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A new family of distributions called the exponential Lindley odd log-logistic G family is introduced and stud-

ied. The new generator generalizes three newly defined G families and also defines two new G families. We

provide some mathematical properties of the new family. Characterizations based on truncated moments as

well as in terms of the hazard function are presented. The maximum likelihood is used for estimating the model

parameters. We assess the performance of the maximum likelihood estimators in terms of biases and mean

squared errors by means of a simulation study. Finally, the usefulness of the family is illustrated by means of

three real data sets. The new model provides consistently better fits than other competitive models for these

data sets.
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1. Introduction

Recently, several families of continuous uni-variate distributions have been constructed by extend-

ing common families of continuous models. These generalized distributions give more flexibil-

ity by adding one or more parameters to the baseline model. Many classes can be cited such as

the Marshall-Olkin-G family by Marshall and Olkin [25], transmuted exponentiated generalized-G

family by Yousof et al. [34], Burr X-G by Yousof et al. [35], type I half-logistic family by Cordeiro

et al. [12], Zografos-Balakrishnan odd log-logistic family of distributions by Cordeiro et al. [13],

a new generalized two-sided family of distributions by Korkmaz and Genç [22], generalized odd

log-logistic family by Cordeiro et al. [10], odd-Burr generalized family by Alizadeh et al. [4],
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beta Weibull G by Yousof et al. [36], exponentiated generalized-G Poisson family by Aryal and

Yousof [8], type I general exponential class by Hamedani et al. [20] and beta transmuted-H by

Afify et al. [2] among others.

Recently, Gleaton and Lynch [17] introduced a class of distributions called the odd log-logistic

family with one extra shape parameter α > 0 with cumulative distribution function (cdf)

H (x;ξ ) =
G(x;ξ )α

G(x;ξ )α + Ḡ(x;ξ )α ,

where G(x;ξ ) is the baseline cdf depending on the vector parameter ξ and Ḡ(x;ξ ) = 1−G(x;ξ )

and ξ the parameter vector of associated parameters from baseline distribution. Alzaatreh et al. [5]

defined the T −X family with cdf

F (x) =
∫ W [G(x;ξ )]

a
r (t)dt, (1.1)

where r(t) is the probability density function (pdf) of the random variable of T ∈ [a,b] for −∞< a<

b < ∞, G(x;ξ ) is cdf of the baseline random variable X and W [G(x)] is a function of the baseline

cdf which satisfies the following conditions: i)W [G(x)] ∈ [a,b], ii)W [G(x)] is differentiable and

monotonically non-decreasing, iii)limx→−∞W [G(x)] = a and limx→∞W [G(x)] = b. The pdf of the

T −X family is given by

f (x) =

{
∂

∂x
W [G(x;ξ )]

}
r (W [G(x;ξ )]) . (1.2)

On the other hand, an extension of the Lindley distribution, denoted by exponential Lindley (EL),

was introduced by Gomez et al. [18]. The cdf and pdf of this extension are given, respectively, by

GEL (x;β ,θ) = 1−
(θ +β +θβx)

θ +β
e−θx (1.3)

and

gEL (x;β ,θ) =
θ 2 (1+βx)

θ +β
e−θx (1.4)

where x > 0, β > 0 and θ > 0. Clearly, distribution of this extension is exponential distribution for

β = 0 and is Lindley distribution for β = 1. Also, this distribution is more flexible than exponential

and Lindley distributions.

The goal of this paper is to introduce a new flexible and wider family of the distributions based

on T-X family using the EL as the generator. The paper is organized as follows. The new family

is introduced in Section 2. Some members and sub-families of the new family are introduced in

Section 3. In Section 4, the series expansions for cdf and pdf of the new family are presented. In

Section 5, some of its mathematical properties are derived. Section 6 deals with some characteriza-

tions of the new family. In Section 7, the maximum likelihood method is presented. In Section 8,

a simulation study is performed to evaluate the efficiency of the Maximum Likelihood method. In

Section 9, we illustrate the importance of the new family by means of three applications to real data

sets. The paper is concluded in Section 10.
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2. The new family

We define the new family by taking W [G(x;ξ )] =− log [1−H (x;ξ )] and r(t) = gEL (t;β ,θ). From

(1.1), (1.2), (1.3) and (1.4), we introduce cdf and pdf of the new family as

F (x,α,β ,θ ,ξ ) = 1−
Ḡ(x)αθ

(θ +β )
[
G(x)α + Ḡ(x)α]θ

{
θ +β −θβ log

[
Ḡ(x)α

G(x)α+Ḡ(x)α

]}
(2.1)

and

f (x,α,β ,θ ,ξ ) =
αθ 2

θ +β
g(x)Ḡ(x)αθ−1

G(x)α−1

[G(x)α+Ḡ(x)α ]
θ−1

{
1−β log

[
Ḡ(x)α

G(x)α+Ḡ(x)α

]}
(2.2)

respectively, where G(x) = G(x;ξ ) is the baseline cdf, g(x) = g(x;ξ )is the baseline pdf, α > 0,

β > 0 and θ > 0 are three extra parameters. We call it exponential Lindley odd log-logistic family

and denote it by ELOLL−G(α,β ,θ ,ξ ). Further, the ELOLL-G family is in fact a mixture of the

exponential-odd log-logistic-G family (EOLL), whose cdf is 1−
(

Ḡ(x)α

Ḡ(x)α+G(x)α

)θ
and gamma(2,θ )-

odd log-logistic-G family (GaOLL), whose cdf is 1 −

[
1− log

(
Ḡ(x)α

Ḡ(x)α+G(x)α

)θ
](

Ḡ(x)α

Ḡ(x)α+G(x)α

)θ
,

with mixing rate θ/(θ +β )and β/(θ +β ) respectively. So, we express the ELOLL-G family as

