NF) [117].  

 
Table 4.1: Combinations of data rate for proposed varying FFT scheme in LTE-A 

Single carrier modulations Data subcarriers / FFT size N Data rate 

QPSK 

62 / 64 157.8 Mb/s 

126 / 128 158.3 Mb/s 

254 / 256 159.1 Mb/s 

510 / 512 160.3 Mb/s 

1022 / 1024 161.1 Mb/s 

16-QAM 

62 / 64 318 Mb/s 

126 / 128 318.8 Mb/s 

254 / 256 319.3 Mb/s 

510 / 512 320.1 Mb/s 

1022 / 1024 321 Mb/s 

64-QAM 

62 / 64 481 Mb/s 

126 / 128 482.3 Mb/s 

254 / 256 484 Mb/s 

510 / 512 487 Mb/s 

1022 / 1024 491 Mb/s 
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At the receiver side, the optical signals are converted into electrical signals via a single 

PD adopting DD. Identical LOs are used to ensure perfect synchronization between 

transmitter and receiver modules. The remaining part of the receiver is the reverse process 

of the transmitter except for the equalization module. The frequency domain equalizer is a 

single-tap least square filter used for phase distortion compensation induced by PFC, 

CD and SPM. The system evaluation is carried out based on the OLP characteristics and 

the system BER.  

4.3.1 System Model 

As depicted in figure 4.1, the raw data is first passed through the SCM module that 

consists of QPSK, 16-QAM, and 64-QAM schemes. The SCM modulated symbols are fed 

into the OFDM module to carry out the serial-to-parallel conversion. The parallel symbols 

are converted into OFDM signal by applying IFFT operation, and CP addition as shown in 

equation (2.3) and (2.4), respectively. After DAC, the RF up-conversion models are 

adopted into this chapter from equations (2.5) and (2.6). From equation (2.3), the data 

subcarriers will be varied between 62, 126, 254, 510 and 1022 according to the higher data 

rate requirement. The corresponding subcarrier frequency spacing for the aforementioned 

data subcarriers will be in the range of ~1.28 MHz, ~633 kHz, ~314 kHz, ~157 kHz and 

~78 kHz, which can be calculated from ∆f=BT/(Ns+Ncp), where BT is total bandwidth of 100 

MHz and Ncp is the CP length.  The reducing subcarrier frequencies indicate the transition 

of smaller to larger OFDM symbol length, or broader to narrower subcarrier spacing.      

The DFB and SMF models are adopted from equations (3.2-3.6) of Chapter 3 and 

equation (4.3) herein, respectively.  
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 4.3.2 Results on Optimal LTE-A RoF Performance 

The conventional wireless communications aim to achieve a BER of 10-5, thus the 

results presented throughout this chapter will be assessed based on this metric [88, 118].  
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Figure 4.2: OLP against SNR penalty analysis of DD-OOFDM, with (a) QPSK-119 

km, (b) 16-QAM-68 km, and (c) 64-QAM-57 km  
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Figure 4.2(a), (b), and (c) depict the OLP against the SNR penalty of QPSK, 16-QAM 

and 64-QAM DD-OOFDM, respectively. The SNR penalty is measured on the comparison 

basis of the incident link to the back-to-back (BTB) link. The maximum link spans 

achieved herein are ~119 km, ~68 km, and ~57 km for QPSK, 16-QAM, and 64-QAM, 

respectively. The system OLP is varied in the range of -13 dBm to 12 dBm to precisely 

identify the intermixing region. In Figure 4.2(a), (b), and (c), there are three distinctive 

regions: A) linear - PFC and CD induced power penalty, B) intermixing - optimised OLP 

via the compensation of SPM with PFC and CD, and C) nonlinear - SPM induced power 

penalty. 

In region A of QPSK, 16-QAM and 64-QAM systems, for the range of OLP less than -

4 dBm, the SNR penalty increases with decreasing OLP for all FFT sizes. In principal, as 

OLP decreases, the SNR decreases, thus illustrating the linear relationship with respect to 

the impairments occurred in the region A. For QPSK system (Figure 4.2(a)), the SNR 

penalty variations between all FFT sizes are relatively small. However, the pattern in 

region A changes as the modulation schemes changes, where SNR penalties between the 

FFT sizes increased for 16-QAM (Figure 4.2(b)), and further deteriorated for 64-QAM 

(Figure 4.2(c)). The reason for such deterioration is due to the increase in data rate arising 

from higher level modulation scheme with closely placed symbols and reduced Euclidean 

distance that requires higher SNR. But, FFT size-64 exhibits unusual SNR penalty 

compared to FFT size-128, albeit FFT size-64 composed of lower data rate. Such 

phenomenon occurs for FFT size-64 due to the large frequency spacing producing shorter 

OFDM symbol, hence resulting in ISI. The optimum FFT size for QPSK, 16-QAM and 64-

QAM is FFT size-128 with subcarrier frequency proportionally compromising between ISI 

and data rate. The SNR penalties for FFT size-128 at OLP of -13 dBm are ~27 dB, ~25 dB, 

and ~25 dB, for QPSK, 16-QAM, and 64-QAM, respectively.  



75 

 

For nonlinear region, the discussion now shifts to region C of Figure 4.2(a), (b), and (c) 

for QPSK, 16-QAM, 64-QAM, respectively. Despite the increase in OLP, the SNR penalty 

still increases, which proves the anomalous response of region C, primarily due to the 

nonlinear phase distortion. In Figure 4.2(a) for QPSK, the distortions are almost similar for 

every FFT sizes. However, as the modulation level increases, the SNR penalty deviation 

between the FFT sizes increases, resulting in large FFT sizes experiencing higher 

distortion rate. Fundamentally, such phenomenon occurs due to the vulnerability of narrow 

 

 

0 10 20 30 40 50 60 70
SNR(dB)

-5

-4

-3

-2

10

10

10

10

B
E

R

Theory

FFT=64

FFT=128

FFT=256

FFT=512

FFT=1024

 

Theory

FFT=64

FFT=128

FFT=256

FFT=512

FFT=1024

-5

-4

-3

-2

10

10

10

10

B
E

R

0 10 20 30 40 50 60 70
SNR(dB)

-5

-4

-3

-2

10

10

10

10

B
E

R

0 10 20 30 40 50 60 70
SNR(dB)

(a)

(b)

(c)

Theory

FFT=64

FFT=128

FFT=256

FFT=512

FFT=1024
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and closely spaced subcarriers in large FFT sizes that deteriorate subject to heavy ICI. The 

optimum FFT size in the nonlinear region is FFT size-128. At the OLP of 12 dBm, the 

QPSK, 16-QAM and 64-QAM SNR penalties for FFT size-128 resulted in ~43 dB, ~43.5 

dB, and ~45 dB, respectively.    

In region B also known as the intermixing region, the optimum OLP ranges from ~-4 

dBm to ~2 dBm, where this region clearly indicates that FFT size-128 demonstrates the 

best gain. For the case of QPSK system (Figure 4.2(a)), the SNR penalty differences 

between FFT size-128 and FFT size-64 are relatively small. All the systems would not be 

able to achieve BER of 10-5 for transmission of above the distance demonstrated herein. 

The SNR penalty observed for FFT size-128 at -2 dBm, for QPSK, 16-QAM, 64-QAM are 

~18.5 dB, ~16.8 dB, and ~16.1 dB, respectively. The rest of the analysis will be carried out 

at -2 dBm OLP, which falls in the range of ~-4 dBm to ~2 dBm within the intermixing 

region.  

In order to clearly observe the evolution of distortion in the intermixing region, BER 

measurement is carried out. At the BER of 10-5, from Figure 4.3(a), (b), and (c) of QPSK, 

16-QAM, and 64-QAM, respectively, the farthest transmission is ~119 km with lowest 

average SNR of ~27 dB, achieved by QPSK system with FFT size-128 and 64. The 

accomplishment was made possible from the usage of intermixing region with no 

additional device and rigorous optimisation of FFT size. Corresponding to the same QPSK 

system, FFT-size of 256, 512 and 1024 requires higher SNR of ~29 dB, ~32 dB and ~33 

dB, respectively, to achieve the transmission distance of ~119 km. In Figure 4.3(b) and (c), 

it is observed that the FFT size-64 requires higher SNR as the data rate increases. This is 

due to higher subcarrier frequency of 1.28 MHz for FFT size-64, where the walk-off rate is 

relatively low because the distortion affects a bigger division from the total channel 
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bandwidth of 100 MHz. As the data rate increases, the allocated data within a large 

subcarrier increases which leads to higher requirement of SNR for a specific BER.    

Figure 4.4 presents the summarized output of the FFT size analysis for DD-OOFDM 

with QPSK, 16-QAM, and 64-QAM transmitted at the optimised OLP of -2 dBm. From 

Figure 4.4, as explained earlier, the QPSK DD-OOFDM system achieves almost identical 

power penalty at FFT size-64 and 128 demonstrating similar walk off rate. Above this data 

rate, FFT size-64 has higher effect due to the higher frequency spacing, effectively 

reducing the walk off rate, which is due to the increase in the data rate within a subcarrier. 

The FFT size-128 achieves the lowest power penalty across all modulation schemes. For 

the FFT size of more than 128, subcarrier spacing are narrower with respect to the 

increment in subcarrier numbers, which will be easily affected by phase distortion that 

leads to ICI. Therefore, the system design proposed in this chapter is limited to FFT size-

1024. The electrical transmitter for the proposed application has been thoroughly examined 

 

 

QPSK-119 km

16-QAM-68 km

64-QAM-57 km

64 128 256 512 1024
FFT Size

5

10

15

20

25

30

35

40

S
N

R
 P

en
a
lt

y
 @

 1
0

-5
 B

E
R

 (
d

B
)

Figure 4.4: FFT size against power penalty with optimum FFT size corresponding to 

lowest power penalty  



78 

 

and optimised. Since, electrical-to-optical conversion is a crucial part of LTE-A RoF 

system design, next section will present the optimisation of optical modulator. 

4.4 Optimisation of Optical Modulators 

The optimisation of FFT size from the previous section demonstrated that FFT size-

128 is the most optimum with 100 MHz bandwidth transmission for all propagation 

conditions. Since PFC is a major obstacle in achieving high data rate in long span 

transmission, as clearly explained in Chapter 3 with a new closed form expression 

(equation 3.22). This section will introduce diversity in terms of optical modulators, where 

in addition to DML external modulators will be part of the system design. Despite the 

costly nature of external modulators, it is important to consider the usage of these 

modulators due to the ability of mitigating PFC. Resilience towards PFC is possible with 

external modulators, because the modulation switching will be performed externally, and 

not by the laser itself. The optimisation in optical modulators will be complemented with 

the analysis of optical propagation, where the impact of intermixing region will be 

investigated with different optical modulators. The resulting output of the investigation 

from this section was published in [101] by the author. 

The physical layer connectivity from eNB according to the proposed varying FFT size 

based LTE-A system is modelled using 16-QAM and 64-QAM as the SCMs. The SCMs 

are then modulated onto OFDM with only FFT size-128, due its optimum performance. 

The data subcarriers, data rate and bandwidth remain the same as the previous section.  

The investigation is focused more on the optical link, with different RoF configurations 

to observe the variation in transmission distance with respect to optical modulators. The 

RoF system designed for each case under study is based on: (i) DFB based on IM, (ii) SE-
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MZM based IM, and (iii) DE-MZM based PM. Conventional optical fibre systems utilise 

optical phase modulator to perform PM. However it is shown in [119] that DE-MZM, as a 

single integrated device exhibits similar performance to conventional optical phase 

modulator that composed of several different devices. Therefore, DE-MZM is adopted into 

this investigation for cost efficiency. Since the LTE-A is composed of OFDM, the optical 

modulated signal will be termed again as DD-OOFDM. Previous work on the optimisation 

of the optical modulator for OOFDM was only reported for the Quadrature MZM and DE-

MZM [120]. The findings reported in [120] was limited to only linear propagation, with no 

emphasis on the nonlinear propagation and intermixing region.  

The analysis of this section will be carried out on characterizing PFC dependent and 

non-dependent modulator, its interaction with CD and SPM, and the inevitable impact on 

transmission distance. It is important to analyse the maximum achievable transmission 

distance to study the distance of RN that can be placed in the adjacent cells, as discussed in 

Chapter 1. Further studies on different RoF configuration provides more ideas on the 

placement distances with respect to the primary cell.  

The optical receiver is based on DD. All the proposed configurations are transmitted 

over SMF, with considering only CD and SPM to maintain consistency with the previous 

section. The evaluation of individual configurations is performed based on the individual 

optical modulator OLP condition, and the resulting BER.  

4.4.1 Transmission Link  

The DD-OOFDM shown in Figure 4.5 is the overview block diagram of LTE-A RoF 

system configured with different optical modulators. At the transmitter side, 126 parallel 

data streams are generated and mapped into a parallel complex data using 16 and 64-QAM 
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mapping formats. Within the OFDM modulator module, there are three important 

processes of which are i) the addition of 2 zeros for DC subcarriers to achieve the 

formation of 128 parallel subcarriers to meet the IFFT and FFT algorithms requirements 

[121], ii) the 128 parallel complex data are then fed into an IFFT modulator to generate the 

OFDM symbols, and iii) the OFDM symbols are then appended with CP at the rate of ¼ of 

the total 128 parallel subcarriers. After parallel-to-serial conversion, the discrete OFDM 

symbols are converted into a continuous signal using two DACs modules for the real and 

imaginary parts of the signal. The continuous signal is then up-converted to a carrier 

frequency of 2.6 GHz by a LO.  

The combined real and imaginary electrical signals are applied to three optical 

modulation schemes, (i) DFB for IM, (ii) SE-MZM, with DFB as the source, for IM and 

(iii) DE-MZM, with DFB as the source, for optical PM.   

Figure 4.5: Overall block diagram of LTE-A RoF for optimization of optical modulators 
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At the receiver side, the optical signals are converted into electrical signals via optical 

receivers and are subsequently demodulated. Since the proposed system operates based on 

DD, the complete advantage of the optical PM could not be utilized, as coherent detection 

is required to detect the phase of the optical signal. Identical LOs are used to ensure perfect 

synchronization between transmitter and receiver modules. The remaining part of the 

receiver is exactly the reverse process of the transmitter except for the equalization 

module. The single tap least square algorithm based frequency domain equalizer, is used 

for compensation of phase distortion in the received constellation for all schemes used.  

The OFDM, DFB and SMF models in this section are identical to that expressed in 

equations (2.3-2.6) of Chapter 2, equation (3.2-3.6) of Chapter 3 and equation (4.3), 

respectively. On the other hand, for the first time, SE-MZM and DE-MZM models will be 

introduced in this chapter.  

4.4.2 SE-MZM and DE-MZM models 

The description on external modulation inclusive of SE-MZM and DE-MZM was 

given in Section 2.2.2 of Chapter 2. It is appropriate to present the model of the respective 

external modulators herein, because it is specifically applied in this chapter. Equations 

(4.5) and (4.6) illustrate the SE-MZM and DE-MZM, respectively [110, 122]: 
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where Eo(t) and Ei are the output and input optical fields of the MZM, respectively and V(t) 

is the input electrical signal, Vbias is the MZM biasing voltage, Vπ is the half-wave voltage.  

In the system shown in Figure 4.5, the SE-MZM and DE-MZM are biased at the 

quadrature biasing point, where Vbias = 1.75 V and Vπ = 0.5 V. The MZM biasing voltage is 

fixed to 1.75 V to be sufficient enough to push the input electrical signal to the quadrature 

biasing point, see Figure 2.5. However, it is important to maintain a small half-wave 

voltage, so that the input electrical signal does not drift to maximum or minimum biasing 

point. Under this condition, both modulators will operate within the linear region.   

Figure 4.6: OLP against SNR penalty analysis of (a) 16-QAM DD-OOFDM and (b) 

64-QAM DD-OOFDM  
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4.4.3 Results on Optimised Optical Modulators 

 Figure 4.6(a) and (b) depict the SNR penalty against OLP for 16-QAM and 64-QAM 

DD-OOFDM signals, respectively, at the facet of optical modulators for a BER of 10-5. 

The maximum link spans achieved for 16-QAM scheme are, DFB: ~68 km, SE-MZM: ~79 

km, and DE-MZM: ~88 km, while 64-QAM scheme resulted in, DFB: ~57 km, SE-MZM: 

~62 km and DE-MZM: ~71 km. In both figures there are three distinctive regions: A) CD 

or CD and PFC induced power penalty (linear), B) the optimum OLP due to the 

intermixing effect of SPM with CD and the PFC (DFB), and C) the SPM induced power 

penalty (non-linear).  

Region A of Figure 4.6 becomes active and effectively deteriorates the signal for OLP 

of less than ~-4 dBm, which agrees well with results observed in Figure 4.2. In region A of 

Figure 4.6(a) and (b), as OLP decreases, the SNR decreases uniformly for both 16-QAM 

and 64-QAM, respectively. This phenomenon illustrates the linear relationship with 

respect to the impairments occurred in the region A. For 16-QAM system, the DE-MZM 

experiences higher SNR penalty due to the accumulated CD for longer span transmission, 

as it is well known that CD accumulates with propagated distance [123]. In the same 

modulation scheme, although DFB only propagated up to 68 km, the SNR penalty is very 

close to DE-MZM due to the nature of PFC induced by DML. In terms of the external 

modulators, the SNR penalty differences between DE-MZM and SE-MZM arise from the 

lower propagated span of SE-MZM that result in lower CD rate. In the 64-QAM system of 

Figure 4.6(b), DFB exhibits higher SNR penalty emerging from the data rate dependent 

PFC. The reason for SNR penalty differences between SE-MZM and DE-MZM for 64-

QAM system is likewise to the 16-QAM system. At the OLP of -13 dBm, the SNR 

penalties observed in 16-QAM system are DFB: ~27 dB, SE-MZM: ~24 dB, and DE-



84 

 

MZM: ~29 dB. In 64-QAM system with the same OLP, the SNR penalties for DFB, SE-

MZM and DE-MZM are ~29 dB, ~20 dB, and ~23 dB, respectively. The SNR penalty of 

DFB increases with the data rate. However, since external modulators are PFC free, the 

distortion in region A is distance dependent, thus resulting in lower SNR penalty for 64-

QAM system compared to 16-QAM system. But, the electrical equalizer employed in the 

proposed system, could only compensate all the RoF configurations up to the distances 

mentioned.    

In the nonlinear region, the discussion is concentrated towards region C of Figure 

4.6(a) and (b) for 16-QAM and 64-QAM, respectively. Albeit the increase in OLP, the 

SNR penalty effectively increases, thus showing the anomalous response occurring in 

region C, primarily due to the nonlinear phase distortion. In Figure 4.6(a), the DE-MZM 

exhibits higher SNR penalty, due to the amplitude-to-phase coupling arises from the SPM 

affect, which effectively distorts the optical PM. Both DFB and SE-MZM resulted in lower 

SNR penalty compared to DE-MZM due to the nature of IM, which demonstrated lower 

sensitivity towards nonlinearity compared to optical PM. Likewise, 64-QAM system of 

Figure 4.6(b) demonstrated similar pattern for all optical modulators. For OLP of 12 dBm, 

the 16-QAM SNR penalties for DFB, SE-MZM and DE-MZM are ~39 dB, ~36 dB, and 

~53 dB, respectively. At the same OLP, the SNR penalties for 64-QAM are DFB: ~41 dB, 

SE-MZM: ~32 dB, and DE-MZM: ~50 dB. It is strongly advisable to avoid DE-MZM 

signal from nonlinear propagation.    

The intermixing region (region B) illustrated in Figure 4.6(a) and (b) for 16-QAM and 

64-QAM, respectively, resulted in optimum OLP within the range of ~-6 dBm to ~0 dBm. 

