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A b s t r a c t  

Control based on on-line optimization, popularly 
known as model predictive control (MPC), has long 
been recognized as the winning alternative for con- 
strained sys t ems .  The main limitation of MPC is, 
however, its on-line computat ional  complexity. For 
discrete-time linear time-invariant systems with con- 
straints on inputs and states, we develop an algorithm 
to determine explicitly the state feedback control law 
associated with MPC, and show that  it is piecewise lin- 
ear and continuous. The controller inherits all the sta- 
bility and performance properties of MPC, but  the on- 
line computation is reduced to a simple linear function 
evaluation instead of the expensive quadratic program. 
The new technique is expected to enlarge the scope 
of applicability of MPC to small-size/fast-sampling ap- 
plications which cannot be covered satisfactorily with 
anti-windup schemes. 

1 I n t r o d u c t i o n  

As we extend the class of system descriptions beyond 
the class of linear systems, linear systems with con- 
straints are probably the most important  class in prac- 
tice. The most popular approaches for designing con- 
trollers for linear systems with constraints fall into two 
categories: anti-windup and model predictive control. 
Anti-windup schemes assume that  a well functioning 
linear controller is available for small excursions from 
the nominal operating point. This controller is aug- 
mented by the anti-windup scheme in a somewhat ad 
hoc fashion to take care of situations when constraints 
are met. Kothare et al. [13] reviewed numerous appar- 
ently different anti-windup schemes and showed that  
they differ only in their choice of two static matrix 
parameters.  Anti-windup schemes are widely used in 
practice because in most SISO situations they are sim- 
ple to design and work adequately. 
Model Predictive Control (MPC) has become the ac- 
cepted standard for complex constrained multivariable 
control problems in the process industries. Here at 
each sampling time, start ing at the current state, an 
open-loop optimal control problem is solved over a fi- 
nite horizon. At the next t ime step the computat ion is 
repeated starting from the new state and over a shifted 
horizon, leading to a moving horizon policy. The solu- 
tion relies on a linear dynamic model, respects all input 

and output  constraints, and optimizes a quadratic per- 
formance index. The big drawback of MPC is the rel- 
atively formidable on-line computational effort which 
limits its applicability to relatively slow and/or  small 
problems. 
In this paper we show how to move all the compu- 
tations necessary for the implementation of MPC off- 
line while preserving all its other characteristics. This 
should largely increase MPC's  range of applicability to 
problems where anti-windup schemes and other ad hoc 
techniques dominated up to now. 
The paper is organized as follows. The basics of MPC 
are reviewed first to derive the quadratic program 
which needs to be solved to determine the optimal con- 
trol action. We note that  the quadratic program de- 
pends on the current state which appears linearly in the 
constraints, i.e., it is a multi-parametric quadratic pro- 
gram. Next we study the multi-parametric quadratic 
programming problem. We show that  the optimal so- 
lution is a piecewise affine function of the state (con- 
firming previous investigations on the form of MPC 
laws [16, 17, 7]), analyze its properties, and develop 
an efficient algorithm to solve it. The paper concludes 
with an example which illustrates the different features 
of the method. 
The  results in this paper can be extended easily to 1- 
norm and o¢-norm objective functions instead of the 
2-norm employed in this paper. The resulting multi- 
parametric linear program can be solved in a similar 
manner as suggested here [6], or as in [10]. For MPC of 
hybrid systems, an extension involving multiparametric 
mixed-integer linear programming, is also possible [3]. 

2 M o d e l  P r e d i c t i v e  C o n t r o l  

Consider the problem of regulating to the origin the 
discrete-time linear time invariant system 

x(t+l) = Ax(t)+Bu(t) 
y(t) = Cx(t)  (1) 

while fulfilling the constraints 

Ymin ~ y(t) < Ymax, Umin ~ u(t) < Umax (2) 

at all time instants t > 0. In (1)-(2), x(t) e Nn, 
u(t) 6 Nm, and y(t) 6 NP are the state, input, and 
output  vector respectively, Ymin _( Ymax (Umin < Umax) 
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are bounds on outputs  (inputs), and the pair (A, B) is 
stabilizable. 
Model Predictive Control (MPC) solves such a con- 
strained regulation problem in the following way. As- 
sume that  a full measurement of the state x(t) is avail- 
able at the current t ime t. Then,  the optimization 
problem . 