ELOLL−G(α,β ,θ ,ξ ) =
θ

θ +β
EOLL−G(α,θ ,ξ )+

β

θ +β
GaOLL−G(α,θ ,ξ ) . (2.3)

As a result, we can say that the ELOLL-G family is a mixture family. The hazard rate function (hrf)

of this family is given by,

h(x,α,β ,θ ,ξ ) =
αθ 2g(x)G(x)α−1

(
1−β log

[
Ḡ(x)α

G(x)α+Ḡ(x)α

])

(
Ḡ(x)

[
G(x)α + Ḡ(x)α])(θ +β −θβ log

[
Ḡ(x)α

G(x)α+Ḡ(x)α

]) . (2.4)

The quantile function (qf) of ELOLL-G is given as follows: if U has a uniform U(0,1) the solution

of the non-linear equation x = Q(U) = QG

(
T

1/α
U

[
T

1/α
U +(1−TU)

1/α
]−1
)

has random number

on the ELOLL−G(α,β ,θ ,ξ ), where QG (·) = G−1 (·) is the qf of the baseline distribution, QEL (u)

is the solution of (1.3) that is the qf of the EL distribution and TU =
(
1− e−QEL(U)

)
. Hence, if U

is a uniform random variable on U(0,1), then X = Q(U) has the ELOLL-G distribution. Also,

the mixture representation in (2.3) can be used to generate random number from the ELOLL-G

distribution.

3. Some special cases of the ELOLL-G family

The ELOLL-G family includes important sub-families. We mention these sub-families in Table (1).

Also, the (2.1) and (2.2) will be most tractable when g(x) and G(x) have simple analytic forms.

Here, we provide three special models of the ELOLL-G family. These special models generalize

some well-known distributions reported in the literature. We note that since the cdf, pdf and hrf of

any ELOLL-G distribution will be easily determined by (2.1), (2.2) and (2.4), we dont give them in

following sub-sections.
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Table 1: Sub families of the ELOLL-G family.

α β θ Sub-family References

1 − − Exponential Lindley-G New

1 1 − Lindley-G Çakmakyapan and Ozel [9]

1 0 − Lehmann Type II-G or Proportional hazard rate model Gupta et al. [19]

− 0 − Odd Burr-G or Lehmann Type II odd log-logistic-G Alizadeh et al. [4]

− 1 − Lindley odd log-logistic-G New

1 0 1 G(x) -

3.1. The ELOLL-normal distribution

We define the ELOLL-normal (ELOLL-N) distribution from (2.2) by taking G(x; µ,σ) = Φ
(

x−µ
σ

)

and g(x; µ,σ) = σ−1φ
(

x−µ
σ

)
with ξ = (µ ∈ ℜ,σ > 0), where φ (·) and Φ(·) are the pdf and cdf

of the standard normal distribution, respectively. Its pdf is denoted by ELOLL−N(Θ) where Θ =

(α,β ,θ ,µ,σ). We plot this pdf and its hrf in Figure 1. From Figure 1, we see that the pdf shapes

of the ELOLL-N are skewed and bi-modal. Also, its hrf are increasing or firstly unimodal and then

increasing. The ordinary normal distribution acquires these properties.

3.2. The ELOLL-Weibull distribution

We now consider the Weibull distribution as a baseline distribution with pdf g(x ;λ ,γ) =

γλ γxγ−1e−(λx)γ

and cdf G(x ;λ ,γ) = 1−e−(λx)γ

for x,λ ,γ > 0. Its pdf is denoted by ELOLL−W (Θ)

where Θ = (α,β ,θ ,λ ,γ). Its pdf and hrf for selected parameter values are displayed in Figure 2.

From Figure 2, we see that pdf and hrf of the ELOLL-W model have various shapes. The pdf shapes

are decreasing, unimodal, bi-modal, firstly decreasing then unimodal shaped, U-shaped. Also, its hrf

shapes are increasing, decreasing, unimodal, bathtube-shaped and firstly unimodal and then increas-

ing shaped. So, we can say that ELOLL-W distribution can be useful for modelling data.

3.3. The ELOLL-Lomax distribution

The pdf and cdf of the Lomax distribution with scale parameter λ > 0 and shape parameter k > 0 are

given by g(x,λ ,k) = k
λ

(
1+ x

λ

)−k−1
and G(x,λ ,k) = 1−

(
1+ x

λ

)−k
respectively. Its pdf is denoted

by ELOLL−Lx(Θ) where Θ = (α,β ,θ ,λ ,k). Plots of its pdf and hrf for selected parameter values

are displayed in Figure 3.

