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1. Let us denote by G and Λ(G) a finitely generated Kleinian group
and its limit set, respectively. Let

Si(z) = 9^±h , ( α < d < _ biCi = i) ( ί = o, l , 2 f . . •)
z + d

be any element of G, where S0(z) = z is the identity transformation. It
is well known that the Poincare series Pμ(z) = Σ^eβ \ctz + di\~μ (μ > 0)
converges uniformly in any compact domain contained in the region of
discontinuity if and only if ΣΓ=i k(Si)|~'1 < +°°, where c(St) = ct. The
quantity

(1) P(G) = inf jμ > 0; g Iw + dt\-μ <+<*>, z $ A(G)}

= inf {i">0;Σk(Si)|-' i< +00,^(00)^ 00J ,

is independent of z (g Λ(G)) and we shall call P(G) the exponent of con-
vergence for G. The Hausdorff dimension of the limit set Λ(G) of G is
also defined as the non-negative number

d(Λ(G)) = inf {V; Mη(Λ(G)) = 0} ,

where Mη(Λ(G)) denotes the 97-dimensional measure of Λ(G).
If G is a finitely generated Fuchsian group of the first kind or of

the second kind without parabolic elements or is a Schottky group, the
following relation holds:

(2) d(Λ{G)) = P(G)/2 , ([1], [7], [8]) .

If G is a finitely generated Fuchsian group of the second kind with
parabolic elements, or more generally, if G is a finitely generated
Kleinian group and has a convex finite-sided fundamental polyhedron,
then the following inequality holds:

(3) d{A{G)) £ P(G)/2 , ([3], [4], [7]) .

2. Next we shall consider a finitely generated and non-elementary
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Kleinian group G, where °o is an ordinary point of G fixed only by the
identity eeG. Let F be the Ford fundamental domain of G. Denote
by Tχ,r(z) a hyperbolic or loxodromic transformation which satisfies the
following conditions:

( i ) {n.sG-M ext /(</)} 3 {I{Thr) U KTτ.1)},
(ii) the closure of the interior of I(Tλ,r) has no common point with

I(TχX), where I(S) denotes the isometric circle of S, λ is the minimal
distance from the boundary dF to the centers of I(Tλ,r) and /(Ti J.) and
r is the radius of I(Tλ,r).
As is well known, r = \c{Tλ>r)\~ι = \c{Tl\)\~\

We consider the free product of G and a cyclic group (Tχ,r} generated
by Tχ,r and write this in the form

which is also a finitely generated Kleinian group.
Next we shall consider a subgroup G'hr of Gλyr generated by all ele-

ments of the form pTlrp~\ with peG, e = ± 1 . We can easily verify
that (τ'?r is a free subgroup of Gλ>r. For any element g e Gλtr there exist
p, gr and g" satisfying g = pgf = g"p, where peG, g\ g" 6 GλiT. Since
gG'χ^g'1 c G'itr for each g e GλfT, it is easily seen that GJ,r is a normal
subgroup of Gλ>r.

Then we have the following theorem.

THEOREM 1. Let Gλ>r and Gχ,r be the groups defined above. Then

Λ(Gλ,r) =

The proof of this theorem is similar to the one [in the case of the
Fuchsian groups (see Greenberg [6]).

3. Now let us discuss the relation among the three exponents P(G),
P(Gλ>r) and P(G'λtr) defined by (1). Since G'λ>r and G are subgroups of Gλtr,
it is obvious that P(G'λtr) ^ P(Gitr) and P(G) ^ P(Gλ>r). But the following
problem is still open: Which is larger, P(G'λ>r) or P(G)Ί In this paper
we shall investigate the behavior of P(Gλtr), when λ (or r) tends to
infinity (or 0).

Take any number μ (>P(G)). Denote by QG(μ) the series
ΈjsieG-{e}\o(Sί)\~μ. Then two cases may occur:

P(0, Qβ(μ) = + °°,

P(<?) QG(μ) < + oo.
It is conjectured that only the case (i) holds for any Kleinian group,

because we have the examples for (i) (hyperbolic and parabolic cyclic
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groups, Fuchsian groups of the first kind and the Schottky groups) and
on the other hand we have no example for (ii) except for the finite
groups (elliptic cyclic groups) ([2], [3], [5]).

