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Abstract. Global-in-time classical solutions near Maxwellians are constructed for the
generalized Landau equation in a periodic box for γ ≥ −2. The exponential decay of
such a solution is also obtained.

1. Introduction. In this paper, we consider the following generalized Landau equa-
tion

[∂t + v · ∇x]F = Q[F, F ], F (0, x, v) = F0(x, v) (1.1)

where F (t, x, v) is the spatially periodic distribution function for the particles at time
t ≥ 0, with spatial coordinates x = (x1, x2, x3) ∈ [−π, π]3 = T 3 and velocity v =
(v1, v2, v3) ∈ R3. The collision between particles is given by the following generalized
Landau operator,

Q[F, G] = ∇v · {
∫

R3
φ(v − v′)[F (v′)∇vG(v) − G(v)∇vF (v′)]dv′}

= ∂i

∫
R3

φij(v − v′)[F (v′)∂jG(v) − G(v)∂jF (v′)]dv′.

where φij = {δij − vivj/|v|2}|v|γ+2, and γ ≥ −3. The original Landau collision operator
for the Coulombic interaction corresponds to the case γ = −3.

The conservation of the mass, momentum as well as energy, can be formulated as
(i = 1, 2, 3)

d

dt

∫
T 3×R3

F (t) =
d

dt

∫
T 3×R3

viF (t) =
d

dt

∫
T 3×R3

|v|2F (t) ≡ 0.

We study classical solutions for (1.1) near a global Maxwellian µ = e−|v|2 . We define
the standard perturbation f(t, x, v) to µ as F = µ + µ1/2f . It is well known that
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30 HONGJUN YU

Q[µ, µ] = 0. By expanding Q[µ + µ1/2g1, µ + µ1/2g2], we define

Q[µ + µ1/2g1, µ + µ1/2g2] ≡ Q[µ, µ] + µ1/2{Kg1 + Ag2 + Γ[g1, g2]}.

The system (1.1) for f(t, x, v) becomes

[∂t + v · ∇x]f + Lf = Γ[f, f ], f(0, x, v) = f0(x, v), (1.2)

where L = −A − K. Notice that A, K and Γ are defined in the same way as in [5],
namely, σi = φij ∗ [vjµ], σij = φij ∗ µ,

Ag = µ−1/2∂i{µ1/2σij [∂jg + vjg]}, Kg = −µ−1/2∂i{µ[φij ∗ {µ1/2[∂jg + vjg]}]},

Γ[g1, g2] = ∂i[{φij ∗ [µ1/2g1]}∂jg2] − {φij ∗ [viµ
1/2g1]}∂jg2

−∂i[{φij ∗ [µ1/2∂jg1]}g2] + {φij ∗ [viµ
1/2∂jg1]}g2.

In the case when initially F0(x, v) has the same mass, momentum, and energy as
Maxwellian µ, we can rewrite the conservation laws as (i = 1, 2, 3),∫

T 3×R3
fµ1/2 =

∫
T 3×R3

vifµ1/2 =
∫

T 3×R3
|v|2fµ1/2 = 0. (1.3)

We shall use (·, ·) to denote the standard L2 inner product in T 3, T 3 × R3 and
‖ · ‖ to denote the corresponding L2 norms. Let the multi-indices α and β be α =
[α0, α1, α2, α3] and β = [β1, β2, β3] with |α| =

∑3
k=0 αk and |β| =

∑3
k=1 βk. We define

∂α
β ≡ ∂α0

t ∂α1
x1

∂α2
x2

∂α3
x3

∂β1
v1

∂β2
v2

∂β3
v3

. If each component of β is not greater than that of β
,
s,

we denote it by β ≤ β. We define β < β if β ≤ β, and |β| < |β|. We also denote
(

β
β

)
by

Cβ

β
.
We introduce a weight function of v as ω = ω(v) = [1 + |v|]γ+2. We denote the

weighted L2 norm as |g|22,θ =
∫

R3 ω2θg2dv, ‖g‖2
θ =

∫
R3×T 3 ω2θg2dxdv, where ‖ · ‖0 = ‖ · ‖.

