
126 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

The Exploration/Exploitation Tradeoff in Dynamic
Cellular Genetic Algorithms

Enrique Alba and Bernabé Dorronsoro

Abstract—This paper studies static and dynamic decentralized
versions of the search model known as cellular genetic algorithm
(cGA), in which individuals are located in a specific topology and
interact only with their neighbors. Making changes in the shape
of such topology or in the neighborhood may give birth to a high
number of algorithmic variants. We perform these changes in
a methodological way by tuning the concept of ratio. Since the
relationship (ratio) between the topology and the neighborhood
shape defines the search selection pressure, we propose to analyze
in depth the influence of this ratio on the exploration/exploitation
tradeoff. As we will see, it is difficult to decide which ratio is best
suited for a given problem. Therefore, we introduce a prepro-
grammed change of this ratio during the evolution as a possible
additional improvement that removes the need of specifying a
single ratio. A later refinement will lead us to the first adaptive dy-
namic kind of cellular models to our knowledge. We conclude that
these dynamic cGAs have the most desirable behavior among all
the evaluated ones in terms of efficiency and accuracy; we validate
our results on a set of seven different problems of considerable
complexity in order to better sustain our conclusions.

Index Terms—Cellular genetic algorithm (cGA), evolutionary al-
gorithm (EA), dynamic adaptation, neighborhood-to-population
ratio.

I. INTRODUCTION

THE APPLICATION of evolutionary algorithms (EAs)

to optimization problems has been very intense during

the last decade [1]. It is possible to find this kind of algo-

rithm applied for solving complex problems like constrained

optimization tasks, problems with a noisy objective function,

or problems having high epistasis and multimodality. These

algorithms work over a set (population) of potential solutions

(individuals) by applying some stochastic operators on them in

order to search for the best solutions. Most EAs use a single

population (panmixia) of individuals and apply operators on

them as a whole [see Fig. 1(a)]. In contrast, there exists also

some tradition in using structured EAs (where the population is

decentralized somehow), especially in relation to their parallel

implementation.

Among the many types of structured EAs, distributed and

cellular algorithms are two popular optimization tools [2], [3]

Manuscript received June 16, 2003; revised October 14, 2004. This work was
supported in part by the Ministry of Science and Technology (MCYT) and in
part by the Regional Development European Fund (FEDER) under Contract
TIC2002-04498-C05-02.

E. Alba is with the Department of Computer Science, University of Málaga,
Málaga 29071, Spain (e-mail: eat@lcc.uma.es).

B. Dorronsoro is with the Computing Central Services, University of Málaga,
Málaga 29071, Spain (e-mail: dorronsoro@uma.es).

Digital Object Identifier 10.1109/TEVC.2005.843751

Fig. 1. (a) Panmictic EA has all its individual black points in the same
population. Structuring the population usually leads to distinguish between
(b) distributed, and (c) cEAs.

(see Fig. 1). In many cases [4], these algorithms (those using de-

centralized populations) provide a better sampling of the search

space and improve the numerical behavior of an equivalent al-

gorithm in panmixia.

On the one hand, in the case of distributed EAs (dEAs), the

population is partitioned in a set of islands in which isolated EAs

are executed. Sparse exchanges of individuals are performed

among these islands with the goal of introducing some diver-

sity into the subpopulations, thus preventing them from getting

stuck in local optima.

On the other hand, in a cellular EA (cEA) the concept of

(small) neighborhood is intensively used; this means that an

individual may only interact with its nearby neighbors in the

breeding loop [5]. The overlapped small neighborhoods of cEAs

help in exploring the search space because the induced slow dif-

fusion of solutions through the population provides a kind of

exploration (diversification), while exploitation (intensification)

takes place inside each neighborhood by genetic operations.

These cEAs were initially designed for working in massively

parallel machines, although the model itself has been adopted

recently also for monoprocessor machines, with no relation to

parallelism at all. This issue may be stated clearly from the

beginning, since many researchers still hold in their minds the

relationship between massively parallel EAs and cEAs, what

nowadays represents an incorrect link: cEAs are just a different

sort of EAs, like memetic algorithms, the cross generational

elitist selection heterogeneous recombination cataclysmic mu-

tation algorithm (CHC), or estimation of distribution algorithms

(EDAs) [6].

The importance of cEAs is growing for several reasons. First,

they are endowed of an internal spatial structure that allows fit-

ness and genotype diversity for a larger number of iterations [7]

than panmictic EAs. Also, some works [8], [9] have established

the advantages of using cEAs over other EA models for complex

optimization tasks, where high efficacy and reduced number of

steps are needed (e.g., training neural networks [10] and solving

1089-778X/$20.00 © 2005 IEEE

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 127

SAT problems [11], etc.). Finally, the similarity between cEAs

and cellular automata (formally, proven in [12] and [13]), their

potential applications, and their suitability for including local

search embedded algorithms make them worth of study.

In the literature, there are additional results (like [9] for large

TSP problem instances, or [8] and [14] for function optimiza-

tion) that suggest (but do not analyze) that the shape of the

grid actually influences the quality of the search. Some more

recent works [15]–[17] have studied quantitatively the perfor-

mance improvement got when using cEAs with a non perfectly

square grid. Specifically, in [17], a comparative study among

different grid shapes for several problems can be found. In all

these works, the use of narrow (non square) grids has led to very

efficient algorithms.

Our first objective in this paper is to check whether the results

in [17] (nonsquare grids are often more efficient than square

ones) still hold when using an extended set of complex prob-

lems. Our second objective is to analyze comparatively the be-

havior of cGAs using one static grid during the overall search

with other cGAs introducing an a priori change in the grid shape

(i.e., using two different grid shapes during the evolution). This

is made for the group of three problems presented in [17], but

we want to analyze this preprogrammed change on other prob-

lems. Therefore, we will focus on cGAs in this paper, although

the same methodology can be extended to other EAs.

The underlying contribution of this work is to get a deeper

knowledge of the high importance of the topology and neighbor-

hood relationship when using cGAs. By using the quantitative

notion of ratio, we will study static and preprogrammed algo-

rithms, as well as we will define a new adaptive algorithmic

model that will choose the most desirable degree of explo-

ration/exploitation by itself. Consequently, the designer will not

need to preset the value of the ratio when solving a problem.

This paper is organized as follows. In the next section, we

will discuss the cGA canonical model, and the concept of ratio.

Section III summarizes the state of the art on self-adaptation.

In Section IV, we present the different cEAs analyzed in this

paper, and a simple proposal for relocating the individuals when

the topology shape changes. Section V discusses and justifies

the selection of the problems used for our analysis, while in

Section VI, we explain the results of our experiments. Finally,

in Section VII, some conclusions are drawn and future research

lines are suggested.

II. CHARACTERIZING THE CELLULAR GA (cGA)

We begin this section by including a pseudocode description

of the canonical cGA search model and an explanation of the

algorithm. After that, we will characterize the diversification

capabilities of the cGA by a single parameter (the ratio).

The EA family we are using as a case study here is a cellular

genetic algorithm (cGA), which is described in Algorithm 1.

The most common population topology used in cEAs is a

toroidal grid where all the individuals live in; moreover, it can

be proved that using this topology does not restrict our study

[15]. Hence, we always use in this work a population structured

in a two-dimensional (2-D) toroidal grid, and the neighborhood

defined on it (line 5) contains five individuals: the considered

one plus the north, east, west, and south

strings (called NEWS, linear5, or Von Neumann). We study

algorithms using either binary tournament and fitness propor-

tional selection methods—Local Select (lines 5 and 7).

The considered individual itself is always selected for being

one of its two parents (line 6).

We use a two point crossover operator (DPX1) that yields

only one child [the one having the larger portion of the

best parent (line 8)], and a traditional binary mutation op-

erator—bit-flip (line 9). After applying these operators, the

algorithm calculates the fitness value of the new individual

(line 10).

Algorithm 1 Pseudocode of a simple cGA

1: proc Steps Up(cga) //Algorithm parameters in “cga”

2: for s 1 to MAX STEPS do

3: for x 1 to WIDTH do

4: for y 1 to HEIGHT do

5: n list Compute Neigh(cga, position(x, y));

6: parent1 Individual At(cga, position(x, y));

7: parent2 Local Select(n list);

8: DPX1(cga.Pc, n list[parent1], n list[parent2],

aux ind.chrom); // Recombination

9: Bit-Flip(cga.Pm,aux ind.chrom); // Mutation

10: aux ind.fit cga.Fit(Decode(aux ind.chrom));

11: Insert New Ind(position(x, y), aux ind,

[if better j always], cga, aux pop);

12: end for

13: end for

14: cga.pop aux pop;

15: Update Statistics(cga);

16: end for

17: end proc Steps Up.

In our monoprocessor implementation of this cGA, the suc-

cessive populations replace each other completely (line 14), so

the new individuals generated by local selection, crossover, and

mutation are placed in a temporal population (line 11).

This replacement step (line 11) could be implemented by

using the old population (e.g., replacing if the new string is

better than the old one) or not (always adding the new string

to the next population). The first issue (replacement by binary

tournament) is the preferred one [4] for this study.

The second alternative is called an “asynchronous” update

method in the literature, and lies in placing the offsprings

directly in the current population by following some rules

[18] instead of updating all the individuals simultaneously

(Algorithm 1). This issue is not explored here because of the

many implications and numerous asynchronous policies.

