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Abstract: In this article we propose and study a new family of distributions which is defined by using the

genesis of the truncated Poisson distribution and the exponentiated generalized-G distribution. Somemathe-

matical properties of the new family including ordinary and incomplete moments, quantile and generating

functions, mean deviations, order statistics and their moments, reliability and Shannon entropy are derived.

Estimation of the parameters using the method of maximum likelihood is discussed. Although this gener-

alization technique can be used to generalize many other distributions, in this study we present only two

special models. The importance and flexibility of the new family is exemplified using real world data.
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1 Introduction

In the last decades, several generalized distributions have been proposed based on di�erent modifica-

tion methods. These modification methods require the addition of one or more parameters to base model

which could provide better adaptability in the modeling of real lifetime data. Modern computing technology

has made many of these techniques accessible even if analytical solutions are very complicated. Several

continuous univariate-G families have recently appeared. Some notable family includes Marshall–Olkin-G

family by Marshall and Olkin [22], exponentiated-G class by R. C. Gupta, P. L. Gupta and R. D. Gupta [17],

transmuted exponentiated generalized-G family by Yousof, Afify, Alizadeh, Butt, Hamedani and Ali [36],

transmuted geometric-G by Afify, Alizadeh, Yousof, Aryal and Ahmad [1], Kumaraswamy transmuted-G by

Afify, Cordeiro, Yousof, Alzaatreh and Nofal [2], Burr X-G by Yousof, Afify, Hamedani and Aryal [37], the

odd Lindley-G family of distributions by Silva, Percontini, de Brito, Ramos, Venancio and Cordeiro [33],

exponentiated transmuted-G family by Merovci, Alizadeh, Yousof and Hamedani [23], the odd-Burr gen-

eralized family by Alizadeh, Cordeiro, Nascimento, Lima and Ortega [5], the transmuted Weibull-G family

by Alizadeh, Rasekhi, Yousof and Hamedani [6], the type I half-logistic family by Cordeiro, Alizadeh and

Diniz Marinho [11], the complementary generalized transmuted Poisson family by Alizadeh, Yousof, Afify,

Cordeiro and Mansoor [7], the Zografos–Balakrishnan odd log-logistic family of distributions by Cordeiro,

Alizadeh, Ortega and Serrano [12], logistic-X by Tahir, Cordeiro, Alzaatreh, Mansoor and Zubair [34],

a new Weibull-G by Tahir, Zubair, Mansoor, Cordeiro, Alizadeh and Hamedani [35], the generalized odd

log-logistic family by Cordeiro, Alizadeh, Ozel, Hosseini, Ortega and Altun [13], the beta odd log-logistic
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generalized family of distributions by Cordeiro, Alizadeh, Tahir, Mansoor, Bourguignon and Hamedani [14],

beta transmuted-H by Afify, Yousof and Nadarajah [3], generalized transmuted-G by Nofal, Afify, Yousof

and Cordeiro [30] and beta Weibull-G family by Yousof, Rasekhi, Afify, Ghosh, Alizadeh and Hamedani [38]

among others.

In this paper we propose and study a generalized family of distribution using the genesis of Poisson dis-

tribution with the followingmotivation. Suppose that a system has N subsystems functioning independently

at a given time where N has zero truncated Poisson (ZTP) distribution with parameter λ. It is the conditional

probability distribution of a Poisson-distributed randomvariable, given that the value of the randomvariable

is not zero. The probability mass function (pmf) of N is given by

P(N = n) = 1

[1 − exp (−λ)]
exp (−λ)λn

n!
for n = 1, 2, . . . .

Note that for ZTP variable the expected value and variance are respectively given by

E(N) = λ

[1 − exp (−λ)]

and

Var(N) = λ + λ2
[1 − exp (−λ)] −

λ2

[1 − exp (−λ)]2 .

Suppose that the failure time of each subsystem has the exponentiated Generalized-G (“EGG(a, b)” for short)
distribution defined by the cumulative distribution function (cdf) and probability density function(pdf) given

by

H(x; a, b,ψ) = {1 − [1 − G(x;ψ)]a}b

and

h(x; a, b,ψ) = abg(x;ψ)[1 − G(x;ψ)]a−1{1 − [1 − G(x;ψ)]a}b−1,

respectively, where a > 0 and b > 0 are two additional shape parameters. Let Yi denote the failure time of the

ith subsystem and let X = min{Y1, Y2, . . . , YN}. Then the conditional cdf of X given N is

F(x | N) = 1 − P(X > x | N) = 1 − [1 − H(x; a, b,ψ)]N .

Therefore, the unconditional cdf of X, as described in [31], can be expressed as

F(x; a, b, λ,ψ) = 1 − exp{−λ{1 − [1 − G(x;ψ)]
a}b}

[1 − exp (−λ)] . (1)

The cdf in (1) is called the exponentiated generalized G Poisson (“EGGP”) family of distributions. The corre-

sponding pdf is

f(x; a, b, λ,ψ) = abλg(x)[1 − G(x)]
a−1{1 − [1 − G(x)]a}b−1

[1 − exp (−λ)] exp{λ{1 − [1 − G(x)]a}b}
. (2)

For b = 1we have EGP class of distribution and for a = 1we have GGP class of distribution both of which are
embedded in EGGP class.