We define the weighted norm and the high order energy norm as

|g|2σ,θ =
∫

R3
ω2θ[σij∂ig∂jg + σijvivjg

2]dv,

‖g‖2
σ,θ =

∫
R3×T 3

ω2θ[σij∂ig∂jg + σijvivjg
2]dxdv,

E(f(t)) ≡ 1
2
|||f |||2(t) +

∫ t

0

|||f |||2σ(s)ds,

E(f0) = E(f(0)) ≡
∑

|α|+|β|≤N

‖∂α
β f0‖2,

where | · |σ,0 = | · |σ, ‖ · ‖σ,0 = ‖ · ‖σ and

|||f |||(t) ≡
∑

|α|+|β|≤N

‖∂α
β f(t)‖, |||f |||σ(t) ≡

∑
|α|+|β|≤N

‖∂α
β f(t)‖σ.

Throughout this article, N ≥ 8. The main result is as follows:

Theorem 1.1. Let γ ≥ −2. Assume that f0(x, v) satisfies (1.3), and F0(x, v) = µ +
µ1/2f0(x, v) ≥ 0. There is an C0 > 0 and M > 0 such that if E(f0) ≤ M , then there
exists a unique global solution f(t, x, v) to (1.2) with F (t, x, v) = µ + µ1/2f(t, x, v) ≥ 0
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and sup0≤s≤∞ E(f(s)) ≤ C0E(f0). Moreover, there are constants C1 > 0 and δ∗ > 0
such that

|||f |||(t) ≤ C1E
1/2(f0)e−δ∗t.

There have been some investigations about the dynamical problems of the Landau
system [1], [2], [3], [5], [9], [10], [11], [12], [13], [14]. It is shown in [5] that the global
classical solution of the Landau equation near Maxwellians with γ ≥ −3 can be obtained
by the energy method. Guo proves in [8] that under the hard sphere condition, the global
in time solution of the Vlasov-Maxwell-Boltzmann system can be obtained. Desvillettes
and Villani [2], [3] construct a global classical solution to the spatially homogeneous
Landau equation with 0 < γ ≤ 1, which converges towards equilibrium exponentially.
It is shown in [10, 14] that the smooth solution of the spatially homogeneous Landau
equation with −3 < γ < 0 converges to a global Maxwellian super-algebraically.

Motivated by an idea in [8], we establish a global in time classical solution to the gener-
alized Landau equation near Maxwellians for γ ≥ −2. And we also obtain the exponential
decay of such a solution, that is, the global classical solution F of (1.1) converges to a
global Maxwellian µ in some Sobolev space exponentially. Compared to the previous
work ([2], [3], [10], [14]]), it should be pointed out that the Landau equation discussed
in the present paper is dependent on space variables, the global solutions here converge
towards the equilibrium exponentially and the Landau collision operator concerned in-
cludes both hard potentials and soft potentials, i.e., γ ≥ −2. To obtain the exponential
decay of the global solution, we are not able to use the argument developed in [5, 6, 7]
to construct the crucial positivity of the linearized Landau operator L. Instead, we have
revised the methods in [8] to obtain it. It seems that global in time classical solutions to
the Landau equation near Maxwellians for −3 ≤ γ < −2 can also be established by this
approach. But we could not obtain the exponential decay of the global classical solutions
to the Landau equation near Maxwellians for −3 ≤ γ < −2. Very recently, there has
been new progress made by Strain and Guo [9] who obtain almost exponential decay of
the global solutions for a large class of kinetic equations near Maxwellians, including the
Landau equation for −3 ≤ γ < −2.