Computing basic statistics (line 15) is rarely found in the

pseudocodes of other authors. However, it is an essential step for

the work and monitoring of the algorithm. In fact, it is possible

to use some kind of statistical descriptors to guide an adaptive

search, as we will show in this work. Also, we need to compute

the list of neighbors for a given individual located at coordinates

(line 5). This operation is needed whenever it is contem-

plated a future change in the type of neighborhood (although we

do not change it here).

128 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 2. Growth curves of the best individual for two cGAs (using binary
tournament selection) with different neighborhood and population shapes, but
similar ratio values.

After explaining our basic algorithm, we now proceed to char-

acterize the population grid. We use the “radius” definition given

in [17], which is refined from the seminal one appeared in [15]

to account for nonsquare grids. The grid is considered to have

a radius equal to the dispersion of points in a circle centered

in (1). This definition always assigns different numeric

values to different grids.

Although it is called a “radius,” rad measures the dispersion of

patterns. Other possible measures for symmetrical neighbor-

hoods would allocate the same numeric value to different neigh-

borhoods (which is undesirable). Two examples are the radius

of a circle surrounding a rectangle containing the neighborhood

or an asymmetry coefficient

(1)

This definition does not only characterize the grid shape but

it also can provide a radius value for the neighborhood. As

proposed in [15], the grid-to-neighborhood relationship can be

quantified by the ratio between their radii (2). Algorithms with

similar ratio show a similar selection pressure when using the

same selection method, as stated in [16]. In Fig. 2, we plot such a

similar behavior for two algorithms with different neighborhood

and population radii, but having two very similar ratio values.

The algorithms plotted are those using a linear5 -L5- neighbor-

hood with a 32 32 population, and a compact21 -C21- neigh-

borhood with a population of 64 64 individuals

ratio (2)

When solving a given problem with a constant number of

individuals (, for making fair comparisons) the topology

radius will increase as the grid gets thinner [Fig. 3(b)]. Since

the neighborhood is kept constant in size and shape throughout

this paper [we always use NEWS, Fig. 3(a)], the ratio will be

smaller as the grid gets thinner.

Fig. 3. (a) Radius of neighborhood NEWS. (b) 5� 5 = 25 and 3� 8 � 25

grids; equal number of individuals with two different ratios.

Reducing the ratio means reducing the global selection

intensity on the population, thus promoting exploration. This

is expected to allow for a higher diversity that could improve

the results in difficult problems (like in multimodal or epistatic

tasks). Besides, the search performed inside each neighborhood

is guiding the exploitation of the algorithm. We study in this

paper how the ratio affects the search efficiency over a variety

of domains. Changing the ratio during the search is a unique

feature of cGAs that can be used to shift from exploration to

exploitation at a minimum complexity without introducing just

another new algorithm family in the literature.

Many techniques for managing the exploration/exploitation

tradeoff are possible. Among them, it is worth making a special

mention of heterogeneous EAs [19], [20], in which algorithms

with different features run in multiple subpopulations and col-

laborate in order to avoid premature convergence. A different al-

ternative is using memetic algorithms [21], [22], in which local

search is combined with the genetic operators in order to pro-

mote local exploitation.

In the case of cGAs, it is very easy to increase population

diversity by simply relocating the individuals that compose it by

changing the grid shape, as we will see in Section IV. The reason

is that a cellular model provides restrictions on the distance for

the mating of solutions due to the use of neighborhoods (one

solution may only mate with one of its neighbors). Hence, a

cGA can be seen as a mating restriction algorithm based on the

Euclidean distance.

III. BACKGROUND ON SELF-ADAPTATION

One important contribution of the present paper is to define

cGAs capable of self-adapting their exploration/exploitation

ratio. In this section, we will make an introduction to the field

of adaptation and self-adaptation in EAs.

Let us first revisit a well-known classification of adaptive EAs

[23], [24] (see Fig. 4 for the details). We can make a classifica-

tion of the type of adaptation on the basis of the mechanism

used for this purpose; in particular, attention is paid to the issue

of whether a feedback from the EA is used or not.

• Parameter tuning: It appears whenever the strategy pa-

rameters have constant values throughout the run of the

EA (there is no adaptation). Consequently, an external

agent or mechanism (e.g., a person or program) is needed

to tune the desired strategy parameters and to choose the

most appropriate values. We study some algorithms with

hand tuned parameters in this work.

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 129

Fig. 4. Taxonomy of adaptation models for EAs in terms of the ratio.

• Dynamic:. Dynamic adaptation appears when there is

some mechanism which modifies a strategy search pa-

rameter without any external control. The class of EAs

that use dynamic adaptation can be further subdivided

into three subclasses, where the mechanism of adaptation

is the criterion.

— Deterministic: Deterministic dynamic adaptation

takes place if the value of a strategy parameter is

altered by some deterministic rule; this rule modifies

the strategy parameter deterministically without

using any feedback from the EA. Examples of this

kind of adaptation are the preprogrammed criteria

we study in this work.

— Adaptive: Adaptive dynamic adaptation takes place

if there is some form of feedback from the EA that

is used to set the direction and/or magnitude of the

change to the strategy parameters (this kind of adap-

tation is also used in this work).

— Self-adaptive: The idea of the “evolution of evolu-

tion” can be used to implement the self-adaptation of

parameters. In this case, the parameters to be adapted

are encoded into the representation of the solution

(e.g., the chromosome) and undergo mutation and re-

combination [25].

We can distinguish among different families of these dynamic

EAs attending to the level at which the adaptive parameters op-

erate: environment (adaptation of the individual as a response

to changes in the environment, e.g., penalty terms in the fit-

ness function), population (parameters global to the entire pop-

ulation), individual (parameters held within an individual), and

component (strategy parameters local to some component or

gene of the individual). These levels of adaptation can be used

with each of the types of dynamic adaptation; in addition, a mix-

ture of levels and types of adaptation can be used within an EA,

leading to algorithms of difficult classification.

This taxonomy on adaptation will guide the reader in classi-

fying the kind of algorithms we are dealing with in this work.

This provides an appropriate context to discuss the ideas in-

cluded in the forthcoming sections.

IV. DESCRIPTION OF THE ALGORITHMS

The performance of a cGA may change as a function of sev-

eral parameters. Among them, we will pay special attention to

the ratio, which is the relationship between the neighborhood

and the population radii (2), as stated in Section II. Our goal is

to study the effects of this ratio on the behavior of the algorithm.

Since we always use the same neighborhood (NEWS), the study

of such a ratio is reduced to the analysis of the effects of using

different population shapes.

We begin by considering three different static population

shapes. Then, we propose two methods for changing the value

Fig. 5. Idealized evolution of the ratio for (a) static, (b) preprogrammed, and
(c) adaptive criteria.

of the ratio during the execution in order to promote the explo-

ration or exploitation in certain steps of the search. The first

approach to this idea is to modify the value of the ratio at a fixed

(predefined) point of the execution. For this goal, we propose

two different criteria: 1) changing from exploration to exploita-

tion and 2) changing from exploitation to exploration. In the

second approach, we propose a dynamic self-manipulation of

the ratio as a function of the evolution progress.

In Fig. 5, we show a theoretical idealization of the evolu-

tion of the ratio value in the three different classes of algo-

rithms we study in this paper. We can see how static algorithms

[Fig. 5(a)] keep constant the ratio value along the whole evo-

lution, while the other two algorithms change it. For prepro-

grammed algorithms [Fig. 5(b)], this change in the ratio is made

in an a priori point of the execution, in contrast to adaptive algo-

rithms [Fig. 5(c)], where the ratio varies automatically along the

search as a function of the convergence speed of the algorithm.

All the algorithms studied in this paper (shown in Fig. 6) are

obtained from the same canonical cGA by changing only the

ratio between the neighborhood and the population topology

radii in different manners. We study the influence of this

ratio over a representative family of nontrivial problems. This

family of problems is extended from the initial benchmark

included in [17], where a relationship between low/high ratio

and exploration/exploitation of the algorithm is established. In

order to help the reader to understand the results, we explain

in Section IV-A the algorithms employed in that work. After

that, we will introduce an adaptive algorithmic proposal with

the objective of avoiding the researcher to make an ad hoc defi-

nition of the ratio, that will (hopefully) improve the efficiency

or accuracy of the algorithm (Section IV-B).

A. Static and Preprogrammed Algorithms

In this section, we discuss five different algorithms which

were initially proposed in [17]. Three of them use static ratios

and the other two implement preprogrammed ones (see Fig. 6).

Our first aim is to extend this seminal study to a larger and harder

set of problems.

First, we tackle a cGA in which three clearly different

static ratios have been used (remember, we always use

NEWS–linear5–neighborhood).

• Square: Ratio (20 20 individuals).

• Rectangular: Ratio (10 40 individuals).

• Narrow: Ratio (4 100 individuals).

130 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 6. Algorithms studied in this work.

The total population size is always 400 individuals, struc-

tured in three different grid shapes, each one with different ex-

ploration/exploitation features. Additionally, we have used two

more criteria with a dynamic but a priori preprogrammed ratio

change. These two criteria change the algorithm ratio in a dif-

ferent manner at a fixed point of the execution. In our case, this

change is performed in the “middle” of a “typical” execution

. We define the “middle” of a “typical” run as the point

wherein the algorithm reaches half the mean number of evalua-

tions needed to solve the problem with the (traditional) square

grid. The preprogrammed algorithms studied change the ratio

from 0.110 to 0.031 [we call it square to narrow (SqNar)] and

from 0.031 to 0.110 [we call it narrow to square (NarSq)].

