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ABSTRACT 

This paper investigates the physical behaviour and 
effectiveness of a nonlinear dynamic vibration absorber 
(NDVA). The nonlinear absorber considered involves a 
nonlinear hardening spring which was designed and 
attached to a cantilever beam excited by a shaker. The 
cantilever beam can be considered at low frequencies as a 
linear single degree-of-freedom system. The nonlinear 
attachment is designed to behave as a hardening Duffing 
oscillator. The nonlinearity of the attachment is due to the 
particular geometrical configuration undergoing a large 
amplitude response. The experiment investigated the 
potential for vibration reduction of the system. Analytical 
and numerical results are presented and compared. From 
the measured results it was observed that the NDVA had a 
much wider effective bandwidth compared to a linear 
absorber. The frequency response curve of the NDVA has 
the effect of moving the second resonant peak to a higher 
frequency away from the tuned frequency so that the 
device is robust to mistuning. 
 
Keywords: Nonlinear vibration, vibration absorber, 
vibration reduction, passive vibration control, Duffing 
oscillator 
 
1. INTRODUCTION 

The passive vibration absorber is an important 
device used for vibration reduction in structures. The 
linear vibration absorber is limited in that it reduces 
vibration over a very narrow frequency range. This range 
is not enough to correspond to changes in speed for a 
rotating unbalanced source due to load, motor power 
supply or source variations. A technical benefit of the 
NDVA has been hypothesized that they can operate 
efficiently over a broader range of forcing frequencies.  
 
The bandwidth problem was first identified by Roberson 
[1] who considered the impractical case of an undamped 

absorber comprising a linear plus cubic spring acting in 
parallel.. Hunt and Nissen [2] presented a NDVA with a 
softening spring composed of a stack of Belleville 
washers to overcome the previous design feasibility. 
Nissen et al. [3] studied the optimal parameters of a 
NDVA and considered the technical aspects for realization. 
Soom  [4] and Jordanov [5] have investigated both the 
optimal parameter design of linear and nonlinear dynamic 
vibration absorbers for damped primary systems. They 
investigated optimization criteria other than traditional 
measures and obtained a small improvement in the steady 
state response by using nonlinear springs. Zhu et al. [6] 
studied the system with nonlinear damping and nonlinear 
springs, they found that a reduction of the vibration 
amplitude can be obtained by adjusting the parameters of 
the nonlinear dampers, nonlinear spring stiffness and 
excitation frequency. It has also been demonstrated [7-10] 
that the primary phenomena behind the energy pumping 
produced is due to resonant interactions between coupled 
linear and nonlinear components.  
 
From the review of the existing literature, it can be seen 
that experimental results for the nonlinear absorber have 
not been widely published. The aim of this paper is to 
partially fill this gap. The problem is first studied here 
analytically, to determine the most important features, 
before an experimental design is presented, implemented 
and its behavior is discussed. 
    
2. EQUATIONS OF MOTION OF A 
SINGLE DEGREE OF FREEDOM 
SYSTEM WITH AN ATTACHED 
NONLINEAR ABSORBER 

As shown in Figure 1, a NDVA is attached to a linear 
single degree-of-freedom main structural system. In the 
figure, sk , sc  and sm  are the spring constant, viscous 
damping coefficient and mass of the main structural 



 

system respectively. For the NDVA, it has a mass m , a 
viscous damper c  and a nonlinear spring with a nonlinear 
restoring force given by the function 3

1 3( )f z k z k z  , 
where z  is the static displacement across the spring, 
which has linear and nonlinear stiffness terms 1k  and 3k , 
respectively. The sign of 3k  denotes the nonlinear 
stiffness behaviour; a positive value means that the system 
is hardening. sx , x , sx , x , sx and x are the displacement, 
velocity and acceleration of the main structural system 
and NDVA, respectively. 
 
The equations of motion for this system are given by 
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where F  is the amplitude of the excitation, which is 
periodic in time t  with frequency  . 
 