2. The proof of Theorem 1.1. In this section we first give some lemmas which can
be found in [5].

Lemma 2.1. Let |β| > 0, |α| + |β| ≤ N . Then for small η > 0, there exists C > 0 and
Cη > 0 such that

−(∂β [Ag], ∂βg) ≥ ‖∂βg‖2
σ − η

∑
|β1|≤|β|

‖∂β1g‖2
σ − Cη‖µg‖2, (2.1)

|(∂β[Kg1], ∂βg2)| ≤ {η
∑

|β1|≤|β|
‖∂β1g1‖σ + Cη‖µg1‖}‖∂βg2‖σ, (2.2)

(∂α
β Γ[g1, g2], ∂α

β g3) ≤ C[{
∑

|α1|+|β1|≤N

‖∂α1
β1

g1‖}{
∑

|α1|+|β1|≤N

‖∂α1
β1

g2‖σ}

+{
∑

|α1|+|β1|≤N

‖∂α1
β1

g1‖σ}{
∑

|α1|+|β1|≤N

‖∂α1
β1

g2‖}]‖∂α
β g3‖σ. (2.3)
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Since L ≥ 0 and (Lg, g) = 0 if and only if g(v) = {a + b · v + c|v|2}µ1/2 where
a, c ∈ R and b ∈ R3, we denote the orthogonal basis for {1, v, |v|2}µ1/2 in the same way
as in [4] {e1, e2, e3, e4, e5} and we define a projection P in L2(R3) for any fixed x as
Pg(x, v) =

∑
(g(x, .), ej)ej .

Lemma 2.2. Let χ(v) be a smooth function so that {|χ| + |∇χ| + |∇2χ|} ≤ Cµ(v/4),
then

‖
∫

∂αΓ[g1, g2]χdv‖ ≤ C{
∑

|α1|≤N

‖∂α1g1‖}{
∑

|α1|≤N

‖∂α1g2‖σ}, (2.4)

(Lg, g) ≥ δ|{I − P}g|2σ, (2.5)

|g|2σ,θ ≥ c|ωθ[1 + |v|]
γ+2
2 g|22. (2.6)

By a straightforward modification of the argument used in [5], we have the following
local existence result for the Landau equation.

Lemma 2.3. For any sufficiently small M0 > 0, there exists T ∗ > 0 such that if E(f0) ≤
M0/2, then there is a unique classical solution f(t, x, v) to (1.2) in [0, T ∗) × T 3 × R3

such that sup0≤t≤T∗ E(f(t)) ≤ M0 and E(f(t)) is continuous over [0, T ∗). If F0(x, v) =
µ + µ1/2f0 ≥ 0, then F (t, x, v) = µ + µ1/2f(t, x, v) ≥ 0. Furthermore, the conservation
law (1.3) holds for all 0 < t < T ∗ if they are valid initially at t = 0.

We shall first establish the positivity of the linearized operator L for every small
amplitude solution f(t, x, v) to (1.2), and then prove the main result, Theorem 1.1. We
know that P is a projection from L2(R3) to the null space of the linearized operator L.
Thus, for any fixed (t, x), a function g(t, x, v) can be decomposed uniquely as

g(t, x, v) = {Pg}(t, x, v) + {I − P}g(t, x, v).

Split f as f(t, x, v) = {Pf}(t, x, v) + {I − P}f(t, x, v) in the Landau equation (1.2).
Thus, we have

[∂t + v · ∇x]Pf = l({I − P}f) + h(f), (2.7)

where

l({I − P}f) ≡ −[∂t + v · ∇x + L]{I − P}f, h(f) ≡ Γ[f, f ]. (2.8)

Lemma 2.4. Let ∂α = ∂α0
t ∂α1

x1
∂α2

x2
∂α3

x3
. It can be shown that ∂αPf = P∂αf . Further-

more, there exists C > 1 such that for any f ∈ C∞
c (R × T 3 × R3),

1
C
‖∂αPf‖2

σ ≤ ‖∂αa‖2 + ‖∂αb‖2 + ‖∂αc‖2 ≤ C‖∂αPf‖2. (2.9)

Proof. A direct computation implies ∂αPf = P∂αf . We substitute ‖·‖σ with P∂αf =
∂αa(t, x)µ1/2 + ∂αb(t, x) · vµ1/2 + ∂αc(t, x)|v|2µ1/2. Using σij ≤ C[1 + |v|]γ+2 and the
exponential decay of ej , we can obtain the first half of (2.9) by a direct computation. The
second half of (2.9) can be obtained by the fact that |∂αa|2 + |∂αb|2 + |∂αc|2 is bounded
by C