4. Expansions for cdf and pdf

In this Section, we will obtain cdf and pdf expansions of the ELOLL-G family using Taylor series

of log(1− z) =−
∞

∑
k=0

zk+1

(k+1) , |z|< 1 and others series expansions. Then equation (2.1) can be written
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Fig. 1: Plots of the pdf and hrf of the ELOLL-N distributions
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Fig. 3: Plots of the pdf and hrf of the ELOLL-Lx distributions

as

F (x) = 1−

A︷ ︸︸ ︷
Ḡ(x)αθ

[
G(x)α + Ḡ(x)α]θ
︸ ︷︷ ︸

B

−
∞

∑
i=0

θβ

D︷ ︸︸ ︷
∞

∑
j=0

(−1) j

(
αθ

j

)
G(x)α(i+1)+ j

(θ +β )(i+1)
[
G(x)α + Ḡ(x)α]θ+i+1

︸ ︷︷ ︸
C

,
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where the quantities A,B,C and D are defined in Appendix A. The last equation can be written as

F (x) = 1−

[
∑

∞
k=0dkG(x)k

∑
∞
k=0 bk G(x)k

+
∞

∑
i=0

θβ ∑
∞
k=0 pkG(x)k

(θ +β )(i+1)∑
∞
k=0 hk G(x)k

]
,

where bk and hk are defined in the Appendix A. Then

F (x) = 1−

[
∞

∑
k=0

ϒk G(x)k+
∞

∑
i=0

θβ

(θ +β )(i+1)

∞

∑
k=0

ΩkG(x)k

]
,

where ϒ0 =
d0

b0
and Ω0 =

p0

h0
for k ≥ 1 and

ϒk =
1

b0

[
dk +

1

b0

k

∑
r=1

br ϒk−r

]
and Ωk =

1

h0

[
pk +

1

h0

k

∑
r=1

hr Ωk−r

]
,

then

F (x) = 1−
∞

∑
k=0

ζkΠk(x) =
∞

∑
k=0

υkΠk(x), (4.1)

where Ψk =
∞

∑
i=0

θβ
(θ+β )(i+1)Ωk, υ0 = 1 − ζk = 1 − (ϒk+Ψk) and for k ≥ 1 we have υ0 = −ζk

and Πk(x) is the cdf of the exponentiated-G (exp-G) family with power parameter (γ). Equation

(4.1) reveals that the density of ELOLL-G family is a linear combination of exp-G densities. So,

some mathematical properties of this family can be determined from those of the exp-G distribution.

By differentiating (4.1), we obtain the same mixture representation

f (x) =
∞

∑
k=0

υk+1πk+1(x), (4.2)

where πγ(x) = γ g(x)G(x)γ−1 represents the exponentiated-G family density with power parameter

γ > 0. The equations (4.1) and (4.2) are the main results of this section.

5. Properties

The rth moment of X , say µ ′
r, follows from (4.2) as

µ ′
r = E (X r) =

∞

∑
k=0

υk+1 E
(
Y r

k+1

)
.

Henceforth, Yγ denotes the exp-G distribution with power parameter (γ). For γ > 0, we have

E
(
Y r

γ

)
= γ

∫ ∞
−∞ xr g(x;ξ ) G(x;ξ )γ−1

dx, which can be computed numerically in terms of the

baseline quantile function (qf) QG (u;ξ ) = G−1 (u;ξ ) as E
(
Y r

γ

)
= γ

∫ 1
0 QG (u;ξ )r

uγ−1du. The nth

central moment of X , say Mn, is given by

Mn = E
(
X −µ ′

1

)n
=

n

∑
r=0

(
n

r

)(
−µ ′

1

)n−r
E (X r) ,=

n

∑
r=0

∞

∑
k=0

υk+1

(
n

r

)(
n

r

)(
−µ ′

1

)n−r
E (X r) .

Here, we provide two formulae for the mgf MX (t) = E
(
et X
)

of X . Clearly, the first one can be

derived from equation (5) as MX (t) =∑
∞
k=0 υk+1 Mk+1 (t) , where Mk+1 (t) is the mgf of Yk+1. Hence,
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MX (t) can be determined from the exp-G generating function. A second formula for MX (t) follows

from (4.2) as MX (t) = ∑
∞
k=0 υk+1 ς (t,k) , where ς (t,k) =

∫ 1
0 exp [t QG (u)] ukdu and QG(u) is the qf

corresponding to G(x;φ), i.e., QG(u) = G−1(u;φ). For the ELOLL-W model we get

µ ′
r = E (X r) =

∞

∑
k,h=0

υk+1

k+1

λ r
b
(k+1)
h Γ

(
1+

r

γ

)
,r >−γ with b

(d)
h =

(−1)h

(h+1)
r+γ

γ

(
d −1

h

)
,d > 0.

Using the series expansion (1−z)a =∑
∞
i=0

(
a
i

)
(−z)i for | z |< 1, one can expand (k+1)βαβ xβ−1

exp
[
−(αx)

β
]{

1− exp
[
−(αx)

β
]}k

as

f (x) = (k+1)
∞

∑
h=0

(
k

h

)
(−1)h

h+1
f
(h+1)1/γ λ

(x), (5.1)

where f
(h+1)1/γ λ

(·) denotes the pdf of a two-parameter Weibull distribution with λ replaced by

(h+1)1/γ λ . So, whenever possible, (5.1) can be used to derive moment generating function of the

ELOLL-W model from those of a two-parameter Weibull distribution. Consider pΨq(·) as the com-

plex parameter Wright generalized hypergeometric function with p numerator and q denominator

parameters (Kilbas et al. [21], Equation (1.9)) defined by the series

pΨq

[
(α1,A1) , . . . ,(αp,Ap)

(β1,B1) , . . . ,(βq,Bq)
;z

]
=

∞

∑
n=0

∏
p
j=1 Γ(α j +A jn)