It is convenient to write equations (1a,b) in non-
dimensional form as 
(1+ ) 2 cos( )s s s sy y y w                        (2a,b)                                                                                
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where the non-dimensional parameters are given by 
2

0s s sy x x   , 0s s sy x x   , 0s sy x x ; 2
0sw z x   , 

0sw z x   , 0w z x , sm m  , 2
3 0( )sk k x  , 

2
S s s sc m  , 12c m  , 0 1 s    and s  , 

where 2
s s sk m  , 2

1 1k m   and 0x is the static 
extension of the linear spring due to a static force of 
amplitude F , and ( ) d( ) d    in which st   is 
non-dimensional time. 
 
The fundamental assumption in the Harmonic Balance 
method (HBM) approach used for the first order solution 
is that the response of the main system and the absorber is 
predominantly harmonic at the excitation frequency. 
Applying the HBM, it is assumed that a solution is of the 
form 

cos( )s s sy Y                                                     (3a,b)                                            
cos( )w W             

Substituting equations (3a,b) into equations (2a,b) gives 
two expressions involving the amplitudes of the responses 
of the two masses, namely 
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Once the parameters for the system and the excitation 
frequency have been specified, then the solutions of 
equation (4b) in 2W  give the three numerical solutions, 
which should be checked for physical interpretation and 
existence. It is noted that only real solutions for 2W  are 
physical responses. When the normalised relative 
displacement W  has been determined it can be substituted 
into equations (4a) to obtain the amplitude of the main 
system sY .

  
Three steady-state solutions of equation (4b) are given by  
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 Depending on the degree of nonlinearity in the NDVA 

system, there are combinations of the parameters which 
produce a multivalued response. To find the conditions for 
such a response,   , the discriminant of the cubic 
polynomial in 2W  in Equation (4a) can be examined [11]. 
If 0   there are three distinct real roots, if 0   there 
is one real root and a pair of complex conjugate roots and 
if 0   then there are at least two real coincident roots. 
 
3. VIBRATION REDUCTION OF A NDVA 

The influence of the nonlinear stiffness parameter 
(  ) and the damping ratio (  ) on the reduction of 
vibration can now be investigated analytically. These were 
also checked by direct numerical integration (using the 
MATLAB ode45 function) of the equations of motion. 
The combined system response is nonlinear and is 
compared in terms of the relative response to the 
amplitude of the static response of the primary system on 
its own when an equal static force is applied.  
 
3.1 Influence of the nonlinear parameter (  ) 

In Figures 2(a)-(b), the effect on the normalized 
primary system displacement sY  can be seen. It is to shift 
the first resonance peak 1r  and bend the second 
resonance peak 2r  to the right. An unstable branch 
appears in between the two stable branches of the first 
resonance peak at the frequency 1r . For low values of 



 

the nonlinearity, the unstable branch may appear at a 
response level above the stable branches of the second 
resonance peak. For higher values of the nonlinearity, the 
two stable branches intersect each other and the amplitude 
of the unstable branch is above the two stable branches. 
 
The vibration reduction band can be observed in Figures 
2(a)-(b), i.e., bandwidth where 0 1s sY X X  , which 
contains the effective tuned frequency. The difference is 
apparent between the vibration reduction of the linear and 
the nonlinear absorbers; the nonlinear device has a much 
wider effective bandwidth. It is increased by about 6% 
and 211% compared to the linear case for values of the 
nonlinear stiffness parameter of -510   and -410   
respectively. These were also checked by numerical 
integration of the equations of motion. Equations (1a,b) 
were solved numerically and the Fourier coefficients 
extracted from the time histories. The amplitude of the 
first of these coefficients is depicted by circles in the 
frequency response curves shown here. It is noted that in 
order to find the stable multivalued responses the initial 
conditions for the displacement and velocity need to be 
adjusted. 
 
