THE EXPONENT OF CONVERGENCE OF POINCARÉ SERIES OF COMBINATION GROUPS

Dedicated to the memory of the late Professor Tohru Akaza

HARUSHI FURUSAWA

(Received February 22, 1989, revised July 11, 1990)

1. Introduction. Let G be a discrete subgroup of the automorphism group $GM(B^{n+1})$ of (n+1)-dimensional hyperbolic space B^{n+1} . We shall present in § 3 a certain number $\delta(G)$ which is called the exponent of convergence of Poincaré series associated to G. Let L(G) be the limit set of G and d(L(G)) its Hausdorff dimension. It is already known [2], [7] that $\delta(G) = d(L(G))$ for geometrically finite discrete groups. Our motivation is based on the following results. The authors in [3] showed the inequality $d(L(G_1 * G_2)) > Max(d(L(G_1)), d(L(G_2)))$ for Shottky groups G_1 and G_2 where $G_1 * G_2$ is the free product of G_1 and G_2 . And also Patterson in [6] proved inequality $\delta(G_1 * G_2) > Max(\delta(G_1), \delta(G_2))$ for Fuchsian groups G_1 and G_2 where $G_1 * G_2$ is the free product of G_1 and G_2 . In this paper, we extend the above statement generally, that is, the exponent of convergence of Poincaré series of a discrete group G is smaller than that of the discrete group which is obtained by applying the combination theorem with an amalgamated subgroup to G. This is discussed in §§ 4 and 5.

2. Preliminaries. Let $\overline{R^{n+1}}$ be the one point compactification of R^{n+1} . Mobius transformation q in $\overline{R^{n+1}}$ is defined as compositions of even number of reflections in nspheres or *n*-planes in $\overline{R^{n+1}}$. Let GM(n+1) be the group of all Mobius transformations in $\overline{R^{n+1}}$. A subgroup of GM(n+1) is called a Mobius group. The identity in GM(n+1)is denoted by I. For a set $E \subset \overline{R^{n+1}}$, we denote by GM(E) the subgroup of GM(n+1)which fixes E, and by $GM|_{\partial E}$ the group $\{f|_{\partial E} | f \in GM(E)\}$ where $f|_{\partial E}$ is the restriction of f to ∂E . The two models for E we consider are $H^{n+1} = \{x = (x_1, x_2, \dots, x_{n+1}) \in$ $R^{n+1}|x_{n+1}>0\}$, and $B^{n+1}=\{x\in R^{n+1}||x|<1\}$ with respective boundaries $\overline{R^n}=$ ∂H^{n+1} and $S^n = \partial B^{n+1}$. For each $f \in GM(n)$, there exists a unique $\hat{f} \in GM(H^{n+1})$ such that $\hat{f}|_{\partial H^{n+1}} = f$ with the identification $\overline{R^n} = \partial H^{n+1}$. In this way, we have an isomorphism $GM|_{\partial H^{n+1}} \cong GM(n) \cong GM(H^{n+1})$. Hence we identify the elements in GM(n)with the elements in $GM(H^{n+1})$ and use the same letters. Let s be the usual stereographic projection of Sⁿ onto $\overline{R^n}$, then s can be extended to an element of GM(n+1)so that $s(B^{n+1}) = H^{n+1}$ ([4]). The conjugation $f \rightarrow sfs^{-1}$ is an isomorphism $GM(H^{n+1})$ onto $GM(B^{n+1})$. By this isomorphism, we have isomorphisms $GM(B^{n+1}) \cong GM(n) \cong$ $GM|_{\partial B^{n+1}}$.

H. FURUSAWA

The elements of $GM(H^{n+1}) - \{I\}$ are classified as following three types:

- (i) T is elliptic if it has a fixed point in H^{n+1} .
- (ii) T is parabolic if it has exactly one fixed point in $\overline{R^n}$.
- (iii) T is loxodromic if it has exactly two fixed points, both in $\overline{R^n}$.