It is important to specify that the optimum OLP region for SE-MZM and DE-MZM would 

deviate towards lower range of OLP for lower transmitted distance. The region B offers the 

lowest penalties, where at -2 dBm, the SNR penalties for 16-QAM based DFB, SE-MZM 
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and DE-MZM are ~18 dB, ~15 dB, and ~19 dB, respectively. In terms of 64-QAM at – 

2dBm OLP, the SNR penalties for DFB: ~17.5 dB, SE-MZM: ~8.5 dB, and DE-MZM: 

~13 dB. Overall, SE-MZM offers lowest SNR penalty, but with lower transmission span 

compared to DE-MZM. In the case of DE-MZM, since the optical PM has the modulation 

embedded into the phase, thus demonstrating higher resilient towards the intensity noise 

induced by CD [124]. The shortcomings of both external modulators are the 

implementation complexity and associated cost, which are vital for a commercial design 

Figure 4.7: Simulated BER against SNR for (a) 16-QAM DD-OOFDM and (b) 64-

QAM DD-OOFDM across all type of optical modulators  
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and deployment. Hence, DML based on DFB will be the ultimate choice due to its 

simplicity, but with the drawback of shorter transmission span.  

Figure 4.7(a) illustrates the BER values for 16-QAM DD-OOFDM scheme, where the 

highest achievable transmission distance between all the RoF configurations is ~88 km 

with the DE-MZM modulator at the SNR of ~32 dB. Observation shows that the lowest 

achievable transmission distance of ~68 km with the DFB adopting IM scheme requires 

SNR of ~29 dB, while SE-MZM with the same IM scheme able to achieve ~79 km with 

SNR of ~26 dB. As explained earlier, the DFB scheme achieved shorter transmission 

distance compared to both external modulators (SE-MZM and DE-MZM), is due to the 

PFC affect that magnifies CD. It is important to observe the system capability of RoF for 

the proposed LTE-A system with FFT size-128, and its optimisation with respect to optical 

modulators, simply to learn how far the eNB could connect to a RN outside of its cell limit.  

Likewise, the same signal degrading pattern applies to Figure 4.7(b) for 64-QAM 

DD-OOFDM scheme with a reduced link span to achieve the required BER. This is due to 

the smaller Euclidean distances between the constellations points for 64-QAM compared 

to 16-QAM, which effectively explains the bandwidth distance product. These results 

strongly emphasize the indirect proportional relationship between the spectral efficiency 

and the transmission link span.   

4.5 Summary 

In this chapter, the optimisation of OLP condition with respect to the varying FFT-

sizes was carried out. The optimum OLP or the intermixing region, which mostly falls in 

the range of ~-6 dBm to ~0 dBm for QPSK, 16-QAM, and 64-QAM were discovered. This 

particular region was achieved by the interchangeable compensation between PFC and CD, 
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with SPM. For the FFT size-64, the analysis unfold that the walk-off rate gradually 

decreases with the increase of data rate, especially for 16-QAM and 64-QAM schemes. For 

FFT size of more than 256, the power penalty increases significantly for QPSK, 16-QAM, 

and 64-QAM due to the vulnerability towards ICI. The finding for FFT size optimisation 

reveals that FFT size-128 provides the minimum power penalty across all investigated 

modulation schemes. The average system efficiency that FFT size-128 provides are 54% 

and 65% with respect to the FFT size-64 and FFT size-256, respectively. The symbol 

length and subcarrier frequency spacing of FFT size-128 could provide enough tolerance 

and higher walk off to ISI and ICI, respectively.  

After determining the optimum FFT size for electrical transmitter, the investigation 

was further carried out on the performance evaluation and optimisation of optical 

modulators, using DML and external modulators. The optimum OLP is consistent and 

conforms to the range that was unfolded in the previous investigation herein. The 

investigation shows that the performance of external modulation schemes in terms of 

transmission distance is superior to DML scheme. Between SE-MZM and DE-MZM, the 

latter proved to be a preferred option for externally modulating the signal since it offers 

improved immunity to the fibre CD, hence achieved longer transmission span. However, 

DE-MZM is vulnerable towards nonlinearity due to the modulation taking place in the 

phase of the optical source. It is clearly shown that the cell extension with a simple DFB 

modulated RoF configuration could extend the coverage of eNB beyond its area, and even 

further with external modulation. Overall, this chapter provided in-depth design of the 

proposed varying FFT-sizes based LTE-A and its integration with RoF. In the next chapter, 

the theoretical and experimental design of DML based LTE-RoF system will be presented.
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The previous chapters are solely dedicated to the numerical modelling of eNB cell 

extension for LTE-A. The LTE-A architecture was redesigned with varying FFT size, and 

the coverage of eNB was extended with RoF system. For the first time in this thesis, this 

chapter will cover the experimental design of LTE RoF integration. The predecessor of the 

LTE-A is the LTE, but both technologies comprise of almost the same characteristics. The 

differences between LTE and LTE-A are shown in Table 1.2 of Chapter 1. Although, LTE-

A is progressive in terms of data rate, but the drawback with carrier aggregation is 

significant due to the complexity.   

Nagate et al [30] implemented RoF link into the networking structure of LTE and 

extended the eNB cell to a limited distance of 2.1 km. The shortcomings of the design 

reported in [30] are, i) since the predicted LTE subscriptions will be about 456 million by 

end of 2015 [125], the reported performance analysis is rather limited for network 

operators to accelerate the LTE-RoF integration, ii) the work is confined to signals with 10 

MHz analogue radio bandwidth (ARB), however the actual eNB operates with a varying 

bandwidth in the real-time case , see Table 1.2. Since the analysis in [30] is limited with a 

fixed 10 MHz bandwidth, the eNB cell extension with RN via RoF interface requires 

detailed system metrics for easy adaptability and seamless integration in the ongoing 

deployment stage. 

Therefore, the experimental LTE RoF integration herein will unfold some of the 

important metrics with detailed analysis, namely OMR for varying ARBs, deviation of 

intermixing region relative to ARBs and transmission spans, and identification of the LTE 

RoF system nonlinear limit. Since this chapter introduces the experimental link of LTE 

RoF, characterization of the RoF link will be presented and discussed beforehand. The RoF 
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link designed for LTE is based on DML, thereby the characterization will emphasize on 

the DFB acting as the DML and the complete RoF link.  

Henceforth, the experimental demonstration of the LTE signal transmission to an AF 

RN, via a 10 km RoF interface will be carried out. The LTE signal is configured with 

QPSK, 16 and 64 QAM data. These mapped data are then modulated onto OFDM. The 

OFDM signals are transmitted at RF of 2.6 GHz with varying ARBs of 3 MHz, 5 MHz, 10 

MHz, 15 MHz and 20 MHz [81, 126]. The RoF interface is composed of a DML and DD 

based optical receiver, thus the LTE signal will be termed as DD-OOFDM. The prominent 

problem of OFDM is the characteristics of high PAPR, where it has a direct impact on the 

OMI. As a part of practical system design, the OMR will be presented as an important 

performance metric. 

The intermixing region was theoretically introduced with numerical simulation, which 

demonstrated a range of optimum OLP for LTE-A in Chapter 4. As part of the LTE RoF 

system optimisation herein, an investigation on the impact of intermixing region with 

varying ARBs will be performed. In addition, the transmission span will be varied between 

10 km and 60 km to study on the deviation of intermixing region, and the identification of 

the nonlinear limit.  

5.1 Device Characterization  

The system proposed in this chapter consists of a DFB as the DML. The detailed 

background of DML and its important characteristics were given in Section 2.2.1 of 

Chapter 2 and throughout Chapter 3. The characterizations of the DML in this chapter will 

be the LI curve, RIN, linewidth, and the modulation bandwidth. In addition, as a complete 
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nonlinear response of the BTB link, the spurious free dynamic range (SFDR) measurement 

will be performed.  

5.1.1 LI Curve  

The LI curve of a laser is the major element that needs characterization, as it will 

present the threshold, best modulation region and saturation region of the device under test. 

The DFB used for the experimental work throughout this thesis is the 1754C DWDM laser 

from Emcore Corporation. The measurement setup for LI curve is illustrated in Figure 5.1, 

where the DFB laser is switched on by a Hewlett Packard stable bias device. The LI 

measurement is varied between 20 mA to 140 mA, as the threshold is at ~18 mA. The 

output power of the DFB laser is measured with Agilent 86146B optical spectrum analyser 

(OSA). Figure 5.2 depicts the LI curve, where it can be observed that the saturation starts 

at above ~100 mA. The centre wavelength at 60 mA is 1551.11 nm with ± ~1.26 nm for 

decreasing and increasing bias current.  

5.1.2 RIN Measurement  

Phase noise is the dominant noise factor in a laser, the nature of phase noise introduces 

random fluctuation to the output power, widely known as the RIN. Thus, the measurement 

of RIN is necessary to understand the noise level of the DFB laser. The optical SNR 

(OSNR) measurement is carried out as illustrated in Figure 5.1, where the measured OSNR 

Figure 5.1: LI curve and RIN measurement setup 
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as a function of bias current, is used for RIN computation. The equivalent model used for 

the RIN computation is as follows [127]:  

8.174)log(*20)log(*10(dB/Hz) nm1sesig   OSNRRIN    (5.1) 

where αsig-se is the polarization factor, λ is the centre wavelength, OSNR1nm is the OSNR 

measurement at 1 nm scale. The model shown in equation (5.1) is specifically defined for 

Agilent 86146B instrument for RIN measurement. The calculation performed using 

equation (5.1) also agrees well with RIN measurement based on electrical spectrum 

analyser and oscilloscope [127]. The measured RIN relative to the bias current is shown in 

Figure 5.2, which decreases with the increase in bias current. The decreasing pattern in 

RIN occurs because as the bias current increases, stimulated emission becomes the 

dominant output, thus spontaneous emission dependent phase noise depletes.  

Figure 5.2: The LI curve of 1754C DWDM DFB laser 
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5.1.2 Linewidth Measurement  

As explained earlier, the phase noise distorts the laser output. The additional laser 

characteristic that will be affected from the phase noise is the laser linewidth. Since the 

primary optical transmitter of this research work is DML, linewidth characterisation is 

important as it will deviate relative to modulation. The DFB laser utilised in the 

experimental setup emits narrow linewidth, hence the direct measurement of linewidth is 

peculiar with the conventional method.  
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Figure 5.3: The RIN characterization  relative to bias current for 1754C 

DWDM DFB laser 

Figure 5.4: Measurement setup for linewidth characterization 
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The technique used in this section for linewidth characterization is shown in Figure 5.4. 

The RIN is recalculated with additional modulated signal at frequency f of 2.6 GHz and 

transmission over 10 km span L of SMF. The measured and calculated RIN via the OSA is 

used for the linewidth estimation, with the following expression given by Emcore [128]:     

})/({

)(ΔΔ  fcLλDπ
fRIN

v      (5.2)     

where D is the optical fibre dispersion parameter, and c is the speed of light. Since both 

RIN and linewidth are functions of phase noise, linewidth can be computed from the RIN. 

As shown in Table 5.1, linewidth decreases as the bias current increases, where the 

linewidth is 11.4 MHz at 60 mA. As to validate the linewidth estimation using equation 

(5.2), an alternative measurement was carried out with high resolution OSA, BOSA 200 by 

Aragon Photonics. The resulting linewidth with a high resolution OSA was 11.14 MHz at 

60 mA bias current, thus proving the accuracy of the measurement shown in Table 5.1. 

 5.1.3 Bandwidth Measurement 

The modulation bandwidth is an important parameter of the proposed design, due to 

the high operating frequency of LTE at 2.6 GHz. Therefore, it is important to identify the 

modulation response of the DFB. The usage of frequency domain characterization is an 

efficient and precise method to identify the bandwidth of a device and the cut-off 

frequency. In order to achieve this, a setup was constructed as shown in Figure 5.5 for S21 

 

Table 5.1: Linewidth measurement 

Bias (mA) 30 40 50 60 70 80 90 100 120 140 

Linewidth 

(MHz) 
511.15 18.74 11.7 11.4 10.4 6.51 5.12 3.81 3.1 2.89 
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measurement. As usual, the DFB is biased to linear region, and coupled with the 

modulation signal from the network analyser, Agilent N5230A PNA-L. The DFB is 

directly connected to Newport D8-ir PD for optical signal detection. The characteristics of 

the PD are 0.42 responsivity and -17 dBm sensitivity. The detected signal is coupled into a 

low noise amplifier (LNA), with 18 dB gain and 2.5 dB NF. The amplified signal is 

subsequently received by the network analyser for S21 measurement.  

    The resulting output of the S21 measurement is shown in Figure 5.6. The region of 

interest for the proposed application experiences ~5 dB penalty, which can be easily 

compensated by the LNA. Above 3.5 GHz, the DFB response rapidly decreases. However, 

it is possible to modulate above 3.5 GHz with the trade-off of higher amplification.  

5.1.4 Dynamic Range Measurement 

In order to maintain a low cost system, the proposed RoF link for LTE is designed with 

IM by directly modulating a DFB laser and detection through a PD. The DM exhibits 

nonlinear characteristics due to the gain compression, which results from several factors, 

namely gain saturation, spatial hole burning and leakage current [129]. The nonlinearity of 

Agilent N5230A PNA-L 

1754C 

DWDM 

DFB Laser

Hewlett Packard Stable 

Bias Device
Newport 

D8-ir PD
LNA

Figure 5.5: Measurement setup for modulation bandwidth characterization 
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the DFB will result in spurious signals, which are also known as harmonics and IMDs. 

Harmonics is independent of the input signal, which means harmonics will occur even with 

the single tone input. In contrast, IMDs only occurs for input signals with more than one 

tone. Furthermore, harmonics are spurious signals that occur at a distance from the 

fundamental frequency, and so do the even order IMDs. A two-tone IMD analysis is 

sufficient to characterize the spurious signals, for both harmonics and IMDs [130]. The 

output of the DFB with respect to the LI curve can be described with Taylor series: 

....,)()()())((
3

d3
2

d2d1d  tIatIatIatIL    (5.3) 

where L(Id(t)) is the output optical power operates as a function of input current Id (t); an 

represents the coefficient of polynomial fitting on the curve, shown in Figure 5.2, with 

respect to the order n; Id(t), Id
2(t), and Id

3(t), are the fundamental, second order spurious and 

third-order spurious signals, respectively. The two-tone input can be expressed as: 
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)),cos()(cos()()( )( 212d1dtonetwo- ttAtItItI      (5.4) 

where Itwo-tone(t) is the composite signal of the first tone Id1(t) modulated at a frequency ω1 

and the second tone Id2(t) modulated at a frequency ω2, and A is the magnitude of the 

applied current. The first tone Id1(t) and second tone Id2(t) are transmitted at frequencies ω1 

of 2.59 GHz and ω2 of 2.61 GHz. The spacing between ω1 and ω2 is 20 MHz, which 

represents the bandwidth of the LTE signal. 

The second order spurious signals can be expressed as: 
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(5.5) 

where the first and second terms of the solution in equation (5.5) comprises of second 

order harmonics at the frequency multiples of ω1 and ω2. The third and forth terms shows 

the second order IMD products. The second order harmonics and IMDs are outside the 

band and therefore they will be omitted for rest of the analysis. However, the odd order 

IMDs tends to be close to the transmitting signal. Therefore, only the third-order IMD is 

considered in this analysis, as that is the only component that falls closely to the 

fundamental signal. The analytical expression focusing on the third-order IMD can be 

shown as: 
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  (5.6) 

In equation (5.6), the solution shows the first and second terms as the in-band spectral re-

growth phenomena. The third and the forth terms are the third-order harmonics and these 

terms are clearly outside the frequency band and could easily be filtered. The sixth and 

eighth terms of equation (5.6) tend to be outside the frequency band as well. Finally, the 

critical terms that are closer to the fundamental frequency are the fifth and the seventh 

terms of equation (5.6), where frequencies are 2.57 GHz and 2.63 GHz, respectively. From 

equation (5.6), it is clear that the in-band spectral re-growth evolves with the fifth and the 

seventh terms, indicating the criticalness of third order nonlinearity. However, if the 

nonlinear terms are small, the in-band spectral re-growth is negligible [73].   

In order to characterize the SFDR with respect to the third-order IMDs, the two-tone 

IMD signal analysis is carried out theoretically and experimentally. Figure 5.7 shows the 

experimental setup for the two-tone signal transmission for IMD analysis. Two continuous 

wave generators (CWGs), Agilent E8247C, CWG1 and CWG2 were utilised to generate 

signals at frequencies ω1 of 2.59 GHz and ω2 of 2.61 GHz, respectively. The generated 

signals are composed of sinusoidal signals, these signals are then summed to form a two-

tone signal. The two-tone signal is then directly applied to the DFB laser to perform IM. 

The optical two-tone signal is then transmitted over a short patch cord and detected via PD. 
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The signal is subsequently amplified to mitigate the conversion loss induced by PD, and 

SFDR measurement is carried out using a signal analyser (SA), Agilent 9020A MXA.  

Figure 5.8 depicts theoretical and experimental results of the two-tone IMD analysis. 

The input powers of signals Id1(t) and Id2(t) are investigated in the range of 2 to 11 dBm via 

CWG1 and CWG2, respectively, after taking the 5 dB loss of the power combiner into 

consideration. When the input power is below 2 dBm, it is difficult to observe the third-

order IMD as it is very close to the noise floor of -77.93 dB. Meanwhile, since the limit of 

CWG is 16 dBm (which effectively means input power of 11 dBm due to the power 

combiner’s loss), the linear prediction technique is used to estimate the output power for 

the given input power below 2 dBm and above 11 dBm. All factors have similar 

consideration between theory and experiment to maintain the consistency. Additionally it 

is important to state that all the output metrics presented in Figure 5.8 are integrated over a 

20 MHz bandwidth.  

The third-order input/output intercept point (IIP3/OIP3) provides an important metric. 

At this intercept point, the distortion due to the nonlinearity is severe as the third-order 

IMD has an equivalent output power to the fundamental signal. The IIP3 of the DFB is 29 

dBm, which result in an OIP3 of 8.89 dBm, and almost the same outcomes can be 
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Figure 5.7: Experimental setup of two-tone signal for IMD analysis  
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observed with the theoretical simulation. However, such a high power is not an envisaged 

input power for the proposed system of this thesis. From the estimation, the third-order 

IMD rises above the noise floor at the input power of 1 dBm.  

From Figure 5.8, the theoretical and measured average SFDR of the complete link is 

~57.83 dB and the LTE requirement for SFDR metric is 55.9 dB [131]. The RoF link 

designed for LTE could provide an additional SFDR of ~1.93 dB. Additionally, it is 

desirable to maintain the input power close to 1 dBm for a minimum third-order IMD 

because the actual LTE signal is composed of OFDM modulation which has a high PAPR. 

A lower dynamic range for OFDM signal modulation is not advisable, as it is very 

sensitive towards phase noise. Although, 1 dBm input power to the laser could avoid third 

order IMDs, the bias level in DFB could drive the laser either to threshold or saturation 

region. In order to avoid such situation, the next section will optimise the OMI.  . 

Figure 5.8: First and third order output powers with respect to input power  
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5.2 OMI analysis 

In DML based systems, OMI optimisation is an important criterion that allows high 

OLP from the laser, while effectively avoiding nonlinear distortions. Moreover, LTE 

signal is composed of OFDM modulation with high PAPR. The construction of OFDM 

signal from the multiple independent and identically distributed (i.i.d) subcarriers lead to 

significant increase in PAPR. Due the combination of uncorrelated subcarriers, OFDM 

signal results in noise like waveform with Gaussian approximation, owing to the central 

limit theorem. In addition to the noise like waveform, the low probability of very high peak 

occurrence is due to the random phase matching between the subcarriers that leads to 

constructive interference. Thus, OFDM is very sensitive towards threshold or roll-off 

region, and strongly constrained to linear modulation [132]. Pre-clipping is deliberately not 

performed on the OFDM signal to verify the impact of OMI optimisation in DML based 

LTE RoF system.  