Since shifting between exploration and exploitation is made

by changing the shape of the population (and, thus, its radius)

in this work, we theoretically consider the population as a list

of length , such that the first row of the grid is

composed by the first individuals of the list, the second row

is made up with the next individuals, and so on. Therefore,

when performing a change from a grid to a new

grid (being) the individual placed at position

will be relocated as follows:

(3)

We call this redistribution method contiguous, because the

new grid is filled up by following the order of appearance of the

individuals in the list. It is shown in Fig. 7 how the considered

individual plus its neighbors are relocated when the grid shape

changes from 8 8 to 4 16, as described in (3). The reader

can notice how (in general) a part of a cell neighborhood is kept,

while the other part may change. In Fig. 7, we have drawn the

relocation of the individual in position (2, 4) and its neighbors.

When the grid shape changes, that individual is relocated at po-

sition (1, 4), changing its neighbors placed at its north and south

positions, and keeping close those placed at its east and west

positions. This change in the grid shape can be seen as an ac-

Fig. 7. Relocation of an individual and its neighbors when the grid changes
from (a) 8� 8 to other with (b) shape 4� 16.

tual migration of individuals among neighborhoods, which will

introduce additional diversity into the population for the forth-

coming generations.

B. Adaptive Algorithms

Let us focus in this section on our last proposed class of cGAs.

The core idea, like in most other adaptive algorithms, is to use

some feedback mechanism that monitors the evolution and that

dynamically rewards or punishes parameters according to their

impact on the quality of the solutions. An example of these

mechanisms is the method of Davis [26] to adapt operator prob-

abilities in genetic algorithms based on their observed success

or failure to yield a fitness improvement. Other examples are

the approaches of [27] and [28] to adapt population sizes either

by assigning lifetimes to individuals based on their fitness or by

having a competition between subpopulations based on the fit-

ness of the best population members.

A main difference here is that the monitoring feedback and

the actions undertaken are computationally inexpensive in our

case. We really believe that this is the primary feature of any

adaptive algorithm in order to be useful for other researchers.

The literature contains numerous examples of interesting adap-

tive algorithms whose feedback control or adaptive actions are

so expensive that many other algorithms or hand-tuning opera-

tions could result in easier or more efficient algorithms.

Our adaptive mechanisms are shown in Fig. 6 (we analyze

several mechanisms, not only one). They modify the grid shape

during the search as a function of the convergence speed. An im-

portant advantage for these adaptive criteria lies in that it is not

necessary to set the population shape to any one ad hoc value,

because a dynamical recalculation of which is the most appro-

priate one is achieved with a given frequency during the

search. This also helps in reducing the overhead to a minimum.

Algorithm 2 describes the basic adaptive pattern; and rep-

resent the measures of the convergence speed to use.

Algorithm 2 Pattern for our dynamic adaptive criteria.

1: if C1 then

2: ChangeTo(square) //exploit

3: else if C2 then

4: ChangeTo(narrow) //explore

5: else

6: Do not Change

7: end if

The adaptive criteria try to increase the local exploitation

by changing to the next more square grid shape whenever the

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 131

Fig. 8. Change in the ratio performed when conditions C and C of
Algorithm 2 hold.

algorithm evolves slowly, i.e., when the convergence speed de-

cays below a given threshold value . This is rep-

resented by the condition of line 1 in Algorithm 2. If, on the

other side, the search is proceeding too fast, diversity could be

lost quickly and there exists a risk of getting stuck in a local op-

timum. In this second case, the population shape will be changed

to a narrower grid and, thus, promote exploration and diversity

in the forthcoming generations. The condition for detecting this

situation is expressed by line 3 in Algorithm 2. If neither nor

are true, the shape is not changed (line 6).

As it can be seen, this is a general search pattern, and mul-

tiple criteria could be used to control whether the algo-

rithm should explore or exploit the individuals for the next

generations.

The objective of these adaptive criteria is to maintain the di-

versity and to pursue the global optimum during the execution.

Notice that a change in the grid shape implies the relocation of

individuals, which is a kind of migration since individuals in

different areas become neighbors. Therefore, this change in the

topology is also an additional source for increasing the diversity,

intrinsic to the adaptive criterion.

Whenever the criterion is fulfilled, the adaptive search

pattern performs a change in the grid shape. The function

ChangeTo(square/narrow) in Algorithm 2 changes the grid to

the immediately next more square/narrow allowed shape. The

bounding cases are the square grid shape and the completely

linear (ring-like) shape, as shown in Fig. 8. When the current

grid is square and the algorithm needs to change to the next

“more square” one, or when the present grid shape is the

narrowest one and the algorithm needs to change to the next

“narrower” one, the algorithm does not make any change in the

population shape at all. In the rest of cases, when the change is

possible, it is accomplished by computing a new position for

every individual whose general location is , as shown in

(3). Of course, other changes could have been used, but, in our

quest for efficiency, the proposed one is considered to introduce

a negligible overhead.

Once we have fixed the basic adaptive pattern and grid shape

modification rules, we now proceed to explain the criteria used

to determine when the population is going “too” fast or “too”

slow. We propose in this paper three different criteria for mea-

suring the search speed. The measures are based on the average

fitness (criterion AF), the population entropy (criterion PH), or

on a combination of the two (criterion). Since these

criteria check simple conditions over the average fitness and the

population entropy (calculated in every run in the population

statistics computation step), we can say that they are inexpen-

sive to measure, and they are indicative of the search states at

the same time too. The complexity for calculating the average

fitness is , while in the case of the population entropy it is

being the size of the population and the length of

the chromosomes. The details on their internals are as follows.

• AF: This criterion is based on the average fitness of the

population. Hence, our measure of the convergence speed

is based in terms of the diversity of phenotypes. We define

as the difference between the average fitness values

in generation and . The algorithm

will change the ratio value to the immediately larger one

(keeping constant the population size) if the difference

between two contiguous generations (and)

decreases at least in a factor of

(condition of Algorithm 2). On the contrary,

the ratio will be changed to its closer smaller value if that

difference increases in a factor greater than

(condition). Formally, we

define and as follows:

• PH: We now propose to measure the convergence speed in

terms of the genotypic diversity. The population entropy is

the metric used for this purpose. We calculate this entropy

as the average value of the entropy of each gene

in the population. Hence, this criterion is similar to AF

except for that it uses the change in the population entropy

between two generations instead of

the average fitness variation. Consequently, conditions

and are expressed as

• : This is the third and last proposed criterion to

create an adaptive cGA. It considers both the population

entropy and the average fitness acceleration by combining

the two previous criteria (AF and PH). Thus, it relays on

the phenotype and genotype diversity in order to obtain

the best exploration/exploitation tradeoff. This is a more

restrictive criterion with respect to the two previous ones,

since although genetic diversity usually implies pheno-

typic diversity, the reciprocal is not always true. Condi-

tion in this case is the result of the logic operation

of conditions of the two preceding criteria. In the same

way, will be the operation of conditions of AF

and PH

Moreover, for each adaptive criterion (AF, PH, and),

we can begin the execution by using: 1) the square grid shape;

2) the narrowest one; or 3) the one having a medium ratio value

(rectangular). In our terminology, we will specify the initial grid

shape by adding at the beginning of the criterion name a , or

132 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 9. Basic deceptive bipolar function (s) for MMDP.

for executions that begins at the square, narrowest, or rectan-

gular ratio grid shapes, respectively. For example, the algorithm

which uses criterion AF beginning at the narrowest shape will

be denoted as AF.

In short, we have proposed in this section three different adap-

tive criteria. The first one, AF, is based on the phenotypic diver-

sity, while the second one, PH, is based on genotypic diversity.

Finally, is a combined criterion accounting for diver-

sity at these two levels.

V. TEST PROBLEMS

In this section, we present the set of problems chosen for

this study. The benchmark is representative because it contains

many different interesting features in optimization, such as

epistasis, multimodality, deceptiveness, use of constraints,

parameter identification, and problem generators. These are im-

portant ingredients in any work trying to evaluate algorithmic

approaches with the objective of getting reliable results, as

stated by Whitley et al. in [29].

Initially, we will experiment with the reduced set of prob-

lems studied in [17], which includes the massively multimodal

deceptive problem (MMDP), the frequency modulation sounds

(FMS), and the multimodal problem generator P-PEAKS;

next, we will extend this basic three-problem benchmark with

COUNTSAT (an instance of MAXSAT), error correcting code

design (ECC), maximum cut of a graph (MAXCUT), and the

minimum tardy task problem (MTTP). The election of this

set of problems is justified by both their difficulty and their

application domains (combinatorial optimization, continuous

optimization, telecommunications, scheduling, etc.). This guar-

antees a high level of confidence in the results, although the

evaluation of conclusions will result more laborious than with

a small test suite.

The problems selected for this benchmark are explained in

Sections V-A–V-G. We include the explanations in this paper to

make it self-contained and to avoid the typical small lacks that

could preclude other researchers from reproducing the results.

A. Massively Multimodal Deceptive Problem (MMDP)

The MMDP is a problem that has been specifically designed

to be difficult for an EA [30]. It is made up of deceptive sub-

problems of 6 bits each one, whose value depends on the

number of ones (unitation) a binary string has (see Fig. 9). It is

easy to see (graphic of Fig. 9) that these subfunctions have two

global maxima and a deceptive attractor in the middle point.