∏
q
j=1 Γ(β j +B jn)

zn

n!
, for z ∈ β (5.2)

where α j, βk ∈Bk, A j, Bk 6= 0, j = 1, p, k = 1,q and the series converges for 1+∑
q
j=1 B j−∑

p
j=1 A j >

0, compare with Mathai and Saxena [26] and Srivastava et al. [31]. This function was originally

introduced by Wright [33]. Let X be a random variable having the pdf (3.2). Following similar

algebraic developments of Nadarajah et al. [28], we can write the moment generating function

(mgf) of the ELOLL-W model

MX(t) =
∞

∑
k,h=0

υk+1

(−1)h

h+1
1Ψ0

[
(1,1/γ)

−
; t {(h+1)1/γλ}−1

]
. (5.3)

Hypergeometric functions are included as in-built functions in most popular algebraic mathematical

software packages, so the special function in (5.2) and hence (5.3) can be easily evaluated by the

software packages Maple, Matlab and Mathematica using known procedures.

Suppose X1, . . . ,Xn is a random sample from an ELOLL-G distribution. Let Xi:n denote the ith

order statistic. The pdf of Xi:n can be expressed as

fi:n(x) =
f (x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j

(
n− i

j

)
F(x) j+i−1.

Following similar algebraic developments of Nadarajah et al. [29], we can write the density function

of Xi:n as

fi:n(x) =
∞

∑
r,k=0

br,k πr+k+1(x), (5.4)
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where br,k =
n!(r+1)(i−1)!υr+1

(r+k+1) ∑
n−i
j=0

(−1) j f j+i−1,k

(n−i− j)! j!
, υr+1 is given in Section 3 and the quantities f j+i−1,k

can be determined with f j+i−1,0 = υ
j+i−1

0 and recursively for k ≥ 1

f j+i−1,k = (k υ0)
−1

k

∑
m=1

[m( j+ i)− k] υm f j+i−1,k−m.

Equation (5.4) reveals that the pdf of the ELOLL-G order statistics is a linear combination of exp-G

density functions.

6. Characterizations

This section deals with various characterizations of ELOLL distribution. These characterizations

are presented in two directions: (i) based on truncated moments and (ii) in terms of the hazard

function. It should be noted that characterization (i) can be employed also when the cdf does not

have a closed form. We present our characterizations (i) and (ii) in two subsections.

6.1. Characterizations based on truncated moments

Our first characterization employs a theorem due to Glanzel [16], see Theorem 1 of Appendix B.

The result, however, holds also when the interval H is not closed since the condition of Theorem 1

is on the interior of H.

Proposition 1.6 Let X : Ω → R be a continuous random variable and let q1 (x) =
[
G(x)α +G(x)α]−2

{
1−β log

[
G(x)α

G(x)α+G(x)α

]}−1

and q2 (x) = q1 (x)
[

G(x)α

G(x)α+G(x)α

]
for x ∈ R. The

random variable X belongs to the family (2.2) if and only if the function η defined in Theorem 1

has the form

η (x) =
θ

(θ +1)

[
G(x)α

G(x)α +G(x)α

]
, x ∈ R.

Proof. Let X be a random variable with pdf (2.2), then

(1−F (x))E [q1 (x) | X ≥ x] =
θ

(θ +β )

[
G(x)α

G(x)α +G(x)α

]θ

, x ∈ R,

and

(1−F (x))E [q2 (x) | X ≥ x] =
θ 2

(θ +1)(θ +β )

[
G(x)α

G(x)α +G(x)α

]θ+1

, x ∈ R,

and finally

η (x)q1 (x)−q2 (x) =−
1

(θ +1)
q1 (x)

[
G(x)α

G(x)α +G(x)α

]
< 0, f or x ∈ R.

Conversely, if η is given as above, then
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s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

αθg(x)G(x)α−1

G(x)
[
G(x)α +G(x)α] , x ∈ R,

and hence

s(x) = log

{[
G(x)α

G(x)α +G(x)α

]θ
}
, x ∈ R.

Now, in view of Theorem 1, X has density (2.2).

Corollary 1.6. Let X : Ω →R be a continuous random variable and let q1 (x) be as in Proposi-

tion 1. 6. The pdf of X is (2.2) pdf if and only if there exist functions q2 and η defined in Theorem

1 satisfying the differential equation

η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

αθg(x)G(x)α−1

G(x)
[
G(x)α +G(x)α] , x ∈ R.

The general solution of the above differential equation is

η (x) =

{
1+

G(x)α

G(x)α

}[∫
αθg(x)G(x)α−1

G(x)α−1

[
G(x)α +G(x)α]2 (q1 (x))

−1
q2 (x)dx +D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given

in Proposition 1. 6. with D = 0. However, it should be also mentioned that there are other triplets

(q1,q2,η) satisfying the conditions of Theorem 1.

6.2. Characterization in terms of the hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies

the first order differential equation

f ′(x)

f (x)
=

h′F(x)

hF(x)
−hF(x).

For many univariate continuous distributions, this is the only characterization available in terms

of the hazard function. The following characterization establishes a non-trivial characterization of

ELOLL distribution for β = 0, in terms of the hazard function which is not of the above trivial form.

Proposition 2.6 Let X : Ω → R be a continuous random variable. Then, for β = 0 , X has pdf

(2.2) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)−
g′ (x)

g(x)
hF (x) = αθg(x)

d

dx

{
G(x)α−1

G(x)
[
G(x)α +G(x)α]

}
, x ∈ R.