∫
|∂αPf |2dv for any (t, x), since a, b and c are the coefficients of a basis to the null

space of L. We then deduce (2.9) by a further integration over x.
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We now derive the macroscopic equations for Pf ,s coefficients, a, b and c. Recalling
equation (2.7) and (2.8), we further use Pf = a(t, x)µ1/2 +

∑3
j=1 ∂αbj(t, x)vjµ

1/2 +
∂αc(t, x)|v|2µ1/2 to expand the entries of the left-hand side of (2.7) as∑

i

[
vi∂

ic|v|2 + [∂0c + ∂ibi]v2
i +

∑
j>i

[∂ibj + ∂jbi]vivj + [∂0bi + ∂ia]vi + ∂0a
]
µ1/2, (2.10)

where ∂0 = ∂t, ∂j = ∂xj
and ∂i = ∂xi

. This is an expansion to the left-hand side of (2.7),
for fixed (t, x), with respect to the basis of µ1/2, viµ

1/2, v2
i µ1/2, vivjµ

1/2 and |v|2viµ
1/2

where 1 ≤ i �= j ≤ 3. We denote an orthogonal basis for this 13-dimensional space by εj ,
1 ≤ j ≤ 13 as in [4]. Expand the right-hand side of (2.7) with respect to the same basis,
and compare with their coefficients on both sides. Then we have

(1) ∇xc = lc + hc,

(2) ∂0c + ∂ibi = li + hi,

(3) ∂0a = la + ha,

(4) ∂ibj + ∂jbi = lij + hij , i �= j,

(5) ∂0bi + ∂ia = lbi + hbi,

where ∂0 = ∂t and ∂j = ∂xj
. Here lc(t, x), li(t, x), lij(t, x), lbi(t, x) and la(t, x) are

the corresponding coefficients of such an expansion of the linear term l({I − P}f), and
hc(t, x), hi(t, x), hij(t, x), hbi(t, x) and ha(t, x) are the corresponding coefficients of the
same expansion of the higher order term h(f). Let

[µ1/2, viµ
1/2, v2

i µ1/2, vivjµ
1/2, |v|2viµ

1/2]A13×13 = [ε∗j ],

with detA �= 0. We know that for any fixed (t, x), lc(t, x), li(t, x), lij(t, x), lbi(t, x) and
la(t, x), which are the coefficients of the projection of {I − P}f , we have the form

13∑
i,n=1

λijλin

∫
R3

l({I − P}f) · εj(v)dv.

The same is true after we take ∂α. Let |α| ≤ N − 1. By (2.8), we have that

‖
∫

(−[∂t + v · ∇x]{I − P}∂αf) · εn(v)dv‖2

≤
∫

|εn(v)|dv ×
∫

R3×T 3
|εn(v)|(|{I − P}∂0∂αf |2 + |v|2|{I − P}∇x∂αf |2)dxdv

≤ C[‖{I − P}∂0∂αf‖ + ‖{I − P}∇x∂αf‖]2,∫
L{I − P}∂αfεn(v)dv =

∫
(−A − K){I − P}∂αfεn(v)dv.

Recalling the expressions of A, K and εn, integration by parts and the Schwartz inequality
will result in

‖
∫

L{I − P}∂αfεn(v)dv‖2 ≤ C‖{I − P}∂αf‖2.