In MMDP, each subproblem contributes to the fitness value

according to its unitation (Fig. 9). The global optimum has a

value of and it is attained when every subproblem is composed

of zero or six ones. The number of local optima is quite large

, while there are only global solutions. Therefore, the

degree of multimodality is regulated by the parameter. We use

here a considerably large instance of subproblems. The

instance we try to maximize for solving the problem is shown

in (4), and its maximum value is 40

fitness (4)

B. Frequency Modulation Sounds (FMS)

The FMS problem [31] is defined as determining the six real-

parameters of the frequency mod-

ulated sound model given in (5) for approximating it to the

sound wave given in (6) (where). The parameters

are defined in the range , and we encode each pa-

rameter into a 32 bit substring in the individual

(5)

(6)

The goal is to minimize the sum of square errors given by (7).

This problem is a highly complex multimodal function having

strong epistasis, with optimum value 0.0. Due to the high diffi-

culty of solving this problem with high accuracy without ap-

plying local search or specific operators for continuous opti-

mization (like gradual GAs [19]), we stop the algorithm when

the error falls below 10 . Hence, our objective for this problem

will be to minimize (7)

(7)

C. Multimodal Problem Generator (P-PEAKS)

The P-PEAKS problem [32] is a multimodal problem gen-

erator. A problem generator is an easily parameterizable task

which has a tunable degree of difficulty. Also, using a problem

generator removes the opportunity to hand-tune algorithms to

a particular problem, therefore allowing a larger fairness when

comparing algorithms. With a problem generator, we evaluate

our algorithms on a high number of random problem instances,

since a different instance is solved each time the algorithm runs,

then the predictive power of the results for the problem class as

a whole is increased.

The idea of P-PEAKS is to generate random -bit strings

that represent the location of peaks in the search space. The

fitness value of a string is the number of bits the string has in

common with the nearest peak in that space, divided by [as

shown in (8)]. As stated in [32], “ Problems with a small/large

number of peaks are weakly/strongly epistatic .” In this paper,

we have used an instance of peaks of length

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 133

Fig. 10. COUNTSAT function with n = 20 variables.

bits each, which represents a medium/high difficulty level

[17]. The maximum fitness value for this problem is 1.0

Hamming Peak

(8)

D. COUNTSAT Problem

The COUNTSAT problem [33] is an instance of MAXSAT.

Let us consider the following clauses [34]:

• ;

• .

In COUNTSAT, the solution value is the number of clauses

(among those specified above) that are satisfied by a -bit input

string. It is easy to check that the optimum value is that having

all the variables set to 1 . In this work, an instance of

variables has been used, with optimum value of 6860

(9)

(9)

The COUNTSAT function is extracted from MAXSAT with

the objective of being very difficult to solve with GAs [33].

Every uniformly generated random input will have approxi-

mately ones. Then, local changes decreasing the number of

ones will lead to better inputs, while local changes increasing

the number of ones decrease the fitness (Fig. 10). Hence, we

might expect that EAs quickly find the all-zero string and have

difficulties to find the all-one string.

E. Error Correcting Code Design Problem (ECC)

The ECC problem was presented in [35]. We will consider a

three-tuple , where is the length of each codeword

(number of bits), is the number of codewords, and is the

minimum Hamming distance between any pair of codewords.

Our objective will be to find a code which has a value for

as large as possible (reflecting greater tolerance to noise and

errors), given previously fixed values for and . The problem

we have studied is basically the same presented in [35]. The

fitness function to be maximized is

(10)

where represents the Hamming distance between codewords

and in the code (made up of codewords, each of length

). We consider in the present paper an instance where

and . The search space is of size , which is

approximately 10 . The optimum solution for and

has a fitness value of 0.0674 [36].

F. Maximum Cut of a Graph (MAXCUT)

The MAXCUT problem looks for a partition of the set of ver-

tices of a weighted graph into two disjoint sub-

sets and so that the sum of the weights of the edges with

one endpoint in and the other one in is maximized. For

encoding the problem, we use a binary string

of length , where each digit corresponds to a vertex. If a digit

is 1, then the corresponding vertex is in set ; if it is 0, then the

corresponding vertex is in set . The function to be maximized

[37] is

(11)

Note that contributes to the sum only if nodes and are

in different partitions. We have considered three different graph

examples in this study. Two of them are randomly generated

graphs of moderate sizes: a sparse one “cut20.01” and a dense

one “cut20.09,” both of them are made up of 20 vertices. The

other instance is a scalable weighted graph of 100 vertices. The

globally optimal solutions for these instances are 10.119 812 for

“cut20.01,” 56.740 064 in the case of “cut20.09,” and 1077 for

“cut100” [37].

G. Minimum Tardy Task Problem (MTTP)

MTTP [38] is a task-scheduling problem, wherein each task

from the set of tasks has a length (the time

it takes for its execution), a deadline (before which a task

must be scheduled, and its execution completed), and a weight

. The weight is a penalty that has to be added to the objective

function in the event that the task remains unscheduled. The

lengths, weights and deadlines of tasks are all positive integers.

Scheduling the tasks of a subset of is to find the starting time

of each task in , such as at most one task at time is performed

and such that each task finishes before its deadline.

We characterize a one-to-one scheduling function defined

on a subset of tasks , so that for all tasks

has the following properties.

1) A task cannot be scheduled before any previous one has

finished: .

2) Every task finishes before its deadline: .

134 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

The objective function for this problem is to minimize the

sum of the weights of the unscheduled tasks. Therefore, the op-

timum scheduling minimizes (12)

(12)

The schedule of tasks can be represented by a vector

containing all the tasks ordered by its dead-

line. Each , where if , then task is sched-

uled in , while if means that task is not included in

. The fitness function is the inverse of (12), as described in

[37]. We have used in this study three different instances [37]

for analyzing the behavior of our algorithms with this function:

“mttp20,” “mttp100,” and “mttp200,” with sizes 20, 100, and

200, and known maximum fitness values of 0.024 39, 0.005, and

0.0025, respectively.

VI. EXPERIMENTS

Although a full-length study of the problems presented in the

previous section is beyond the scope of this work, in this section,

we present and analyze the results obtained when solving all

the problems with all the discussed cGA variants, always with

a constant neighborhood shape (L5). Note that it is not our aim

here to compare cGA’s performance with state-of-the-art algo-

rithms and heuristics for combinatorial and numerical optimiza-

tion. To this end, we should at least tune the parameters or in-

clude local search capabilities in the algorithm, which is not the

case. Thus, the results only pertain to the relative performance

of the different cGA update ratios among themselves.

The resulting work is a direct continuation of a past work

[17], extended here by including more problems in the test suite

and some new algorithms (adaptive cGAs). Besides, we per-

form the tests with two different selection schemes: roulette

wheel and binary tournament. We have chosen these two se-

lection methods in order to analyze both, fitness proportionate

and ranking-like techniques. On the one hand, roulette wheel

will allow us to tests to which extent selection errors are impor-

tant for the proposed algorithms. On the other hand, tournament

selection should throw similar results with respect to ranking

methods, but we have selected tournament and not ranking be-

cause of its lower computational cost. In addition, tournament

selection is being used to check whether it shows any improve-

ment on the search with respect to roulette wheel. In summary,

by including these two selection methods (and not only one of

them), we aim at offering a more complete analysis.

We proceed in three stages, namely, analysis of static ratios,

preprogrammed dynamic ratios, and dynamic adaptive ratios. In

the two first steps, we use square and rectangular grids in a priori

well-known points of the evolution, i.e., either using always the

same grid shape (static), or setting an off-line fixed change in

the grid shape before the optimization (preprogrammed).

In the third stage, we apply three mechanisms of grid adapta-

tion (dynamic) based on convergence acceleration, as explained

in Section IV-B. We study these mechanisms with two different

initial values for the ratio: the smallest one, and that with the

middle value (i.e., nearest to the middle ratio value).

TABLE I
PARAMETERIZATION USED IN OUR ALGORITHMS

All the algorithms have been compared in terms of the effi-

ciency and efficacy, so the figures in Tables III–VI stand for the

average number of evaluations needed to solve each problem

with all the algorithms, and the percentage of success runs after

making 100 independent runs for each problem. We have per-

formed ANOVA tests in order to obtain statistically significant

results in our comparisons (see Tables III–VI).

We have organized this section into five subsections. In the

first one, we reproduce the parameters used for the execution

of the algorithms. In the next subsection, we will compare the

behavior of a cGA and a GA with a panmictic population. In

the two next subsections, we present and analyze the results ob-

tained with the different algorithms for all the problems with the

two proposed selection methods. Finally, we offer an additional

global graphic interpretation of the results in the last subsection.

A. Parameterization

In order to make a meaningful comparison among all the al-

gorithms, we have used a common parameterization. The de-

tails are described in Table I, where is the length of the string

representing the chromosome of the individuals. Two different

selection methods have been used in this work. One parent is

always the individual itself, while the other one is obtained by

using binary tournament (BT) (Section VI-C) or roulette wheel

(RW) selection (Section VI-D). The two parents are forced to

be different.

In the recombination operator, we obtain just one offspring

from two parents: the one having the largest portion of the best

parent. The DPX1 recombination is applied always (probability

). The bit mutation probability is set to . The

exceptions are COUNTSAT, where we use ,

and the FMS problem, for which a value of is

used. These two values are needed because the algorithms had a

negligible solution rate with the standard probability.