Figures 2(a)-(b) also shows that the first resonance 
frequency of the system with the nonlinear absorber 1r  
moves to a slightly higher frequency as it is affected by 
the nonlinearity. The peak response of the primary mass at 
the first resonance frequency is also higher than that for 
the linear absorber case.  
 
3.2 The effect of damping (  ) in the nonlinear 

absorber  
In Figures 3(a)-(b) the linear damping ratio for the 

attached system is increased from 32 10    to 
38 10   . The difference between the vibration 

response due to the linear and the nonlinear absorber in 
Figures 3(a)-(b) is again that the nonlinear absorber has a 
much wider bandwidth. It is increased by about 211% and 
255% compared to the linear case for a value of 

32 10    and 38 10   , respectively. It is noted that 
for a larger damping ratio (  ), the wider the reduction 
bandwidth of the nonlinear absorber compared to the 
linear case and the reduction at the effective tuned 
frequency is less. As   is increased in the nonlinear 
absorber case, the vibration reduction bandwidth 
decreases. In addition, in the response curves of the 
system, corresponding to larger damping, at the second 
resonance frequency 2r  of the system with the nonlinear 
absorber will shift to a lower frequency. The amplitude of 
the first resonance frequency 1r  of the system slightly 
reduces.  

 
By adding damping, the displacement of the primary 

system can be made to be single valued for all frequencies, 
so that no jumps can occur in the response. A 
disadvantage though is that higher damping results in less 
vibration reduction at the tuned frequency t . For the 
case of high damping, one might expect that the nonlinear 
absorber will dissipate more vibration energy at some 
frequencies when the relative velocity is high. Thus, the 
‘resonance’ peaks might be expected to be significantly 
reduced with increased damping. This is apparent in the 
reduction in the peak response amplitude at the resonance 
frequencies 1r , 2r  for the linear absorber, but it does 
not appear to be the case for the nonlinear absorber. 
 
4. EXPERIMENTAL VALIDATION 

A nonlinear absorber was designed and attached to a 
cantilever beam which was excited by a shaker. The 
overall system is modelled as a nonlinear hardening 
Duffing oscillator coupled to a linear system. The aim of 
the experimental investigation is to demonstrate the 
corresponding vibration reduction of the configuration 
using this particular nonlinear vibration absorber. 

 
4.1 Nonlinear dynamic vibration absorber design and 
experimental investigation 

The phenomenon of nonlinear stiffness was 
reproduced using a thin clamped circular plate undergoing 
large flexural deflection [12]. The absorber mass was 
attached at the centre of the thin circular plate. The plate 
is clamped by a frame on its edges as illustrated in Figure 
4. The circular plate has a radius r , thickness h , 
Poisson's ratio   and Young’s modulus E . When the 
mass moves in the vertical direction, the plate bends with 
a large deflection producing axial strain and a change in 
length of the midplane axis. This large deflection, 
producing geometric nonlinearity, is the cause of the 
nonlinearity in the restoring force and hence effective 
stiffness of the absorber. The static relationship between 
applied static force f  at the centre of the circular plate 
and the deflection at that point has been obtained when   
is equal to 0.3 [12]   
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(4.1)                                                                                
It can be written as 

3
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r
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0.217
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r

  are the 

corresponding stiffness coefficients. 
 
The practical implementation of the nonlinear vibration 
absorber is shown in Figures 5-7. Photographs are shown 
in Figure 5-6and a schematic representation is shown in 
Figure 7. A mass m  was attached to the thin plate, which 
is itself bolted to a cantilever beam by a support frame. 