For a Mobius transformation $A \in GM(n+1)$, we write A'(x) the Jacobian matrix at $x \in \overline{R^{n+1}}$. Then A'(x) = kB for some k > 0 and $B \in O(n+1)$. We put k = |A'(x)|.

LEMMA 1 ([1, p. 19]). Let g be a Mobius transformation. Then we have

(1)
$$|g(x) - g(y)|^2 = |g'(x)||g'(y)||x - y|^2.$$

Let $x^* = x \cdot |x|^{-2}$, $x \in \mathbb{R}^{n+1}$ $(x \neq 0)$. If $g(\infty) \neq \infty$, then $g(x) = r^2 A(x-a)^* + b$ where $a = g^{-1}(\infty)$, $b = g(\infty)$, r > 0 and A is an orthogonal matrix ([1, p. 21]). The set $I(g) = \{x \in \mathbb{R}^{n+1} | |g'(x)| = 1\}$ is an n-sphere centered at $g^{-1}(\infty)$ with radius r. This sphere is called the isometric sphere of g. The chain rule applied to $g^{-1}(g(x)) = g(g^{-1}(x)) = x$ yields $|(g^{-1})'(g(x))| | g'(x)| = |g'(g^{-1}(x))| | (g^{-1})'(x)| = 1$. From these equalities we have the following facts: $g(\text{ext } I(g)) = \text{int } I(g^{-1})$ and $g^{-1}(\text{ext } I(g^{-1})) = \text{int } I(g)$, where ext and int denote the exterior and interior, respectively.

3. Discrete groups. Let G be a discrete subgroup of $GM(B^{n+1})$. The points g(0), $g \in G$, are isolated and more generally, if $K \subset B^{n+1}$ is compact there are only finitely many $g \in G$ such that $g(K) \cap K \neq \emptyset$. A point $\zeta \in \overline{B^{n+1}}$ is called a limit point of G if there exists an infinite distinct sequences $g_n \in G$ and a point $a \in B^{n+1}$ such that $g_n(a) \to \zeta$. The set of all limit points of G is the limit set L = L(G). The set of accumulation points of $G(a) = \{g(a) \mid g \in G\}$ is denoted by L(a). Clearly, $L = \bigcup L(a)$. Then we have the following fact (see [1]) that L = L(a) for all $a \in B^{n+1}$. The limit set L has the following properties: (i) L is a closed set contained in ∂B^{n+1} . (ii) L is invariant under G and is a perfect set if L contains more than two elements.

An open set F of B^{n+1} is called a fundamental region for a discrete group G acting on B^{n+1} if F satisfies the following conditions:

- (i) $F \cap g(F) = \emptyset$ for all $g \in G \{I\}$,
- (ii) $\bigcup_{n \in G} g(\overline{F}) \supset B^{n+1}$ where \overline{F} is relative closure of F in B^{n+1} .

The existence of a fundamental region for discrete group acting on B^{n+1} is well known. For instance, the Dirichlet polyhedron is a fundamental region (cf. [5, p. 71]).

Now the exponent of convergence of a discrete group $G \subset GM(B^{n+1})$ is defined as

$$\delta(G) = \inf \left\{ s > 0 \left| \sum_{g \in G} |g'(x)|^s < +\infty \right\} \right\}.$$

This does not depend on the choise of $x \in B^{n+1}$ and it satisfies $\delta(G) \leq n$ (see, for instance, [1]).