Modulating the OFDM signal near the lasing threshold level (high OMI) or the 

saturation region (low OMI) of DML, will result in nonlinear optical modulation induced 

distortions. The distortions near the threshold and saturation regions are the lower peak 

clipping with the turn-on delay and gain compression factor, respectively. Gain 

compression introduces several nonlinear affects, namely finite number of carries, spatial 

hole burning, and leakage currents [68]. Apart from optical modulation induced 

distortions, low OMI also introduces high OLP, which results in nonlinear propagation and 

has critical effect on the system performance. The criticalness of nonlinear propagation 

was theoretically shown in Chapter 4. As an initiation of optimisation, OMR is introduced 

to reduce the optical modulation induced nonlinear distortion for all ARBs. In addition at 

lower values of OMI, which results in higher OLP, the gain compression based distorted 
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signal propagating down a 10 km SMF will experience nonlinear propagation induced 

phase noise. The impairments from optical modulator nonlinearity and nonlinear 

propagation have been investigated individually in [133] and [75], respectively. However, 

this section investigates the individual and the combined effects of gain compression and 

nonlinear propagation on the OFDM signal, in a unified approach for better system 

characterization. 

5.2.1 Experimental Setup for OMI Analysis 

Figure 5.9 shows the practical setup of OMI analysis for LTE RoF system. At the 

transmitter, LTE signals generated are QPSK, 16-QAM and 64-QAM with OFDM. The 

LTE signal has varying ARBs of 3, 5, 10, 15 and 20 MHz. The parameters associated with 

all ARBs of LTE are given in Table 1.2. Additional information on the LTE ARBs data 

rate and PAPR product are shown in Table 5.2 for all modulation schemes. The PAPR 

values clearly indicate an increment pattern relative to the increasing bandwidth, due to the 

increase in the number of subcarriers. Signals are then generated in the passband frequency 

of 2.6 GHz via the vector signal generator (VSG).  

The output of VSG is applied to the DFB for IM. To ensure that the DFB is not biased 

close to the lasing threshold (< 40 mA) and the saturation region (> 100 mA), biasing is 

carried out between 40 mA and 100 mA. The DD-OOFDM signal is transmitted through 

Figure 5.9: Practical setup for OMI analysis  
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10 km of SMF for OMI analysis. At the receiver, a PD followed by a LNA is used to 

recover the signal for all three links. It is important to specify that throughout the thesis, 

LNA is configured as a AC coupled input and DC coupled output. The SA is then used to 

analyse and characterize the signal quality. All relevant system parameters are shown in 

Table 5.3.  

5.2.2 Results on OMI analysis 

The EVM measurement is used throughout the experimental analysis as an important 

metric. The 3GPP had defined 8% EVM as the minimum LTE requirement [134]. The 

author has published the outcome of the analyses herein in [135]. 

The OMI is an important performance metric describing the modulation efficiency of a 

respective electrical signal onto the optical carrier, where it can be expressed as: 

avg

pp 2/

P

P
OMI        (5.7) 

where Ppp is the optical peak-to-peak power and Pavg is the optical average power. 

The optical average power is the optical carrier, while the optical peak-to-peak power 

 

Table 5.2: LTE ARB bit rate product 

Modulation

s 

3 MHz: data 

rate-PAPR  

5 MHz: data 

rate-PAPR  

10 MHz: data 

rate-PAPR  

15 MHz: data 

rate-PAPR  

20 MHz: data 

rate-PAPR  

QPSK 
5 Mb/s-6.92 

dB 

8 Mb/s-9.07 

dB 

16 Mb/s-9.54 

dB 

25 Mb/s-10.73 

dB 

33 Mb/s-11.16 

dB 

16-QAM 
10 Mb/s-6.95 

dB 

16 Mb/s-9.15 

dB 

33 Mb/s-9.59 

dB 

50 Mb/s-10.75 

dB 

67 Mb/s-11.3 

dB 

64-QAM 
15 Mb/s-7.02 

dB 

25 Mb/s-9.25 

dB 

50 Mb/s-10.38 

dB 

75 Mb/s-10.93 

dB 

100 Mb/s-

11.67 dB 
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represents the signal modulated onto the optical carrier. In this work, OMI values of 1, 0.5, 

0.38, 0.25 and 0.18, which correlates to the bias current values of 40, 50, 60, 80 and 100 

mA, and OLPs (Ppp) of 3.8, 4.3, 4.8, 7 and 10.5 dBm, respectively, are investigated. The 

maximum and minimum level of OMI can be arbitrary, as long as the optimum OMI falls 

within the range.  

 The received LTE spectrum centered at the 2.6 GHz band is shown in Figure 5.10(i) 

for QPSK, with a range of OMI. The QPSK spectrum for ARB of 3MHz shows the out-of-

band emission (OBE) for OMI of 1, 0.25 and 0.18. The OMI characteristics can be 

categorized into three distinctive regions: A) the over-modulation region (OMI = 0.25 and 

0.18), B) OMR (OMI = 0.38 and 0.5), and C) the under-modulation region (OMI = 1), as 

shown in Figure 5.10(ii) and (iii). Region A is close to the upper saturation region while 

region C is close to the lasing threshold. Regions A and C are described as the over-

modulation and under-modulation regions corresponding to higher and lower values of 

 

Table 5.3: System Parameters 

Parameters Values 

SCM modulations QPSK, 16-QAM, 64-QAM 

Baseband multiplexing OFDM 

Carrier frequencies 2.6 GHz 

RF power 2 dBm 

DFB bias 40 mA to 100 mA 

OMI 1 to 0.18 

Optical power -8 dBm to 10 dBm 

SMF length 10 km 

EDFA gain, noise figure 2 dB to 6 dB, 3.5 dB 

PD responsivity 0.42 

LNA- gain, NF 18 dB to 24 dB, 2.5 dB 
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input bias current, respectively. The OBE for OMI of 1 or the region C in Figure 5.10(ii) 

and (iii), results in lower peak clipping of the OFDM signal. Additionally modulating in 

the region C will result in the minimum drive current to drop below the lasing threshold, 

which will induce nonlinear distortion from the turn-on delay [129]. Likewise, the 

observation for 16-QAM and 64-QAM in figures 5.11 and 5.12, respectively, resulted in 

similar spectral and region C distortion. In figures 5.10(ii), 5.11(ii) and 5.12(ii), the 

average SNR penalties across all ARBs for QPSK, 16-QAM, and 64-QAM at OMI of 1, 

are ~8.69 dB, ~8.89 dB, and ~9.02 dB, respectively. The SNR penalties increases with 

modulation level due to the increasing PAPR, see Table 5.2. At the same OMI, the 

resulting average EVM in figures 5.10(iii), 5.11(iii), and 5.12(iii), for QPSK, 16-QAM, 

Figure 5.10: OMI analysis of QPSK with (i) spectral analysis, (ii) overall power penalty, 

(iii) overall EVM measurement, and (iv) EVM measurement for ARBs at OMR 

(OMI=0.38)  
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and 64-QAM are ~3.004%, ~3.18%, and ~3.34%, respectively. The EVMs are below the 

targeted 8%. 

When modulating at OMI of 0.25, as shown in of figures 5.10(i), 5.11(i), and 5.12(i), 

the occurrence of OBE is relative to the nonlinear propagation. This is because to achieve 

lower OMI, the input bias current will be relatively high (80 mA), which proportionally 

increases the OLP. At an OMI of 0.25, the nonlinear propagation effect is constrained to 

the SPM and the SBS, which are critical in DD-OOFDM. Since Chapter 4 is concentrated 

in the intermixing region, only SPM was considered, as SBS only occurs at high OLP. In 

the experimental system designed herein, SBS becomes active at OLP of above ~6 dBm, 

further discussion on SBS will be carried out in Chapter 8.  

Figure 5.11: OMI analysis of 16-QAM with (i) spectral analysis, (ii) overall power 

penalty, (iii) overall EVM measurement, and (iv) EVM measurement for ARBs at OMR 

(OMI=0.38)  
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Nonlinear propagation is a serious issue, because nonlinear phase noise and 

backscattering arising from the propagation would deliberately reduce the walk-off rate, 

which ultimately results in severe ICI. However, it is important to specify, that OMI of 

0.25 would not induce any distortion if the output of DFB is passed through an optical 

attenuator. This is because, the OMI of 0.25 is modulated linearly and clearly observable 

from Figure 5.2 that 80 mA bias is away from the saturation region. 

 Finally, effects of gain compression and nonlinear propagation can be observed for the 

OMI of 0.18 in figures 5.10(i), 5.11(i), and 5.12(i). The distortion induced by the OMI of 

0.18 is shown in the region A of figures 5.10(ii), 5.11(ii), and 5.12(ii). The average SNR 

penalties at OMI of 0.18, for all ARBs are ~19.04 dB, ~19.28 dB and ~19.58 dB, for 

QPSK, 16-QAM and 64-QAM, respectively. It is clear that in this region, the combination 

Figure 5.12: OMI analysis of 64-QAM with (i) spectral analysis, (ii) overall power penalty, 

(iii) overall EVM measurement, and (iv) EVM measurement for ARBs at OMR (OMI=0.38)   
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of gain compression and nonlinear propagation effects are degrading the OFDM signal 

severely. The average EVM values, across the ARBs shown in figures 5.10(iii), 5.11(iii), 

and 5.12(iii), for the same OMI, are ~11.26%, ~11.48% and ~11.96%, respectively. The 

resulting EVM values in region A for QPSK, 16-QAM, and 64-QAM are higher than the 

boundary defined by 3GPP. In conclusion regions A and C are not ideal for DD-OOFDM. 

In figures 5.10(i), 5.11(i), and 5.12(i), for an OMI of 0.5 and 0.38, a flat noise floor can 

be observed, which corresponds to the nonlinear distortion free. The effect of the flat noise 

floor can be observed in region B of figures 5.10(ii) and (iii), 5.11(ii) and (iii), and 5.12(ii) 

and (iii). The OMI of 0.5 and 0.38 could be interchangeably utilised as the OMR. As 

shown in figures 5.10(ii), 5.11(ii), and 5.12(ii) for OMI of 0.38, the average SNR penalties 

for QPSK, 16-QAM and 64-QAM, are ~6.12 dB, ~6.34 dB and ~6.46 dB, respectively. 

The average EVM values for the same modulation schemes, shown in 5.9(iii), 5.10(iii), 

and 5.11(iii) are ~0.98%, ~1.01% and ~1.06%, respectively. As mentioned earlier, OMI of 

0.25 will perform similarly to OMRs with an optical attenuator. However, attenuation and 

amplification for OMI of 0.18 and 1, respectively, will not result in OMR due to nonlinear 

modulation, thus strictly need to be avoided. 

Figures 5.10(iv), 5.11(iv), and 5.12(iv) depict the QPSK, 16-QAM, and 64-QAM EVM 

versus ARBs, for the BTB and a 10 km link at an OMI of 0.38. The 10 km link profile 

follows the BTB pattern with a negligible penalty. From the outcome of this analysis, 60 

mA bias current will be used throughout this thesis for DML. The error level reflected 

from the gain compression with nonlinear propagation induced distortions (region A) 

compared to the clipping with turn-on delay induced distortions (region C), shows that the 

nonlinear propagation dependent distortion is severe. In order to further emphasize on the 
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propagation characteristic, the next section is dedicated to the analysis of nonlinear 

propagation and OLP optimisation. 

5.3 Impact of OLP with varying ARBs 

The experimental setup for OLP analysis is illustrated in Figure 5.13. The transmitter 

and receiver are similar to OMI analysis, shown in Figure 5.9. However, the RoF interface 

is designed with some additional devices to analyse OLP. The modulated signal at the 

output of DFB in Figure 5.13 will be coupled into link A for lower OLP analysis, where it 

is composed of a variable optical attenuator (VOA). On the other hand, link B consists of 

EDFA and the optical bandpass filter (OBPF) for higher OLP analysis. In this section, only 

SMF of 10 km will be analysed, therefore the EDFA and OBPF modules utilised in link A 

can be ignored. 

The most feasible approach of compensating optical fibre based nonlinear propagation 

is to launch the signal in the intermixing region. The theoretical detail of the intermixing 

region was given in Section 4.2 of Chapter 4. The intermixing region based propagation 

can further optimise the proposed system and provide a lower EVM with respect to the 

BTB system. The result herein was published in [135]. Figure 5.14(a, b, and c)(i) depict 
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the SNR penalty of 10 km transmission against OLP for QPSK, 16-QAM, 64-QAM, 

respectively for all ARBs. It is important to note that the launched optical signal is 

modulated at the OMI of 0.38. The OLP is varied in the range of -8 dBm to 10 dBm to 

investigate optical power transmission regions. There are three distinctive regions defined 

in Figure 5.14(a, b, and c), of which are I) linear region-PFC and CD induced distortion, II) 

intermixing region-optimum SNR penalty from the interaction between CD and PFC with 

nonlinearity, and III) nonlinear region-nonlinearity induced distortion. These regions were 

theoretically analysed in Chapter 4.   

For the range of OLP less than -3 dBm (region I), in Figure 5.14(a, b and c)(i), the SNR 

penalty increases significantly with decreasing OLP. In principal, as OLP decreases, the 

Figure 5.14: OLP analysis of (a) QPSK, (b) 16-QAM, and (c) 64-QAM, with (i) power 

penalty, (ii)EVM, and (iii) EVM at optimum OLP (-2 dBm)  
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SNR decreases, thus proving the linear relationship associated with the impairments within 

the region I. In Figure 5.14(a, b and c)(i), at -8 dBm of OLP, the average QPSK, 16-QAM 

and 64-QAM SNR penalties for all ARB are ~8.97 dB, ~9.24 dB and ~9.38 dB, 

respectively. The average EVM values for QPSK, 16-QAM and 64-QAM observed in 

Figure 5.14(a, b and c)(ii) are ~1.17%, ~1.21%, and ~1.24%, respectively. Such high SNR 

penalty at -8 dBm OLP has low impact on the system performance. This is because it is a 

linear impairment where there is no occurrence of in-band IMD. It is also important to 

state that the in-band IMD will actuate the spectral re-growth within the finite bandwidth 

of the DD-OOFDM signal [136].  

In the region III of Figure 5.14(a, b and c)(i), the QPSK, 16-QAM and 64-QAM SNR 

penalty increases with the OLP, which indicate a drop in SNR, although the OLP is higher. 

This is mainly due to the nonlinear phase distortion at higher values of OLP. At the OLP of 

10 dBm the average SNR penalties are ~11.28 dB, ~11.59 dB and ~12.06 dB for QPSK, 

16-QAM and 64-QAM, respectively. The resultant average EVM for QPSK, 16-QAM and 

64-QAM, shown in Figure 5.14(a, b and c)(ii), are ~5.67%, ~5.81% and ~6.04%, 

respectively. For regions I and III, the values are well below the required of 8% EVM. The 

associated EVM gains in these regions could be used for improving the link budget. The 

EVM shown in region III of Figure 5.14(a, b and c)(ii) and region A of figures 5.10-

5.12(iii), proves that nonlinear propagation induced distortion significantly introduces 

additional impairment to the existing gain compression affect. The DD-OOFDM signal is 

very susceptible to nonlinear propagation due to the nonlinear phase noise, which will 

obliterate the orthogonality of the DD-OOFDM subcarriers.   

 The intermixing region (region II) provides the optimum SNR penalty and EVM, 

ranging from -2 dBm to 2 dBm. In Figure 5.14(a, b and c)(i), the QPSK, 16-QAM and 64-
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QAM average power penalties are ~4.8 dB, ~5.07 dB and ~5.45 dB, respectively at OLP of 

-2 dBm. The resulting average EVMs (Figure 5.14(a, b and c)(ii)) at these SNR penalties 

are ~0.93%, ~0.96% and ~0.99%. Reinstating the average EVMs achieved in the OMR 

region for QPSK, 16-QAM and 64-QAM, shown in Figure 5.10(iv), 5.11(iv), and 5.12(iv), 

are ~0.98%, ~1.01% and ~1.06%, respectively. The improvement of -2 dBm OLP outlines 

the benefit of the proposed optimisation scheme. The resultant EVM measured in the 

region II is much lower than the 8% EVM margin set by 3GPP and therefore this region 

provides the optimum OLP.  

The overall optimisation is shown Figure 5.14(a, b and c)(iii), for QPSK, 16-QAM and 

64-QAM EVM against the ARBs, respectively. The EVM deviation for QPSK, 16-QAM 

and 64-QAM compared to BTB are ~0.033%, ~0.028% and ~0.034%, respectively. The 

proposed system design with OMR and optimum OMI could compensate the clipping, gain 

compression and nonlinear propagation, and finally the nonlinear propagation induced 

distortions. 

In order to complete the analysis on the intermixing region, it is important to 

investigate whether varying the transmission spans would cause deviation to the location 

of the minimum SNR penalty. Hence, next section would be completely analysing the LTE 

RoF in the perspective of varying transmission spans. 

5.4 Deviation of Intermixing Region with Transmission Spans 

The experimental system remains as shown in Figure 5.13. The LTE signal is fixed to 

20 MHz bandwidth in this investigation, where QPSK, 16-QAM and 64-QAM is fixed to 

the data rate of 33, 67 and 100 Mb/s, respectively. The only changes is the transmission 

distance varying between 10 km and 60 km, with additional EDFA and OBPF utilised in 

link A due to the low responsivity of PD, which makes the receiver more sensitive towards 
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attenuation. The maximum transmission span is fixed to 60 km due to the limited 

availability of SMF. The finding within this section was published in [137] by the author.  

Figure 5.15: OLP against (a) power penalty and (b) EVM analysis, for (i) QPSK, (ii) 

16-QAM, and (iii) 64-QAM with transmission spans of 10 km to 60 km  
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The region I, II, and II carries the same description as explained in Section 5.3. Figure 

5.14(a)(i, ii, and iii) depicts the SNR penalty of QPSK, 16-QAM and 64-QAM systems, 

compared to the BTB system, respectively, for transmission spans of 10 km, 25 km, 35 

km, 50 km and 60 km. For consistency to Section 5.3, the OLP is varied in the range of -8 

dBm to 10 dBm. The discussion on results is focused to the shortest transmission span of 

10 km and farthest transmission span of 60 km, as all curves exhibits similar pattern. At 

the lowest OLP of –8 dBm for 10 km transmission span (region I), QPSK, 16-QAM, and 

64-QAM systems experience SNR penalties of ~9.48 dB, ~9.97 dB and ~9.98 dB, 

respectively while at 60 km, the SNR penalties are ~22.8 dB, ~23.4 dB and ~24.6 dB, 

respectively. It is clear from 5.14(a)(i, ii, and iii) that the SNR penalties of the theoretical 

system match the experimentally measured values with negligible deviations, thus 

validating the system design. 

In the region III of Figure 5.15(a)(i, ii, and iiii), at the OLP of 10 dBm for 10 km 

transmission span, QPSK, 16-QAM and 64-QAM systems SNR penalties are ~12.1 dB, 

~12.7 dB and ~13.2 dB, respectively while at 60 km, the SNR penalties are ~33 dB, 

~33.33 dB and ~33.9 dB, respectively. The penalties in the region III is higher than the 

region I is due to the nonlinear distortion that actuates OBE, and increases the noise floor 

level. In other word, the actual power of the optical signal is transferred and modulated to 

the back-reflected stokes signal. The reflected signal will arrive at the PD as a random time 

varying Gaussian noise with a broad spectral characteristic centered on the received signal 

and directly increases the noise floor [43, 138]. The power transfer of the optical signal and 

the rise in the noise floor are the major factors of the high SNR penalty. The nonlinear 

propagation will also induce additional in-band distortion, which will be analysed and 

discussed with the aid of EVM measurement later in this section. 
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  The optimum SNR penalty is achieved in the region II (intermixing region), from -2 

dBm to 2 dBm as shown in Figure 5.15. It can be observed from Figure 5.15 that for all 

modulation schemes, as the transmission link increases, the intermixing region remains 

within this range. The intermixing range is consistent with the investigation performed in 

Section 5.3. Linear distortions are known to accumulate with the distances [123], but the 

investigation fundamentally shows that both linear and nonlinear impairments increases 

proportionally with the transmission span. In the region II, average SNR penalties for 

QPSK, 16-QAM and 64-QAM systems at the transmission span of 10 km are ~6.17 dB, 

~6.48 dB and ~6.88 dB, respectively while at 60 km, the resultant SNR penalties are 

~18.64 dB, ~19.08 dB and ~19.47 dB, respectively. Considering the 60 km transmission 

span, the improvement observed in the intermixing region (region II) for the QPSK system 

with respect to the region I (OLP = -4 dBm) and the region III (OLP = 4 dBm) are ~0.66 

dB and ~1.46 dB, respectively. Likewise, for the 16-QAM system, comparing with the 

region I (OLP = -4 dBm) and region III (OLP = 4 dBm), the improvements are ~0.42 dB 

and ~1.88 dB, respectively. The improvement associated with the 64-QAM system with 

respect to region I (OLP = -4 dBm) and the region III (OLP = 4 dBm) are ~0.83 dB and 

~1.53 dBm, respectively.  