 

The spring characteristics between the absorber mass and 
the support frame are due to the thin circular plate, which 
can be modelled as a nonlinear stiffness 1 3,  k k  and for 
small dissipation effects a viscous damper c  was 
introduced. The thickness of the plate or shim and the 
attached mass can be altered and these have a large effect 
on the nonlinear attachment system characteristics. In 
addition, the length of the cantilever beam can also be 
altered, so it is possible to consider different natural 
frequencies. For large dynamic deformations it was 
hypothesized that the absorber would be nonlinear. The 
cantilever beam was excited by an electro-dynamic shaker. 
The support frame and beam structure without the 
absorber can be modelled as a linear system comprising of 
a spring sk , a viscous damper sc  and a mass sm . 
Applying a constant amplitude force at each frequency to 
the shaker,  the excitation can be modelled as a constant 
amplitude harmonic force, as shown in Figure 7.  

 
4.2 Experimental procedure and results 

The schematic diagram of the experimental setup is 
shown in Figure 8. The electro-dynamic shaker was 
driven by a signal generator producing a stepped-sine 
signal. The accelerometers (PCB type 352C22) were 
attached to the support structure and to the mass of the 
absorber, while the oscilloscope was used to observe the 
system response. 
 
A preliminary test was implemented to broadly investigate 
the dynamic behaviour of the system. For each test, the 
shaker had a different force amplitude. In the high force 
amplitude test, a slow frequency sweep (where the force 
gauge recorded a constant voltage and hence force 
amplitude) was applied from 100 Hz to about 225 Hz and 
the response of the system was observed using the 
oscilloscope. The first resonance was monitored at around 
123 Hz, with large vibrational amplitudes in both systems. 
In addition, the first resonance peak was difficult to 
measure because of the light damping in the cantilever 
beam. When the frequency was increased beyond this, the 
tuned frequency was observed at about 183 Hz. In this 
frequency region the vibration of the support frame was a 
minima. However, a second resonance occurred at about 
213 Hz, where only the vibration of the absorber mass 
was large. This was followed by a sudden decrease in the 
motion of the mass of absorber; a jump-down in the 
response. The frequency was then slowly swept down 
from this high frequency back to the low frequency. A 
sudden increase in the amplitude was observed at a 
frequency of about 199 Hz, again only for the mass of the 
absorber (a jump-up). At 123 Hz, the resonance response, 
for which there was large motion of both the support 
structure and the mass of absorber, was observable. In the 
low force amplitude test, the response behaviour was 
observed that is approximately similar to the  a linear 
system. The first resonance, tuned frequency and second 
resonance were found to occur at around 125 Hz, 160 Hz 

and 172 Hz respectively. The jump-up and jump-down 
frequencies did not occur. 
 
For the measured data presented, the shaker was driven at 
discrete frequencies for the system with the thin plate, 
corresponding to the cases described above. The 
excitation frequency was increased from 100 Hz to 225 
Hz, in 1 Hz increments, and then decreased to 100 Hz 
with the same frequency decrements. The amplitude of the 
excitation force was maintained at a constant level for all 
excitation frequencies, by manually adjusting the power 
amplifier so that the output voltage of the force gauge was 
127 mV and 12.7 mV respectively. This corresponded to 
an equivalent force of 1.12 N and 0.11 N respectively.  At 
each frequency, once the system was at steady-state, five 
seconds of acceleration time histories were captured using 
a DataPhysics frequency analyser connected to a PC. 
Subsequently, the acceleration of the support frame and 
beam structure and the absorber were measured, and then 
this data was processed to give the displacement. The data 
is presented in terms of the absolute displacement sx  of 
the support frame and beam structure and the absolute 
displacement x  of absorber. The Fourier series 
coefficients were extracted from these time histories and 
the amplitude of the first harmonic of each data set is 
plotted at the corresponding excitation frequency. This 
can be seen in Figures 9(a)-(b) for the system for which 
the forces have low and high amplitudes respectively. At 
low force amplitude, the data points in each graph are 
dashed-dotted line. At high force amplitude, the data 
points in each graph are denoted by ' '  for increasing 
frequency and ' '  for decreasing frequency respectively. 
 