Proof. If X has pdf (2.2), then clearly the above differential equation holds. Now, if the differential

equation holds, then
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d

dx

{
(g(x))−1

hF (x)
}
= αθ

d

dx

{
G(x)α−1

G(x)
[
G(x)α +G(x)α]

}

or

hF (x) = αθg(x)

{
G(x)α−1

G(x)
[
G(x)α +G(x)α]

}
, x ∈ R,

which is the hazard function of (2.2).

7. Maximum Likelihood Estimation (MLE) and Inference

Several approaches for parameter estimation were proposed in the literature but the maximum like-

lihood method is the most commonly employed. The MLEs enjoy desirable properties and can be

used for constructing confidence intervals and also for test statistics. The normal approximation for

these estimators in large samples can be easily handled either analytically or numerically. Here, we

consider the estimation of the unknown parameters of the new family from complete samples only

by maximum likelihood. Let x1, . . . ,xn be a random sample from ELOLL-G model with a (q+3)×1

parameter vector Ξ =(α,β ,θ ,ξ )⊺, where ξ is a q×1 baseline parameter vector. The log-likelihood

function for Ξ can be expressed as

ℓn(Ξ) = n log(α)+2n log(θ)−n log(θ +β )+
n

∑
i=1

logg(xi,ξ )+(αθ −1)
n

∑
i=1

log Ḡ(xi,ξ )

+(α −1)
n

∑
i=1

logG(xi,ξ )+(1−θ)
n

∑
i=1

log(ti)+
n

∑
i=1

log
{

1−β log
[

Ḡ(xi,ξ )
α

ti

]}
,

where ti = G(xi,ξ )
α + Ḡ(xi,ξ )

α
. The log-likelihood function can be maximized by solving the

following nonlinear normal equations which are available if needed. To solve these equations, it

is more convenient to use nonlinear optimization methods such as the quasi-Newton algorithm to

numerically maximize ℓ(Ξ).

The likelihood ratio (LR) statistic can be used for comparing the some sub-models of ELOLL-

G model. For example, the LR statistic can be used to discriminate between the ELLOL-Lomax

and L-Lomax since they are nested models, which is equivalently to test H0 : α = β = 1. The

LR statistic reduces to w = 2[ℓ(α̂, β̂ , σ̂ , β̂ββ )− ℓ(1,1, σ̃ , β̃ββ )], where (α̂, β̂ , σ̂ , β̂ββ ) are the unrestricted

MLEs and (1,1, σ̃ , β̃ββ ) are the restricted estimates under H0. The statistic w is asymptotically (as

n → ∞) distributed as χ2
k , where k is difference of two parameter vectors of nested models. For

example, k = 2 for above hypothesis test.

8. A simulation study

In this subsection, we perform the simulation study using the exponential Lindley odd log-logistic

exponential distribution (ELOLL-E) which is the generalization of the exponential distribution with

cdf F (x;λ ) = 1− exp(−λx) ,x > 0,λ > 0. To see the performance of MLE’s of this distributions,

we generate 1,000 samples of sizes 20, 50 and 100 from ELOLL-E using inverse of the its cdf for

θ = 2. The results of the simulation are reported in Table (2). From this Table, we observe that the
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estimates approach true values as the sample size increases whereas the standard devations of the

estimates decrease.

Table 2: Emprical means and standard deviations (in paranthesis) for selected parameters values of

ELOLL-E distribution

Parameters n = 20 n = 50 n = 100

α,β ,λ α̂,β̂ ,λ̂ α̂,β̂ ,λ̂ α̂,β̂ ,λ̂

1,1,1 1.0899,1.1654,1.0906 1.0170,1.0452,1.0189 1.0111,1.0031,0.9847

(0.2581),(0.9818),(0.3488) (0.1379),(0.8293),(0.2274) (0.0848),(0.7345),(0.1670)

2,2,2 2.1705,2.3459,1.9854 2.0673,1.9774,1.9883 2.0361,1.9851,1.9916

(0.4130),(1.9485),(0.2642) (0.2550),(0.7811),(0.1546) (0.1795),(0.5796),(0.1736)

2.1.0.5 2.1053,1.0154,0.5046 2.0586,1.0128,0.4996 2.0117,1.0085,0.5009

(0.3937),(0.3690),(0.0603) (0.2405),(0.3371),(0.0424) (0.1653),(0.2717),(0.0286)

1,0.5,2 1.0147,0.7305,2.1798 1.0062,0.6800,2.0887 0.9945,0.6546,2.0635

(0.2305),(0.8415),(0.7783) (0.1214),(0.6699),(0.4054) (0.0912),(0.5922),(0.4099)

1,2,0.5 1.0834,1.8239,0.5047 1.0284,1.9398,0.5030 1.0210,1.9620,0.5017

(0.2335),(0.6285),(0.1195) (0.1259),(0.4712),(0.0764) (0.0872),(0.4550),(0.0530)

2,0.5,0,5 2.0795,0.5410,0.5105 2.0380,0.5515,0.5035 2.0156,0.5280,0.5033

(0.3949),(0.2886),(0.0661) (0.2302),(0.6220),(0.0445) (0.1683),(0.5280),(0.0295)

0.75,5,2 0.8201,4.8903,2.1585 0.7895,4.8956,1.9550 0.7619,4.9821,1.9942

(0.1484),(0.7185),(0.5310) (0.1029),(0.3244),(0.3808) (0.0659),(0.2595),(0.2433)