Here ∂0 = ∂t, and we have also used the facts ∂α{I − P}f = {I − P}∂αf and the
exponential decay of εn(v). Thus, we have∑
|α|≤N−1

{‖∂αlc‖+ ‖∂αli‖+ ‖∂αlij‖+ ‖∂αlbi‖+ ‖∂αla‖} ≤ C
∑

|α|≤N

‖{I −P}∂αf‖. (2.11)
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Notice that h(f) = Γ[f, f ] and ∂αhc, ∂αhi, ∂αhij , ∂αhbi, ∂αha are of the form

13∑
i,n=1

λijλin

∫
R3

∂αΓ[f, f ] · εj(v)dv,

where λij and λin are the entries of the matrix A. If |α| ≤ N and
∑

|α|≤N ‖∂αf(t)‖2 ≤ M0

for some M0 > 0, then we can apply (2.4) in Lemma 2.2 to get

‖
∫

∂αΓ[f, f ] · εn(v)dv‖ ≤
∑

Cα1
α ‖

∫
Γ[∂α1f, ∂α−α1f ] · εn(v)dv‖

≤ C{
∑

|α1|≤N

‖∂α1f‖}{
∑

|α1|≤N

‖∂α1f‖σ} ≤ CM
1/2
0

∑
|α|≤N

‖∂αf‖σ.

Thus, we have
∑

|α|≤N

{‖∂αhc‖+ ‖∂αhi‖+ ‖∂αhij‖+ ‖∂αhbi‖+ ‖∂αha‖} ≤ CM
1/2
0

∑
|α|≤N

‖∂αf‖σ. (2.12)

Theorem 2.5. Let f(t, x, v) be a classical solution to (1.2) satisfying (1.3). There exists
M0 > 0 and δ0 = δ0(M0) > 0 such that if

∑
|α|≤N

‖∂αf(t)‖2 ≤ M0, (2.13)

then ∑
|α|≤N

(L∂αf(s), ∂αf(s)) ≥ δ0

∑
|α|≤N

‖∂αf(s)‖2
σ.

Proof. Recall that from (2.5) in Lemma 2.2

(L∂αf, ∂αf) ≥ δ‖{I − P}∂αf‖2
σ.

It thus suffices to show that if (2.13) is valid for some small M0 > 0, then there is a
constant C > 0 such that

∑
|α|≤N

‖P∂αf(t)‖σ ≤ C
∑

|α|≤N

‖{I − P}∂αf(t)‖σ.

We notice that by Lemma 2.4,
∑

|α|≤N

‖P∂αf(t)‖σ ≤ C
∑

|α|≤N

{‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖}.

Thus, we only need to prove that
∑

|α|≤N

{‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖} ≤ C
∑

|α|≤N

‖{I − P}∂αf(t)‖σ. (2.14)
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We first estimate ∇∂αb. Let |α| ≤ N − 1. We take ∂j of (2) and (4) to get

	∂αbi =
∑

j

∂jj∂αbi =
∑
j �=i

∂jj∂αbi + ∂ii∂αbi =
∑
j �=i

[−∂ji∂αbj + ∂j∂αlij + ∂j∂αhij ]

+[∂i∂αli + ∂i∂αhi − ∂0∂i∂αc] =
∑
j �=i

[∂0∂i∂αc − ∂i∂αlj − ∂i∂αhj ] − ∂0∂i∂αc

+
∑
j �=i

[∂j lij + ∂jhij ] + ∂i∂αli + ∂i∂αhi = ∂0∂i∂αc

−
∑
i �=j

[∂i∂αlj + ∂i∂αhj − ∂j∂αlij − ∂j∂αhij ] + ∂i∂αli + ∂i∂αhi

= −∂ii∂αbi + 2[∂i∂αli + ∂i∂αhi] −
∑
i �=j

[∂i∂αlj + ∂i∂αhj − ∂j∂αlij − ∂j∂αhij ].

We multiply with ∂αbi to get

‖∇∂αbi‖ ≤ C
∑

|α|≤N−1

{‖∂αli‖ + ‖∂αhi‖ + ‖∂αlj‖ + ‖∂αhj‖ + ‖∂αlij‖ + ‖∂αhij‖}

≤ CM
1/2
0

∑
|α|≤N

‖∂αf‖σ + C
∑

|α|≤N

‖{I − P}∂αf‖, (2.15)

where we have used (2.11) and (2.12). We will leave the proof of the purely temporal
derivatives of ∂αbi(t, x) with α = [α0, 0, 0, 0] and |α| ≤ N to the end.