We will replace the considered individual on each generation

only if its offspring has a better fitness value, called replace if

better [39]. The cost of solving a problem is analyzed by mea-

suring the number of evaluations of the objective function made

during the search. The stop condition for all the algorithms is to

find a solution or to achieve a maximum of one million function

evaluations.

We have computed -values by performing ANOVA tests on

the average results to assess the statistical significance of the re-

sults. We will consider a 0.05 level of significance. Statistical

significant differences among the algorithms are shown with

symbol “ ” in Tables III–VI, while nonsignificance is shown

with “ .” In the experiments, we perform 100 independent runs

for every problem and algorithm.

In short, we have eleven different algorithms using RW se-

lection plus 11 algorithms more with BT selection. The other

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 135

TABLE II
RESULTS WITH NONSTRUCTURED (PANMICTIC) AND STRUCTURED (CELLULAR) SQUARE (20� 20) POPULATIONS

variation operators used are the same for the 22 algorithms (see

Table I). For each selection method, three algorithms use static

ratios, two others employ dynamic preprogrammed ratios, and

the last six ones make use of the proposed dynamic adaptive

criteria.

B. Studying the Effects of Structuring the Population

In order to justify the use of a decentralized population, we

present in this section the results obtained by two generational

GAs working on a panmictic square population, and two cellular

GAs with square populations. All these algorithms work with

the parameters presented in the previous section.

The results are shown in Table II. As we can see, the GAs

with structured populations outperform those with a panmictic

population (nonstructured) in almost all the problems. The suc-

cess rate of the algorithms is always higher (or equal in some

cases) for the cellular GAs than in the case of the corresponding

nonstructured algorithms. Moreover, among all the algorithms

studied in this work, these two algorithms with a panmictic pop-

ulation work out the very undesirable 0% hit rate for some prob-

lems. The average hit rate for all the problems is considerably

higher in the case of the cellular algorithms for the two selec-

tion methods, with values of 85.36% for BT and 87.46% for RW,

with respect to the panmictic algorithms (values of 54.72% for

BT and 46.64% for RW).

In terms of the average number of evaluations, Table II shows

that, in general, the cellular algorithms also perform faster than

those using a panmictic population. In addition, we want to em-

phasize the important differences in the behavior of the pan-

mictic algorithms depending on the selection method: it seems

to be quite important in most cases.

C. Experimental Results With Binary Tournament (BT)

In this section, we present the results obtained when solving

the problems of our benchmark with all the proposed al-

gorithms using the BT selection method. This selection is

expected to reduce the sampling error in small neighborhoods

with respect to fitness proportionate selection. The globally

best values throughout the paper with this selection method

(for each problem) are bolded; for example, the best tested

algorithm—using BT—that solves the FMS problem with the

lowest effort (355 209.39 evaluations) is that called SqNar

(preprogrammed criterion), as shown in Table III.

This section is actually organized into two parts. In the first

part, a study of the results obtained with the different static and

preprogrammed algorithms is developed for all the problems.

The second part contains this same study, but in this case for the

adaptive algorithms.

1) Static and Preprogrammed Ratios: In this section, we

tackle the optimization of all the problems employing static and

preprogrammed ratios and the BT selection operator. Our re-

sults confirm those of [17] in which narrow grids were quite effi-

cient for multimodal and/or epistatic problems, while the square

and rectangular grids performed better in the case of simple and

nonepistatic problems. It must be taken into account that here

we are using the BT selection method, while in [17], RW was

used.

Looking at Table III, we can see that narrow grids are suitable

for multimodal and epistatic problems (narrow obtains better re-

sults than the others for P-PEAKS, and SqNar obtains the best

results for FMS). Conversely, these narrow grids perform worse

than the others in the case of MMDP (deceptive), and some in-

stances of MTTP (combinatorial optimization). Finally, the two

preprogrammed criteria have the worst performances in the case

of ECC. In the other problems, there are no statistically signifi-

cant differences.

Although it is not a globally valid strategy for any unseen

problem, our conclusions up to now do explain the common

belief that a “good” optimization algorithm must initially

seek promising regions, and then gradually search in the

136 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

TABLE III
RESULTS WITH STATIC AND PREPROGRAMMED RATIOS USING BINARY TOURNAMENT SELECTION

neighborhood of the best so far points. In this process, a clear

need of avoiding full convergence to a local optimum is needed,

which exactly describes the behavior of the algorithm SqNar,

since it shifts to a narrow grid to avoid such premature conver-

gence in the second half of the search. In effect, this algorithm

has a high accuracy and efficiency on this benchmark.

In summary, these results also conform to the No Free Lunch

Theorem (NFL) [40], which predicts that it is not possible to

find “a globally best” algorithm for all possible problems. Thus,

we included in the test suite a large number of different prob-

lems, since only analyzing two or three problems can lead to

an undesirable bias in the conclusions. Each algorithm has then

been pointed out as the most efficient for a different subclass of

problems. However, by inspecting Table III, we can observe just

three bolded results (statistically, significant differences only

for FMS, in general), what means that the overall most efficient

algorithm has still to be discovered in this work. As we will

see, the different adaptive criteria evaluated in the next subsec-

tion will be able of providing the optimum solution at a lower

cost with respect to all the nonadaptive ratios for every tested

problem (with the exception of FMS).

2) Adaptive Criteria: In this section, we continue our work

by addressing the study of the adaptive algorithms proposed in

Section IV-B. For each adaptive criterion, we have made two

different tests: one beginning at the grid shape with a middle

ratio value , and the other starting at the lowest one .

Also, since the adaptive criteria rely on a small value to

define what is meant by “too fast convergence,” we have devel-

oped a first set of the tests for all the criteria with different

values: 0.05, 0.15, 0.25, 0.3. From all this plethora of tests, we

have finally selected as the best one. In order to get

this conclusion two criteria have been applied, and in both of

them was the winner. Of course, values other than

could reduce the effort for a given problem, but we

need to select a given value to focus our discussion. The used

selection criteria look for an value which allows us to obtain:

1) the larger accuracy and 2) the best efficiency. We wanted to

make such a formal and statistical study to avoid an ad hoc def-

inition of , but we have moved the details to a final Appendix

since including the results, tables, and explanations could have

distracted the attention of the reader.

Next, we will discuss the results we have obtained with our

adaptive cGAs using BT selection (see Table IV), and we will

also compare our best adaptive algorithms with all the studied

static and preprogrammed ones for each problem. There are sta-

tistically significant differences among the adaptive criteria of

Table IV in just a few cases. We will emphasize just the highly

desirable behavior of PH and PH, which are (with statistical

significance) the best adaptive criteria for P-PEAKS and ECC

(slightly worse than AF and AF PH for the FMS problem).

Comparing the adaptive criteria with the cGAs using static

and preprogrammed ratios, we can see (Tables III and IV) that

the adaptive algorithms are more efficient in general than the

static and preprogrammed ones, standing out the PH algorithm

over the others.

In terms of the efficacy of the algorithms (success rate), we

can see that, in general, the adaptive algorithms find the optimal

value more frequently out of the 100 tested than the static and

preprogrammed ones. Moreover, these adaptive algorithms ob-

tain the best hit rates for almost every problem.

D. Experimental Results With Roulette Wheel (RW)

In this section, we will extend the previous study by using the

RW selection method (this is the method used by the authors in

[17]). Let us begin by explaining the values worked out by the

static, preprogrammed, and dynamic ratio algorithms, summa-

rized in Tables V and VI. Like in Section VI-C, the figures in

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 137

TABLE IV
RESULTS WITH ADAPTIVE CRITERIA USING BINARY TOURNAMENT SELECTION

TABLE V
RESULTS WITH STATIC AND PREPROGRAMMED RATIOS USING ROULETTE WHEEL SELECTION

these tables correspond to the average number of function eval-

uations needed to find an optimal solution, the success rate, and

the statistical significance of the comparison of the algorithms.

The best values among all the criteria are bolded.

This section follows the same structure as that of the pre-

vious one. Hence, in the first part, we study the static and pre-

programmed algorithms, while in the second one the adaptive

criteria are analyzed.

1) Static and Preprogrammed Ratios: Let us focus first on

the static criteria. Our first conclusion is that our results mainly

confirm those drawn in [17], as in the case of the static algo-

rithms using BT. According to this previous work, we conclude

that a static narrow ratio is more efficient in the case of highly

epistatic and multimodal problems (FMS, P-PEAKS), where

its reduced selective pressure helps in exploration; although

the difference is only significant for P-PEAKS. Conversely, the

high pressure of the static square ratio seems best suited for the

case of a deceptive multimodal problem like MMDP. Moreover,

we additionally conclude that the square ratio performs better

than the two other static ones for combinatorial problems like

MAXCUT or MTTP (in the last one, Narrow is the worst

criterion with statistical significance).

With respect to the preprogrammed criteria, the reader

can verify (by consulting Table V) that the ratio NarSq

138 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

TABLE VI
RESULTS WITH ADAPTIVE CRITERIA USING ROULETTE WHEEL SELECTION

TABLE VII
COMPARING THE BEST ADAPTIVE CRITERIA VERSUS NONADAPTIVE RATIOS USING BINARY TOURNAMENT AND ROULETTE WHEEL (BT, RW)

(exploration-to-exploitation) does not improve the best results

obtained with respect to the rest of static and preprogrammed

studied criteria in any case. Besides, the other proposed pre-

programmed ratio SqNar (which represents a change for larger

diversity in the second phase of the algorithm) outperforms the

efficiency of the other criteria of Table V only for the instance

“mttp100,” although there is no statistical significance. The

two preprogrammed criteria are worse than all the static ones

with statistical significance in the cases of ECC and P-PEAKS

problems.