10,10,10 10.679,10.0500,10.0436 10.1903,10.0244,10.0041 10.1852,9.9983,9.9934

(2.0187),(2.1032),(0.2139) (1.1108),(1.5571),(0.1350) (0.9405),(2.2128),(0.1038)

9. Data analysis

In this section, we introduce three applications using well-known data sets to show the flexibility and

applicability of the proposed models over other models. First, we describe the data sets and we fit

some distributions to these data sets using MLE method. Then we compare proposed distributions

with several member of distribution families. The model selection is applied using the estimated

log-likelihood
(
ℓ̂
)
, Kolmogorov-Smirnov (K-S) statistics, Akaike information criterion (AIC), Con-

sistent Akaike information criteria (CAIC), Bayesian information criterion (BIC), and Hannan-

Quinn information criterion (HQIC). The AIC, CAIC, BIC and HQIC are by given by AIC =

−2ℓ̂+2p, CAIC =−2ℓ̂+2pn(n− k−1)−1 , BIC =−2ℓ̂+ p logn and HQIC =−2ℓ̂+ p log(logn),

where p is the number of the estimated model parameters and n is sample size. When searching the

best fit among others to data, the distribution with the smallest AIC, CAIC, BIC, HQIC and K-S

values and the biggest log-likelihood and p values of the K-S statistics is chosen. All calculations

are obtained by maxLik routine in R programme.

First data set studied by Murthy et al. [27], which represent failure times for a particular wind-

shield device. This data set has been analyzed by Cordeiro et al. [14]. Using this data set, we

fit the ELOLL-N, Lindley-normal (L-N) (Çakmakyapan and Ozel, [9]), exponential-normal (E-N)
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or Lehmann type II exponentiated-normal (Alzaatreh et al., [5]; Cordeiro et al. [15]), McDonald-

normal (McN) (Alexander et al. [3]), normal-normal{exponential} (NNE) (Alzaatreh et al. [6]),

normal-Cauchy{log-logistic} (NCLL) (Alzaatreh, et al. [7]), logistic-normal (LN) (Tahir et al. [32]),

generelized Kumaraswamy-normal (GKw-N) (Cordeiro et al. [11]) and generalized odd log-logistic

normal (GOLLN) (Cordeiro, et al. [10]) distributions models. The results of this application are

listed in Table 3.

As second data analysis, we analyze the data set studied by Abouammoh et al. [1], which repre-

sent the lifetime in days of 40 patients suffering from leukemia from one of the Ministry of Health

Hospitals in Saudi Arabia. By using this data set we compare the ELOLL-W distribution with

logistic-Weibull (LW) (Tahir et al. [32]), odd-Burr-Weibull (OBW) (Alizadeh et al. [4]), Lindley-

Weibull (L-W) (Çakmakyapan and Ozel [9]) and exponential-Weibull (E-W) or ordinary Weibull

distributions. The results of this application are listed in Table 4.

The third real data consists of the number of successive failure for the air conditioning sys-

tem reported of each member in a fleet of 13 Boeing 720 jet airplanes. The pooled data with 213

observations was considered by Proschan [30] and Kuş [23]. For this data, we use the ELOLL-Lx

distribution and compare it Zografos-Balakrishan odd-loglogistic-Lomax (ZBOLL-Lx) (Cordeiro

et al. [13]), Kumaraswamy Lomax (Kw-Lx) (Lemonte and Cordeiro [24]), beta-Lomax (B-Lx)

(Lemonte and Cordeiro [24]) and its sub-models. The results of the application are in Table 5.

Table 3: MLEs of the model parameters for the windshield data, the corresponding standard errors

(given in parentheses below estimated parameters) and the AIC, CAIC ,BIC, HQIC and K-S values

Model α̂,β̂ ,θ̂ ,µ̂,σ̂ −ℓ̂ AIC,CAIC,BIC,HQIC K-S (p-v.)

ELOLL-N 0.1679, 6.5946, 3.0515, 3.1785, 0.4070 124.3870 258.7740, 259.5433, 270.9281, 263.6599 0.0463

(0.0849), (9.5475), (0.6488), (0.2077), (0.1255) (0.9937)

McN 125.6276, 6.9936, 0.0299, 4.7966, 2.4578 128.2184 266.4367, 267.2059, 278.5908, 271.3225 0.0805

(0.2334), (0.3941), (0.0131), (0.9119), (0.4754) (0.6478)

NNE 9.0338, 0.7306,−19.3314, 5.9635 128.4202 264.8404, 265.3467, 274.5637, 268.7491 0.0991

(0.4896), (0.0873), –, (0.4711), (0.3606) (0.3816)

NCLL 14.6194, 0.7789,− 19.0441, 4.4038 128.1291 264.2582, 264.7645 ,273.9814, 268.1669 0.0921

(3.8058), (0.1874), –, (2.6534), (0.9849) (0.4742)

LN –, –, 6.1695, 1.1181, 4.0953 130.0301 266.0602, 266.3602, 273.3526, 268.9917 0.0805

–, –,(4.5532), (1.0089), (3.0241) (0.6482)

GKwN 90.5274, 4.6255, 0.6399,− 6.3998, 4.0251 127.9231 265.8463, 266.6155, 278.0003, 270.7321 0.0971

(13.5280), (5.0395), (0.3384), (1.7059), (1.2968) (0.4067)

