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Let � and � be �xed coprime odd positive integers with min{�, �} > 1. In this paper, a classi�cation of all positive integer solutions(�, �, �) of the equation 2� + �� = �� is given. Further, by an elementary approach, we prove that if � = � + 2, then the equation
has only the positive integer solution (�, �, �) = (1, 1, 1), except for (�, �, �, �) = (89, 13, 1, 2) and (2� − 1, � + 2, 2, 2), where � is a
positive integer with � ≥ 2.

1. Introduction

Let N be the set of all positive integers. Let 	, �, � be �xed
coprime positive integers with min{�, �, �} > 1. In recent
years, the solutions (�, �, �) of the equation

	� + �� = ��, �, �, � ∈ N (1)

have been investigated in many papers (see [1–3] and its
references). In this paper we deal with (1) for the case that	 = 2. 
en (1) can be rewritten as

2� + �� = ��, �, �, � ∈ N, (2)

where � and � are �xed coprime odd positive integers with
min{�, �} > 1. We will give a classi�cation of all solutions(�, �, �) of (2) as follows.
�eorem 1. Every solution (�, �, �) of (2) satis�es one of the
following types:

(i) (�, �, �, �, �) = (7, 3, 5, 2, 4);
(ii) (�, �, �, �, �) = (2� − 1, 2� + 1, � + 2, 2, 2), where � is a

positive integer with � ≥ 2;
(iii) (�, �, �, �, �) = (5, 3, 1, 2, 3);
(iv) (�, �, �, �, �) = (11, 5, 2, 2, 3);
(v) 2 | � and � = 1;
(vi) (�, �, �, �, �) = (17, 71, 7, 3, 2);

(vii) � = 1, � > 1, 2 ∤ � and 2 | �;
(viii) � > 1, � = 1, 2 | � and 2� < �50/13;
(ix) 2 ∤ ��.
Recently, Miyazaki and Togbé [4] showed that if � ≥ 5 and� = � + 2, then (2) has only the solution (�, �, �) = (1, 1, 1),

except for (�, �, �, �) = (89, 13, 1, 2). However, there are some
exceptional cases missing from the result of [4]. In this paper,
by an elementary approach, we prove the following result.

Corollary 2. If � = � + 2, then (2) has only the solution(�, �, �) = (1, 1, 1), except for (�, �, �, �) = (89, 13, 1, 2) and(2� − 1, � + 2, 2, 2), where � is a positive integer with � ≥ 2.
2. Preliminaries

Lemma 3 (see [5, Formula 1.76]). For any positive integer �
and any complex numbers 
 and �, one has


� + �� = [�/2]∑
�=0

[��] (
 + �)�−2�(−
�)�, (3)

where [�/2] is the integer part of �/2;
[��] = (� − � − 1)!�

(� − 2�)!�! , � = 0, . . . , [�2] (4)

are positive integers.
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Lemma 4 (see [6]). Let � and � be coprime odd positive
integers withmin{�, �} > 1. If the equation

��2 − �V2 = 2, �, V ∈ N (5)

has solutions (�, V), then it has a unique solution (�1, V1) such
that �1√� + V1√� ≤ �√� + V√�, where (�, V) through all
solutions of (5). 	e solution (�1, V1) is called the least solution
of (5). Every solution (�, V) of (5) can be expressed as

�√� + V√�
√2 = (�1√� + V1√�

√2 )
�

, � ∈ N, 2 ∤ �. (6)

Further, by (6), we have �1 | � and V1 | V.
Lemma 5. Equation (5) has no solutions (�, V) such that � >�1, V > V1, and every prime divisor of �/�1 and V/V1 divides �
and �, respectively.
Proof. Wenow assume that (�, V) is a solution of (5) satisfying
the hypothesis. Since � > �1, by Lemma 4, the (��, V�) is all
solutions of (5). Let


 = �1√� + V1√�
√2 , � = �1√� − V1√�

√2 . (7)

We get

���1 =

� − (−�)�

 − (−�) , V�

V1
= 
� − (�)�


 − (�) , (8)

where � is odd. Numbers 
 and � are such that (
, −�) satisfy
�2 − √2�V21� + 1 = 0 and (
, �) satisfy �2 − √2��21� +
1 = 0. 
us, {��/�1}�≥1 and {V�/V1}�≥1 are the odd indexed
subsequences of the two Lehmer sequences of roots (
, −�)
and (
, �). 
eir discriminants are (
 + �)2 = 2��21 and(
 − �)2 = 2�V21, respectively. Saying that all prime factors
of ��/�1 divide � implies that all primes of the �th term of a
Lehmer sequence divide its discriminant.
e same is true for
V�/V1. Hence,��/�1 and V�/V1 are terms of a Lehmer sequence
of real roots lacking primitive divisors. By Table 2 in [7], this
is possible only for � = 3, 5. Even more, in the present case,

(
2)� − (�2)�

2 − �2 = ��V��1V1 (9)

is the �th term of the Lucas sequence of positive real roots(
2, �2) whose all prime factors divide its discriminant (
2 −
�2)2 = 4���21V22, and by Table 1 in [7] this is possible for �
odd only if � = 3 or � = 5. Furthermore, when � = 5, we
must have 
2 = (1 + √5)/2, but this is not possible since 
 =
√(1 + √5)/2 is not of the form (�1√� + V1√�)/√2 for some
positive integers � > 1, � > 1, �1 and V1. So, only � = 3
is possible. Now by some simple numerical computation for�3 and V3, we see that it is not possible that all prime factors
of �3 and all prime factors of V3 divide B. 
us, Lemma 5 is
proved.