2

4. Free product with amalgamated subgroup. Following the statement in [5, Chap. VII] we give some definitions. Let G_1 and G_2 be subgroups of $GM(B^{n+1})$ with a common subgroup H. We also assume throughout §4 that $G_m - H \neq \emptyset$ (m= 1, 2). A normal form is a word of the form $g_1g_2\cdots g_ig_{i+1}\cdots g_n$ where $g_i\in G_1-H$ for even i and $g_i \in G_2 - H$ for odd j, or vice versa, that is, the element of $G_1 - H$ or that of $G_2 - H$ appear in a normal form alternatively. A normal form $g_1 g_2 \cdots g_n$ is said to be in a (p, q) form if $g_1 \in G_p - H$ and $g_n \in G_q - H$ for p, q = 1, 2. There is a natural identification of normal forms as follows. If $h \in H$, then we regard the forms $g_1g_2\cdots g_n$ and $g_1g_2\cdots (g_kh)(h^{-1}g_{k+1})\cdots g_n$ as being equivalent. Using the above equivalence, the product of two normal forms is equivalent to either a normal form, or an element of H. The set of equivalence classes of normal forms together with the elements of H, is called the free product of G_1 and G_2 , with amalgamated subgroup H, and written as $G_1 *_H G_2$. Let $\langle G_1, G_2 \rangle$ be the group generated by G_1 and G_2 . Then there exists a natural homomorphism $\Phi: G_1 *_H G_2 \rightarrow \langle G_1, G_2 \rangle$ given by regarding juxtaposition of words as composition of mapping, that is, $\Phi(g_1g_2\cdots g_n) =$ $g_1 \circ g_2 \circ \cdots \circ g_n$. It is clear that equivalent normal forms are mapped onto the same transformation. If Φ is an isomorphism, then we say that $\langle G_1, G_2 \rangle = G_1 *_H G_2$, and we do not distinguish between $\langle G_1, G_2 \rangle$ and $G_1 *_H G_2$. If $\langle G_1, G_2 \rangle = G_1 *_H G_2$, and H is trivial, then every non-trivial element of $\langle G_1, G_2 \rangle$ has a unique normal form, while if H is non-trivial, the normal form of an element of $\langle G_1, G_2 \rangle$ is clearly not unique.

PROPOSITION. Let G_i (i=1, 2) be a discrete subgroup of $GM(B^{n+1})$ acting on B^{n+1} with a fundamental region F_i satisfying the geometric condition

$$F_1^c \cap F_2^c = \emptyset ,$$

where F_i^c is the complement of the set of F_i with respect to B^{n+1} . Then the group $G = \langle G_1, G_2 \rangle$ is the free product $G_1 * G_2$ with the amalgamated subgroup $\{I\}$ and $F_1 \cap F_2$ is precisely invariant under the identity in G.

PROOF. The geometric conditions (*) implies $F_1 \cup F_2 = B^{n+1}$. Furthermore, we see that $F_1 \cap F_2 \neq \emptyset$. Hence we are done by Theorem A. 13 in [5, p. 139].

5. The case *H* trivial. Let G_1 and G_2 be discrete subgroups of $GM(B^{n+1})$ with fundamental regions F_1 and F_2 , respectively, satisfying the geometric conditions (*) and let $G = \langle G_1, G_2 \rangle$. Then by Proposition, $G = G_1 * G_2$ and $F_1 \cap F_2$ ($\neq \emptyset$) is precisely invariant under $\{I\}$ in *G*.

Now under the conditions stated above, we have the following lemma.

LEMMA 2. For $g \in G_k$ (k = 1, 2), we define the number $\beta_{k,3-k}(g)$ by

H. FURUSAWA

(2)
$$\beta_{k,3-k}(g) = \sup_{x \in F_1 \cap F_2} \left\{ \inf_{w \in F_k^c} |x-w|^2 j(g^{-1}, x) \right\} \left\{ \sup_{w \in F_{3-k}^c} |g^{-1}(x)-w| \right\}^{-2}$$

where j(g, x) = |g'(x)|. Assume that

$$\sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s > 1 , \quad then \ \delta(G_1 * G_2) \ge s$$