If G is a finite group, for example, an elliptic cyclic group, it is
obvious that \imμ^P{G) QG(μ) < +°o, and in this case Gr

Xtr is a Schottky
group. We can easily verify that 0 = P(G) < P(G'x,r).

4. Statement of Theorems. We shall prove the following theorems
about the exponents of convergence.

THEOREM 2. Suppose that QG(μΐ) < + °° and take and fix any
number r1 < 1 (or λx > 1). Then there exists λ* (or r*) depending on
μγ and r1 (or λx) such that for any λ (^λ*) (or r (^r*))

P(Gλtri) ^ μx .

THEOREM 3. If λ tends to +<*> with a fixed r (<1) (or if r tends
to zero with a fixed λ (>1)), then P(Gx>r) tends to P(G).

THEOREM 4. Let G be a Schottky group or a finitely generated
Fuchsian group of the first kind or of the second kind without parabolic
elements. If λ tends to + °° with a fixed r < 1 (or if r tends to zero
with a fixed X > 1), then d(Λ(GXtr)) tends to d(Λ(G)).

5. Preliminaries for the proof of the theorems. For brevity, we
put T = Tx,r, G* = Gx>r and G' = G5,r. Any element g of G* - G is ex-
pressed in the form

( 4 ) g = g.Γ i ff._1Γ
t-1 q.T^q, (qd e G, eό = ±1) ,

where qs Φ e for an integer j (1 <̂  j <̂  n — 1) with Tεi+1Tε* = e. Here
we call the number n the grade of g in G* and we often write g — g(n)
(n^l). Each element of G is considered as an element of grade 0 and
is denoted by g(0). It is easily seen by (4) that for any element
g eG* — G there exist a unique g* e G' and a unique p e G satisfying
g = <pg' = (qnqn_i qo)h(n), where h(n) denotes an element of grade n
in G'.

Consider the subset

E(n) = {ph(n); peG, h(n) e G'}

of G*. For brevity we express g in (4) by

( 5) g = qng'(n)q0 ,

where #'(w) = T g ^ T -1 g^T61. Denote by ω(g'(ri)) the cardinality
of the set {j; q, = e, 1 ̂  j ^ n - 1} for fjr'(w) in (5). Then, if μ > P(G),
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we have

Qσ*(μ)= Σ |e(flr)|-'= Σ Σ \e(g)\->

geG*~{e] n=ogeE{n)

= Σ 1̂ (0))!-" + Σ | Σ Σ |

It is well known that
( 6 ) | c ( S A ) | - 1 =

for two linear transformations Sί and S2 with c(Si) Φ 0, c(S2) Φ 0 (see
[5]). For the simplicity of the calculation we assume that

( 7 ) inf | Γ " ( o o ) - ΓΛ(oo)| ^ 1 .
mn<0

Now we shall estimate the term Σα»<*'c »=* \c(Qn9'(n)Qo)\~μ- By taking
a number λ sufficiently large, we may assume λ ^ 1. If gΛ ̂  e and
?o ^ β> then, using (6), we have for n ^ 1

( 8 ) Ic(qng'(n)qQ) I"1 ^ λ"2 x | c(q0) I"1 x | c(g.) I"1 x |c{g\n)) h 1 ,

because g\ri){o°) lies inside I(T) or I{T~ι). When just one of #0 and gΛ

is the identity, say qn = e, we have

( 9 ) W(n)q*)\-1 £ X-'lciq^ncig'in))]-1 .