rain 
U={ut,... ,ul..t-Nu--1} 

J(U,  X.(t) ) = Xlt+N~ltPXt+Nylt 

Ny-- 1 / 
+ ~ z't+kLtQx~+klt + u't+kRut+k 

k=0 

subj. to Ymin _< Yt+klt -< Y . . . .  k = 1,. . .  , Nc 
Umi. ~ Ut+k ~ U . . . .  k = 0, 1, . . .  , Nc 
ztlt = x(t) 
X t + k + l l t  = Axt+klt -t- But+k, k > 0 
ut+k = KZt+klt, Nu < k < N~ (3) 

is solved at each time t, where xt+ktt denotes the pre- 
dicted state vector at t ime t + k, obtained by applying 
the input sequence u t , . . .  , Ut+k-1 to model (1) starting 
from the state x(t).  In (3), we assume that  Q = Q' k 0, 
R = R' ~ 0, P k 0, (Q~, A) detectable (for instance 
Q = C'C with (C, A) detectable),  N u > N~,, and K is 
some feedback gain. 
One possibility is to choose K = 0 [14], and P as the 
solution of the Lyapunov equation P = A ' P A + Q .  This 
is only meaningful when the system is open-loop stable, 
as J(U, x(t)) measures the settling cost of the system 
from the present time t to infinity under the assumption 
that  the control is turned off after Nu steps. 
Alternatively, one can set K = KLQand P as the solu- 
tion of the unconstrained infinite horizon LQR problem 
with weights Q, R. This choice of K implies tha t  after 
N ,  time steps the control is switched to the uncon- 
strained LQR. 
Let U* (t) = { u [ , . . .  , U~+N _1} be the optimal solution 
of (3). Then at t ime t 

= (4) 

is applied as input to system (1). 
Most approaches for proving stability follow in spirit 
the arguments of Keerthi  and Gilbert [12] who establish 
the fact that  under some conditions the value function 
V(t)  = J(U*(t) , t )  attained at the minimizer U*(t) is 
a Lyapunov function of the system. Below we recall a 
simple stability result based on such a Lyapunov argu- 
ment, whose proof is reported in[5]. 

Th e or e m  1 Let N u = co, K = 0 or K = KLQ, and 
N~ < oc be computed according to the theory of the 
maximal output admissible set [11, 2]. Then the MPC 
law (3)-(4) is asymptotically stabilizing for system (I) 
while fulfilling the constraints (2) from all initial states 
x(O) such that (3) is feasible at t = O. 

By substituting xt+~lt Akx(t)  k-1 = + ~ j=o  AJBut+k- l -J  
in (3), the optimization problem (3) can be rewritten 
in the form 

V(z(t)) = ½x'(t)Yx(t)+ nun 21-U'HU + x'(t)FU 

subj. to GU <_ W + Ex(t) 
(5) 

where the column vector U a ' ~ ~ ,  = M , . . .  ,U,+go-1]  e 
a H ~ s = mNu,  is the optimization vector, H = ~ 0, 

and H,  F,  Y, G, W, E are easily obtained from Q, R, 
and (3) (as only the optimizer U is needed, the term 
involving Y is usually removed from (5)). 
The optimization problem (5) is a quadratic program 
(QP). Because the problem depends on the current 
state x(t),  implementation of MPC requires the on- 
line solution of a QP at each time step. Although ef- 
ficient QP solvers based on active-set methods or in- 
terior point methods are available, computing the in- 
put u(t) demands significant on-line computation ef- 
fort. For this reason, the application of MPC has been 
limited to "slow" and/or  "small" processes. 
In this paper we propose a new approach to implement 
MPC, where all the computation effort is moved off- 
line. The idea is based on the observation that  in (5), 
the state x(t) E ~n can be considered a vector of pa- 
rameters. In other words, the state feedback control 
law is defined implicitly as the solution of the opti- 
mization problem (5) as a function of the parameter 
x(t). Our goal is to make this dependence explicit. 
The operations research community has addressed 
problems depending on a vector of parameters as 
multi-parametric pro9rams. According to this termi- 
nology, (5) is a multi-parametric Quadratic Program 
(mp-QP). Most of the li terature deals with parametric 
problems, but  some authors have addressed the multi- 
parametric case [9, 10, 8/.To the authors '  knowledge, 
no algorithm for solving mp-QP problems has been 
published. Once the multi-parametric problem (5) has 
been solved off line, i.e. the solution U~ = f (x ( t ) )  of (5) 
has been found, the model predictive controller (3) 
is available explicitly, as the optimal input u(t) con- 
sists simply of the first m components of U~, u(t) = 
[I 0 . . .  O]f(x(t)). In Section 3, we will show that  
the solution U* = f ( x )  of the mp-QP problem is con- 
tinuous and piecewise affine (the same properties are 
inherited by the controller) and describe an algorithm 
to solve mp-QP problems. 