PROOF. The chain rule applied to $g \circ h(x) = g(h(x))$ and $g^{-1}(g \circ h(x)) = h(x)$ yield $j(gh, x) = j(g, h(x))j(g^{-1}, gh(x))^{-1}j(h, x)$. Using the equality (1) stated in §2, we have $|g^{-1}(x') - h(x)|^2 = |g^{-1}(x') - g^{-1}(gh(x))|^2 = j(g^{-1}, x')j(g^{-1}, gh(x))|x' - gh(x)|^2$. Thus we have

(3)
$$j(gh, x) = j(g^{-1}, x')j(h, x) |x' - gh(x)|^2 |g^{-1}(x') - h(x)|^{-2}$$

Suppose $g \in G_1 - \{I\}$, $x, x' \in F_1 \cap F_2$ and $h(x) \in F_2^c$, then $h(x) \in F_1$ and $gh(x) \in F_1^c$. Therefore we have

(4)
$$j(gh, x) \ge j(h, x)\beta_{12}(g)$$

Similarly, we have

(5)
$$j(gh, x) \ge j(h, x)\beta_{21}(g),$$

for $g \in G_2 - \{I\}$, $x \in F_1 \cap F_2$, $h \in G$ such that $h(x) \in F_1^c$. If $g = g_1^{(1)}g_1^{(2)} \cdots g_k^{(1)}g_k^{(2)}$ is (1, 2) form stated in §4 and if $x \in F_1 \cap F_2$ then $g_1^{(2)} \cdots g_k^{(1)}g_k^{(2)}(x) \in F_2^c$. Hence $j(g, x) \ge j(g_1^{(2)} \cdots g_k^{(1)}g_k^{(2)}, x)\beta_{12}(g_1^{(1)})$ by (4). Furthermore, since $g_2^{(1)}g_2^{(2)} \cdots g_k^{(1)}g_k^{(2)}(x) \in F_1^c$ for $x \in F_1 \cap F_2$, we see that

$$j(g_1^{(2)}\cdots g_k^{(1)}g_k^{(2)}, x) \ge j(g_2^{(1)}g_2^{(2)}\cdots g_k^{(1)}g_k^{(2)}, x)\beta_{21}(g_1^{(2)})$$

by (5). Continuing this argument, we have $j(g, x) \ge \beta_{12}(g_1^{(1)})\beta_{21}(g_1^{(2)}) \cdots \beta_{12}(g_k^{(1)})j(g_k^{(2)}, x)$ for $x \in F_1 \cap F_2$. Hence the sum of s-th power of j(g, x) for the elements g of (1, 2) form in $G_1 * G_2$ is not smaller than

$$\sum_{k\geq 0} \left\{ \sum_{g_1\in G_1-\{I\}} \beta_{12}(g_1)^s \right\}^{k+1} \left\{ \sum_{g_2\in G_2-\{I\}} \beta_{21}(g_2)^s \right\}^k \sum_{g\in G_2-\{I\}} j^s(g,x) \ .$$

Therefore we have the following inequality considering all (p, q) forms,

$$\sum_{f \in G_1 * G_2} j^s(f, x) \ge 1 + \left[\sum_{k \ge 0} \left\{ \left(\sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \right)^k \left(\sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \right)^k \right\} \right] \\ \times \left\{ \left(\sum_{g_2 \in G_2 - \{I\}} j^s(g_2, x) \right) \left(1 + \sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \right) \\ + \left(\sum_{g_1 \in G_1 - \{I\}} j^s(g_1, x) \right) \left(1 + \sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \right) \right\}.$$

Thus we have our assertion by this inequality.

Now we have the following theorem from Lemma 2.

THEOREM 1. Let G_1 and G_2 be discrete subgroups of $GM(B^{n+1})$ with the fundamental regions F_1 and F_2 respectively, satisfying the geometric condition (*). Assume that $\delta(G_1) \ge \delta(G_2)$ and $\sum_{g \in G_1} j^{\delta(G_1)}(g, x) = +\infty$. Then $\delta(G_1 * G_2) > \delta(G_1)$.