The response of the support frame and beam structure sX   
is plotted in Figure 9(a). It can be seen that the first 
resonance frequency and tuned frequency occur at about 
125 Hz, 160 Hz and 123 Hz, 183 Hz for the low and high 
force amplitude cases, respectively. The nonlinear system 
attached to the cantilever beam structure has a great effect 
on its response. In addition, the jump-down frequency 
occurs at approximately 213 Hz and the corresponding 
jump-up frequency at about 199 Hz for the high force 
amplitude. However, the jump-up and jump-down 
frequencies did not occur for the low force amplitude. In 
Figure 9(b), which shows the response of the absorber X , 
in addition to the peak associated with the first resonance 
frequency of the support frame and beam structure, a 
jump-down and a jump-up frequency can also be observed 
for the high force amplitude.  
 
4.2.1 Parameter estimation and model validation 

The cantilever beam was made of aluminium with a 
total length 0.09 mL  , cross-sectional area

0 04 m 0 004 mA . .  , density 3=2700 kg/m , and 
Young’s modulus 270 GN/mE  . In addition, the 



 

circular plate was made of brass with thickness 
30.2 10  m , area  2 20 026  mA . , density 

3=8500 kg/m , and Young’s modulus 2110 GN/mE . The 
parameters for the systems tested were required in order 
to compare the experimental results with the model 
predictions. These parameters ( sm , sc , sk , m , c , 1k , 3k ) 
were measured independently and were estimated as 
follows.  

 
The Frequency Response Function (FRF) of the support 
frame attached to the cantilever beam without the 
absorber was measured using pseudo random force 
measurements. The system parameters (mass sm , damping 

sc  and stiffness sk ) were estimated by fitting a 
theoretical single degree of freedom FRF to the 
experimental FRF. In addition, the mass of the absorber 
m  was measured directly. The viscous damping 
coefficient c  of the nonlinear attachment was estimated 
on it separately through the half power points method at 
low amplitude [13]. Moreover, the stiffnesses 1k  and 3k
of the nonlinear attachment were estimated using the 
measurements of the static displacement for applied static 
loads. Above these parameters are listed in Table 1. The 
equivalent system parameters for the equation of motion 
written in the non-dimensional form of Equations (2a,b) 
are listed in Table 2. It is noted that the system was 
designed such that by simply adjusting the thickness of 
the plate, in the vibration absorber, the nonlinear stiffness 
and natural frequency of the absorber could be varied. 
 
The frequency bandwidth was determined such that 

0sX X in that frequency range, where 0X  is the 
corresponding static extension of the linear spring 
represented by the cantilever beam for the same 
magnitude of the static load. The response 0sX X  is the 
thin solid horizontal line shown in Figures 9-10(a). 
Examining Figure 9-10(a), the high force amplitude 
applied for nonlinear absorber has a much wider vibration 
reduction bandwidth. The numerical parameters for the 
system are given in Table 2. The frequency response 
curves described by Equations (4a,b) are shown in Figure 
10. In Table 3, for the approximate HBM solution, the 
bandwidth for vibration reduction is increased by about 
311% and 188% for the increasing and decreasing 
frequency cases, respectively. For the measurement, it is 
increased by about 280% and 240% for the increasing and 
decreasing frequency cases, respectively. 
 
5. CONCLUSIONS 

This paper has investigated the influence of the 
NDVA parameters on the vibration reduction. The 
nonlinearity resulted in a much wider effective bandwidth 

compared to that for a linear absorber with similar mass 
and damping. It was found that the frequency response 
curve of the NDVA has the effect of moving the second 
resonant peak to a higher frequency away from the tuned 
frequency, so that the device is robust to mistuning. 
Experimental results have been presented to compare with 
the model derived. 
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sm (kg) sc  (N．s/m) sk (N/m) F (N) 

Low force 
amplitude 

3126 10
 

1.26  48.93 10
 

0.11 

High force 
amplitude 

1.12  

 
 m (kg) c  

(N．s/m) 1k (N/m) 3k ( 3N /m ) 

Low force 
amplitude 

36.44 10
 

0.15  35.69 10
 

106.90 10  
High force 
amplitude 
Table 1 The estimated system parameters from the 
experimental tests. 
 