2.1 Extens ions  
Extensions of the basic MPC algorithm which can be 
expressed as an mp-QP (resulting in a piecewise affine 
controller) include: reference tracking, where the ex- 
plicit MPC law is 5u(t) = F(x( t ) ,  u(t - 1), r(t)), with 
5u(t) = u(t) - u(t - 1) and r(t) represents the de- 
sired reference; rejection of measured disturbances v(t), 
where the resulting law is a piecewise affine function 
u(t) = F(x( t ) ,  v(t)); soft constraints on outputs, where 
a slack variable e is introduced into the constraints to 
relax the "<" condition and added to the objective 
to penalize constraint violations (e plays the role of 
an independent optimization variable in the mp-QP. 
The form of the solution u(t) = F(x( t ) )  is not af- 
fected by this modification); variable constraints, where 
the bounds Ymin, Ymax, ~Umin, ~Umax, Umin, Umax are 
treated as parameters,  and may change depending on 
the operating conditions (in the case of a stuck actuator 
the constraints become 5umin = JUmax = 0). 

2.2 P iecewise  Linear Solut ion of  the Con- 
strained Linear Quadratic Regulat ion  Problem 
In their pioneering work [15], Sznaier and Damborg 
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showed that  finite horizon optimization (3), (4), with P 
satisfying the algebraic Riccati equation also provides 
the solution to the infinite-horizon linear quadratic reg- 
ulation problem with constraints (C-LQR). This idea 
has been reconsidered later by other authors. The 
equivalence holds for a certain set of initial conditions, 
which depends on the length of the finite horizon. The 
multiparametric programming approach proposed here 
has been considered in [5] to provide the explicit solu- 
tion to infinite horizon C-LQR problems. 

3 Multi-Parametric Quadratic Programming 
In this section we investigate multi-parametric 
quadratic programs (mp-QP) of the form (5). Before 
proceeding further, it is useful to define 

z = U + H  F t (6) 

z E ~ ,  and to transform (5) by completing squares to 
obtain the equivalent problem 

Vz( ) = min ½ z~ H z 
Z 

subj. to G z < W + S x ( t ) ,  
(7) 

where S & E + G H - 1 F  ', and V~(x) = V(x )  - ½ x ' ( Y -  
F H - 1 F  ~)x. In the transformed problem the parameter  
vector x appears only on the rhs of the constraints. 
The solution of mp-QP problems can be approached 
by employing the principles of parametric  nonlinear 
programming, and in particular the first-order Karush- 
Kuhn-Tucker (KKT) optimality conditions [1]. In this 
paper, we adopt a more direct approach than [9], by 
exploiting the linearity of the constraints and the fact 
that  the function to be minimized is quadratic. In order 
to use the KKT conditions (8), we assume the following 
condition to hold on the constraints in (7). 

A s s u m p t i o n  1 For each x E X ,  and]or each admissi- 
ble combination of active constraints in (7) at the min- 
imizer, the corresponding rows of matrix G are linearly 
independent. 

T h e o r e m  2 Let H ~- 0 and G satisfy Assumption 1. 
Then for each feasible combination of active con- 
straints, the optimal z and Lagrange multipliers ~ are 
uniquely defined affine ]unctions of x. 