The impact of distortion induced within the finite bandwidth of the signal can be 

characterized by the EVM. As a rule of thumb again, the proposed system is designed to 

achieve EVM lower than the required 8% specified by the 3GPP for LTE [134]. Figure 

5.15(b)(i, ii, and iii) depict the EVM of QPSK, 16-QAM and 64-QAM systems, 

respectively. Graphs are categorized into three distinctive regions similar to the SNR 

penalty analysis. The observed EVMs for QPSK, 16-QAM and 64-QAM systems at the 

OLP of -8 dBm (region I) for 10 km transmission span are ~1.402%, ~1.43% and ~1.51%, 

respectively while at 60 km, the EVMs are ~7.42%, ~7.73% and ~7.82%, respectively. It is 
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shown in 5.14(b)(i, ii, and iii) that the linearly distorted DD-OOFDM signals in this region 

I are below the specified EVM. In the region III, at the OLP of 10 dBm, QPSK, 16-QAM 

and 64-QAM systems have achieved EVMs of ~6.57%, ~6.55% and ~6.97%, respectively 

for 10 km transmission span, while at 60 km, the resultant EVMs are ~15.732%, ~16.1% 

and ~16.6%, respectively. It is clearly shown in Figure 5.15(b) that only the 10 km 

transmission span has achieved less than 8% EVM at 10 dBm OLP (region III). This is due 

to the nonlinear propagation that induces in-band distortion, which will lead to the severe 

ICI for longer spans.  

The intermixing region (region II) provides the optimum EVM. In Figure 5.15(b)(i, ii, 

and iii), for QPSK, 16-QAM and 64-QAM systems at 10 km transmission span have 

achieved average EVMs of ~1.144%, ~1.2% and ~1.21%, respectively while at 60 km, 

average EVMs are ~5.86%, ~5.96% and ~6.01%, respectively. The aforementioned EVMs 

for 60 km are the best achievable case for LTE signal transmission over RoF without any 

optical equalization devices. In terms of the deviation in the optimum region, the optimum 

OLP range are consistent throughout the 10 km to 60 km transmission range, which proves 

that the linear and nonlinear distortion increases proportionally with transmission distance.  
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5.4.1 Nonlinear Threshold of LTE RoF 

It is important to understand the evolving nature of linear and nonlinear distortions 

with respect to the transmission distance. Figure 5.16(a), (b), and (c) illustrate the QPSK, 

Figure 5.16: Transmission distance against EVM analysis of (a) QPSK, (b) 16-

QAM, and (c) 64-QAM 
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16-QAM, and 64-QAM propagation characteristics for a range of OLP with respect to 

EVM. It is clear that QPSK, 16-QAM and 64-QAM systems experience a pronounced 

nonlinear distortion for OLP of more 6 dBm. As a result, OLP at 6 dBm is the “DM 

nonlinear threshold” where for OLP above this threshold, the signal will experience a 

severe EVM degradation. Graphs also indicate that irrespective of the propagation state, 

the distortion linearly increases with transmission distance.  

5.5 Summary 

In this chapter, the LTE RoF experimental system design was presented. As a first step 

of the link design, the characterization of the RoF system was carried out with the 

continuation to the optimisation of the OMI for the DML. In the OMR region, the QPSK, 

16-QAM and 64-QAM achieved average EVM across all ARBs of ~0.97%, ~1.01%, and 

~1.06%, respectively. In this operating scenario, the system achieved significantly lower 

than the 3GPP EVM margin of 8%.  

As a further improvement to the system, the intermixing region was deliberately 

introduced which is a function of OLP. In this region, the QPSK, 16-QAM and 64-QAM 

average EVM further trimmed to ~0.93%, ~0.96% and ~0.99%, respectively. The results 

also revealed that, for low OMI, nonlinear propagation significantly adds to the existing 

gain compression affect, thus strictly needs to be avoided. In terms of higher transmission 

distance, investigation on transmission up to 60 km unfolded that intermixing region does 

not deviate.  

Finally, the chapter presents the DM nonlinear threshold for LTE-RoF system. The 

investigation shows that both linear and nonlinear distortion increases linearly, and that the 

system experiences severe nonlinear distortion for OLP of more than 6 dBm. Since this 
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chapter presented the detailed basic experimental design of LTE RoF, next chapter will 

unfold some of the advance LTE RoF system design. 
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The initiation of LTE and RoF system integration was demonstrated in the previous 

chapter. It was shown that the OMR and intermixing region significantly improved the 

LTE RoF performance. The design and findings of the previous chapters are confined to 

the single antenna based LTE system. But as shown in Table 1.2 of Chapter 1, LTE system 

can span up to 4×4 MIMO transmission. Adding MIMO transmission to the existing LTE 

system is important, as it effectively improves the incident throughput at the receiver end. 

The operating characteristic of MIMO can be defined as adding multiple antenna elements, 

both at the transmitter in the eNB and receiver in the UE. The idea of such design is to 

combine the multi-antenna transmitted signals at the receiver end, and improve the end-

user experience with higher data rate. The important techniques require to achieve MIMO 

transmission are spatial multiplexing and diversity, due to the multiple passband LTE 

signals configured at the same frequency. By achieving the required conditions, the MIMO 

signals arriving at the receiver will be composed of varying channel coefficients. The 

equalizer in the OFDM scheme can easily rectify the MIMO signals, from the given 

wireless propagation diversity [139].   

6.1 MIMO Transmission over Optical Fibre 

It is clear that this thesis emphasizes on the implementation of RN, with RoF interface 

for eNB cell extension within the primary cell, and as well as to the adjacent cells. 

Therefore it is important that the RoF system has the competency to accommodate the LTE 

MIMO technology. However, transmitting MIMO signals over RoF is not trivial, because 

the group of signals in MIMO is configured at the same carrier frequency. The initial 

problem arises when this group of signals are combined and modulated onto the same 

corresponding optical carrier. In addition, after the photodetection, it is impossible to 

recover individual electrical signal with filtering because the photodetection causes a 
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mixing effect in the electrical domain. In summary, the potential failures occurs in 

providing the necessary diversity to the MIMO signals from different antenna are due to 

combining the signals prior to optical modulation, and the mixing effect upon 

photodetection [41].  

The straightforward solution to this problem is to utilise individual lasers, optical fibers, 

and PDs for each MIMO antenna by introducing WDM, with an individual wavelength 

carrier for each MIMO signals [41]. Jansen et al [39] has also introduced externally 

modulated POLMUX system, with coherent detection to solve the associated problem with 

MIMO modulation in optical system. All the aforementioned solutions will significantly 

increase the cost of implementation with respect to the number of MIMO antennas and as 

well as the system complexity. Recently, there is considerable interest growing in the area 

of MIMO transmission over multi-core optical fibre. Although this method demonstrates 

the advantage of spectral efficiency, but the multi-core optical fibre technology for MIMO 

transmission is immature with very high complexity [140, 141]. Furthermore, this thesis 

proposes the idea of LTE and RoF integration on the basis of utilising the legacy backhaul 

infrastructure, which are mostly based on SMF [32]. Hence, simply installing a new group 

of multi-core optical fibres for MIMO transmission will not certainly be a commercial 

friendly idea.     

As an alternative solution to this problem, this chapter proposes, both theoretically and 

experimentally, the design of FDM-OFDM technique for LTE in the context of 2×2 

MIMO. Kobayashi et al [40] experimentally transmitted FDM-OFDM up to 80 km SMF 

with external modulation and coherent detection, which also increases the cost and 

complexity of the optical system. On the other hand, Liu et al [41] experimentally 

demonstrated FDM based directly modulated RoF system for indoor application by 
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utilising 550 m MMF. 

The LTE spectrum is prominently defined at 2.6 GHz, with most researches also being 

carried out at 2 GHz as a potential spectrum in near future [18, 81, 142]. Therefore, the 

FDM-OFDM technique will be achieved by utilising 2 GHz and 2.6 GHz bands. The dual 

band transmission from RN to UEs is practically possible by employing single multiband 

antenna technology [143]. The RoF system for the proposed application is designed based 

on DML method, with the intention of lowering the cost of LTE-RoF integration. In 

Chapter 5, it was shown that 60 km transmission achieves better QoS then the LTE 

requirement. Hence, the FDM-OFDM signal will be transmitted over 60 km SMF to 

investigate if this method introduces any additional distortion, which might result in QoS 

worst than the LTE EVM limit. The receiver utilised for the system is based on DD.  

In terms of system design, the investigation of the physical layer connectivity is 

according to the LTE standard, namely QPSK at 33 Mb/s, 16-QAM at 67 Mb/s, and 64-

QAM at 100 Mb/s, which are the SCMs with OFDM. After performing FDM-OFDM at 2 

GHz and 2.6 GHz bands, the data rate doubles for all modulation schemes. In the optical 

layer, a DFB is used as the DML adopting IM scheme to generate DD-FDM. The author 

has published the findings of DD-FDM system in [144]. 

6.2 Transmission Link for DD-FDM System  

The experimental system shown in Figure 6.1 is modelled in MATLABTM. There are 

multiple theoretical models adopted to construct the DD-FDM system. Initially, the OFDM 

and its equivalent RF passband up-conversion models are utilised to generate the FDM-

OFDM signal, as shown in equations (2.3-2.6) of Chapter 2. Subsequently, the DML 

scheme is emulated using the rate equations (3.2-3.4) of Chapter 3 for the generation of 

DD-FDM signal. Thereafter, the DD-FDM signal is transmitted down a 60 km of SMF, 
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where the propagation characteristics are simulated using the symmetrical split-step 

algorithm shown in equation (4.3) of Chapter 4. Since it was clear from Chapters 4 and 5 

that nonlinear propagation severely distorts the traversing signal, thus it is completely 

neglected in this system design by proper control of the OLP. The optical receiver is 

modelled as DD with a square-law detector. The electrical receiver is the reverse process 

of the transmitter, except for the frequency domain equalizer module used for distortion 

compensation.  

6.2.1 Experimental Link 

The overall experimental setup for LTE RoF system is shown in Figure 6.1. All system 

parameters are presented in Table 6.1. All the experimental devices and components are 

similar to Chapter 5, thus the characterizations performed in Chapter 5 are applicable here. 

The LTE signals generated for this experiment are QPSK, 16-QAM, and 64-QAM with 

OFDM, respectively. The number of occupied subcarriers are 1200, FFT size of 2048, and 

CP size rate of ¼, which resulted in an ARB of 20 MHz, as shown in Table 1.2 of Chapter 

1. At the complementary cumulative distribution function of 0.001%, the PAPRs are 
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Figure 6.1: Overall experimental setup of optical FDM 

 



125 

 

~11.16 dB, ~11.3 dB and ~11.67 dB for QPSK, 16-QAM and 64-QAM, respectively. The 

VSGs, Agilent ESG E4438C, will then generate the real-time LTE signal based on the 

respective modulation scheme, and subsequently up-converted to the first frequency band 

of f1 = 2 GHz and second frequency band of f2 = 2.6 GHz. The signals at the frequency 

bands of 2 GHz and 2.6 GHz are summed to form the FDM-OFDM signal. Figure 6.2 

shows the frequency spectrum of the FDM-OFDM for both theoretical and experimental 

results. The experimental results are consistent to the theoretical prediction.  

In the RoF interface shown in Figure 6.1, the FDM-OFDM LTE signal is directly 

applied to the DFB, 1754C DWDM laser to perform IM. The DFB laser is biased at 60 mA 

to carry out the IM in the OMR. After the modulation, the optical FDM-OFDM LTE signal 

(DD-FDM) is then coupled into a VOA to maintain the OLP, within the intermixing and 

 

Table 6.1: DD-FDM system parameters 

Parameters Values 

SCM modulations QPSK, 16-QAM, 64-QAM 

Baseband multiplexing OFDM 

PAPR QPSK=11.16 dB, 16-QAM=11.3 dB, and 64-QAM=11.67 dB 

Passband multiplexing FDM 

Data rate QPSK=66 Mb/s, 16-QAM=134 Mb/s, and 64-QAM=200 Mb/s 

Signal bandwidth OFDM=20 MHz, FDM-OFDM=40 MHz 

Carrier frequencies 2 GHz and 2.6 GHz 

RF power 2 dBm 

DFB bias 60 mA 

Linewidth 11.4 MHz 

RIN -149.6 dB/Hz 

Wavelength 1551.11 nm 

Optical launch power -8 dBm – 0 dBm 

SMF length 60 km 

EDFA- gain, NF 6 dB, 3.5 dB 

PD responsivity 0.42 

LNA- gain, NF 20 dB to 24 dB, 2.5 dB 
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linear region of 0 dBm to -8 dBm. The OLP range for intermixing and linear regions 

conforms to that presented in Chapters 4 and 5. After the VOA, signal traverses through 60 

km of SMF and post-amplified via EDFA with a gain of 6 dB and NF of 3.5 dB. The 

amplified signal is subsequently filtered with amplitude spontaneous emission (ASE) filter 

before DD. The DD used is performed with a PD, Newport D8-ir, at the responsivity of 

0.42.   

At the RN, a LNA is used for the compensation of PD's low responsitivity. The 

amplified signal is split and then analysed by individual SAs, Agilent 9020A MXA, to 

ascertain the signal quality. The next section will discuss the performance of the system, 

which is measured using the SNR and EVM metrics. 
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Figure 6.2: Frequency spectrum of the FDM-OFDM signal of (a) 

theoretical and (b) experimental 
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 6.2.2 Results on DD-FDM System 

Figure 6.3(a), (b), and (c) depict the OLP against SNR penalty for QPSK, 16-QAM and 

64-QAM DD-FDM, respectively. Both theoretical and experimental measurements are 

captured after 60 km of transmission span. The theoretical and experimental result of all 

three modulation schemes shows minimum SNR penalty between -2 dBm and 0 dBm 

OLP. The average SNR penalty between 2 GHz and 2.6 GHz is ~1.3 dB. The penalty 
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Figure 6.3: OLP against SNR penalty analysis of (a) QPSK DD-FDM, (b) 

16-QAM DD-FDM and (c) 64-QAM DD-FDM 
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between both frequencies arise due to the higher magnitude response of the DFB laser at 2 

GHz, see Figure 5.6 of Chapter 5. This factor was manually added to the theoretical system 

to be consistent with the experimental results. As it can be seen from Figure 6.3(a), (b), 

and (c), the theoretical and experimental SNR penalties for both 2 GHz and 2.6 GHz 

resulted in close proximity. Thus, the discussion of the results will be focused on the 

experimental system.  

At OLP of 0 dBm for 2 GHz signal, QPSK, 16-QAM, and 64-QAM resulted in SNR 

penalties of ~18.3 dB, ~18.7 dB, and ~19.3 dB, respectively. For 2.6 GHz signal with the 

same OLP, the SNR penalties of QPSK, 16-QAM, and 64-QAM are ~18.6 dB, ~18.98 dB, 

and ~19.35 dB, respectively. Launching the signals at lower OLP significantly worsens the 

system's QoS. At -8 dBm OLP, the QPSK, 16-QAM, and 64-QAM, of 2 GHz signal 

resulted in SNR penalties of ~22 dB, ~23 dB, and ~24.2 dB, respectively. In the case of 2.6 

GHz signal at the same OLP, the SNR penalties are ~23 dB, ~23.5 dB, and ~24.6 dB, for 

QPSK, 16-QAM, and 64-QAM, respectively. Both 2 GHz and 2.6 GHz signals exhibit 

similar degradation pattern, however, 2 GHz achieves better SNR gain due to the higher 

modulation response. The observed degradation pattern relative to the decreasing OLP is 

due to the drop in overall SNR.   

Apart from SNR penalty analysis, EVM measurement is essential to define the 

exact system quality, as the 3GPP has set the EVM limit for LTE to be less than 

8% [134]. Figure 6.4(a), (b), and (c) represent the EVM analysis of QPSK, 16-QAM, 

and 64-QAM DD-FDM system, respectively. The results in Figure 6.4(a), (b), and 

(c) provide the EVM of the theoretical and experimental systems, for 2 GHz and 

2.6 GHz signals. It is clear that the theoretical and experimental systems exhibit 
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lowest EVM at OLP of 0 dBm, across all the investigated modulation schemes. The 

summary of the EVM data is shown in Table 6.2 for 0 dBm OLP.  

As shown in Figure 6.4 and Table 6.2, the theoretical and experimental results 

have negligible deviations, thus proving the accuracy of the theory. Hereafter, the 

discussion will be focused on the experimental results. For 2 GHz signal, at 0 dBm 

OLP, the EVM of the QPSK, 16-QAM, and 64-QAM systems are ~5.82%, ~5.85%, and 

~5.94%, respectively. At the same OLP, the 2.6 GHz signal resulted in EVM of ~5.86%, 
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~5.95%, and ~5.99% for QPSK, 16-QAM, and 64-QAM, respectively. It is observable that 

2.6 GHz signal endures slightly worsened EVM, which is consistent to the SNR penalty 

metric analysed earlier. In Figure 6.3, the EVM deteriorates as the OLP decreases. At 

the OLP of -8 dBm, the QPSK, 16-QAM, and 64-QAM systems resulted in EVMs 

of ~7.15%, ~7.65%, and ~7.71%, respectively, for 2 GHz signal. Launching the 2.6 

GHz signal at the same OLP resulted in EVMs of ~7.42%, ~7.73%, and ~7.82%, 

for QPSK, 16-QAM, and 64-QAM, respectively.  

The qualitative measurement of the proposed system can be performed with 

respect to the 3GPP-LTE EVM limit of 8%. In the best case operating point at the 

OLP of 0 dBm, the 2 GHz and 2.6 GHz bands achieved low EVM (see Table 6.2) 

compared to the 8% EVM limit. For the worst case operating point at the OLP of -8 

dBm is still within the limit of 3GPP-LTE requirement. Although the nonlinear 

region is not considered for DD-FDM system, but from figure 5.14, it is clear that 

the system will experience severe distortion that will result in EVM higher than the 

3GPP-LTE limit. Hence, it is a preferred option to omit the system from operating 

in the nonlinear region.    

Since transmitting signals at two different frequencies simultaneously incurs the 

nature of two-tone transmission, hence there are chances of IMD distortion. The 

Table 6.2: Theoretical and experimental EVM data of 0 dBm OLP 

 2 GHz 2.6 GHz 

Modulation Scheme Theory Experimen

t 

Theory Experimen

t 
QPSK 5.8% 5.82% 5.85% 5.86% 

16-QAM 5.82% 5.85% 5.92% 5.95% 

64-QAM 5.86% 5.94% 5.93% 5.99% 
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single antenna based 60 km transmission system in Chapter 5 (Section 5.4) resulted 

in SNR penalties of ~18.64 dB, ~19.08 dB and ~19.47 dB, for QPSK, 16-QAM, and 64-

QAM, respectively, within the intermixing region. Herein, as discussed earlier, the SNR 

penalties for 2.6 GHz signal is ~18.6 dB, ~18.98 dB, and ~19.35 dB, for QPSK, 16-QAM, 

and 64-QAM, respectively. The comparison of SNR penalties at the same frequency, 

transmission region and transmission span, but different antenna system, shows similar 

response. Therefore, the proposed system indicates to be free of IMD at the proposed 

analogue FDM condition. In addition, the comparative analysis also shows the 

transparency of the designed RoF system, for both single and multi-antenna transmissions.   