PROOF. Let r be the radius of a ball B_r which is contained in $F_1 \cap F_2$. Then by (2), we have $\beta_{k,3-k}(g) \ge r^2 j(g^{-1}, x)/4$ for $k=1, 2, x \in B_r$ and $g \in G_1 * G_2$. Therefore we have

(6)
$$\sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \ge \left(\frac{r^2}{4}\right)^{2s} \sum_{g_1 \in G_1 - \{I\}} j^s(g_1, x) \sum_{g_2 \in G_2 - \{I\}} j^s(g_2, x) \quad (x \in B_r) \ .$$

By the assumption we see $\lim_{s\to\delta(G_1)}\sum_{g\in G_1} j^s(g, x) = +\infty$, so that the right hand side of (6) is greater than 1 for some $s_0 > \delta(G)$. Hence by Lemma 2, we have $\delta(G_1 * G_2) \ge s_0 > \delta(G_1)$. This completes the proof.

REMARK. The assumption $\sum_{g \in G} j^{\delta(G)}(g, x) = +\infty$ in Theorem 1 is satisfied by convex cocompact groups and geometrical finite groups.

6. The case *H* non-trivial. Throughout this section, all groups we consider are subgroups of $GM(H^3)$. From §2, we have isomorphisms $GM(B^3) \cong GM(H^3) \cong GM|_{\partial H^3}$. As $\overline{C} = C \cup \{\infty\}$ is identified with ∂H^3 , $GM|_{\partial H^3}$ is the class of orientation preserving Mobius transformations \overline{C} onto itself and denote it $M(\overline{C})$. A discrete subgroup of $M(\overline{C})$ is called a Kleinian group.

Let G_1 and G_2 be Kleinian groups acting on \overline{C} with a common subgroup H and let $G_m - H \neq \emptyset$ for m = 1, 2. An interactive pair of sets (X_1, X_2) , consists of two non-empty disjoint sets X_1 and X_2 in \overline{C} , where X_k (k = 1, 2) is invariant under H, every element of $G_1 - H$ maps X_1 into X_2 , and every element of $G_2 - H$ maps X_2 into X_1 . Note that if (X_1, X_2) is an interactive pair, then X_k is precisely invariant under H in G_k (k = 1, 2).

From §4, any element $g \in G_1 *_H G_2 - H$ is represented by a normal form $g = g_1 g_2 \cdots g_n$. Every normal form has a length, $n = |g_1 \cdots g_n|$. If $h \in H$, then $g_1 \cdots g_k g_{k+1} \cdots g_n$ and $g_1 \cdots (g_k h)(h^{-1}g_{k+1}) \cdots g_n$ are equivalent. Therefore equivalent normal forms have the same length, so if $G = \langle G_1, G_2 \rangle = G_1 *_H G_2$, then |g| is well defined for all elements of G (if $h \in H$, we put |h| = 0). Thus we have the following lemma due to Maskit.

LEMMA 3. Let $G = \langle G_1, G_2 \rangle$ be a Kleinian group with $G = G_1 *_H G_2$. Let X_1 and X_2 be mutually disjoint topological closed discs in \overline{C} bounded by a simple closed curve W and let $(\mathring{X}_1, \mathring{X}_2)$ be an interactive pair, where \mathring{X}_i is the interior of X_i . Furthermore, assume that $W = \partial X_1 = \partial X_2$ is precisely invariant under H in either G_1 or G_2 . Then there is a loxodromic element of G with one fixed point in \mathring{X}_1 and the other in \mathring{X}_2 .

H. FURUSAWA

PROOF. Let g be an element of G such that |g| > 1 and |g| is minimal among all conjugates of g in G. Then g is a (3-k, k) form and $g(X_k) \subset g_1g_2(X_k) \subset \mathring{X}_k$ (k=1, 2), as in [5, p. 150]. Hence we see that g is a loxodromic element with one fixed point in \mathring{X}_1 and the other in \mathring{X}_2 (see [5, p. 150]).

By Lemma 3, we have the following theorem.