Proof: The first-order K K T  conditions for the mp- 
QP are given by 

H z  + G'~ = O, )~ e R q (Sa) 

A i ( G i z -  W i - S ix)  = O, i = 1 , . . .  ,q (8b) 

> 0 (8c) 

where the superscript i denotes the i-th row. We 
solve (8a) for z, 

z = - H - 1 G ' A  (9) 

and substitute the result into (8b) to obtain the com- 
plementary slackness condition )~( - G  H -1 G t ,~ - W 

- Sx)  = 0. Let ~ and ~ denote the Lagrange multi- 
pliers corresponding to inactive and active constraints, 

respectively. For inactive constraints, ~ = 0. For active 
constraints, - G H - 1 G ' ~  - ~V - S x  = O, and therefore 

---- - ( G H - 1 G ' ) - I  (l~z + Sx) (10) 

where G, lId,,~ correspond to the set of active con- 
straints, and ( G H - 1 G ' )  -1 exists because of Assump- 
tion 1. Thus A is an affine function of x 1. We can 
substitute ~ from (10) into (9) to obtain 

z = H - 1 G ' ( G H - X G ' )  -1 (lid + Sx) (11) 

and note that  z is also an affine function of x. [] 
A similar result was obtained by Zafiriou [17, 7]. 
However, his result does not make the piecewise lin- 
ear dependence of u on x explicit, as the domains over 
which the different linear laws are defined are not char- 
acterized. 
Theorem 2 characterizes the solution only locally in the 
neighborhood of a specific x. This characterization re- 
mains valid as long as the set of active constraints does 
not change as we change x. Choose an arbitrary vector 
of parameter  values Xo E X and let (z0, A0) be the cor- 
responding values satisfying the K K T  triple (8), which 
are obtained by solving a QP for x = x0. Assume that 
G satisfies Assumption 1. Then, in a neighborhood of 
x0, Theorem 2 allows to compute the linear function 
[z(x), A(x)], by simply looking at the constraints in (7) 
which are active at the minimizer z0, and then building 
matrices G, ~V, and S accordingly. The set of param- 
eters x where this combination of active constraints 
remains optimal is defined as the critical region CRo. 
This region can be characterized easily. The variable z 
from (9) must satisfy the constraints in (7) 

G H - t G ' ( G H - 1 G ' ) - I ( ~ V  + Sx)  < W + Sx( t )  (12) 

and by (8c) the Lagrange multipliers in (10) must re- 
main nonnegative 

- ( G H - 1 G ' ) - I ( w  + Sx) > 0 (13) 

as we vary x. After removing the redundant inequali- 
ties from (12) and (13) we obtain a compact representa- 
tion of CRo. Obviously, CRo is a polyhedron in the x- 
space, and represents the largest set of x E X such that  
the combination of active constraints at the minimizer 
remains unchanged. Once the critical region CRo has 
been defined, the rest of the space C R  res t  - -  X - C . R 0  

has to be explored and new critical regions generated. 
A possible approach for partitioning the rest of the 
space was proposed in [8], and is proven by the fol- 
lowing theorem [5] 

T h e o r e m  3 Let Y C R n a polyhedron, and C Ro 
{x E Y : Ax  _< b} a polyhedral subset of Y ,  CRo ¢ 0. 
Also let 

C R y = {  x e Y : Aix > bi } 
AJx _~ bJ,Vj < i i = 1 .. . .  ,m 

where m = dim(b), and let CR rest a m = Ui=tCR i. Then 

1As GH-1GI~ = IYV + Sx, the linear relation between A and 
x still holds even if Assumption 1 is not satisfied. 
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(i) C.R rest L.J CRo = Y 

(ii) CRo n CR~ = ~, CR~ n CR~ = 0, Vi # j 

i.e. { C R o , C R 1 , . . .  , C R m }  is a partition of Y .  

The argument (10)-(13) is repeated in each new region 
CRi,  until the whole x-space has been covered. Then, 
those polyhedral regions C R  ~ are determined where the 
function z(x)  is the same. If their union is a convex set, 
it is computed to permit  a more compact description 
of the solution [4]. 

3.1 Continuity and Convexity  Properties  
Continuity of the value function V~ (x) and the solution 
z(x),  can be shown as simple corollaries of the linearity 
result of Theorem 2. This fact, together with the con- 
vexity of the set of feasible parameters  X /  C X (i.e. 
the set of parameters x E X such that  a feasible solu- 
tion z(x)  exists to the optimization problem (7)), and 
of the value function V~ (x), V(x),  is proved in the next 
results. The proof is given in [5]. 