Next we estimate \c{g\n))\-χ. If ω(g'(n)) = k (0 ̂  A; ̂  n - 1), it is
easily seen from (6) and (7) that

(10) Ic(g'(n)) I"1 ^ (77' | c ( ? i ) | - ) |c{T) |- λ-*(-*-« ,

where 77' denotes the product of (n — k — 1) terms taken for ;/ with
q. Φ e (1 ̂  j £ n — 1). Since μ > P(G), we have from (10)

(J-J-) Zu I C\9 \^)) I = n-i^k X ^ v ^ i
ω(flf/(%))=fc ?eG-|e}

x ( |c(Γ) |- ' 1 )* x (v-/<)2<*-*-i> .

Combining (8) and (9) with (11), we have

^ w _ A x 2 w - f c ( Q ^ ) r - f c + 1 x ( | c ( Γ ) | - ^ x ( λ ^ ) 2 ( ^ , (g. ̂  β, q0 Φ e) ,

•B* = Σ I c(gf(n)q0) j "^

^ W_1O^. X ̂  {yxGyf^)) X \l ̂ v-* /1 / X \^ / > \̂ % : = : ̂ > Qo Φ @) »

From this we have

(12) Σ Ak ^ 2QG(μγ x ( λ - 2 * ) ί Σ . _ A x (2QG(j«)λ-2ow-Λ-1t x (Iβ(DI"")
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+ 2Qa{μ))~\l + 2

and

(13) Σ Bk <ί 2Qβ(μ) x (λ"") I Σ ,_A x (2Qe(^-"")"-*-4 x (| c(Γ) I"')"
ft=0 U=0 )

+ 2Qa(μ))-ι(l + 2

Therefore by (11), (12) and (13) we can estimate Qβ*(μ) as follows:

(14) Qβ.(μ)^ Σ |e(flr(O))|-'+ΣJΣ(A* + 25 lk+ Σ
flf(O)eG-{β} w = l U = 0 ω(fir/(w))

^ Qo(μ) + 2(λ2" + 2Qβ(Jw))-1(λ" + Q0{μ)f

x [ Σ ί(l + 2Qβ(μ)χ-*")\c(T)\-r] •

REMARK. In a manner similar to the above we can obtain the
following estimate of Qβ (μ):

= Σ
g'

Σ Ic(g')\~> £ K(X, μ) Σ {(1 + 2Qβ{μ)χ-*") \c(T)|-"} ,
g'eG' — ie) n=l

K(\, μ) = 2(λ2^ + 2Qσ(μW .

In view of Theorem 1, (14) and (15) it is very likely that P(G*) = P(G').

6. Proofs of Theorems. PROOF OF THEOREM 2. Take and fix any
positive number rx < 1. If we take λ* in such a way that

(16)

then (14) implies that QQ*(μΐ) converges for G* = Gλtn (λ ^ λ*). Hence
P(G*) ^ /̂ !. When λ,. > 1 is given, we take r* (<1) in such a way that

(17) (r*Γ(l + 2QG(/OλΓ2"0 < 1

and we have the required result.

PROOF OF THEOREM 3. Take any number μλ with P(G) < μ, <
P(G) + e for any small number ε (>0). Fix rx < 1 (or λx > 1) arbitrarily
and take λ (or r) such that λ > λ* (or r < r*), where λ* (or r*) is
determined by (16) (or (17)). Theorem 2 shows P(G) ^ P(G*) ^ μ, <
P{G) + ε, where 6r* = G;,ri (or GχvT). Therefore we obtain the conclusion
of Theorem 3.

PROOF OF THEOREM 4. If G is a Schottky group, it is obvious that
Gλ,r is also a Schottky group. By (2) and Theorem 3 it is clear that
d(Λ(Gx>r)) tends to d(Λ(G)) for λ -> + °o (or r -> 0) with a fixed rx < 1 (or
\ > 1).

If G is a finitely generated Fuchsian group of the first kind or of
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the second kind without parabolic elements, then Gλ>r constructed in
Section 2 is also a finitely generated Kleinian group and has a finite-
sided fundamental polyhedron. Thus we obtain from (3) that P(Gλtr)/2 ^
d{Λ(Ghr)). Hence (2) shows 0 ^ d{Λ(Gλ,r)) - d(Λ(G)) ̂  (P(Gx>r) - P(G))/2.
Theorem 3 gives the desired result.
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