The proposed design as an alternative to MIMO transmission transpired a high QoS at 

0 dBm OLP, which is part of the intermixing region. Thus, the proposed system could 

advance to MIMO 4×4 by introducing additional bands. It is straightforward to accomplish 

this, as the required architecture had been introduced and discussed in detail.  

  6.3 Summary 

In this chapter, an alternative method for 2×2 MIMO systems in LTE over 60 km RoF 

was proposed. The implementation of the alternative method was realized by introducing 

DD-FDM, both theoretically and experimentally. Taking into account the advantage of 

LTE spectrum allocation and the proposed solution, a two-fold gain in the peak data rate 

has been achieved in the 2x2 MIMO configuration. The studies revealed that the resulting 

output quality of the signal is almost identical for both the 2 GHz and 2.6 GHz bands. At 

200 Mb/s (64-QAM), the experimental system could achieve EVMs of ~5.935% and 

~5.99%, for 2GHz and 2.6 GHz system, respectively. In the proposed system, the EVM 

performance is within the 8% stipulated 3GPP LTE requirement. A thorough analysis was 

carried out for half-duplex multi-antenna solution in this chapter, both theoretical and 
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experimental designs were carried out and subsequently proving the viability of the 

proposed system. Therefore, the next chapter will introduce the full duplex LTE RoF 

system to emulate the complete design cycle of eNB to RN and RN to eNB connectivity.   
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 The findings reported in the former chapters were concentrated to half duplex LTE 

RoF integration, for DL transmission. For the first time, this chapter will introduce the full 

duplex LTE RoF integration for eNB cell extension, with AF type RN. The author has 

submitted the new findings of this section to the following publication [145]. In full duplex 

LTE system connected to AF type RN via wireless interface, an eNB coverage extension 

of 2 km with a throughput of 13.05 Mb/s was observed in [146]. The achieved throughput 

and the coverage extension reported in [146] demonstrates that the wireless interface offers 

insignificant impact on the eNB coverage, as the actual LTE technology aims to deliver a 

peak throughput of 100 Mb/s. It is shown that for full duplex system, the impact of 

wireless interface based eNB coverage extension had resulted in very low throughput. 

Hence, the usage of wireless interface should be neglected for the purpose of coverage 

extension. 

This section proposes an experimentally designed architecture for the seamless 

integration of full duplex LTE with RoF system. The FDD topology will be adopted as the 

LTE full duplex scheme, with the RoF interface for eNB coverage extension. As 

mentioned earlier, the extension will be achieved via AF type RN, with a span of 10 km 

from the eNB.   

7.1 DWDM Based LTE RoF Architecture  

The conventional optical fibre based full duplex system delivers DL and UL signals 

over separate dedicated optical fibres without the wavelength re-use scheme [147, 148]. In 

contrary, some previous research reports on individual optical fibre allocated for DL and 

UL with the wavelength re-use scheme [149-152]. The wavelength re-use scheme is 

basically a full duplex system designed with a single wavelength for DL and UL usage. 

Full duplex system with dedicated DL and UL optical fibres is the direct solution to avoid 
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Rayleigh backscattering and optical interference as these are the major performance 

limiting factors [20, 21]. However, infrastructures with separate dedicated optical fibres 

would significantly increase the CAPEX and OPEX. Furthermore, a single optical fibre is 

competent enough to handle both DL and UL due to its vast unused bandwidth.  

Rayleigh backscattering is one of the mechanism that induces optical fibre propagation 

loss from the material density fluctuations. A random fluctuation of the optical fibre 

refractive index arises from these density fluctuations. In the optical fibre medium with 

fluctuating refractive index, the incident beam will experience a scattering phenomenon, 

known as Rayleigh scattering. Signal propagating in optical fibre at a respective 

wavelength will experience Rayleigh scattering as a loss mechanism, from the resulting 

back-reflecting power, at any OLP. However, the back-reflecting power from Rayleigh 

backscattering will not distort the unidirectional signal. But, in full duplex transmission, 

the backscattered power of single wavelength based DL and UL signals will effectively 

distort the UL and DL signals, respectively [153]. In other word, the Rayleigh 

backscattered power produced by a propagating signal, will effectively interfere with the 

same wavelength based counter-propagating signal. The mixing of Rayleigh backscattered 

power to the counter-propagating signal produces noise from the intensity fluctuations 

converged due to phase fluctuations [154].     

There are research works reported on transmitting DL and UL signals simultaneously 

over the same optical fibre employing the wavelength reuse scheme [155, 156]. As 

specified earlier, Rayleigh backscattering and optical interference degrade the QoS of 

systems operating with same wavelength for bidirectional transmission [155, 156]. It is 

also shown in [155], that Rayleigh backscattering actuates increased noise level 

surrounding the vicinity of the received signal. Furthermore, it is important to note that all 

the aforementioned optical fibre based full duplex systems are designed based on the 
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external modulation scheme. The vastly utilised DML method throughout this thesis 

exhibits PFC. Conversely, the external modulated system enables a free PFC transmission. 

The topic on chirping was thoroughly analysed in Chapters 3 and 4. The PFC and the CD 

jointly distorts the system, which in turn degrade the performance of DML compared to the 

externally modulated system [45]. But, as shown in Chapters 4 and 5, maintaining the OLP 

within the optimum region, the distortions effect will be minimized. In addition, it is 

imperative to adopt a DML scheme, because externally modulated systems are complex 

and costly. Thus DML acts as an additional positive factor on lowering CAPEX and 

OPEX.  

In order to mitigate Rayleigh backscattering and optical interference, the proposed 

system is designed with two dedicated wavelengths, each for DL and UL. The wavelength 

spacing is in the range of DWDM to maintain the optical spectral efficiency. There are 

three wavelength based multiplexing techniques in optical fibre communication systems. 

The very first technique introduced was broad wavelength division multiplexing (BWDM), 

which utilised wavelengths at 1310 nm and 1550 nm. The shortcoming of BWDM is that 

EDFA cannot be implemented at the 1310 nm wavelength. Furthermore, the sparse usage 

of optical spectrum is unnecessary. The next multiplexing method introduced was Coarse 

wavelength division multiplexing (CWDM), which operates at multiple wavelengths 

across 1271 nm to 1661 nm with 20 nm spacing. Long span transmission that requires 

EDFA, only operates in the C-band (1530 nm to 1565 nm), hence very limited 

wavelengths at 20 nm CWDM spacing available in the C band. Finally, DWDM is picked 

as the impeccable multiplexing technique due to its narrowly spaced wavelength channels 

of 0.8 nm, which allows a multiplexing of over 40 wavelengths, all within the C-band 

range. Thus, multiple eNB can be connected to multiple RNs in a full duplex transmission, 

by utilising DWDM technique. However, in this chapter, only a single eNB and RN are 
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experimentally emulated as a proof of concept.     

 In addition, the advantage of having dedicated optical carriers for DL and UL signals 

will enable the instantaneous connections between eNB and UE, via RN. It is important to 

introduce the instantaneous feature, to provide the opportunity for either eNB or UE to 

initiate the connection in real communication scenario. Therefore, the wavelength re-use 

scheme as proposed by [149-152, 155, 156] will not be realistic in real-time application for 

mobile communication.  

The proposed system specification is designed according to the LTE requirement as 

stated in [157]. The baseband system is designed with the QPSK, 16-QAM, and 64-QAM 

as the SCM schemes. Subsequently, the SCM schemes are modulated onto the OFDM and 

single carrier-frequency division multiplexing (SC-FDM) for DL and UL transmission, 

respectively, as the MCM schemes. The full duplex system operates with the FDD mode. 

 

Table 7.1: System parameters for full duplex system 

Parameters Values 

SCM modulations QPSK, 16-QAM, and 64-QAM 

Signal bandwidth (MHz) 20 

RF power (dBm) -10 to 2 

DFB bias (mA) 60 

SMF (km) 10 

PD responsivity 0.42 

LNA-gain, NF (dB) 18, 2.5 

 DL UL 

MCM modulations OFDM SC-FDM 

PAPR (dB) 11.16, 11.3, and 11.67  7.59, 7.71, and 7.86 

Data rate (Mb/s) 33, 66, 100 30, 61, 92 

Carrier frequencies (GHz) 2.62-2.69 2.5-2.57 

Optical power (dBm) 1.06 1.19 

RIN (dB/Hz) -149.6 -151.219 

Optical Wavelength (nm) 1551.11 1550.31 
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The DL signal operates at carrier frequencies fDL ranging from 2.62 to 2.69 GHz, while the 

UL signal is up-converted to carrier frequencies fUL from 2.5 to 2.57 GHz according to the 

LTE-FDD specification [158].   

In the optical layer, DL and UL signals directly intensity modulate the respective 

DFBs. A DD scheme is employed for both DL and UL. The relevant system parameters are 

presented in Table 7.1. The system evaluation for DL and UL are performed following the 

DD. The evaluation is carried out both in the passband and baseband with the adjacent 

channel leakage ratio (ACLR) and the EVM, respectively. 

7.1.1 Fundamentals of the Experimental System 

 The full duplex LTE RoF experimental system setup is shown in Figure 7.1. The 

fundamental theories that govern the transmitter, channel, and receiver have mostly been 

described in the previous half duplex chapters. The DL signal is generated via the VSGDL, 

Agilent ESG E4438C. The modulated signal in the baseband is composed of QPSK, 16-

QAM, and 64-QAM SCMs. The theoretical expressions of the DL signal, which is 

composed of OFDM and the equivalent passband up-conversion, were shown in equations 

(2.3-2.6) of Chapter 2. In OFDM modulation, the number of occupied subcarriers are 

1200, FFT size of 2048, and CP size rate of ¼, which resulted in an ARB of 20 MHz, as 

shown in Table 1.2 of Chapter 1. The passband up-converted carrier frequencies range 

from 2.62 to 2.69 GHz.   

In the proposed system, the UL signal is based on SC-FDM modulation according to 

the LTE standard. The UL signal is realized via VSGUL and the instrument model is 

consistent to the VSGDL. In the LTE technology, SC-FDM is adopted as the MCM instead 

of OFDM for UL transmission. This is due to the prominent PAPR problem associated 

with the OFDM scheme. Since the usage of SC-FDM is initiated in this section due to the 



139 

 

full duplex demonstration, the theoretical formulation that describes the generation of SC-

FDM signal will be shown. The SCM modulated symbols with QPSK, 16-QAM and 64-

QAM can be expressed as XUL(m) where {XUL(m) : m=0, 1, ….., M-1} and m is the 

spreading/subcarrier index. The SCM symbols XUL(m) are transformed to the frequency 

domain by applying a M-point FFT, where M = 1024 [157]: 
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where {XUL(u) : u = 0, 1, ….., M -1} is the frequency domain of the SCMs, u is the 

frequency domain spreading/subcarrier index. The M-point FFT is applied to spread the 

signal energy to the entire spectrum to reduce the PAPR. The pre-FFT operation places the 

symbols across the whole frequency range, thus creating a correlation between subcarriers. 

As explained in Chapter 5, the high PAPR associated with OFDM is due to the 

construction of subcarriers with uncorrelated data. The contrast of the spreading can be 

observed from Table 7.1 in terms of PAPR values of SC-FDM and OFDM. The frequency 

domain SCMs XUL(u) are mapped with the localized topology XUL(lt), where lt is the 
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mapping index. The localized topology for symbol mapping {XUL(lt) : lt = 0, 1, ….., Ns-1} 

can be described as:  
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 The localized mapped symbols XUL(lt) are then converted to the time domain samples with 

N-point IFFT, denoting that Ns > M, and N = 2048: 
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where {SUL(n) : n = 0, 1, ….., Ns-1} is the localized mapped SC-FDM signal in the time 

domain. As mentioned earlier, PAPR of the UL signal is lower than the DL signal. The 

PAPR is analytically expressed as PAPR{SDL/UL(n)} = max{SDL/UL(n)2}/E{SDL/UL(n)2}, 

where the subscript DL/UL denotes DL or UL signal, while E{.} refers to the expectation 

operator. The SC-FDM signal is then appended by CP at the rate of ¼, SCPUL(t).   

The baseband to passband up-conversion process is similar to that expressed in 

equation (2.5) and (2.6) of Chapter 2. The SC-FDM signal up-conversion after DAC is 

shown in (7.4) and (7.5), where SRFUL(t) is the passband SC-FDM signal modulated at the 

carrier frequencies of 2.5 to 2.57 GHz. 

)sin(*)}(S{Im)cos(*)}(S{Re)(S RFULCPULRFULCPULRFUL ttttt  
  

(7.4) 

,2 ULRFUL f        (7.5) 

In the case of optical transmitter, the DML method is employed. Owing to the bipolar 

nature of electrical signal, a 60 mA of bias current is coupled with the DL and UL signals 

to perform modulation within the OMR. The optical modulation of DL and UL signals are 

carried out by the 1754C DWDM DFB lasers, at the operating wavelengths of 1551.11 nm 
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and 1550.31 nm, respectively. The fundamentals of DML adopting IM can be defined 

through the laser rate equations (3.2-3.4) of Chapter 3.  

The optical circulator for DL (OCDL) and UL (OCUL) induces an optical loss of ~3.8 dB 

and~5.9 dB, respectively. The DL and UL OLPs at the output port 2 of OCDL and OCUL are 

~1.06 dBm and ~1.19 dBm, respectively, see Figure 7.1. The losses associated with the 

OCDL and OCUL are due to the signal leakage from port 2 to port 3. Consequently, the 

leakage will manifest itself as a crosstalk and will be analysed via ACLR measurement.    

The DL and UL signals, at the output of port 2 of OCDL and OCUL, respectively, are 

concurrently launched into a single 10 km SMF. The analytical model that governs the 

propagation properties of SMF can be expressed by the generalized nonlinear Schrodinger 

equation, see equation (4.2) of Chapter 4. The OLP is maintained within the 

intermixing region to avoid any nonlinear interference.  

After propagating through 10 km of SMF, the DL and UL signals are detected 

at the port 3 of OCUL and OCDL, respectively. The signal detection at port 3 of 

OCUL and OCDL are performed via a Newport D8-ir PD with the DD scheme. 

Following the photodetection, the received passband DL signal RRFDL(t), and UL 

signal RRFUL(t) are amplified via a LNA, and subsequently demodulated using the 

Agilent 9010A EXA SA. The demodulation is the reverse of the transmission 

process, except for the additional least square estimation with frequency domain 

equalizers for distortion compensation.  

7.1.2 Results on DWDM Based Full Duplex System 

The full duplex LTE-FDD system operates at DL carrier frequencies of 2.62 to 2.69 

GHz and UL carrier frequencies of 2.5 to 2.57 GHz. The leakage of DL and UL signals 
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in OCDL and OCUL will effectively interfere with the receiving UL and DL signals, 

respectively, in port 3. In principal, no interference will occur between the leakage of DL 

signal and the receiving UL signal in OCDL, which is the same case for leakage of UL 

signal and the receiving DL signal in OCUL. However, photodetection will instigate 

IMD products between leakages and the received signal for both DL and UL signals. The 

IMD products arise from the subcarrier-subcarrier mixing where ACLR metric is applied 

to measure this phenomenon.  

The ACLR measurement is exploited to measure the IMD of the received signals, at 

DL and UL receivers. The analytical expressions of ACLR are shown as:  
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where ACLR1 and ACLR2 are the first and second adjacent band measurements, 

respectively. Equation (7.6) for ACLR1 measures the adjacent band of 30 MHz spacing 

from the centre frequencies of DL and UL. Whereas ACLR2 covers the adjacent band for 

50 MHz band away from the DL and UL centre frequencies. This is because, in the chosen 

FDD duplex band, the minimum spacing between DL carrier frequency and UL carrier 

frequency is 50 MHz. The parameter Bw is the 20 MHz signal bandwidth, and RRFDL/RFUL(f) 

is the Fourier transformed received analogue signal of both DL and UL. The integrated 

bandwidth of adjacent cell measurement is 20 MHz.  
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Figure 7.2 shows the half duplex ACLR measurements of the DL and UL systems, 

where the results are recorded while the counter-propagating signal is switched off. The 

DL system is composed of QPSK, 16-QAM and 64-QAM with OFDM, while the UL 

system is modulated with the same SCMs, but SC-FDM as the MCM. Result in Figure 7.2 

is measured using SA after 10 km transmission span with a varying RF transmit power. At 

2 dBm RF transmit power, the average ACLR value across all SCMs of DL signal is ~-

28.60 dBc, while the average ACLR observed for UL SCMs is ~-28.65 dBc. Figure 7.2 

also indicates that SCMs of both DL and UL have resulted in similar ACLR, hence, rest of 

the ACLR analysis will be only carried out for the highest data rate SCM, which is 64-

QAM in this case. 

As mentioned earlier, in the FDD scheme, the frequency range of DL and UL signals 

are 2.62 to 2.69 GHz and 2.5 to 2.57 GHz, respectively. As an initial system design step, it 

is vital to investigate the interference between the given frequency spacing. Figure 7.3(a) 
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shows the measurement recorded after the photodetection for DL and UL signals at 2 dBm 

transmit power. In this investigation, DL signal is swept through 2.62 to 2.69 GHz for a 

given interfering UL signal. The frequency spacing between DL and UL signals vary 

between 190 MHz to 50 MHz. The broad frequency spacing (BFS) of 190 MHz could be 

Figure 7.3: The ACLR measurement of full duplex system with (a) DL transmission 

and interfering UL signal and (b) UL transmission and interfering DL signal, for 64-

QAM SCM 
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achieved by transmitting the DL and UL signals at 2.69 GHz and 2.5 GHz, respectively. 

Transmitting the DL signal at 2.69 GHz and UL signal at 2.57 GHz will result in 120 MHz 

frequency spacing, and will be denoted as the intermediate frequency spacing (IFS). 

Frequency spacing of 50 MHz would be the case for transmitting DL and UL signals at 

2.62 GHz and 2.57 GHz, respectively, which is termed as the narrow frequency spacing 

(NFS). The details of carrier frequencies and the frequency spacing are shown in Table 7.2.  

In Figure 7.3(a), transmitting DL signal at 2.69 GHz with the interfering UL signal at 

2.5 GHz for BFS, the ACLR is ~-28.59 dBc. In comparison to the half duplex system 

ACLR of ~-28.60 dBc (Figure 7.2), the BFS transmission resulted in negligible ACLR 

penalty. As indicated in [155], Rayleigh backscattering increases the noise level around the 

signal, which should sufficiently increased the ACLR rate. However, the comparison of 

full duplex system to half duplex system ACLRs show that the proposed architecture 

effectively mitigates Rayleigh backscattering and other nonlinear effects altogether. 

Transmitting the DL signal at the aforementioned carrier frequency, with the UL signal at 

2.57 GHz for the IFS has resulted in an ACLR of ~-27.91 dBc. Compared to the half 

duplex system, the full duplex system with the IFS has introduced an ACLR penalty of 

~0.69 dB. Further investigation on the IFS with a shift in DL and UL carrier frequencies to 

2.62 GHz and 2.5 GHz, respectively, attained an ACLR of ~-27.93 dBc. Both IFS signals 

resulted in a similar ACLR, thus demonstrating that the degradation of ACLR to be 

 

Table 7.2: DL and UL frequency spacing 

DL carrier frequency UL carrier frequency Frequency Spacing  

2.69 GHz 2.5 GHz 190 MHz (Broad) 

2.69 GHz 2.57 GHz 120 MHz (Intermediate) 

2.62 GHz 2.57 GHz 50 MHz (Narrow) 
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frequency spacing dependent and carrier frequency independent. Transmitting at the DL 

carrier frequency of 2.62 GHz with UL carrier frequency of 2.57 GHz for NFS, resulted in 

a significantly high ACLR of ~-14.44 dBc. The ACLR penalty for the NFS compared to 

the half duplex system (Figure 7.2) is ~14.16 dB. It is clear that the implication of IMD 

with a NFS is critical. Alternative signals that propagate within this spacing would be 

heavily distorted due to the IMD induced spectral re-growth. The BFS (190 MHz), IFS 

(120 MHz) and NFS (50 MHz) frequency spacing results in negligible, ~0.69 dB and 

~14.16 dB ACLR penalty, respectively, as shown in Table 7.3.  