Theorem 4 Consider the multi-parametric quadratic 
program (7) and let H ~- O, X convex. Then the set 
of feasible parameters X / C_ X is convex, the optimizer 
z(x)  : X I ~-~ R s is continuous and piecewise affine, and 
the optimal solution Vz(x) : X /  ~-~ ~ is continuous, 
convex and piecewise quadratic. 

L e m m a  1 L e t J ( U , x ) =  ½ U ' H U + x ' F U + ½ x ' Y x ,  and 
let [~ ~ ]  > 0 .  Then V (x )  & m i n v J ( x , U )  subject to 
AU < 1J + Cx  is a convex function of x. 

Corollary 1 The value function V(x )  defined by the 
optimization problem (3), (5) is continuous and piece- 
wise quadratic. 

A simple consequence of Corollary 1 is that  the Lya- 
punov function used to prove Theorem 1 is continuous, 
convex, and piecewise quadratic. 

Corollary 2 The control law u(t) = f ( x ( t ) ) ,  f : Rn 
Era, defined by the optimization problem (3) and (4) is 
continuous and piecewise affine. 

3.2 C o m p l e x i t y  o f  the Multiparametric Q P  Al- 
g o r i t h m  
We addressed a solver for mp-QP which partitions the 
set of states X in Nr convex polyhedral regions. This 
number N~ depends on the dimension n of the state, 
the product  s = mN~ of the number N~, of control 
moves and the dimension m of the input vector, and 
the number of constraints q in the optimization prob- 
lem (7). Let qs ~ r ankS ,  qs _< q. For n > q, the 
number of polyhedral regions Nr remains constant. To 
see this, consider the linear transformation .~ = Sx,  

E ~q. Clearly Y~ and x define the same set of active 
constraints, and therefore the number of partitions in 
the 5~- and x-space are the same. Therefore, the num- 
ber of partitions N~ of the x-space defining the optimal 
controller is insensitive to the dimension n of the state 
x for all n > q,, i.e. to the number of parameters in- 
volved in the mp-QP. 

I i  $ I I i  i$ ~ 25 1 I1 1 

F i g u r e  1: Closed-loop MPC and partition of the state- 
space 

The number q of constraints increases with Nc and, in 
case of input constraints, with N~. For instance, q = 
2s = 2mNu for control problems with input constraints 
only. From the analysis above, the larger No, Nu, m, p, 
the larger q, and therefore Nr. Note that  many control 
problems involve input constraints only, and typically 
horizons Nt, = 2 or 3 and blocking of control moves are 
adopted, which reduces the number of constraints q. 

4 An Example  
Consider the second order system 

2 
y(t) s 2 + 3s + 2 u[t)'" 

sample the dynamics with T = 0.1 s, and obtain the 
state-space representation 

: I°732° 00.17221.41420.99091x,   0.o064 
(14) 

The task is to regulate the system to the origin while 
fulfilling the input constraint - 2  < u(t) < 2. To this 
aim, we design an MPC controller based on the op- 
timization problem (3), with Q = [~ z°], R = 0.01, 
N u  -- N y  -~ Nc - -  2, Ymin = - ~ ,  Ymax --  -t-cx3. P 
solves the Lyapunov equation P = A ' P A  + Q. The 
MPC controller is globally asymptotically stabilizing. 
In fact, it is easy to show that  the value function is a 
Lyapunov function of the system. The closed loop re- 
sponse from the initial condition x(0) = [1 1]' is shown 
in Fig. 1. 
The mp-QP problem associated with the MPC law has 
the form (5) with 

H 

G 

[ 0.0196 0.0063 ] [ 0.1259 0.0679 ] 
---- 0.0063 0.0199 , F : 0.0922 -0.0924 0] [] 

- 1  0 2 2 0 
= 0 1 , W =  22 , E =  0 

0 - 1  0 0 

The solution was computed by our mp-QP solver in 
3.46 s on a Pentium II-300 running Matlab 5.3, and the 
corresponding polyhedral parti t ion of the state-space is 
depicted in Fig. 1. The MPC law is 
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-~0 . . . . . . . . .  1 ii  11 2o 25 341 ~15 ---" 