GOLLN 0.4557, 1.1863, –, 2.5139, 0.6358 127.0450 262.0900, 262.5963, 271.8133, 265.9987 0.0901

(0.2353), (1.2905), –, (0.7508), (0.3306) (0.5036)

L-N –, –, 0.1446, 0.258, 0.5530 127.8708 261.7416, 262.0416, 269.0341, 264.6731 0.0775

–, –, (0.0112), (1.3e-5), (6.2e-6) (0.6946)

E-N –, –, 0.1382, 1.0954, 0.5583 128.0645 262.1289, 262.4289, 269.4214, 265.0604 0.0618

–, –, (0.0151), (0.0006), (0.0002) (0.8908)
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Table 4: MLEs of the model parameters for the lukemia data, the corresponding standard errors

(given in parentheses below estimated parameters) and the AIC, CAIC ,BIC, HQIC and K-S values

Model α̂,β̂ ,θ̂ ,λ̂ ,γ̂ −ℓ̂ AIC,CAIC,BIC,HQIC K-S(p-v.)

ELOLL-W 0.2389, 441.8416, 1.7418, 0.0009, 4.5233 299.1043 608.2087, 609.9734, 616.6531, 611.2619 0.0651

(0.0567), (4.1943), (0.4284), (0.0001), (0.4813) (0.9958)

LW –,–, 34.7613, 0.0009, 0.0916 311.4651 628.9302, 629.5969, 633.9968, 630.7621 0.1618

–,–, (3.8176), (0.0000), (0.0016) (0.2459)

OBW 3.0365, –, 28.9395, 0.00015, 0.7735 303.8669 615.7339, 616.8768, 622.4894, 618.1765 0.1163

(1.3087), –, (1.1964), (0.0000), (0.3973) (0.6520)

L-W 1, 1, 0.8129, 0.0011, 2.3265 303.6019 613.2038, 613.8704, 618.2704, 615.0357 0.1075

–, –, (0.9133), (0.0006), (0.4141) (0.7436)

E-W 1, 0, 336.0406, 0.00008, 2.5775 304.4153 614.8305, 615.4972, 619.8972, 616.6625 0.1237

–, –, (4.2136), (0.00002), (0.4103) (0.5728)

Table 5: MLEs of the model parameters for the Proschan data, the corresponding standard errors

(given in parentheses below estimated parameters) and the AIC, CAIC ,BIC, HQIC and K-S values

Model α̂,β̂ ,θ̂ ,̂k,λ̂ −ℓ̂ AIC,CAIC,BIC,HQIC K-S (p-v.)

ELOLL-Lx 5.1293, 42.3803 ,193.8547, 0.0461, 0.0879 1172.9880 2355.9770, 2356.2670, 2372.7830, 2362.7690 0.0372

(1.4911), (2.1788), (1.1108), (0.0032), (0.1794) (0.9296)

Kw-Lx 1.1322, 234.9295, -, 0.0208, 172.2718 1174.9830 2357.9660, 2358.1590, 2371.4110, 2363.4000 0.0439

(0.0622), (0.3286), -, (0.0053), (2.1826) (0.8043)

BLx 0.9395, 13.5670, - (0.0053), (2.1826) 1176.7130 2361.4260, 2363.7160, 2380.2330, 2370.2180 0.0583

(0.0794),(0.6603),-, (0.2486),(2.1986) (0.4642)

ZBOLL-Lx 14.9281, 0.4497,-, 0.0605, 0.0013 1177.1000 2362.1990, 2362.3920, 2375.6440, 2367.6330 0.0489

(1.8577), (0.0878),-, (0.0028), (0.0006) (0.6878)

L-Lx 1, 1, 441.4941, 0.0130, 441.9408 1175.3800 2356.8750, 2356.8750, 2366.8440, 2360.8350 0.0389

1, 1, (2.1022), (0.0009), (0.8563) (0.9040)

E-Lx 1, 0, 1346.2550, 0.0045, 469.5059 1175.3850 2356.7500, 2356.8850, 2366.8540, 2360.8450 0.0390

1, 0, (2.3463), (0.0003), (1.0493) (0.9021)

OBLx 1.0194, -, 1251.0490, 0.0052, 444.8587 1175.3160 2358.632, 2358.8250, 2372.0780, 2364.0660 0.0403

(0.0544),-, (2.1920), (0.0018), (0.6342) (0.8796)

EL-Lx 1, 78.9168, 1361.9960, 0.0043, 433.0816 1175.3780 2358.7560, 2358.9480, 2372.2010, 2364.1900 0.0390

1, (2.0991), (0.7953), (0.0003), (0.7930) (0.9036)

LOLL-Lx 1.1071, 1,396.4973, 0.0131, 201.9921 1174.9910 2357.9810, 2358.1740, 2371.4260, 2363.4150 0.0433

(0.0587), -, (2.1042), (0.0035), (2.1207) (0.8181)

Lx 1, 0, 1, 22085.62, 1930929.40 1178.3410 2360.6830, 2360.7400, 2367.4060, 2363.4000 0.2346

-, -, -, (23.9112), (00000) (00000)

From Tables 3-5, we see that the ELOLL-N, ELOLL-W and ELOLL-Lx models have the lowest

AIC, CAIC, BIC, HQIC and K-S values and has the biggest estimated log-likelihood and p-value
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Table 6: LR statistics for three data sets