Lemma 6 (see [8]). 	e equation

"2 + 7 = 2�+2, ", � ∈ N (10)

has only the solutions (", �) = (1, 1), (3, 2), (5, 3), (11, 5), and(181, 13).
Lemma 7 (see [9]). Let# be an odd positive integer with# >1. If (", �) is a solution of the equation

"2 − # = 2�, ", � ∈ N, (11)

then 2� < #50/13.
Lemma 8 (see [10, 11]). 	e equation

"2 + 2	 = $�, ", $,%, � ∈ N, gcd (", $) = 1, � ≥ 3
(12)

has only the solutions (", $,%, �) = (5, 3, 1, 3), (7, 3, 5, 4), and(11, 5, 2, 3).
Lemma 9 (see [12]). 	e equation

"2 − 2	 = $�, ", $,%, � ∈ N, gcd (", $) = 1,
$ > 1, % > 1, � ≥ 3 (13)

has only the solution (", $,%, �) = (71, 17, 7, 3).
Lemma 10 (see [13]). 	e equation

"	 − $� = 1, ", $,%, � ∈ N, min {", $,%, �} > 1 (14)

has only the solution (", $,%, �) = (3, 2, 2, 3).
3. Proof of Theorem

Let (�, �, �) be a solution of (2). If 2 | � and 2 | �, then we

have � ≥ 3, ��/2 + ��/2 = 2�−1, and ��/2 − ��/2 = 2. It follows
that

��/2 = 2�−2 + 1, ��/2 = 2�−2 − 1. (15)

Applying Lemma 10 to (15), we can only obtain the solutions
of types (i) and (ii).

If 2 | � and 2 ∤ �, then we have

(��/2)2 + 2� = ��, 2 ∤ �. (16)

Applying Lemma 8 to (16), we can only get the solutions of
types (iii), (iv), and (v).

Similarly, if 2 ∤ � and 2 | �, using Lemmas 7 and 9, then
we can only obtain the solutions of types (vi), (vii), and (viii).
Finally, if 2 ∤ ��, then the solutions are of type (ix). 
us, the
theorem is proved.

4. Proof of Corollary

Since � = � + 2, (2) can be rewritten as

2� + �� = (� + 2)�, �, �, � ∈ N. (17)




e Scienti�c World Journal 3

Let (�, �, �) be a solution of (17). By the theorem, (17) has only
the solutions

(�, �, �, �) = (2� − 1, � + 2, 2, 2) , � ∈ N, � ≥ 2 (18)

satisfying 2 | � and 2 | �.
If � = 1, 2 ∤ � and 2 | �, then from (17) we get

2 + �� = 2 + ((� + 1) − 1)�

= 1 + (� + 1) �∑
�=1

(−1)�−1 (��) (� + 1)�−1

= 1 + (� + 1) �∑

=1

(�*) (� + 1)
−1

= ((� + 1) + 1)� = (� + 2)�,

(19)

whence we obtain

� ≡ � (mod (� + 1)) . (20)

But, since 2 | �+1 and 2 ∤ �−�, congruence (20) is impossible.
If � > 1, 2 ∤ � and 2 | �, by the theorem, then we have

� = 1 and 2� < �50/13. Hence, by (17), we get
�2 < (� + 2)2 ≤ (� + 2)� = 2� + � < �50/13 + �. (21)

Since � ≥ 3 and 2 | �, we see from (21) that � = 2. Substituting
it into (17), we have �2 + 3� − 4(2�−2 − 1) = 0 and

� = 1
2 (−3 + √2�+2 − 7) . (22)

By (22), we get

� = 1
2 (" − 3) , � = �, (23)

where (", �) is a solution of (10). Since 2 ∤ � and � > 1, by
Lemma 6, we can only have (", �) = (181, 13) and

(�, �, �, �) = (89, 13, 1, 2) , (24)

by (23).

If 2 ∤ ��, then ��−1 ≡ (� + 2)�−1 ≡ 1(mod 8). Hence, by
(17), we get 2� ≡ (� + 2)� − �� ≡ (� + 2) − � ≡ 2(mod 8) and� = 1. It implies that the equation

(� + 2) �2 − �V2 = 2, �, V ∈ N (25)

has the solution

(�, V) = ((� + 2)(�−1)/2, �(�−1)/2) . (26)

Notice that the least solution of (25) is (�1, V1) = (1, 1); �
and � satisfy either � = � = 1 or min{�, �} > 1. Applying
Lemma 5 to (26), we only obtain that (�, V) = (1, 1) and

(�, �, �) = (1, 1, 1) . (27)


us, (17) has only the solutions (18), (24), and (27). 
e
corollary is proved.
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