It is necessary to indicate if the ACLR of UL signal would experience similar 

degradation pattern, with respect to the frequency spacing. Hence, a homogeneous 

measurement will be carried out for the UL signal, as was performed for the DL signal. In 

Figure 7.3(b), the UL and DL signals are transmitted at 2 dBm transmit power. The UL 

signal is transmitted at 2.5 GHz with the interfering DL signal at 2.69 GHz, emerged an 

ACLR of ~-28.64 dBc for BFS. Comparing the resultant BFS ACLR of ~-28.64 dBc to the 

half duplex system with ACLR of ~-28.65 dBc (Figure 7.2) shows negligible penalty. 

Transmitting the UL signal at 2.57 GHz with the intercepting DL signal at 2.69 GHz for 

IFS, resulted in ACLR of ~-28.05 dBc. Comparatively to the half duplex system, the IFS 

ACLR penalty is ~0.60 dB.  

 

Table 7.3: Frequency spacing ACLR penalty product 

Frequency Spacing ACLR Penalty- DL  ACLR Penalty- UL 

50 MHz 14.16 dB 14.12 dB 

120 MHz 0.69 dB 0.6 dB 

190 MHz Negligible Negligible 
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For the NFS, the UL signal transmission is carried out at 2.57 GHz and DL signal at 

2.62 GHz, where the resultant ACLR is ~-14.53 dBc. When compared with the half duplex 

system, the NFS contemplated an ACLR penalty of ~14.12 dB. The effective ACLR 

penalty for BFS, IFS and NFS are negligible, ~0.60 dB and ~14.12 dB, respectively, see 

Table 7.3. As mentioned earlier, the significant ACLR deterioration in the NFS range is 

due to the high IMD. The ACLRs and ACLR penalties corresponding to DL (Figure 

7.3(a)) and UL (Figure 7.3(b)) systems indicate a similar degradation pattern in terms of 

the frequency spacing. Fundamentally, the similarity shows that the frequency spacing 

induced distortion is independent of the MCM schemes.  

It was shown that the NFS (50 MHz) introduces a high IMD, where ACLR 

performance metric was adopted to measure the energy of IMD products. Focusing on the 

NFS, the ACLR metric is utilised to measure the impact of interfering UL and DL signals 

with varying RF transmit power, on the received DL and UL signals, as shown in Figure 

7.4(a) and (b), respectively. The DL and UL signals are transmitted at 2.62 GHz and 2.57 

GHz, respectively. For Figure 7.4(a), the DL signal is transmitted at 2 dBm, while the 

interfering UL signal is varied between 2 dBm and -10 dBm. The response of the 

interfering UL signal power variation can be observed in Figure 7.5. The RF transmit 

power of the UL signal in Figure 7.5(a) and (b) are 2 dBm and -10 dBm, respectively, 

while the DL signal is fixed at 2 dBm.  
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From Figure 7.4(a), transmitting both DL with the interfering UL signals at 2 dBm 

results in an ACLR of ~-14.44 dBc. The resultant high ACLR is due to the IMD products 

as shown in Figure 7.5(a). When the RF transmit power of UL signal is reduced to -10 

dBm, ACLR of the DL signal enhances to ~-24.41 dBc, thus showing an improvement of 

~9.97 dB. The outcome of this improvement can be observed in Figure 7.5(b), which 

occurs relative to the suppression of IMD products. Similar investigation is carried out for 

the UL signal with the interfering DL signal as shown in Figure 7.4(b), where the UL and 

DL signals are maintained at the aforementioned frequencies.  
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This time around, the DL RF transmit power is varied between 2 dBm and -10 dBm, 

whilst UL is maintained at 2 dBm. The impact of power variation of the DL signal on the 

UL signal, in terms of the spectral response can be observed from Figure 7.6. The impact 

of varying DL transmit power of 2 dBm and -10 dBm on the UL signal is shown in Figure 

7.6(a) and (b), respectively. The resultant ACLR observed in Figure 7.4(b) for UL signal is 

~-14.53 dBc with the interfering DL signal transmitted at 2 dBm. This high ACLR value is 

due to the IMD products as shown in Figure 7.6(a). Conversely, transmitting the 

interfering DL signal at -10 dBm resulted in an ACLR of ~-24.53 dBc. The improvement 

in ACLR is associated with the IMD suppression as depicted in Figure 7.6(b). From the 

view point of the OBE, both DL signal (Figure 7.4(a)) and UL signal (Figure 7.4(b)) 

exhibits similar degradation pattern relative to the interfering signal. Additionally, it is also 

found that at a NFS, the subcarrier-subcarrier mixing due to photodetection is power 

dependent and can be mitigated with lowering the interfering signal power. However, the 

investigation only reveals the response of the OBE, thus the EVM measurement is vital to 
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further investigate the in-band distortion.  

Since the EVM metric provides explicit and precise quality of the received signal 

compared to ACLR metric, the RF transmit power of the received and interfering signals 

combinations would provide an enhanced guideline on the basis of system design. 

Therefore, the analysis of multiple EVM combinations at a NFS of DL and UL signals, 

with respect to the interfering UL and DL signals are given, as shown in Figure 7.7(a) and 

(b), respectively. The DL signal (Figure 7.7(a)) is transmitted at 2.62 GHz, with a varying 

power of 2 dBm to -10 dBm, while the interfering UL signal is transmitted at 2.57 GHz 

with a similar range of varying power. In Figure 7.7(a), transmitting DL signal at 2 dBm, 

with interfering UL signal at 2 dBm and -10 dBm results in EVM of ~2.67% and ~2.26%, 

respectively.  

At a low RF transmit power of -10 dBm for the DL signal, with an interfering UL 

signal at 2 dBm and -10 dBm, the observed EVMs are ~11.92% and ~11.55%, 
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respectively. The interfering signal with a lower power transmission provides an improved 

EVM for the received signal, which agrees well with the results from the ACLR 

measurement. In addition, DL signal transmitted at less than -6 dBm would not comply 

within the 3GPP LTE EVM limit. Thus, it is essential that system designers maintain the 

RF transmit power within the boundary of higher than -6 dBm. Multiple EVM 

combinations presented in Figure 7.7(a) reveals that irrespective of the DL RF transmit 

power, the average EVM deviation is ~0.40% when the interfering UL signal is transmitted 

between 2 dBm and -10 dBm. The multiple EVM combinations are not presented for 

QPSK and 16-QAM systems, however the average EVM reductions compared to the 64-

QAM system are ~0.15% and ~0.08%, respectively, at all transmission states.   
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Multiple EVM combinations of the UL system is carried out by measuring the UL 

signal as the receiving signal, with the interfering DL signal, as shown in Figure 7.7(b). 

The UL and DL signals are maintained at 2.57 GHz and 2.62 GHz, respectively, while the 

RF transmit power is varied between 2 dBm and -10 dBm for both signals. The resultant 

EVMs are ~2.64% and ~2.26% for a fixed UL signal at 2 dBm, while the interfering DL 

signal at 2 dBm and -10 dBm, respectively. For UL signal with a lower RF transmit power 

of -10 dBm, the EVMs observed with an interfering DL signal transmitted at 2 dBm and -

10 dBm are 11.90% and ~11.47%, respectively. The EVM boundary of UL signal is to 

maintain the RF transmit power higher than -6 dBm, which is the same for the case of DL 

signal (Figure 7.7(a)). The EVM deviation is ~0.39% for UL signal at any RF transmit 

power, with an interfering DL signal transmitted between 2 dBm and -10 dBm, which is 

approximately equivalent to the EVM deviation in Figure 7.7(a). The EVM reduction for 

QPSK and 16-QAM of the UL signal for multiple EVM combinations is approximately 

equivalent to the reduction rate of the DL signal. 

The results in Figure 7.7(a) and (b) comprises of a linear pattern with closely related 

EVMs, thus, such relationship explains that the in-band distortion induces the same impact 

for OFDM and SC-FDM based MCMs. The summary of EVM from Figure 7.7(a) and (b) 

are presented in Table 7.4.   

As a summary of the overall system performance, the full duplex system of QPSK, 16-

 

Table 7.4: The EVM impact based on interfering signal power 

Interfering signal power DL signal UL signal 

2 dBm; -10 dBm 2 dBm: ~2.67%; ~2.26% 2 dBm: ~2.64%;~2.26% 

2 dBm; -10 dBm -10 dBm: ~11.92%; ~11.55% -10 dBm: ~11.9%; ~11.47% 
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QAM and 64-QAM SCMs are analysed. The SCMs are evaluated in terms of EVM with 

respect to the RF transmit power. The DL and UL signals are classified as the best case 

transmission condition 2.69 GHz and 2.5 GHz (BFS), respectively. The worst case 

transmission condition is defined for a NFS, where the DL and UL signals are transmitted 

at 2.62 GHz and 2.57 GHz, respectively. Figure 7.8(a), (b) and (c) depict the QPSK, 16-

QAM and 64-QAM, respectively, for DL and UL systems. In the QPSK SCM as shown in 

Figure 7.8(a), at a transmit power of 2 dBm, the best case and worst case average EVMs 

are ~2.30% and ~2.54%, respectively. The inset I of Figure 7.8(a) represents the 

constellation of QPSK at 2 dBm transmit power. The EVM is severely degraded at -10 

dBm transmit power for QPSK system, where the best case and worst case transmission 

conditions resulted in ~11.09% and ~11.43%, respectively. The inset II shows the heavily 

distorted QPSK constellation at -10 dBm. Since the EVM for -10 dBm is very much higher 

than the LTE limit, transmission at this power is not advisable. Such profound distortion 

occurs at -10 dBm is due to the weak OMI. The lowest transmission power that could 

achieve EVM below 8% is -6 dBm, which is consistent with finding discussed earlier. 

Therefore, discussion on -10 dBm RF transmit power would not be carried out further for 

the subsequent modulations. 

Similar degradation pattern of QPSK can be observed for 16-QAM and 64-QAM of 

Figure 7.8(b) and (c), respectively. At 2 dBm transmit power, the EVMs of best case and 

worst case transmission conditions for 16-QAM (Figure 7.8(b)) are ~2.33% and ~2.61%, 

respectively. The corresponding constellation diagram for 2 dBm transmit power can be 

observed in inset I. In 64-QAM SCM (Figure 7.8(c)), the best case and worst case EVMs 

are ~2.39% and ~2.64%, respectively, while the constellation diagram can be observed in 

inset I. The overall system achieves EVM below 8% with a transmit power as low as -6 

dBm.  
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7.2 Summary 

The contribution of this chapter was the seamless integration of the full duplex FDD 

LTE technology with the 10 km RoF system. The RoF system was designed based on 

dedicated DMLs for DL and UL systems, with DWDM wavelength spacing and single 

SMF. The ACLR comparison between half duplex and full duplex system for BFS (190 
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MHz) transmission revealed that the system to be Rayleigh backscattering and optical 

interference free.  

The DL system with BFS (190 MHz), IFS (120 MHz) and NFS (50 MHz) resulted in 

negligible, 0.69 dB, and 14.10 dB ACLR penalties, respectively. In the UL system, the 

aforementioned frequency spacing achieved a close proximity to DL system for the ACLR 

penalties. The BFS and IFS frequency spacing experienced negligible IMD products. 

However, the NFS introduced severe IMD products from subcarrier-subcarrier mixing due 

to the photodetection. Further studies on the interfering signal power was carried out with 

the aid of ACLR and EVM, where it was found that the subcarrier-subcarrier mixing effect 

is power dependent. In addition, the multiple EVM combinations are provided for the DL 

and UL signals with interfering UL and DL signals, respectively, within the range of 2 

dBm to -10 dBm RF transmit powers. Investigation showed that, irrespective of RF 

transmit power for the DL and UL signals, the average EVM deviation is ~0.40% for the 

interfering UL and DL signals, respectively, within the maximum (2 dBm) and minimum 

(-10 dBm) RF transmit power.  

Finally, the full duplex system reports that the best case transmission condition for 

QPSK, 16-QAM, and 64-QAM systems achieved the average EVMs of ~2.30%, ~2.33%, 

and ~2.39%, respectively, at 2 dBm transmit power. In this chapter, the proposed 

architecture was launched into the intermixing region, due to the deteriorating 

characteristic of nonlinear propagation region, as shown in the previous chapters. Hence, 

the next chapter will be dedicated to solve the nonlinear propagation problem, to provide 

higher power budget for long span transmission. 
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As of the previous chapters, the integration of half duplex LTE and LTE-A with RoF 

were successfully carried out for eNB cell extension. For the case of LTE technology, the 

LTE RoF link was further upgraded to accommodate MIMO transmission by utilising 

FDM over OFDM technique. Additionally, DWDM based full duplex LTE RoF 

architecture was demonstrated as well. Both the MIMO and full duplex LTE RoF 

transmissions were launched in the intermixing region, to effectively reduce the linear and 

nonlinear distortions.  

The OLP ranging from ~-2 dBm to ~2 dBm (intermixing region) exhibits minimum 

system penalty, also known as the optimum OLP range. The proposed LTE-RoF system 

experiences degradation in the QoS for OLP of less than -2 dBm, and more detrimental for 

OLP of greater than 2 dBm. At OLP of less than -2 dBm, also known as the linear region, 

the QoS could be easily improved by including an optical amplifier. However, for OLP of 

more than 2 dBm (the nonlinear region), the system will initiate a nonlinear propagation 

state. Considering the LTE signal power required following the photodetection in the RN 

for UE, it is important for LTE RoF system to operate in the nonlinear region to satisfy the 

link power budget. Therefore this chapter focuses on the nonlinear compensation of LTE 

RoF system to provide a higher power budget in the RN for UE transmission. 

As explained in Chapter 2, the well known optical fibre nonlinearities are the Kerr 

effects and the scattering phenomena. SPM, XPM, and FWM are known as the Kerr 

effects. In terms of the scattering phenomena, the widely known effects are the SBS and 

the SRS. Since the LTE RoF system throughout this thesis operates based on a single 

wavelength in the C-band, transmitted through a SMF, XPM, FWM and SRS are clearly 

negligible [76, 159]. Therefore, the nonlinear region is only SPM and SBS dependent. The 

SPM phenomenon induces nonlinear phase distortion based on the characteristic of 
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negative chirping. In other word, SPM exhibits red shifted rising edge and blue shifted 

trailing edge resulting in signal compression. However, in this chapter, the aim is to 

provide a higher power budget, which requires higher OLP, hence SBS phenomenon 

becomes a dominant factor compared to SPM, with a narrow linewidth and incidentally 

forms a grating that produces a high back-reflecting power [160].  

The SBS affect arises due to the light interaction with the acoustic phonons, which 

effectively forms a grating and known as the most dominant optical fibre nonlinearity 

[161]. An incident light (optical beam) with intensity above the SBS threshold effectively 

interferes with the scattered back-reflecting beam, and concurrently give rise to density and 

pressure variations, which modulates the refractive index. It is also important to note that 

the back-reflecting beam is Stokes-shifted. The OLP threshold for SBS is well above the 

Rayleigh scattering OLP level [153]. There are two important factors that could increase 

the SBS threshold as the compensating agents, namely the effective area of optical fibre Ae 

and the linewidth ∆vL of the incident beam measured at full-width half-maximum 

(FWHM). This hypothesis can be proven with the aid of the following closed form 

expression for SBS threshold [161]: 
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where α is the optical fibre attenuation, L is the transmission span, gB is the SBS gain, and 

∆vB is the SBS linewidth. It is clear from equation (8.1) that increasing the effective area of 

optical fibre or the laser linewidth will proportionally increase the SBS threshold.  

Additionally, there are also alternative methods of compensating SBS. Downie et al 

[160] introduced a co-propagating signal in a WDM system to induce XPM as the 

compensating agent for SBS, with the inherent PM. Though this method suffices for SBS 
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mitigation, it is only applicable for WDM system. Sisto et al [162] introduced an 

optimisation method for a modulator biasing to control OLP, which in turn reduces the 

SBS effect. However, the biasing optimisation adds on to the system complexity and to the 

inherent system noise floor due to higher requirement of optical amplification. Sauer et al 

[163] utilised an enhanced SBS threshold optical fibre, which is designed with a bigger 

effective area to compensate for SBS, which was analytically shown in equation (8.1). 

Enhanced SBS threshold optical fibre is not applicable for LTE RoF system, because the 

whole idea of the proposed cross platform integration is based on the existing legacy SMF 

backhaul to maintain a lower deployment cost. 

8.1 Direct Modulation Based Frequency Dithering 

Considering the proposed single wavelength based LTE RoF system, with minimum 

complexity and using the existing SMF infrastructure. For the first time, this chapter 

proposes the usage of DMFD method for SBS mitigation in a RoF system, and further 

identifying the SPM and the SBS threshold levels for LTE RoF system. The author have 

submitted the findings of this chapter to [164] and [165], which were accepted for 

publications, and [166] currently under review. The DMFD method successfully 

compensates SBS by broadening the linewidth of a laser, which will be greater than the 

SBS linewidth and effectively blocking the grating formation induced by acoustic 

phonons, thus reducing the back-reflected power. Frequency dithering was initially 

proposed for baseband optical applications [43, 44], where the condition of dithering 

frequency fd has to be bigger than twice the highest signal frequency fm, {fd > 2fm}. The 

condition of dithering frequency in RoF systems is substantially different compared to the 

baseband system, where dithering frequency for DMFD method in RoF systems have to be 

much smaller than the carrier frequency fRF, {fd << fRF}. Further discussion on this claim 



160 

 

will be carried out in the later section.  

The DMFD method is primarily introduced to compensate the severe distortion in the 

nonlinear region. As it was indicated in the previous chapters, the linear region is PFC and 

CD dependent. The optimum OLP region depends on the intermixing of linear and 

nonlinear regions. Since DMFD method intentionally introduces additional frequency 

chirp, part of the finding in this chapter will be whether DMFD further deteriorates the 

linear and optimum OLP regions.  

8.2 Link Configurations 

The experimental setup of LTE-RoF system with DMFD method for SBS mitigation is 

presented in Figure 8.1 along with the system parameters provided in Table 8.1.  

The VSG, Agilent ESG E4438C is utilised for LTE signal generation. The SCMs in the 

baseband domain are composed of QPSK, 16-QAM and 64-QAM schemes. The SCMs are 

modulated onto OFDM scheme with occupied subcarriers of 1200 and FFT size of 2048. 

Subsequently, the OFDM modulated signals are appended with a CP size at the rate of ¼, 

which resulted in an ARB of 20 MHz. The baseband OFDM modulated signals are up-

Figure 8.1: Experimental setup of LTE RoF system for SBS mitigation utilising DMFD 

method 
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converted to the passband signals SRF(t) at the (RF) fRF of 2.6 GHz. 

The DFB used in this work is intentionally dithered or frequency chirped with a DMFD 

signal Sd(t) to broaden the linewidth of the laser. The dithering frequency only effectively 

dithers the DFB laser at the condition of {fd << fRF} as specified earlier. If the dithering 

frequency is bigger than the LTE signal frequency {fd > fRF}, then it will not generate the 

dithering phenomenon due to the existing 2nd order harmonics in that frequency region. In 

other word, DFB laser have already experienced frequency chirping from the modulation 

of LTE signal and its 2nd order harmonics altogether. Therefore, if dithering frequency is 

above the LTE signal frequency, it does not induce any additional chirping. This is because 

the optical PM coupled with the frequency chirping has already occurred in the vicinity of 

LTE signal and its 2nd order harmonics.  