   
0    

s    

Low force 
amplitude 

25.11 10
 

1.17  52.29 10  35.95 10
 

21.18 10
 High force 

amplitude 
32.37 10  

Table 2 Equivalent non-dimensional system parameters 
for the model predictions. 
 

HBM solution Low force 
amplitude 

High force 
amplitude 

Bandwidth for  
increasing frequency 

9 37 

Bandwidth improvement (%)  311 
Bandwidth for  

decreasing frequency   
9 28 

Bandwidth improvement (%)  188 
 

Measurements Low force 
amplitude 

High force 
amplitude 

Bandwidth for  
increasing frequency 

10 38 

Bandwidth improvement (%)  280 
Bandwidth for  

decreasing frequency   
10 34 

Bandwidth improvement (%)  240 
Table 3 The bandwidth frequency of NDVA on the 
primary system frequency response curves. 
 
 
 

 
Figure 1 A nonlinear dynamic vibration absorber (NDVA) 
attached to a single degree-of-freedom main system. 

 

 
Figure 2 Plots showing the effect of the nonlinear 
absorber stiffness on the primary system frequency 
response curves sY  as a function of  . (The ‘tuned’ 
frequency 0 1 1s    , mass ratio 0.02   and 
damping 0.001s  , 0.002  ). The response for the 
system with the linear absorber is given by the dashed-
dotted line, the solid line is the stable solution and the 
dashed line gives the unstable solution. Direct numerical 
solutions are shown by the symbol ( ' ' ). (a) -510   low 
absorber stiffness and (b) -410   high absorber stiffness.  
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Figure 3 Plots showing the effect of the damping in the 
nonlinear absorber on the primary system frequency 
response curves sY  as a function of  . (The ‘tuned’ 
frequency 0 1 1s    , nonlinear absorber stiffness 

410  , mass ratio 0.02   and damping 0.001s  ). 
The response for the system with the linear absorber is 
given by the dashed-dotted line, the solid line is the stable 
solution and the dashed line gives the unstable solution. 
Direct numerical solutions are shown by the symbol ( ' ' ). 
(a) 32 10    low absorber damping and (b) 

38 10    high absorber damping.  
 

 
Figure 4 Schematic representation of a nonlinear vibration 
absorber using a thin circular plate. 
 

 
Figure 5 Photograph of the actual experimental system 
consisting of a nonlinear absorber attached to a cantilever 
beam excited by an electro-dynamic shaker. 

 

 
Figure 6 Photograph showing the details of the nonlinear 
system. 

 
Figure 7 Schematic representation of a nonlinear absorber 
attached to a cantilever beam system excited by a shaker. 
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Figure 8 Schematic diagram of the instrumentation setup 
used for the laboratory tests under harmonic excitation. 
 

 

 
Figure 9 Comparison of the measured frequency response 
curves for the system in Table 2. Plate thickness 0.2 (mm): 
(a) Absolute displacement of the beam structure, (b) 
Absolute displacement of the absorber. Low force 
amplitude for 0.11 NF   (dashed-dotted line). High force 
amplitude for 1.12 NF  : increasing frequency ( ' ' ), 
decreasing frequency ( ' ' ). 

 

 
Figure 10 Comparison of the predicted frequency 
response curves (HBM solution) for the system in Table 2. 
Plate thickness 0.2 (mm): (a) Absolute displacement of 
the beam structure, (b) Absolute displacement of the 
absorber. Low force amplitude for 0.11 NF   (dashed-
dotted line). High force amplitude for 1.12 NF  : stable 
solution (solid line), unstable solution (dashed line). 
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