Next we will estimate the derivatives of c(t, x). From (1) and (2), we have

‖∂0∂αc‖ ≤ ‖∂i∂αbi‖ + ‖∂αli‖ + ‖∂αhi‖, ‖∇∂αc‖ ≤ ‖∂αhc‖ + ‖∂αlc‖.

Thus, for |α| ≤ N − 1, we have, from (2.11), (2.12) and (2.15), that

‖∂0∂αc‖ + ‖∇∂αc‖ ≤ CM
1/2
0

∑
|α|≤N

‖∂αf‖σ + C
∑

|α|≤N

‖{I − P}∂αf‖. (2.16)

From the Poincaré inequality, we easily see that ‖c‖ ≤ C[‖∇c‖ + |
∫

cdx|]. From the
conservation laws in (1.3), we know that

∫
T 3 bdx = 0 and

|
∫

T 3
adx| + |

∫
T 3

cdx| = 0.

Thus, the term ‖c‖ is controlled by the right-hand side of (2.16).
Now we consider a(t, x). Let |α| ≤ N − 1. By (3), we have

‖∂0∂αa‖ ≤ ‖∂αla‖ + ‖∂αha‖. (2.17)

By (2.11) and (2.12), for |α| ≤ N − 1, ‖∂0∂αa‖ is bounded by the right-hand side
of (2.16). We now consider the spatial derivatives of a(t, x). Let |α| ≤ N − 1 and
α = [0, α1, α2, α3] �= 0. By taking ∂i of (5) and summing over i, we get

−	∂αa = ∇ · ∂0∂αb −
∑

i

∂i∂α[lbi + hbi].

Multiplying the above equation with ∂αa and integrating over T 3, we get

‖∇∂αa‖ ≤ ‖∂0∂αb‖ +
∑

i

[‖∂α[lbi + hbi]‖]. (2.18)
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It is clear that the right-hand side of (2.18) is bounded by the right-hand side of (2.16).
Furthermore, by the the Poincaré inequality, we easily know ‖a‖ ≤ C[‖∇a‖ + |

∫
adx|].

Thus, the right-hand side of it is bounded by the right-hand side of (2.16). We thus
complete the estimate for a(t, x).

Finally, we estimate the purely temporal derivatives of b(t, x) and ∂αb(t, x) with α =
[α0, 0, 0, 0]. If |α| ≤ 2, we use the Poincaré inequality to get

‖∂αbi‖ ≤ C‖∇∂αbi‖ + |∂α

∫
bi(t, x)dx|.

By (2.15) and
∫

bi(t, x)dx = 0, it suffices to estimate the term ∂αbi. For the higher
purely temporal derivative ∂αb(t, x) with |α| ≥ 3, we take ∂α−1 of (5) to get

‖∂αbi‖ = ‖ − ∂i∂α−1a + ∂α−1[lbi + hbi]‖ ≤ ‖∂i∂α−1a‖ + ‖∂α−1lbi‖ + ‖∂α−1hbi‖.

By (2.18) and (2.11), (2.12), we easily know that the right-hand side of the above in-
equality is bounded by the right-hand side of (2.16).

Therefore, we have, by the above estimates, that∑
|α|≤N

{‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖} ≤ CM
1/2
0

∑
|α|≤N

‖∂αf‖σ + C
∑

|α|≤N

‖{I − P}∂αf‖.

The first term of the right-hand side of the above inequality can be neglected for M0

small. This is because we have by Lemma 2.4 that

‖∂αf‖2
σ ≤ ‖{I − P}∂αf‖2

σ + ‖P∂αf‖2
σ

≤ ‖{I − P}∂αf‖2
σ + C[‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖]2.

By (2.6) with γ ≥ −2, we know that (2.14) holds.
In the following we extend the local in time solution in Lemma 2.3 to the global in

time solution. We need to prove the following theorem.