THEOREM 2. Let the Kleinian group $G = \langle G_1, G_2 \rangle$ be $G_1 *_H G_2$ and let the topological closed discs X_1 and X_2 satisfy the hypothesis in Lemma 3. Then there exist fundamental regions F_1 and F of G, and a loxodromic cyclic subgroup of G, respectively, satisfying the geometric condition (*).

PROOF. By Lemma 3, there is a loxodromic element g in G with one fixed point ζ in \mathring{X}_1 . Suppose that a fundamental region F_H of H contains a given fundamental region F_1 of G_1 . As $\zeta \notin L(H)$, and $\mathring{X}_1 = \bigcup_{h \in H} h(\overline{F}_1 \cap \mathring{X}_1)$, there is an element h of H such that one fixed point $h(\zeta)$ of hgh^{-1} in $\Delta = \overline{F}_1 \cap \mathring{X}_1$ and also $h(\zeta)$ is not an isolated point of L(G). Hence we can find two disjoint open balls V_1 , V_2 in Δ both of which intersect L(G). Thus, by [5, p. 96], we have a loxodromic element g in G with one fixed point in V_1 and the other in V_2 . If we consider sufficiently large k then the isometric spheres g^k and g^{-k} are contained in V_1 and V_2 , respectively. Thus, putting $f=g^k$ and $F=(\text{ext } I(f)) \cap (\text{ext } I(f^{-1}))$, we have our theorem.

Finally we have the following theorem from Theorems 1 and 2.

THEOREM 3. Let the Kleinian group $G = \langle G_1, G_2 \rangle$ be the free product of G_1 and G_2 with an amalgamated subgroup H and let the topological closed discs X_1 and X_2 satisfy the hypothesis in Lemma 3. Suppose that $\delta(G_1) \ge \delta(G_2)$ and $\sum_{g_1 \in G_1} j^{\delta(G_1)}(g_1, x) = +\infty$, then $\delta(G_1 *_H G_2) > \delta(G_1)$.

PROOF. By Theorem 2, there exist fundamental regions F_1 and F of G_1 and a loxodromic cyclic subgroup $\langle f \rangle$ of G, respectively, satisfying the geometric condition (*). Hence $\delta(G_1 * \langle f \rangle) > \delta(G_1)$ by Theorem 1. Furthermore, since $G_1 * \langle f \rangle$ is a subgroup of G and since $G = G_1 *_H G_2$, we have $\delta(G_1 *_H G_2) \ge \delta(G_1 * \langle f \rangle) > \delta(G_1)$.

REFERENCES

- L. V. AHLFORS, Möbius Transformations in Several Dimensions, Univ. of Minnesota Lecture Notes, Minnesota, 1981.
- [2] T. AKAZA, Local property of the singular sets of some Kleinian groups, Tôhoku Math. J. 25 (1973), 1-22.
- [3] T. AKAZA AND T. SHIMAZAKI, The Hausdorff dimension of the singular sets of combination groups, Tôhoku, Math. J. 25 (1973), 61–68.
- [4] A. F. BEARDON, The Geometry of Discrete Groups, Springer Verlarg, New York-Heidelberg-Berlin, 1983.
- [5] B. MASKIT, Kleinian Groups, Springer Verlarg, New York-Heidelberg-Berlin, 1987.
- [6] S. J. PATTERSON, The exponent of convergence of Poincaré series, Monatsh. F. Math. 82 (1976), 297–315.

- [7] S. J. PATTERSON, Lectures on measures on limit sets of Kleinian groups, in Analytical and Geometric Aspects of Hyperbolic Space (D. B. Epstein, ed.), London Math. Soc. Lecture Notes 111 (1984), 281-323.
- [8] N. J. WIELENBERG, Discrete Möbius groups: fundamental polyhedra and convergence, Amer. J. Math. 99 (1977), 861–877.

Department of Mathematics Kanazawa Women's College Kanazawa 920–13 Japan