Table 8.1: System Parameters 

Parameters Values 

Dithering signal frequency and power  100 MHz and 2 dBm 

SCM modulations QPSK, 16-QAM, and 64-QAM 

Bit rate 33 Mb/s, 66 Mb/s, and 100 Mb/s  

Baseband multiplexing OFDM 

Signal bandwidth 20 MHz 

Carrier frequency 2.6 GHz 

Signal power 2 dBm 

DFB bias current  60 mA 

Optical launch power  -8 dBm to 10 dBm 

Linewidth  11.4 MHz 

SMF length  10 km to 50 km 

EDFA- gain, NF  4 dB , 3.5 dB  

PD responsivity 0.42 

LNA- gain, NF  18 dB to 24 dB, 2.5 dB 
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However, the dithering frequency does not display similar characteristic for the 

baseband system, because the baseband signal itself will be centered or close to DC. 

Therefore dithering frequency has to be much higher than the baseband signal frequency, 

which has been defined as twice higher in [43, 44]. Thus, in our work, DMFD signal is 

generated at the dithering frequency of 100 MHz as a sinusoidal signal from a CWG, 

Agilent E8247C, which maintains the {fd << fRF} condition. 

The LTE and DMFD signals are then combined to directly modulate the DFB laser. 

Owing to the bipolar nature of the electrical signal, a sufficient amount of bias current Ibias 

is coupled with the combined signals, to form a unipolar signals prior to the modulation of 

1754C DWDM DFB laser. The DM of the unipolar signals is carried out by the DFB laser 

at the operating wavelength of 1551.11 nm.  

The linewidth broadening of the DFB laser with DMFD signal can be described 

from the Van-der-Pol model of laser noise [167]: 
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      (8.2) 

where ζ represents the fraction of spontaneous emission, LW is the linewidth 

enhancement factor, nnp is the number of photons in the laser resonator, τp is the photon 

lifetime, and τcoh is the coherence time of the laser which is inversely related to the 

FWHM of the DFB laser linewidth by: 
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The effect DMFD signal is approximately equivalent of producing multiple random 

spontaneous emission events, which leads to a Wiener process to the phase of the DFB 

laser [168]. 
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where τcohd is the coherence time of the DMFD signal. The original coherence time of the 

DFB laser was τcoh, but by applying the random PM with DMFD signal, the new reduced 

effective coherence time of the laser at the FWHM is: 

cohdcohcoh

111




T
      (8.5) 

where the reduced coherence time is equivalent to a broaden linewidth. From equation 

(8.5), it is clear that the dithered optical signal propagates along the SMF with a broader 

linewidth and capable of blocking the formation of SBS grating, hence, reducing back-

reflected power.  

In order to investigate the impact of DMFD method in the linear region, the optimum 

OLP, and nonlinear regions, the undithered and dithered optical signals are varied between 

the OLP of -8 to 10 dBm. The lower values of the optical signals are achieved via the Link 

A of Figure 8.1, which consists of a VOA. The EDFA and the OBPF in the Link A are 

only utilised for the link span of 50 km and above to compensate for the SMF loss as the 

PD responsivity is low. The Link B is utilised for higher OLP analysis and performed via 

EDFA with OBPF.  

In this chapter, SMF is utilised as the transmission medium, ranging from 10, 

25, 35 and 50 km. After propagating through the varying SMFs, the signal is 

detected via the Newport D8-ir PD with the DD scheme. Following photodetection, 

the received RF LTE signal RRF is passed through a LNA for amplification of the 

output of which is demodulated via the SA, Agilent 9020A MXA.   
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8.2.1 Results on the Nonlinear Compensation 

In order to analyse the effect of DMFD on the linewidth of the laser, a high resolution 

OSA was placed after the DFB laser for spectral measurement. Figure 8.2 illustrates the 

actual LTE RoF signal in the undithered condition (black curve), where the optical carrier 

is centred at ~193.279 THz and the optically modulated LTE signal is shown as the double 

sideband modulated at ~193.276 THz and ~193.281 THz. The optical spectrum was 

captured using the BOSA 200 high resolution OSA by Aragon Photonics. The undithered 

(DMFD signal off) optical spectral at the output of DFB resulted in a linewidth (FWHM) 

of ~11.14 MHz. Since SBS linewidth is typically around ~30 MHz [169], most 

propagating signals are back-reflected due to the formation of grating, arising from the 

interaction of propagating optical signal with the acoustic phonons.  

Figure 8.2: Optical spectral of the LTE RoF undithered and dithered signals with 

narrow and broad linewidth, respectively  
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The response of the combination of DMFD and LTE signals can be observed in Figure 

8.2 (red curve). The dithered (DMFD signal on) output of the DFB shows an optical comb 

like signal formed by multiple peaks with an FWHM of ~37.47 MHz. Multiple peaks from 

the combination of DMFD and LTE signals phenomena arises due to nonlinear mixing of 

the optical carrier, DMFD and LTE signals. The effect of the linewidth broadening and the 

exploitation of frequency dithering, which achieved a linewidth of ~37.47 MHz can be 

observed in the electrical spectrum of the SA, see Figure 8.3. Figure 8.3(a) exhibits a 
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Figure 8.3: Electrical spectrum of the received signal without and with SBS 

compensation (dithering), (a) spectrum of DMFD and LTE signals, and (b) enhanced 

view of LTE signal  
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decrease in the noise floor surrounding the vicinity of DMFD and LTE signals, with the 

DMFD method. The harmonics and IMD products associated with DMFD method can be 

easily filtered at RN prior to UE transmission. Focusing on the LTE signal, Figure 8.3(b) 

clearly shows the effectiveness of DMFD method on reducing the OBE.  

Figure 8.4(a), (b), and (c) depict the OLP against SNR penalty for QPSK, 16-QAM and 

64-QAM systems, respectively, for uncompensated transmission spans of 10, 25, 35 and 
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Figure 8.4: OLP against SNR penalty for SBS compensation in (a) QPSK, (b) 16-QAM, 

and (c) 64-QAM with transmission spans of 10 km to 50 km 
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50 km, as well as the SBS compensated links. There are three major distinctive regions 

shown in Figure 8.4, namely I) linear region- PFC and CD induced distortion, II) 

intermixing region- reduced distortion achieved by the interaction between CD and PFC 

with SPM and SBS, and finally III) nonlinear region- nonlinearity based distortion from 

SPM and SBS effects.  

It is clear from Figure 8.4 that the DMFD method only effectively compensates for 

SBS in the region III.B, where SBS is dominant above the OLP of ~6 dBm (the SBS 

threshold). The region III.A does not experience any effect from DMFD method, because 

it is solely dominated by SPM. In other word, OLP of ~2 dBm to ~6 dBm induces 

nonlinearity in the form of nonlinear PM, but with no scattering or back-reflecting power. 

The impairment introduced by SPM can be compensated by adopting digital back-

propagation scheme [170, 171]. The operating characteristic of the digital back-

propagation is basically emulating the propagation in optical fibre to reverse the 

 

Table 8.2: Uncompensated and compensated SNR penalties at 8 dBm and 10 dBm OLPs 

OLP Modulation 

schemes 

Uncompensated 

SNR penalties 

Compensated 

SNR penalties 

SNR penalties 

improvement 

8 dBm 

QPSK 
10 km: ~10.83 dB 

50 km: ~26.55 dB 

10 km: ~8.5 dB 

50 km: ~21.51 dB 

10 km: ~2.33 dB 

60 km: ~5.04 dB 

16-QAM 
10 km: ~11.2 dB 

50 km: ~26.29 dB 

10 km: ~8.95 dB 

50 km: ~21.9 dB 

10 km: ~2.25 dB 

60 km: ~4.39 dB 

64-QAM 
10 km: ~11.7 dB 

50 km: ~26.99 dB 

10 km: ~9.2 dB 

50 km: ~22.4 dB 

10 km: ~2.5 dB 

60 km: ~4.59 dB 

10 dBm 

QPSK 
10 km: ~12.1 dB 

50 km: ~29.14 dB 

10 km: ~8.9 dB 

50 km: ~23.1 dB 

10 km: ~3.2 dB 

60 km: ~6.04 dB 

16-QAM 
10 km: ~12.7 dB 

50 km: ~29.32 dB 

10 km: ~9.39 dB 

50 km: ~23.3 dB 

10 km: ~3.31 dB 

60 km: ~6.02 dB 

64-QAM 
10 km: ~13.2 dB 

50 km: ~29.67 dB 

10 km: ~9.65 dB 

50 km: ~23.88 dB 

10 km: ~3.55 dB 

60 km: ~5.79 dB 
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impairment effect. It is a type of nonlinear equalizer that is utilised at the receiver to 

compensate the nonlinearities. However, since the RN is aimed to operate based on AF 

scheme, the digital back-propagation scheme is not ideal for the proposed system. 

Therefore, the LTE signal propagation at OLP of between ~2 dBm and ~6 dBm should be 

avoided to minimise complexity.  

Figure 8.4 depicts that the introduction of DMFD method does not alter the LTE RoF 
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Figure 8.5: OLP against EVM for SBS compensation in (a) QPSK, (b) 16-QAM, 

and (c) 64-QAM with transmission span of 10 km to 50 km  
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response for regions I and II. Despite the fact that DMFD method broadens the linewidth 

of the DFB laser, it does not exhibit a linewidth in the range of a Fabry-Perot laser. A 

typical Fabry-Perot laser will exhibit linewidth characteristic in the range of ~150 MHz 

[172], however the DFB laser with DMFD only has a linewidth of ~37.47 MHz, hence 

regions I and II remains more or less unchanged. 

The discussion in Figure 8.4 is focused on the OLP of 8 dBm and 10 dBm within 

region III.B due to the effectiveness of DMFD method in this range. Furthermore, 10 and 

50 km transmission spans are contemplated as the best and worst case scenarios, 

respectively. At OLP of 8 dBm in Figure 8.4(a), (b), and (c) for QPSK, 16-QAM and 64-

QAM, the system improvements observed for the 10 km span are ~2.33 dB, ~2.25 dB and 

~2.5 dB, respectively, while the 50 km span experiences improvements of ~5.04 dB, ~4.39 

dB and ~4.59 dB, respectively. The detailed measurements are presented in Table 8.2. The 

improvement of 50 km span is higher than the 10 km span evidently showing the system 

deterioration is critical due to SBS particularly for higher transmission spans. In terms of 

10 dBm of OLP, the improvements for QPSK, 16-QAM and 64-QAM at a 10 km span are 

~3.2 dB, ~3.31 dB, and ~3.55 dB, respectively, while at 50 km the improvements are ~6.04 

dB, ~6.02 dB, and ~5.79 dB, respectively. The improvement at OLP of 10 dBm is superior 

to 8 dBm, outlining the linear increase of back-reflecting power with OLP. The system 

transmission span is limited to 50 km, and anything beyond this limit fails to meet the 

required EVM and will be discussed in detail with reference to Figure 8.5.  
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As the SNR penalty only unveils the system impact in terms of the OBE, it is very vital 

to analyse the in-band distortion by utilising EVM to understand the explicit system QoS. 

Figure 8.5(a), (b) and (c) illustrate the EVM of QPSK, 16-QAM and 64-QAM systems, 

respectively. We aim to achieve an EVM of 8% in the system design according to the LTE 

requirement [134]. The categorization of regions and impact of DMFD in regions I and II 

in Figure 8.5 is similar to Figure 8.4. Focusing on the region III. B, at 8 dBm of OLP, the 

EVM improvement associated with QPSK, 16-QAM and 64-QAM for a 10 km span are 

~2.67%, ~2.78% and ~3.04%, respectively, while the improvements for a 50 km span are 

~4.2%, ~4.35% and ~4.68%, respectively. The improvement observed for 50 km are much 

higher compared to 10 km, which correlates to the pattern observed in the SNR penalty 

analysis. At a 10 km span, the EVM improvements of QPSK, 16-QAM and 64-QAM for 

10 dBm of OLP are ~5.11%, ~5.16% and ~5.44%, respectively, while the 50 km span 

exhibits an EVM improvement of ~6.2%, ~6.46% and ~6.21%, respectively. The complete 

 

Table 8.3: Uncompensated and compensated EVM at 8 dBm and 10 dBm OLPs 

OLP Modulation 

schemes 

Uncompensated 

EVM 

Compensated 

EVM 

EVM improvement 

8 dBm 

QPSK 
10 km: ~4.093% 

50 km: ~11.99% 

10 km: ~1.42% 

50 km: ~7.79% 

10 km: ~2.67% 

60 km: ~4.2% 

16-QAM 
10 km: ~4.22% 

50 km: ~12.23% 

10 km: ~1.435% 

50 km: ~7.88% 

10 km: ~2.78% 

60 km: ~4.35% 

64-QAM 
10 km: ~4.52% 

50 km: ~12.88% 

10 km: ~1.48% 

50 km: ~8.2% 

10 km: ~3.04% 

60 km: ~4.68% 

10 dBm 

QPSK 
10 km: ~6.57% 

50 km: ~14.53% 

10 km: ~1.46% 

50 km: ~8.33% 

10 km: ~5.11% 

60 km: ~6.2% 

16-QAM 
10 km: ~6.65% 

50 km: ~14.87% 

10 km: ~1.49% 

50 km: ~8.41% 

10 km: ~5.16% 

60 km: ~6.46% 

64-QAM 
10 km: ~6.97% 

50 km: ~15.02% 

10 km: ~1.53% 

50 km: ~8.81% 

10 km: ~5.44% 

60 km: ~6.21% 
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EVM data can be observed in Table 8.3. The physical improvement of QPSK, 16-QAM 

and 64-QAM EVM can be observed from Figure 8.6(a), (b) and (c), respectively, which 

represents the uncompensated and compensated constellation diagrams. 

For the 50 km transmission system, the average EVM across all modulation schemes at 

OLPs of 8 dBm and 10 dBm are ~7.95% and ~8.51%, respectively. The average EVM 

shows that only OLP of 8 dBm achieved below 8%, hence revealing that the 50 km 

transmission span is the limit of DMFD method in LTE RoF system.  

8.2.2 Optimisation of DMFD Signal  

The application of DMFD method in the LTE RoF system for SBS compensation was 

successfully demonstrated in the previous section. The DFMD signal was fixed at 100 

MHz with the condition of {fd << fRF}, and with 2 dBm RF power. In order to further 

investigate on the DMFD signal, this section will carry out the optimisation of DMFD 

method. The optimisation will be in the perspective of varying frequency and RF power of 

DMFD signal, and its relative impact on the QPSK-OFDM LTE signal transmitted at 2.6 

GHz. The OLP is fixed at 10 dBm throughout this investigation. Figure 8.7 presents the 

optimisation of DMFD signal, and the corresponding EVM response for LTE signal. In the 
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Figure 8.6: Uncompensated (black) and compensated (red) constellation diagrams of (a) 

QPSK, (b) 16-QAM, and (c) 64-QAM  
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x-axis of Figure 8.7 is the varying frequency of DMFD signal with RF power in the y-axis, 

and the response of the variation is shown in z-axis as the LTE signal EVM. 

In Figure 8.7, launching the DMFD signal between 100 kHz and 14 MHz significantly 

increases the EVM rate. At 0 dBm RF power and 100 kHz DMFD signal frequency 

increases the EVM rate to ~4.98%, while increasing the power to 10 dBm resulted in EVM 

of ~49.4%. The result from Table 8.3 indicates that the uncompensated EVM at OLP of 10 

dBm was ~6.57%. Transmitting the DMFD signal at 100 kHz does compensate the SBS, 

but with least effectiveness. This is because, the IMD product arising from the mixing of 
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DMFD signal at 100 kHz and LTE signal at 2.6 GHz falls within the 20 MHz bandwidth of 

LTE signal. The higher RF power of 10 dBm further distorts the LTE signal due to the 

increasing power of the IMD product.  

It is clear that as the DMFD signal frequency increases, the EVM relatively decreases 

until the transition at 15 MHz, where the EVM completely drops to ~1.48% at 0 dBm RF 

power. The mixing between DMFD and LTE signals at 15 MHz and 2.6 GHz, 

respectively, resulted in IMD product at 2.585 GHz, which is the explicit out-of-band IMD 

re-growth point. From DMFD signal frequency of 15 MHz to 2.5 GHz, the observed EVM 

is as low as ~1.48% at 0 dBm RF power, and can be further improved to ~1.35% by 

increasing the RF power to 10 dBm. Higher DMFD signal power has the potential of 

increasing the laser linewidth, as more peaks will cross the FWHM limit, see Figure 8.2. It 

is shown that further linewidth broadening provides higher potential of SBS compensation, 

however the improvement is insignificant.  

Above 2.5 GHz for DMFD signal, the effect of SBS compensation reduces as the 

frequency chirping has already occurred in that frequency range by DM of LTE signal. A 

sharp peak can be observed when the DMFD signal reaches 2.6 GHz, which is due to the 

modulation within the bandwidth of LTE signal. Launching the DMFD signal above 2.6 

GHz resulted in an average EVM of ~6.45%, which achieved a close proximity with the 

uncompensated EVM of LTE signal. Overall optimisation of DMFD method has shown 

that the frequency should not be lower than 15 MHz and higher than 2.5 GHz, hence the 

expression of {fd << fRF} can be rewritten as { fL < fd < fRF}, where fL represents the 

dithering boundary limit of 14 MHz. It is important to state that fL is bandwidth dependent.       
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8.2.3 Impact of Optical Modulators for SBS Compensation 

It was shown that the condition of DMFD method has changed to { fL < fd < fRF}. 

Despite the frequencies below fL still compensates the SBS affect, but it has to be neglected 

due to IMD re-growth within the finite bandwidth of the LTE signal. Since DMFD method 

operates based on frequency chirping, the investigation on the effectiveness of frequency 

dithering with two different optical modulators is crucial as DM induces PFC and 

contrariwise for external modulators. Optical modulator optimisation was carried out in 

Chapter 4 to address the effect of PFC for the proposed LTE-A scheme. The SE-MZM 

achieved higher SNR of ~3 dB and ~9 dB for 16-QAM and 64-QAM, respectively, 

compared to DM. Thus, it is shown that PFC induces additional distortion to the system as 

the data rate increases.  

In this section, an investigation on the impact of frequency dithering method relative to 

the optical modulators will be carried out. It is already shown in Section 8.2.1 that 

introducing DMFD signal does not additionally distort the frequency chirp dependent 

regions. However, it is important to rectify the impact of introducing frequency dithering 

signal into a chirpless optical modulator based system.      

Figure 8.8 illustrates the overall experimental setup for LTE RoF system with DMFD 

and EMFD for SBS compensation. At the transmitter, LTE signal is composed of QPSK, 

16-QAM, and 64-QAM with OFDM, transmitted at 2.6 GHz band via the VSG. The LTE 

signal is then combined with the dithering signal at 100 MHz specifically for DM. The 

composite signal is then applied to the DFB laser for DM. However, the second case with a 

DFB source supplied to SE-MZM, the dithering signal is inserted into the DFB source 

while LTE signal is supplied to SE-MZM for external modulation. The dithering 

phenomenon for the second case cannot be performed via SE-MZM because it does not 
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induce PFC. In other word, the optical PM required for the linewidth broadening needs to 

be done via the laser source irrespective of DM or external modulation.  

The optical signals are passed through the link A, which consists of a VOA to 

investigate lower OLP, and SMFs of 10, 25, 35, and 50 km. In link A, EDFA and an OBPF 

are only utilised for a span of 50 km and above. The optical signals in link B are 

transmitted through EDFA and OBPF for higher OLP. At the receiver, a PD with a 

responsivity of 0.42 followed by a LNA and SA are used for the received signal for both 

links. 

Figure 8.9 depict the OLP against the SNR penalty for QPSK, 16-QAM, and 64-QAM 

systems modulated onto DMFD and EMFD topologies, and transmitted through 10, 25, 35 

and 50 km spans. The characteristics of the regions are similar to that presented in Figure 

8.4. It is known that DMFD does not enhance the existing PFC effect in regions I and II, 

and it is shown in Figure 8.9 that EMFD method demonstrates the same characteristic.  