F i g u r e  2: Additional constraint xt+~lt > -0.5. Closed- 
loop M P C  and par t i t ion  of the  s ta te-space 

[ - - 5 . 9 2 2 0  - - 6 , 8 8 8 3  ] X 

2.0000 

2,0000 

-- 2.9000 

[ - - 6 . 4 1 5 9  - -4.6953 ] X "q- 0 . 6 4 2 3  

-- 2.0000 

- - 6 , 4 1 5 9  - - 4 . 6 9 5 3 ]  ~ - -  0 . 6 4 2 3  

I 
- - 5 . 9 2 2 0  - - 6 . 8 8 8 3  ] [ 2 . 0 0 0 0  ] 

i f  5 , 9 2 2 0  6 . 8 8 8 5  ~ 2 . 0 0 0 0  
- - 1 . 5 3 7 9  6 . 8 2 9 1  ~ - -  2 . 0 0 0 0  

1 . 5 3 7 9  - - 6 . 8 2 9 1  2 . 0 0 0 0  
Region #I) 

if 0 , 1 0 4 4  0 . 1 2 1 5  ~ <~ - - 0 , 0 3 5 3  
0.1259 0 . 0 9 2 2  ~ - - 0 . 0 2 6 7  

(Region #2, #4) 

if 0.0679 -0.9924 [-0.05,9 ] [9.~259 0.0922 ] ~ -< -0.°52, 

(Region @3) 

- - 0 . 1 2 5 9  i f  [ - 0 , 0 6 7 9  - 0 . 0 9 2 2  - - 0 , 0 5 1 9  o oo- [ - 6 o o .  ] L 
(Region #5) 

if -0.o275 o.122o z < -0.0367 
6 . 4 1 5 0  4 , 6 Q 5 3  - -  2 . 6 4 2 3  

(Region #6) 

if  - -0 . I044 - - 0 . 1 2 1 5  ~ ~ [ - - 0 . 0 3 5 3  
- - 0 . 1 2 5 9 - - 0 . 0 9 2 2  - -  [ - - 0 . 0 2 6 7  

(Region #7, #8 

if  0 . 0 2 7 5  - - 0 . 1 2 2 0  Z ~ - - 0 . 0 3 5 7  
- - 6 . 4 1 5 9  - - 4 . 6 9 5 3  - -  2 . 6 4 2 3  

(Region #9) 

Region # 1 corresponds to the unconstrained linear con- 
troller, regions #2 ,  #3 ,  # 4  and #5,  #7 ,  # 8  correspond 
to the saturated controller, and regions # 6  and # 9  are 
transition regions between the unconstrained and the 
saturated controller. Note that  the mp-QP solver pro- 
vides three different regions #2 ,  #3 ,  #4 ,  although in 
all of them u = u~ -- 2. The reason for this is that  
the second component of the optimal solution, ut*+t , is 
different, in that  u~+ 1 = [-3.4155 4.6452]x(t) - 0.6341 
in region #2,  u~+ t = 2 in region #3 ,  and ut*+l = - 2  
in region #4.  Moreover, note tha t  regions # 2  and # 4  
are joined, as their union is a convex set, but  the same 
cannot be done with region #3,  as their union would 
not be a convex set, and therefore cannot be expressed 
as one set of linear inequalities. 
The same example is repeated with the additional con- 

--0.5 ] straint on the state Xt+klt >_ Xmin, Xmin = [--0.5 
k = 1. The closed-loop behavior from the initial con- 
dition x(0) = [1 1]' is depicted in Fig. 2. The MPC 
controller was computed in 10.33 s. The polyhedral 
parti t ion of the state-space corresponding to the mod- 
ified MPC controller is depicted in Fig. 2. The par- 
tition consists now of 11 regions. Note that  there are 
feasible states smaller than Xmin, and vice versa, in- 
feasible states x > Xmin. This is not surprising. For 
instance, the initial state x(0) = [-0.6,0] '  is feasible 
for the MPC controller (which checks state constraints 

at time t + k, k = 1), because there exists a feasible 
input such that  x(1) is within the limits. On the con- 
trary, for x(0) = [-0.47, -0.47] no feasible input is able 
to produce a feasible x(1). 
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