2) Adaptive Criteria: As we did in Section VI-C2, we will

study the behavior of our adaptive algorithms with the RW se-

lection method, and compare them with the static and prepro-

grammed ones. In Table VI, we show the results obtained with

the six adaptive criteria. The first conclusion we can draw from

that table is that, as in the case of Section VI-C2, the behavior

of the algorithms is globally improved by making them adaptive

(notice the large number of boldfaced results, i.e., most efficient

algorithms).

Moreover, the most effective algorithm for every problem is

always an adaptive one. The reader can verify it in Tables V

and VI, since the highest hit rates for every problem are ob-

tained by the adaptive algorithms. Hence, we can conclude that,

in general, the adaptive algorithms (either using binary tourna-

ment or roulette wheel) outperform the other studied ones in the

two checked features: efficiency and efficacy.

In Table VII, we compare, for every problem, our best adap-

tive algorithm with the static and preprogrammed ones. This

table accounts for algorithms using both BT and RW selec-

tion methods. Symbol “ ” means that the adaptive algorithm is

better with statistical significance than the compared nonadap-

tive one, while “ ” stands for nonsignificant differences. We can

see that, for the two selection methods, there is not any static

or preprogrammed algorithm better than the best adaptive one

for every problem. Hence, the bolded values in Tables III and

V corresponding to a best nonadaptive algorithm are undistin-

guishable of the adaptive ones. For all the problems, the existing

statistically significant differences favors the adaptive criteria

against the static and preprogrammed ones.

E. Additional Discussion

If we look among all the adaptive criteria, we conclude (as

expected from the theory) that there is no adaptive criterion

that significatively outperforms the rest for all the test suite,

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 139

Fig. 11. Dynamics of the ratio observed when using rAF.

according to the calculated -values. However, it is clear after

these results that adaptive ratios are the first kind of algorithm

one must select in order to have a really good baseline for com-

parisons. For the problems evaluated and for other problems

sharing their same features, we make a contribution by defining

new competitive and robust algorithms that can improve the ex-

isting performance at a minimum implementation requirement

(changing the grid shape).

In order to provide an intuitive explanation of what is hap-

pening during the search of the algorithms, we first track the

evolution of the ratio value along the search (RW selection used

in this section). Second, we have taken some snapshots of the

population at different points of the evolution in order to study

the diffusion of solutions through the population. Finally, we

have studied a representative convergence scenario of an adap-

tive algorithm through the evolution.

In Fig. 11, we have drawn an example of the ratio fluctu-

ation automatically produced by the AF adaptive criterion

during a typical execution on all the problems (we just plot

the hardest instances in the case of MAXCUT and MTTP:

“cut100” and “mttp200”). We have plotted separately in the

bottom part of the figure the hardest problems: MTTP with 200

variables “mttp200” and FMS. Criterion AF has been selected

to describe the typical scenarios found with all the adaptive

algorithms.

In Fig. 11, it can be noticed a clear trend toward promoting ex-

ploitation (ratios over 0.1). These general trend to evolve toward

the square shape is expected, because the search focuses toward

population exploitation after an initial phase of exploration.

This shift from small to high ratios is detected also in all

the problems (top of Fig. 11). However, the adaptive algorithms

seem to need a more complex search of the optimum ratio when

faced with the most complex cases: FMS and MTTP. In these

Fig. 12. Typical evolution of the ratio for the FMS problem with algorithm
nAF + PH.

Fig. 13. (a) Population at the beginning, (b) middle, and (c) end of a sample
execution of MAXCUT (“cut100”) with nAF + PH.

two cases (Fig. 11 down), there are brief and periodic visits to

smaller ratios (below 0.08) with the goal of improving the ex-

ploration of the algorithm. This automatic alternate shifting be-

tween exploitation and exploration in some problems is a notice-

able feature of the adaptive mechanism we propose, because it

shows how the algorithm decides by itself when to explore and

when to exploit the population.

But, we want to show that this search for the appropriate ex-

ploration/exploitation tradeoff can be achieved in a gradual and

progressive way. In order to prove this claim, we zoom into

the behavior of the AF PH algorithm for the FMS problem

(Fig. 12). We notice that when the algorithm finds difficulties

during an exploiting phase (high ratio), it decreases the ratio

(even repeatedly) to improve the exploration. This provides, in

general, a higher hit rate for the adaptive cGAs with respect to

the other ones. In Fig. 12, we can see that the ratio slope is de-

veloped by the adaptive algorithm to appropriately regulate by

itself the speedup of the search for the optimum.

Now, let us turn to analyze the evolution for MAXCUT and

FMS from a phenotypic diversity point of view. The pictures in

Figs. 13 and 14 have been taken at the beginning, middle, and

end of a typical execution with an adaptive criteria which begins

using the narrowest population shape (specifically AF PH).

These figures show three snapshot representations of the fitness

distribution in the population at different stages of the search.

Different gray tones mean different fitness values, and darker

gray tones correspond to the best individuals. It can be observed

in the two figures that diversity (variety of gray tones) decreases

during the run, as expected.

The particular case of MAXCUT with the instance “cut100”

(Fig. 13) is a sample scenario of fast evolution toward the square

population shape during the execution of the problem; once the

140 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 14. (a) Population at the beginning, (b) middle, and (c) end of a sample
execution of FMS with nAF + PH.

algorithm has reached the square shape, it is maintained until

the solution is found (see also Fig. 11). The reason for this be-

havior is that the exploration/exploitation tradeoff that the algo-

rithm finds is adequate to maintain a permanent and not too fast

convergence of the individuals toward the solution. This con-

vergence can be observed in Fig. 13, where we can notice that

the number of grey tones in the population decreases along the

execution. The convergence is noticeable at the middle of the

execution [Fig. 13(b)] and continues growing until the optimal

solution is found [Fig. 13(c)]. Also, since the same ratio value is

kept during all the evolution (except at the beginning), no relo-

cation of individuals (which introduces diversity) is made, and

the algorithm inherently creates islands of similar fitness values

[Fig. 13(c)], corresponding to those areas with the same gray

tone. These different areas represent different convergence paths

motivated by the smooth diffusion of good solutions, a distinc-

tive feature of cGAs. In particular, the exploration of the search

space is specially enforced in the bounds of different colored

regions.

In the case of FMS, a similar scenario appears; in this case, we

plot an example situation in which the algorithm is near to con-

vergence to a local optimum. As soon as the adaptive criterion

detects such a condition, it tries to get out of this local optimum

by promoting exploration (as it also occurs in Fig. 12). We can

see in Fig. 14(b) that the diversity is smaller than in the case of

MAXCUT in the middle of the execution. Since most individ-

uals have similar fitness values, when a better solution appears

in the grid it will be spread through all the population reasonably

fast. This effect produces an acceleration in the mean fitness of

the individuals and, therefore, a change to the next more rect-

angular grid shape (if possible) is performed, thus introducing

some more diversity at the neighborhoods for the next gener-

ations. Contrary to this reasoning, a high level of diversity is

maintained during all the evolution because, due to the epistatic

nature of the problem, small changes in the individuals lead to

big differences in the fitness values. That is the reason, as well

as the high number of ratio changes made for this problem, for

the absence of homogeneous colored areas. It also justifies the

important levels of diversity present at the end of the evolution

for FMS (in relation to the MAXCUT problem).

Finally, we want to exemplify the differences in the conver-

gence speed of the three main classes of the studied algorithms

(static, preprogrammed, and adaptive). Hence, we plot in Fig. 15

the maximum fitness value in every generation in typical runs

for three different algorithms (square, SqNar, and PH) when

solving the instance of 100 vertices of the MAXCUT problem

(“cut100”). As it can be seen, the evolution of the best so far so-

Fig. 15. Evolution of the maximum fitness found with “cut100.”

lution during the run is quite similar in the three algorithms. The

difference in the behavior of the algorithms can be seen at the

end of the evolution, where square and SqNar get stuck during

many generations before finding the optimal solution, while the

adaptive algorithm, due to the diversity of the population, finds

quickly the optimal solution.

VII. CONCLUSION AND FURTHER WORK

In this paper, we have analyzed the behavior of many cEAs

over an assorted set of problems. The ratio, defined as the

relationship between the neighborhood and the population

radii, represents a unique parameter rich in possibilities for

developing efficient algorithms based on the canonical cGA. As

the population is distributed in a 2-D toroidal grid, the studied

models are all embedded in many other similar algorithms;

thus, we hope these results to be broadly helpful for other

researchers.

Our main motivation for this work has been to advance the

knowledge of the appropriate exploration/exploitation tradeoff

for an algorithm. Specifically, we have studied the influence of

the ratio on the research with structured dynamical populations.

This feature is, to our knowledge, used in this paper for the first

time.

Technically, we can confirm the results in [17], which con-

cluded that a narrow grid (small ratio) is quite efficient for mul-

timodal and/or epistatic problems, while it performs slowly with

respect to the square and rectangular grids (high ratios) in the

case of simple and nonepistatic problems. Additionally, we have

demonstrated the importance of using an intermediate grid (rect-

angular) for combinatorial optimization problems in this work.