Theorem 2.6. Let f(t, x, v) be the unique solution constructed in Lemma 2.3 which
satisfies the conservation law (1.3). Let the small amplitude (2.13) be valid. Then, for
any given 0 ≤ m ≤ N and |β| ≤ m, there are constants C|β| > 0, C∗

m > 0 and δm > 0
such that

∑
|β|≤m,|α|+|β|≤N

[
C|β|

d

dt
‖∂α

β f(t)‖2 + δm‖∂α
β f(t)‖2

σ

]
≤ C∗

mE1/2(f(t))|||f |||2σ(t). (2.19)

Proof. We use an induction over m, the order of the v-derivatives. For m = 0, by
taking the pure ∂α of (1.2), we obtain

[∂t + v · ∇ + L]∂αf = ∂αΓ[f, f ]. (2.20)

Multiplying (2.20) by ∂αf and integrating over T 3 × R3, we obtain, by Theorem 2.5
and (2.3) in Lemma 2.1 with g1 = g2 = g3 = f , that

∑
|α|≤N

[1
2

d

dt
‖∂αf(t)‖2 + δ0‖∂αf(t)‖2

σ

]
≤ CE1/2(f(t))|||f |||2σ(t).

This concludes the case for m = 0 with C0 = 1/2 and C∗
0 = C.
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Now assume the theorem is valid for m. For |β| = m + 1, taking ∂α
β (|β| �= 0) of (1.2),

we obtain,

[∂t + v · ∇x]∂α
β f + ∂βL[∂αf ] +

∑
β1 �=0

∂β1v · ∇x∂α
β−β1

f = ∂α
β Γ[f, f ]. (2.21)

For any η > 0, applying Lemma 2.1 and ‖µg‖ ≤ C‖g‖σ, and then integrating over T 3,
we deduce

−
(
∂βA[∂αf ], ∂α

β f
)
≥ ‖∂α

β f‖2
σ − η

∑
|β1|≤|β|

‖∂α
β1

f‖2
σ − Cη‖∂αf‖2

σ,

−
(
∂βK[∂αf ], ∂α

β f
)
≥ −{η

∑
|β1|≤|β|

‖∂α
β1

f‖σ + Cη‖µ∂αf‖}‖∂α
β f‖σ

≥ −η
∑

|β1|≤|β|
‖∂α

β1
f‖2

σ − η‖∂α
β f‖2

σ − Cη‖∂αf‖2
σ.

Thus, we have, for any η > 0,

(∂βL[∂αf ], ∂α
β f) ≥ ‖∂α

β f‖2
σ − η

∑
|β′|≤|β′|

‖∂α
β′f‖2

σ − Cη‖∂αf‖2
σ.

For any η > 0, we have∑
β1 �=0

(∂β1v · ∇x∂α
β−β1

f, ∂α
β f) ≤ η‖∂α

β f‖2 + Cη

∑
|β1|=1

‖∇x∂α
β−β1

f‖2.

By (2.3), we easily see that

(∂α
β Γ[f, f ], ∂α

β f) ≤ CE1/2(f(t))|||f |||2σ(t).

We thus have, by collecting terms and summing over |β| = m + 1 and |α| + |β| ≤ N ,
∑

|β|=m+1,|α|+|β|≤N

[1
2

d

dt
‖∂α

β f(t)‖2 + ‖∂α
β f(t)‖2

σ

]

≤
∑

|β|=m+1,|α|+|β|≤N

[ ∑
|β|=m+1

2η‖∂α
β f‖2

σ + 3Cη

∑
|β|≤m,|α|+|β|≤N

‖∂α
β f‖2

+ CE1/2(f(t))|||f |||2σ(t)
]

≤ Zm+1

[ ∑
|β|=m+1,|α|+|β|≤N

2η‖∂α
β f‖2

σ + 3Cη

∑
|β|≤m,|α|+|β|≤N

‖∂α
β f‖2

+ CE1/2(f(t))|||f |||2σ(t)
]
,

where Zm+1 denotes the number of all possible (α, β) such that |β| ≤ m+1 and |α|+|β| ≤
N . Choose η = 1