Model Hypothesis Test statistics p-value

ELLOL-N vs L-N H0:α=β=1, H1: H0 false 6.9668 0.0307

ELLOL-N vs E-N H0:α=1, β=0, H1: H0 false 7.3550 0.0253

Model

ELLOL-W vs L-W H0:α=β=1, H1: H0 false 8.9952 0.01111

ELLOL-W vs E-W H0:α=1, β=0, H1: H0 false 10.622 0.00494

ELLOL-W vs H0: β=0, H1: H0 false 9.5252 0.00202

Model

ELLOL-Lx vs L-Lx H0: α=β=1, H1: H0 false 4.7840 0.09144

ELLOL-Lx vs E-Lx H0: α=1, β=0, H1: H0 false 4.7940 0.09099

ELLOL-Lx vs OBLx H0: β=0, H1: H0 false 4.6560 0.03094

ELLOL-Lx vs EL-Lx H0: α=1, H1: H0 false 4.7800 0.02879

ELLOL-Lx vs LOLL-Lx H0: β=1, H1: H0 false 4.0060 0.04533

ELLOL-Lx vs Lx H0:α=θ=1, β=0, H1: H0 false 10.7060 0.013426

of the K-S statistics among all the fitted models. So they could be chosen as the best models under

these criteria.

The histograms of three data sets and the estimated pdfs and cdfs of the application models are

displayed in Figures 4. From the Figures 4, we show that the ELOLL-G models provide the good

fit to these data sets as compared to other models.

A comparison of the proposed distributions with some of their sub-models using LR statistics

is performed in Table 6. From Table 6, we can conclude that the ELOLL-N and ELOLL-W models

yield a better fit to these data than the other two and three sub-models respectively. Also, there is

no difference among the fits to the current data using the ELLOL-Lx, L-Lx and E-Lx models. In

addition, these models provide a better representation of the data than the other sub-models based

on the LR test at the 5% significance level.

10. Conclusions

A new family of distributions called the exponential Lindley odd log-logistic G family is introduced

and studied. The new family generalizes the Lindley-G family [9], Lehmann Type II-G family [19]

and odd Burr-G family [4] as well as it introduces new distribution families such as exponential

Lindley-G family and Lindley odd log-logistic-G family. We provide some mathematical properties

of the new family including ordinary, generating function and order statistics. Characterizations

based on truncated moments as well as in terms of the hazard function are presented. The maximum

likelihood is used for estimating the model parameters. We give a simulation study for the maximum

likelihood estimators by using the special member of new family. Finally, the usefulness of the

family is illustrated by means of three real data sets. The new models provide consistently better fits

than other competitive models for these data sets.
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Fig. 4: The fitted pdfs and the fitted cdfs for three data sets
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[22] Korkmaz, M. Ç. and Genç, A. İ. (2017). A new generalized two-sided class of distributions with an

emphasis on two-sided generalized normal distribution. Communications in Statistics-Simulation and

Computation, 46(2), 1441-1460.
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Appendix A.

A =
∞

∑
k=0

dk︷ ︸︸ ︷
(−1)k

(
αθ

k

)
G(x)k,B =

∞

∑
k=0

bk G(x)k, C =
∞

∑
k=0

hk G(x)k,

and

D =
∞

∑
k=0

qk︷ ︸︸ ︷
∞

∑
l=k

(−1)l+k

(
α (i+1)+ j

l

)(
l

k

)
G(x)k.

Since
[
G(x)c + Ḡ(x)c

]
= ∑

∞
m=0 tm G(x)m, where tm = (−1)m

[(
c
m

)
+∑

∞
w=m (−1)w

(
c
w

)(
c
m

)]
. Then

[
G(x)c + Ḡ(x)c

]a
=

∞

∑
w=0

fw︷ ︸︸ ︷
∞

∑
k=0

(−1)k−w

k!

(
k

w

)
(a)w

(
∞

∑
m=0

tm G(x)m

)w

,

where (a)w = a(a−1) ...(a− k+1) is the descending factorial. For a power series raised to a posi-

tive integer w

(
∞

∑
m=0

tm um

)w

=
∞

∑
m=0

mw,m um, where the coefficients mw,m (for m = 1.2, ...) are easily deter-

mined from the recurrence equationmw,m = (mt0)
−1

m

∑
d.=1

[d (m+1)−m] (td)
(
mw,m−d

)
, where mw,0 = tw

0

,The coefficient mw,m can be calculated from mw,0, ...,mw,m−1 and hence from the quantities t0, ..., tm. So,[
G(x)α + Ḡ(x)α]θ = ∑

∞
k=0 bk G(x)k, where bk = bk (α,θ) = ∑

∞
w=0 fwmw.k, and

[
G(x)α + Ḡ(x)α]θ+i+1

=

∑
∞
m=0 hk G(x)k,where hk = hk (α,θ + i+1) = ∑

∞
w=0 fwmw.k.

Appendix B.

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [d,e] be an interval for some d <
e (d =−∞, e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the

distribution function F and let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x]η (x) , x ∈ H,

is defined with some real function η . Assume that q1,q2 ∈ C1 (H), η ∈ C2 (H) and F is twice continuously

differentiable and strictly monotone function on the set H. Finally, assume that the equation ηq1 = q2 has no
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real solution in the interior of H. Then F is uniquely determined by the functions q1,q2 and η , particularly

F (x) =
∫ x

a
C

∣∣∣∣
η ′ (u)

η (u)q1 (u)−q2 (u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′ q1
η q1−q2

and C is the normalization

constant, such that
∫

H dF = 1.
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