We must emphasize that any of the developed adaptive

criteria is just a new light and easy way to obtain competent

search techniques. An important feeling after this work is that

the search can be easily guided by using structured populations.

These kind of models are very efficient from a numerical point

of view, while they still admit any advanced technique devel-

oped in the EA field to be included in their basic execution.

These adaptive algorithms outperform the other studied ones

for all the proposed problems. The exceptions do not have

ALBA AND DORRONSORO: EXPLORATION/EXPLOITATION TRADEOFF IN DYNAMIC cGSs 141

TABLE VIII
VALUES OF " ACHIEVING THE BEST ACCURACY

TABLE IX
VALUES OF " ACHIEVING THE BEST EFFICIENCY

TABLE X
FINAL RANKING OF " VALUES. THE BEST VALUE ACCORDING TO

OUR TWO CRITERIA IS " = 0:05

statistical differences. However, we did not validate our con-

clusions by using binary tournament and fitness proportionate

selection methods.

As a future work, we propose the study of new, more sophisti-

cated criteria for the adaptation. Examples of this kind of criteria

may be the use of other techniques based on the fitness value, or

other indicators that could meaningfully describe the evolution.

In any case, it is desirable to utilize simple measuring criteria in

order to avoid translating the adaptation advantage into a disad-

vantage due to the induced overhead in terms of actual execution

time.

As extensions to this work, we are analyzing the conclusions

over other complex problems, and the influence of other indi-

vidual relocation mechanisms in the new population when a

change in the grid shape is to be performed.

APPENDIX

As stated in Section VI-D2, we focus on the importance of the

threshold for considering that the search is loosing diversity too

quickly. For this goal, the behavior of every adaptive criteria has

been studied under four different values. We need to define an

appropriate single value to be used in the experiments of the

paper body to focus the discussion on the criteria themselves.

Clearly, we do not need the “best” threshold value, since it is

problem dependent.

We have studied four small values (RW selection case):

0.05, 0.15, 0.25, and 0.3, which stand for highly to slightly re-

strictive conditions (respectively) to change the ratio.

We have followed two complementary criteria for defining a

single . The first one is to get the value that, for every problem

and criterion, gets the maximum accuracy (Table VIII). We have

emphasized in that table with bold fonts the values that report

the most accurate result for each problem and criterion.

The second criterion selects the provoking the higher effi-

ciency (Table IX). We get it by computing for each value the

mean number of the evaluations needed to solve each problem

with any criterion. The more efficient for each problem

(bolded values in Table IX) will be that provoking the smaller

average number of evaluations.

We then compute a final ranking that sorts the best values

for each criterion and assigns a weight to each position (smaller

weight means better performance). The best value will be that

with the smaller resulting weight. In fact, this is a multiobjec-

tive optimization problem that we have solved by a linear com-

bination (sum) of the rankings achieved in the two considered

criteria. This ranking is shown in Table X.

After ranking all the values by the two criteria a clear winner

springs out: is the value that globally provides more

accurate and efficient results for all the criteria and problems in

our benchmark.

ACKNOWLEDGMENT

The authors gratefully acknowledge the comments of the

anonymous reviewers that really helped to improve this work.

REFERENCES

[1] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary

Computation. London, U.K.: Oxford Univ. Press, 1997.
[2] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms, 2nd

ed, ser. Book Series on Genetic Algorithms and Evolutionary Computa-
tion. Norwell, MA: Kluwer, 2000, vol. I.

[3] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 443–462, Oct. 2002.

[4] E. Alba and J. Troya, “Improving flexibility and efficiency by adding
parallelism to genetic algorithms,” Statist. Comput., vol. 12, no. 2, pp.
91–114, 2002.

[5] B. Manderick and P. Spiessens, “Fine-grained parallel genetic algo-
rithm,” in Proc. 3rd Int. Conf. Genetic Algorithms, J. Schaffer, Ed.,
1989, pp. 428–133.

[6] Q. Zhang and H. Muhlenbein, “On the convergence of a class of estima-
tion of distribution algorithms,” IEEE Trans. Evol. Comput., vol. 8, no.
2, pp. 127–136, Apr. 2004.

[7] P. Spiessens and B. Manderick, “A massively parallel genetic algo-
rithm,” in Proc. 4th Int. Conf. Genetic Algorithms, R. Bclew and L.
Booker, Eds., 1991, pp. 279–286.

[8] S. Baluja, “Structure and performance of fine-grain parallelism in ge-
netic search,” in Proc. 5th Int. Conf. Genetic Algorithms, S. Forrest, Ed.,
1993, pp. 155–162.

[9] H. Mühlenbein, M. Schomish, and J. Born, “The parallel genetic algo-
rithm as a function optimizer,” Parallel Comput., vol. 17, pp. 619–632,
1991.

[10] K. Ku, M. Mak, and W. Siu, “Adding learning to cellular genetic al-
gorithms for training recurrent neural networks,” IEEE Trans. Neural

Netw., vol. 10, no. 2, pp. 239–252, Mar. 1999.
[11] G. Folino, C. Pizzuti, and G. Spezzano, “Parallel hybrid method for SAT

that couples genetic algorithms and local search,” IEEE Trans. Evol.

Comput., vol. 5, no. 4, pp. 323–334, Aug. 2001.

142 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

[12] M. Tomassini, “The parallel genetic cellular automata: Application to
global function optimization,” in Proc. Int. Conf. Artif. Neural Netw. Ge-

netic Algorithms, R. Albrecht, C. Reeves, and N. Steele, Eds, 1993, pp.
385–391.

[13] D. Whitley, “Cellular genetic algorithms,” in Proc. 5th Int. Conf. Genetic

Algorithms, S. Forrest, Ed., 1993, p. 658.
[14] V. Gordon and D. Whitley, “Serial and parallel genetic algorithms as

function optimizers,” in Proc. 5th Int. Conf. Genetic Algorithms, S. For-
rest, Ed., 1993, pp. 177–183.

[15] J. Sarma and K. De Jong, “An analysis of the effect of the neighborhood
size and shape on local selection algorithms,” in Lecture Notes in Com-

puter Science, H. Voigt, W. Ebeling, I. Rechenberg, and H. Schwefel,
Eds. Berlin, Germany: Springer-Verlag, 1996, vol. 1141, Proc. Int.
Conf. Parallel Prob. Solving from Nature IV, pp. 236–244.

[16] , “An analysis of local selection algorithms in a spatially structured
evolutionary algorithm,” in Proc. 7th Int. Conf. Genetic Algorithms, T.
Bäck, Ed., 1997, pp. 181–186.

[17] E. Alba and J. Troya, “Cellular evolutionary algorithms: Evaluating the
influence of ratio,” in Lecture Notes in Computer Science, vol. 1917,
Proc. Int. Conf. Parallel Prob. Solving from Nature VI, M. Schoenauer,
Ed.. Berlin, Germany, 2000, pp. 29–38.

[18] M. Giacobini, E. Alba, and M. Tomassini, “Selection intensity in
asynchronous cellular evolutionary algorithms,” in Proc. Genetic Evol.

Comput. Conf., 2003, pp. 955–966.
[19] F. Herrera and M. Lozano, “Gradual distributed real-coded genetic algo-

rithms,” IEEE Trans. Evol. Comput., vol. 4, no. 1, pp. 43–62, Apr. 2000.
[20] P. Adamidis and V. Petridis, “Co-operating populations with different

evolution behaviors,” in Proc. 3rd IEEE Conf. Evol. Comput., 1996, pp.
188–191.

[21] Handbook of Applied Optimization, Memetic Algorithms, P. Pardalos
and M. Resende, Eds., Oxford Univ. Press, London, U.K., 2000. P.
Moscato.

[22] Y. Ong and A. Keane, “Meta-Lamarckian teaming in memetic algo-
rithms,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 99–110, Apr. 2004.

[23] R. Hinterding, Z. Michalewicz, and A. Eiben, “Adaptation in evolu-
tionary computation: A survey,” in Proc. IEEE Conf. Evol. Comput.,

IEEE World Congr. Comput. Intell., 1997, pp. 65–69.
[24] T. Bäck, “Introduction to the special issue: Self-adaptation,” Evol.

Comput., vol. 9, no. 2, pp. iii–iv, 2001.
[25] P. Angeline, “Adaptive and self-adaptive evolutionary computations,”

in Computational Intelligence: A Dynamic Systems Perspective, M.
Palaniswami and Y. Attikiouzel, Eds. Piscataway, NJ: IEEE Press,
1995, pp. 152–163.

[26] L. Davis, “Adapting operator probabilities in genetic algorithms,” in
Proc. 3rd Int. Conf. Genetic Algorithms, J. Schaffer, Ed., 1989, pp.
61–69.

[27] J. Arabas, Z. Michalewicz, and J. Mulawka, “GAVaPS—A genetic algo-
rithm with varying population size,” in Proc. IEEE Conf. Evol. Comput.,
vol. 1, 1994, pp. 73–78.

[28] D. Schlierkamp-Voosen and H. Mühlenbein, “Adaption of population
sizes by competing subpopulations,” in Proc. IEEE Conf. Evol. Comput.,
1996, pp. 330–335.

[29] D. Whitley, S. Rana, J. Dzubera, and K. Mathias, “Evaluating evolu-
tionary algorithms,” Artif. Intell., vol. 85, pp. 245–276, 1997.