4Zm+1
, then there is a constant C(Zm+1) > 0 such that

∑
|β|=m+1,|α|+|β|≤N

[1
2

d

dt
‖∂α

β f(t)‖2 +
1
2
‖∂α

β f(t)‖2
σ

]

≤ C(Zm+1)
[ ∑
|β|≤m,|α|+|β|≤N

‖∂α
β f‖2

σ + E1/2(f(t))|||f |||2σ(t)
]
. (2.22)
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We may assume C(Zm+1) > 1. We multiply (2.22) by δm

2C(Zm+1) and add it to (2.19) for
|β| ≤ m to get

∑
|β|=m+1,|α|+|β|≤N

[ δm

4C(Zm+1)
d

dt
‖∂α

β f(t)‖2 +
δm

4C(Zm+1)
‖∂α

β f(t)‖2
σ

]

+
∑

|β|≤m,|α|+|β|≤N

[
C|β|

d

dt
‖∂α

β f(t)‖2 + δm‖∂α
β f(t)‖2

σ

]

≤ δm

2

∑
|β|≤m,|α|+|β|≤N

‖∂α
β f(t)‖2

σ + [C∗
m +

δm

2
]E1/2(f(t))|||f |||2σ(t).

It is clear the first term on the right-hand side is absorbed by the last term on the left.
We thus conclude the theorem by letting

Cm+1 =
δm

4C(Zm+1)
, δm+1 =

δm

4C(Zm+1)
≤ δm

2
, C∗

m+1 = C∗
m +

δm

2
.

Proof of Theorem 1.1. We first fix M0 ≤ 1 such that both Lemma 2.3 and Theorem
2.6 are valid. For such a M0, we let m = N in (2.19) and define

y(t) ≡
∑

|α|+|β|≤N

[C|β|‖∂α
β f(t)‖2]. (2.23)

We choose a constant C1 > 1 such that for any t ≥ 0,

1
C1

[y(t) +
δN

2

∫ t

0

|||f |||2σ(s)]ds ≤ E(f(t)) ≤ C1[y(t) +
δN

2

∫ t

0

|||f |||2σ(s)ds].

Recall constant C∗
N in (2.19). We define M ≡ min{ δ2

N

8C∗2
N C2

1
, M0

2C2
1
}, and choose initial data

so that E(f0) ≤ M < M0. From Lemma 2.3, we may denote T > 0 so that

T = sup
t
{t : E(f(t)) ≤ 2C2

1M} > 0.

Notice that E(f(t)) ≤ 2C2
1M ≤ M0 for 0 ≤ t ≤ T , by the definition of M . Thus, the

small amplitude assumption (2.13) is valid. We apply Theorem 2.6 and the definition of
M and T to get, for 0 ≤ t ≤ T , that

y′(t) + δN |||f |||2σ(t) ≤ C∗
NE1/2(f(t))|||f |||2σ(t) ≤ δN

2
|||f |||2σ(t). (2.24)

Therefore, an integration over 0 ≤ t ≤ s < T yields

E(f(s)) ≤ C1[y(s) +
δN

2

∫ s

0

|||f |||2σ(τ )dτ ]

≤ C1y(0) ≤ C2
1E(f(0)) ≤ C2

1M < 2C2
1M.

Since E(f(s)) is continuous in s, this implies E(f(T )) ≤ C2
1M if T < ∞. Thus, we get

a contradiction to the definition of T . Hence T = ∞. It is easily seen from the above
inequality that such a global solution satisfies E(f(t)) ≤ C2

1E(f0) for all t ≥ 0. By (2.24),
we have for t ≥ 0,

y′(t) +
δN

2
|||f |||2σ(t) ≤ 0.
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We easily know C3|||f |||(t) ≤ y(t) ≤ C2|||f |||σ(t) by (2.24) and (2.6) with γ ≥ −2. Thus,
there is C4 > 0 and δ∗ > 0 such that

|||f |||(t) ≤ C4E
1/2(f0)e−δ∗t.
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