Figure 8.8: LTE-RoF experimental setup for SBS mitigation with DM and EM  
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In Figure 8.9, the concentration is given to the region III.B due to the effectiveness of 

DMFD and EMFD. Table 8.2 with only DMFD data is updated with the EMFD data as 

shown in Table 8.4. Overall, the system with DM experiences an average of ~3 dB 

additional penalty compared to external modulation for LTE RoF system due to the PFC. 

Figure 8.9: OLP against SNR penalty analysis for SBS compensation in (a) QPSK, (b) 16-

QAM, and (c) 64-QAM with DMFD and EMFD methods over 10 km to 50 km 

transmission spans  
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Due to the lower data rate, the LTE RoF system experiences higher tolerance to PFC, 

compared to the LTE-A RoF system presented in Chapter 4. 

  

 

 

Table 8.4: DMFD and EMFD SNR penalties at 8 dBm and 10 dBm OLPs 

OLP Modulation 

schemes 

Uncompensated 

SNR penalties 

Compensated 

SNR penalties 

SNR penalties 

improvement 

8 dBm 

DMFD: QPSK 
10 km: ~10.83 dB 

50 km: ~26.55 dB 

10 km: ~8.5 dB 

50 km: ~21.51 dB 

10 km: ~2.33 dB 

60 km: ~5.04 dB 

EMFD: QPSK 
10 km: ~8.95 dB 

50 km: ~24.55 dB 

10 km: ~7.11 dB 

50 km: ~19.1 dB 

10 km: ~1.84 dB 

60 km: ~5.45 dB 

DMFD: 16-QAM 
10 km: ~11.2 dB 

50 km: ~26.29 dB 

10 km: ~8.95 dB 

50 km: ~21.9 dB 

10 km: ~2.25 dB 

60 km: ~4.39 dB 

EMFD: 16-QAM 
10 km: ~9.9 dB 

50 km: ~25.39 dB 

10 km: ~7.8 dB 

50 km: ~19.23 dB 

10 km: ~2.1 dB 

60 km: ~6.16 dB 

DMFD: 64-QAM 
10 km: ~11.7 dB 

50 km: ~26.99 dB 

10 km: ~9.2 dB 

50 km: ~22.4 dB 

10 km: ~2.5 dB 

60 km: ~4.59 dB 

EMFD: 64-QAM 
10 km: ~10.88 dB 

50 km: ~25.79 dB 

10 km: ~8.2 dB 

50 km: ~20.1 dB 

10 km: ~2.68 dB 

60 km: ~5.69 dB 

10 dBm 

DMFD: QPSK 
10 km: ~12.1 dB 

50 km: ~29.14 dB 

10 km: ~8.9 dB 

50 km: ~23.1 dB 

10 km: ~3.2 dB 

60 km: ~6.04 dB 

EMFD: QPSK 
10 km: ~9.9 dB 

50 km: ~27.14 dB 

10 km: ~7.95 dB 

50 km: ~20 dB 

10 km: ~1.95 dB 

60 km: ~7.14 dB 

DMFD: 16-QAM 
10 km: ~12.7 dB 

50 km: ~29.32 dB 

10 km: ~9.39 dB 

50 km: ~23.3 dB 

10 km: ~3.31 dB 

60 km: ~6.02 dB 

EMFD: 16-QAM 
10 km: ~11 dB 

50 km: ~27.82 dB 

10 km: ~8.7 dB 

50 km: ~20.2 dB 

10 km: ~2.3 dB 

60 km: ~7.62 dB 

DMFD: 64-QAM 
10 km: ~13.2 dB 

50 km: ~29.67 dB 

10 km: ~9.65 dB 

50 km: ~23.88 dB 

10 km: ~3.55 dB 

60 km: ~5.79 dB 

 EMFD: 64-QAM 
10 km: ~11.99 dB 

50 km: ~29.67 dB 

10 km: ~8.95 dB 

50 km: ~21.3 dB 

10 km: ~3 dB 

60 km: ~8.37 dB 
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Figure 8.10(a), (b), and (c) illustrates EVMs of QPSK, 16-QAM, and 64-QAM, 

respectively, which basically presents the explicit LTE RoF QoS, where the aim is to 

achieve lower than 8% according to the 3GPP LTE requirement [134]. In terms of EVM, 

there are no changes observed in regions I and II, thereby agreeing to the response of the 

SNR penalty shown in Figure 8.9, for both DMFD and EMFD topologies. The complete 

Figure 8.10: OLP against EVM for SBS compensation in (a) QPSK, (b) 16-QAM, and (c) 

64-QAM with DMFD and EMFD methods over 10 km to 50 km transmission spans  
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measured data for OLP of 8 dBm and 10 dBm, of DFMD and EMFD topologies are given 

in Table 8.5. Concentrating in the region III.B, at OLP of 8 dBm, EMFD topology enables 

the LTE RoF system to achieve EVM below 8% for QPSK, 16-QAM, and 64-QAM. 

However, the 64-QAM LTE RoF system with DMFD topology resulted in an EVM of 

~8.2%, which is higher than the 8% limit. At 10 dBm OLP, both DMFD and EMFD 

topologies exceeded the LTE EVM limit. Although EMFD system is superior to DMFD 

system by an average of ~ 3 dB SNR gain, EVM differences are comparatively small 

showing the effectiveness of DMFD system with reduced system complexity for LTE RoF 

application.  
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  8.3 Summary 

In this chapter, the nonlinear compensation of LTE RoF system based on DMFD 

method was proposed and demonstrated. By utilising this method, the SBS threshold of 

LTE RoF system was found to be ~6 dBm. Furthermore, it was also shown that despite the 

 

Table 8.5: DMFD and EMFD EVM at 8 dBm and 10 dBm OLPs 

OLP Modulation 

schemes 

Uncompensated 

EVM 

Compensated 

EVM 

EVM improvement 

8 dBm 

DMFD: QPSK 
10 km: ~4.093% 

50 km: ~11.99% 

10 km: ~1.42% 

50 km: ~7.79% 

10 km: ~2.67% 

60 km: ~4.2% 

EMFD: QPSK 
10 km: ~3.76% 

50 km: ~11.69% 

10 km: ~1.25% 

50 km: ~7.41% 

10 km: ~2.51% 

60 km: ~4.28% 

DMFD: 16-QAM 
10 km: ~4.22% 

50 km: ~12.23% 

10 km: ~1.435% 

50 km: ~7.88% 

10 km: ~2.78% 

60 km: ~4.35% 

EMFD: 16-QAM 
10 km: ~3.98% 

50 km: ~11.96% 

10 km: ~1.3% 

50 km: ~7.55% 

10 km: ~2.68% 

60 km: ~4.41% 

DMFD: 64-QAM 
10 km: ~4.52% 

50 km: ~12.88% 

10 km: ~1.48% 

50 km: ~8.2% 

10 km: ~3.04% 

60 km: ~4.68% 

EMFD: 64-QAM 
10 km: ~4.15% 

50 km: ~12.67% 

10 km: ~1.38% 

50 km: ~7.89% 

10 km: ~2.77% 

60 km: ~4.78% 

10 dBm 

DMFD: QPSK 
10 km: ~6.57% 

50 km: ~14.53% 

10 km: ~1.46% 

50 km: ~8.33% 

10 km: ~5.11% 

60 km: ~6.2% 

EMFD: QPSK 
10 km: ~5.95% 

50 km: ~14.33% 

10 km: ~1.31% 

50 km: ~8.02% 

10 km: ~4.64% 

60 km: ~6% 

16-QAM 
10 km: ~6.65% 

50 km: ~14.87% 

10 km: ~1.49% 

50 km: ~8.41% 

10 km: ~5.16% 

60 km: ~6.46% 

16-QAM 
10 km: ~6.02% 

50 km: ~14.62% 

10 km: ~1.36% 

50 km: ~8.22% 

10 km: ~4.66% 

60 km: ~6.4% 

64-QAM 
10 km: ~6.97% 

50 km: ~15.02% 

10 km: ~1.53% 

50 km: ~8.81% 

10 km: ~5.44% 

60 km: ~6.21% 

 64-QAM 
10 km: ~6.16% 

50 km: ~14.89% 

10 km: ~1.41% 

50 km: ~8.51% 

10 km: ~4.75% 

60 km: ~6.38% 
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fact that DMFD induces frequency chirp, but it does not deteriorate the signal propagating 

in the linear and intermixing regions. The LTE RoF system average SNR gain observed at 

OLP of 8 dBm and 10 dBm for the 50 km transmission span are ~4.81 dB and ~5.97 dB, 

respectively. 

In terms of the DMFD signal, a thorough optimisation was carried out. The 

investigation revealed that the condition of the dithering signal should meet the 

requirement of { fL < fd < fRF}. It was also shown that increasing the power of the dithering 

signal will increase the effectiveness of SBS compensation proportionally, however the 

EVM improvement was insignificant.  

Finally, DMFD and EMFD methods were demonstrated to mitigate SBS for LTE-RoF 

system. Both topologies do not deteriorate the PFC dependent regions from the intentional 

linewidth broadening. In addition, external modulation exhibits a ~3 dB of average SNR 

gain over DM system, however both systems achieved close proximity in the EVM 

measurement. The obtained result in this chapter has given the ability of utilising high OLP 

for the LTE RoF system. The following chapter will conclude all the findings and 

contributions made in this thesis.  
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9.1 Conclusions 

The actively growing end user subscriptions with bandwidth hungry, high 

specification, real-time, and delay-sensitive applications have driven mobile 

communication and as well as the pure wireless communication technologies to 

continuously progress. The 3GPP established a standard known as the LTE and build up 

frameworks as an evolution to the existing 3GPP radio technologies. The LTE frameworks 

precisely focus on a development path for GSM and UMTS. In radio access network of 

LTE, eNB functions as a 2-node architecture leading to an operating characteristic of not 

depending in a central controller. Furthermore, the LTE signal will experience a path loss 

in excess of 100 dB at 2.6 GHz band and severe multipath propagation in urban area with 

NLOS connectivity. Therefore the cell size of eNB is much smaller than any of its former 

technology, where the typical cell radius is 1 km.  

Therefore, this thesis aims to seamlessly integrate eNB and AF type RN by adapting 

RoF as the interface into the LTE networking structure. As a rule of thumb, RoF was 

designed in a simple and least sophisticated technology for easy adaptability into the LTE 

networking structure. 

The thesis began with an overview of RoF system and its in-build optoelectronics 

devices in Chapter 2. Due to the importance of optical modulation in RoF system, a 

detailed explanation was given with fair comparison between DM and external 

modulation. Along with the RoF system overview, a thorough channel analysis was given 

to apprehend the importance of RoF system. From the analysis, in comparison with 

wireless channel (Rayleigh fading) it was found that RoF link could provide a 31 dB of 

SNR gain, which is a remarkable improvement for commercial application.  
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Focusing on the RoF link, Chapter 3 explains the core reasons for using DFB as the 

optical transmitter of this project. Chapter 3 unfolds that DFB outperforms Fabry-Perot 

laser and VCSEL in various technical aspects, including the most important requirement of 

DSM operation. In a DFB, PFC is an important impairment for long haul transmission 

because of its ability to correlate with CD and jointly distort the optical signal. The 

existing mathematical expression does not precisely explain on how rate equations 

contribute to PFC that effectively distorts the modulated optical signal. Therefore, Chapter 

3 analytically presented a new closed form expression for PFC via the derivation of rate 

equations. 

In Chapter 4, LTE-A was optimised relative to the electrical and optical transmitters, 

with introducing varying FFT sizes instead of carrier aggregation. In the first phase, a 

range of FFT sizes were introduced, and the optimisation was carried out with varying 

OLP. The optimum OLP or the intermixing region, which mostly falls in the range of ~-6 

dBm to ~0 dBm for QPSK, 16-QAM, and 64-QAM were discovered. This particular 

region was achieved by the interchangeable compensation between PFC and CD, with 

SPM. For the FFT size-64, the analysis unfold that the walk-off rate gradually decreases 

with the increase of data rate, especially for 16-QAM and 64-QAM schemes. For FFT size 

of more than 256, the SNR penalty increases significantly for QPSK, 16-QAM, and 64-

QAM due to the vulnerability towards ICI. The finding for FFT size optimisation reveals 

that FFT size-128 provides the minimum SNR penalty across all investigated modulation 

schemes. The symbol length and subcarrier frequency spacing of FFT size-128 could 

provide enough tolerance and higher walk off to ISI and ICI, respectively. 

After determining the optimum FFT size for electrical transmitter in Chapter 4, the 

second phase of the investigation was further carried out on the performance evaluation 
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and optimisation of optical modulators, using DML and external modulators. The optimum 

OLP was consistent and conforms to the range that was discovered in the previous 

investigation. The investigation shows that the performance of external modulation 

schemes in terms of transmission distance is superior to DML scheme. Between SE-MZM 

and DE-MZM, the latter proved to be a preferred option for externally modulating the 

signal since it offers improved immunity to the fibre CD, hence achieved longer 

transmission span. However, DE-MZM is vulnerable towards nonlinearity due to the 

modulation taking place in the phase of the optical source. It is clearly shown that the cell 

extension with a simple DFB modulated RoF configuration could extend the coverage of 

eNB beyond its area, and even further with external modulation. Overall, Chapter 4 

provided an in-depth design of the proposed varying FFT-sizes based LTE-A and its 

integration with RoF.  

All the previous chapters concentrated on the theoretical development of the proposed 

RoF systems. It is vital that the seamless integration of LTE and RoF should be practically 

realizable, hence Chapter 5 presented the experimental system design of LTE RoF. An 

end-to-end experimental optimisation was carried out in Chapter 5 to ascertain a flawless 

performance. The optimisation was initiated with OMI for the DML. A new region termed 

as OMR was introduced, where QPSK, 16-QAM, and 64-QAM achieved average EVM 

across all ARBs of ~0.97%, ~1.01%, and ~1.06%, respectively. In this operating scenario, 

the system achieved significantly lower than the 3GPP EVM margin of 8%.  

As a further improvement to the system, the intermixing region was deliberately 

introduced in Chapter 5 as a function of OLP. In this region, the QPSK, 16-QAM and 64-

QAM average EVM further trimmed to ~0.93%, ~0.96% and ~0.99%, respectively. The 

results also revealed that, for low OMI, nonlinear propagation significantly adds to the 
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existing gain compression affect, thus strictly needs to be avoided. In terms of higher 

transmission distance, investigation on transmission up to 60 km shown that intermixing 

region does not deviate from its nominal range. Chapter 5 finally presents the DM 

nonlinear threshold for LTE RoF system. The investigation shows that both linear and 

nonlinear distortion increases linearly, and that the system experiences severe nonlinear 

distortion for OLP of more than 6 dBm.  

Progressing from the basic LTE RoF experimental link, Chapter 6 proposes an 

alternative method for 2×2 MIMO systems in LTE over 60 km RoF. The implementation 

of the alternative method was realized by introducing DD-FDM. Taking into account the 

advantage of LTE spectrum allocation and the proposed solution, a two-fold gain in the 

peak data rate has been achieved in the 2x2 MIMO configurations. The studies revealed 

that the resulting output quality of the signal is almost identical for both the 2 GHz and 2.6 

GHz bands. At 200 Mb/s (64-QAM), the experimental system could achieve EVMs of 

~5.935% and ~5.99%, for 2GHz and 2.6 GHz system, respectively. 

A complete solution of the proposed LTE RoF system was introduced in Chapter 7, 

where the seamless integration of the full duplex FDD LTE technology with the 10 km 

RoF system was carried out. The RoF system was designed based on dedicated DMLs for 

DL and UL systems, with DWDM wavelength spacing and a SMF. The ACLR comparison 

between half duplex and full duplex system for BFS of 190 MHz revealed that the system 

to be Rayleigh backscattering and optical interference free. The DL system with BFS of 

190 MHz, IFS of 120 MHz and NFS of 50 MHz resulted in negligible, 0.69 dB, and 14.10 

dB ACLR penalties, respectively. In the UL system, the aforementioned frequencies 

spacing achieved a close proximity to DL system for the ACLR penalties. The BFS and 

IFS frequency spacing experienced negligible IMD products. However, the NFS 
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introduced severe IMD products from subcarrier-subcarrier mixing due to the 

photodetection. In addition, the full duplex system reported that the best case transmission 

condition for QPSK, 16-QAM, and 64-QAM systems achieved the average EVMs of 

~2.30%, ~2.33%, and ~2.39%, respectively, at 2 dBm transmit power.  

The research work carried out in Chapters 3, 4, and 5 have shown the criticalness of 

nonlinear propagation, therefore Chapters 6 and 7 completely focused on the intermixing 

region. In order to compensate the distortion induced by nonlinear propagation, Chapter 8 

introduces a novel nonlinear compensation technique for LTE RoF system utilising the 

DMFD method. By utilising the DMFD method, the SBS threshold of LTE RoF system 

was found to be ~6 dBm. Furthermore, it was also shown that despite the fact that DMFD 

induces frequency chirp, but it does not deteriorate the signal propagating in the linear and 

intermixing regions. The LTE RoF system average SNR gain observed at OLP of 8 dBm 

and 10 dBm for the 50 km transmission span are ~4.81 dB and ~5.97 dB, respectively. 

In terms of the DMFD signal, a thorough optimisation was carried out. The 

investigation revealed that the condition of the dithering signal should meet the 

requirement of {fL < fd < fRF}. It was also shown that increasing the power of the dithering 

signal proportionally increases the effectiveness of SBS compensation, however the EVM 

improvement was insignificant.  

Finally, DMFD and EMFD methods were demonstrated to mitigate SBS for LTE RoF 

system. Both topologies do not deteriorate the PFC dependent regions from the intentional 

linewidth broadening. In addition, external modulation exhibits a ~3 dB of average SNR 

gain over DML, however both systems achieved close proximity in the EVM 

measurement. The obtained results in this chapter have given the ability of utilising high 

OLP for the LTE RoF system.  
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9.2 Future Work 

Within the given time frame, this thesis has contributed to the design and development 

of LTE RoF integration. But, in the perspective of research, the improvements and 

contribution to a particular field could be endless. Therefore, this section suggests and 

discusses the next level of design and development for LTE RoF system.  

This thesis has given significant attention to the optical modulation methods and its 

relevant impact on the LTE RoF performance. In order to further emphasize on DML, 

Fabry-Perot laser and VCSELs can be introduced into the system and further optimisation 

can be carried out, to commercially provide a wide range of selection in terms of optical 

transmitters. Recently, reflective semiconductor optical amplifier (RSOA) has captured a 

wide attention as an optical modulator in the optical communication research community. 

The major application area of RSOA is for the full duplex link based on the wavelength 

reuse scheme. An end-to-end design of a full duplex LTE system with RSOA can be 

carried out, and propose a new Rayleigh backscattering mitigation technique, to provide an 

alternative to the proposed DWDM architecture within this thesis.    

The LTE RoF system proposed in this thesis is completely designed based on SMF. 

There are various types of optical fibres, namely dispersion-shifted fibre and non-zero 

dispersion-shifted fibre that provide a higher tolerance for dispersion and nonlinearity, 

respectively. The intermixing region introduced for SMF could be investigated with 

dispersion-shifted fibre and non-zero dispersion-shifted fibre, and analyses the nominal 

region for optimum OLP. By performing the various fibre channel investigation, the LTE 

network operator will have the ability of adopting the appropriate channel relative to the 

application. All the aforementioned optical fibres are widely utilised for outdoor 

applications, the proposed LTE RoF integration in this thesis can also be extended for in-
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building coverage with distributed antenna system for femtocell deployment. It is possible 

to achieve the indoor extension by coupling the SMF dependent network to a MMF or 

plastic optical fibre for in-building coverage, hence a complete LTE RoF solution will be 

achieved starting from the end-users located close to the eNB until up to the end-users 

situated inside a building.  

Finally, the optical receiver utilised in this thesis was solely based on DD. Coherent 

detection has been widely used as an alternative to DD. The LTE RoF system could be 

redesigned with coherent detection, based on CO-OFDM over DD-OOFDM to investigate 

the effectiveness in a long span transmission.   
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