[30] D. Goldberg, K. Deb, and J. Horn, “Massively multimodaliry, deception,
and genetic algorithms,” in Proc. Int. Conf. Parallel Prob. Solving from

Nature II, R. Männer and B. Manderick, Eds., 1992, pp. 37–46.

[31] S. Tsutsui and Y. Fujimoto, “Forking genetic algorithm with blocking
and shrinking modes,” in Proc. 5th Int. Conf. Genetic Algorithms, S.
Forrest, Ed., 1993, pp. 206–213.

[32] K. De Jong, M. Potter, and W. Spears, “Using problem generators to ex-
plore the effects of epistasis,” in Proc. 7th Int. Conf. Genetic Algorithms,
T. Bäck, Ed., 1997, pp. 338–345.

[33] S. Droste, T. Jansen, and I. Wegener, “A natural and simple function
which is hard for all evolutionary algorithms,” in Proc. 3rd Asia-Pacific

Conf. Simulated Evol. Learning, 2000, pp. 2704–2709.
[34] C. Papadimitriou, Computational Complexity. Reading, MA: Ad-

dison-Wesley, 1994.
[35] F. MacWilliams and N. Sloane, The Theory of Error-Correcting

Codes. Amsterdam, The Netherlands: North-Holland, 1977.
[36] H. Chen, N. Flann, and D. Watson, “Parallel genetic simulated an-

nealing: A massively parallel SIMD algorithm,” IEEE Trans. Parallel

Distrib. Syst., vol. 9, no. 2, pp. 126–136, 1998.
[37] S. Khuri, T. Bäck, and J. Heitkötter, “An evolutionary approach to

combinatorial optimization problems,” in Proc. 22nd ACM Comput.

Sci. Conf., 1994, pp. 66–73.
[38] D. Stinson, An Introduction to the Design and Analysis of Algorithms,

2nd ed. Winnipeg, MB, Canada: The Charles Babbage Research
Center, 1985, 1987.

[39] J. Smith and F. Vavak, “Replacement strategies in steady state genetic al-
gorithms: Static environments,” in Foundations of Genetic Algorithms V,
W. Banzhaf and C. Reeves, Eds: Morgan Kaufmann, 1998, pp. 219–234.

[40] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

Enrique Alba received the Ph.D. degree in designing
and analyzing parallel and distributed genetic algo-
rithms from the University of Málaga, Málaga, Spain,
in 1999.

He is a Professor of Computer Science at the Uni-
versity of Málaga. He has published many scientific
papers in international conferences and journals, as
well as he holds national and international awards
to his research results. His current research interests
involve the design and application of evolutionary al-
gorithms, neural networks, and other bioinspired sys-

tems to real problems including telecommunications, combinatorial optimiza-
tion, and bioinformatics. The main focus of all his work is on parallelism.

Bernabé Dorronsoro received the Engineering
degree in computer science from the University of
Málaga, Málaga, Spain, in 2002. He is currently
working towards the Ph.D. degree in the design of
new evolutionary algorithms, specifically on struc-
tured algorithms, and their application to complex
problems in the domains of logistics, telecommuni-
cations, and combinatorial optimization.

	toc
	The Exploration/Exploitation Tradeoff in Dynamic Cellular Geneti
	Enrique Alba and Bernabé Dorronsoro
	I. I NTRODUCTION

	Fig.€1. (a) Panmictic EA has all its individual black points in
	II. C HARACTERIZING THE C ELLULAR GA (cGA)

	Fig.€2. Growth curves of the best individual for two cGAs (using
	Fig.€3. (a) Radius of neighborhood NEWS. (b) $5 \times 5 = 25$ a
	III. B ACKGROUND ON S ELF -A DAPTATION

	Fig.€4. Taxonomy of adaptation models for EAs in terms of the ra
	IV. D ESCRIPTION OF THE A LGORITHMS

	Fig.€5. Idealized evolution of the ratio for (a) static, (b) pre
	A. Static and Preprogrammed Algorithms

	Fig.€6. Algorithms studied in this work.
	Fig.€7. Relocation of an individual and its neighbors when the g
	B. Adaptive Algorithms

	Fig.€8. Change in the ratio performed when conditions C_1 and
	Fig. 9. Basic deceptive bipolar function (s_{i}) for MMDP.
	V. T EST P ROBLEMS
	A. Massively Multimodal Deceptive Problem (MMDP)
	B. Frequency Modulation Sounds (FMS)
	C. Multimodal Problem Generator (P-PEAKS)

	Fig.€10. COUNTSAT function with $n= 20$ variables.
	D. COUNTSAT Problem
	E. Error Correcting Code Design Problem (ECC)
	F. Maximum Cut of a Graph (MAXCUT)
	G. Minimum Tardy Task Problem (MTTP)
	VI. E XPERIMENTS

	TABLE I P ARAMETERIZATION U SED IN O UR A LGORITHMS
	A. Parameterization

	TABLE II R ESULTS W ITH N ONSTRUCTURED (P ANMICTIC) AND S TRUCT
	B. Studying the Effects of Structuring the Population
	C. Experimental Results With Binary Tournament (BT)
	1) Static and Preprogrammed Ratios: In this section, we tackle t

	TABLE III R ESULTS W ITH S TATIC AND P REPROGRAMMED R ATIOS U SI
	2) Adaptive Criteria: In this section, we continue our work by a
	D. Experimental Results With Roulette Wheel (RW)

	TABLE IV R ESULTS W ITH A DAPTIVE C RITERIA U SING B INARY T OUR
	TABLE V R ESULTS W ITH S TATIC AND P REPROGRAMMED R ATIOS U SING
	1) Static and Preprogrammed Ratios: Let us focus first on the st

	TABLE VI R ESULTS W ITH A DAPTIVE C RITERIA U SING R OULETTE W H
	TABLE VII C OMPARING THE B EST A DAPTIVE C RITERIA V ERSUS N ON
	2) Adaptive Criteria: As we did in Section VI-C2, we will study
	E. Additional Discussion

	Fig.€11. Dynamics of the ratio observed when using r AF.
	Fig.€12. Typical evolution of the ratio for the FMS problem with
	Fig.€13. (a) Population at the beginning, (b) middle, and (c) en
	Fig.€14. (a) Population at the beginning, (b) middle, and (c) en
	Fig.€15. Evolution of the maximum fitness found with cut100.
	VII. C ONCLUSION AND F URTHER W ORK

	TABLE VIII V ALUES OF ε A CHIEVING THE B EST A CCURA
	TABLE IX V ALUES OF ε A CHIEVING THE B EST E FFICIEN
	TABLE X F INAL R ANKING OF ε V ALUES . T HE B EST V
	T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evoluti
	E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms
	E. Alba and M. Tomassini, Parallelism and evolutionary algorithm
	E. Alba and J. Troya, Improving flexibility and efficiency by ad
	B. Manderick and P. Spiessens, Fine-grained parallel genetic alg
	Q. Zhang and H. Muhlenbein, On the convergence of a class of est
	P. Spiessens and B. Manderick, A massively parallel genetic algo
	S. Baluja, Structure and performance of fine-grain parallelism i
	H. Mühlenbein, M. Schomish, and J. Born, The parallel genetic al
	K. Ku, M. Mak, and W. Siu, Adding learning to cellular genetic a
	G. Folino, C. Pizzuti, and G. Spezzano, Parallel hybrid method f
	M. Tomassini, The parallel genetic cellular automata: Applicatio
	D. Whitley, Cellular genetic algorithms, in Proc. 5th Int. Conf.
	V. Gordon and D. Whitley, Serial and parallel genetic algorithms
	J. Sarma and K. De Jong, An analysis of the effect of the neighb
	E. Alba and J. Troya, Cellular evolutionary algorithms: Evaluati
	M. Giacobini, E. Alba, and M. Tomassini, Selection intensity in
	F. Herrera and M. Lozano, Gradual distributed real-coded genetic
	P. Adamidis and V. Petridis, Co-operating populations with diffe

	Handbook of Applied Optimization, Memetic Algorithms, P. Pardalo
	Y. Ong and A. Keane, Meta-Lamarckian teaming in memetic algorith
	R. Hinterding, Z. Michalewicz, and A. Eiben, Adaptation in evolu
	T. Bäck, Introduction to the special issue: Self-adaptation, Evo
	P. Angeline, Adaptive and self-adaptive evolutionary computation
	L. Davis, Adapting operator probabilities in genetic algorithms,
	J. Arabas, Z. Michalewicz, and J. Mulawka, GAVaPS A genetic algo
	D. Schlierkamp-Voosen and H. Mühlenbein, Adaption of population
	D. Whitley, S. Rana, J. Dzubera, and K. Mathias, Evaluating evol
	D. Goldberg, K. Deb, and J. Horn, Massively multimodaliry, decep
	S. Tsutsui and Y. Fujimoto, Forking genetic algorithm with block
	K. De Jong, M. Potter, and W. Spears, Using problem generators t
	S. Droste, T. Jansen, and I. Wegener, A natural and simple funct
	C. Papadimitriou, Computational Complexity . Reading, MA: Addiso
	F. MacWilliams and N. Sloane, The Theory of Error-Correcting Cod
	H. Chen, N. Flann, and D. Watson, Parallel genetic simulated ann
	S. Khuri, T. Bäck, and J. Heitkötter, An evolutionary approach t
	D. Stinson, An Introduction to the Design and Analysis of Algori
	J. Smith and F. Vavak, Replacement strategies in steady state ge
	D. Wolpert and W. Macready, No free lunch theorems for optimizat