Using the power series expansion of exp(x), we express the pdf in (2) as

f(x) = abg(x)[1 − G(x)]
a−1

[1 − exp(−λ)]
∞∑
i=0

(−1)i{1 − [1 − G(x)]a}b(i+1)−1
i!λ−i−1

.

Using the series expansion (1 − z)b−1 = ∑∞j=0 (−1)jΓ(b)j!Γ(b−j) z
j the last equation can be expressed as

f(x) =
∞∑
k=0

tkπk+1(x), (3)

where

tk =
ab(−1)k

[1 − exp (−λ)](k + 1)
∞∑
i,j=0

(−1)i+j(b(i+1)−1j )(a(j+1)−1k
)

i!λ−i−1
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and

πk+1(x) = (k + 1)g(x)[G(x)]k .

This is the Exp-G pdf with power parameter (k + 1). By integrating (3), we obtain the mixture representation

of F(x) as
F(x) =

∞∑
k=0

tkΠk+1(x), (4)

where Πk+1(x) is the cdf of the Exp-G family with power parameter (k + 1). Equation (4) reveals that the EGGP
density function is a linear combinationof Exp-Gdensities. Thus, some structural properties of thenew family

such as the ordinary and incompletemoments and the generating function can be immediately obtained from

well-established properties of the Exp-G distributions.

The properties of Exp-G distributions have been studied by many authors in recent years, see Mud-

holkar and Srivastava [25] and Mudholkar, Srivastava and Freimer [26] for exponentiated Weibull (EW)

distributions, R. C. Gupta, P. L. Gupta and R. D. Gupta [17] for exponentiated Pareto distributions, Gupta and

Kundu [18] for exponentiated exponential distributions, Nadarajah and Kotz [29] for the exponentiated-type

distributions, Nadarajah [27] for exponentiated Gumbel distributions, Shirke and Kakade [32] for exponen-

tiated log-normal distributions and Nadarajah and Gupta [28] for exponentiated gamma distributions (EGa),

among others.

The rest of the paper is outlined as follows. In Section 2 we provide the formulation of EGGP models for

two special distributions. Mathematical properties of the EGGPmodel are discussed in Section 3. In Section 4

we discuss stress-strengthmodels. The order statistics is discussed in Section 5. Parameter estimation proce-

dures using method of maximum likelihood are presented in Section 6. Section 7 provides the application of

the two generalized distributions to model real world data. Some concluding remarks are given in Section 8.

2 Special Models

The formulation provided in Section 1 can be used to generalize any classical probability distribution. For

illustration purpose we will generalize the following two popular and versatile distributions, namely: the

Weibull (W) distribution and the Pareto (Pa) distribution. The parameters of these models are positive real

numbers. The pdf and cdf of these distributions are provided in Table 1.

Model Pdf: g(x;ψ) Cdf: G(x;ψ) Support

W βαβxβ−1 exp[−(αx)β] 1 − exp[−(αx)β] (0,∞)
Pa ( αx )( θx )α 1 − ( θx )α (θ,∞)

Table 1. The pdf and cdf of Weibull and Pareto distributions.

2.1 The EGWP Distribution

The cdf and pdf of the EG-Weibull Poisson (EGWP) distribution are given, respectively, by

F(x) = 1 − exp(−λ{1 − exp(−a(αx)
β)}b)

[1 − exp(−λ)]

and

f(x) = abλβαβxβ−1

[1 − exp(−λ)]
exp(−a(αx)β){1 − exp(−a(αx)β)}b−1

exp(λ{1 − exp(−a(αx)β)}b)
.

Plots of the pdf and cdf of the EGWP distribution are displayed in Figure 1 for some parameter values. As we

shall see from the graphs EGWP distribution is more flexible compare to classical Weibull distribution.
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Figure 1. Pdf (top) and cdf (bottom) of EGWP distribution.

2.2 The EGPaP Distribution

The cdf and pdf of the EG-Pareto Poisson(EGPaP) distribution (for x > θ) are, respectively, given by

F(x) =
1 − exp(−λ{1 − ( θx )aα}b)
[1 − exp(−λ)]

and

f(x) =
abλαθα( θx )(a−1)α[1 − ( θx )aα]b−1

xα+1[1 − exp(−λ)] exp(λ[1 − ( θx )aα]b)
.

Plots of the pdf and cdf of the EGPaP distribution are displayed in Figure 2 for some parameter values. As we

shall see from the graphs EGPaP distribution is more flexible compare to the Pareto distribution.



G. R. Aryal and H.M. Yousof, The Exponentiated Generalized-G Poisson Family of Distributions | 11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

x

f(
x
)

 α=1,  λ=1,  a=1,  b=1,  θ=0.1
 α=1.5,  λ=0.5,  a=0.5,  b=2,  θ=0.2
 α=0.5,  λ=0.8,  a=2,  b=5,  θ=0.3
 α=2,  λ=2.5,  a=0.5,  b=2,  θ=0.4
 α=1,  λ=3.5,  a=2,  b=4,  θ=0.5
 α=0.5,  λ=0.5,  a=0.5,  b=0.5,  θ=0.5

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x
)

 α=1,  λ=1,  a=1,  b=1,  θ=0.1
 α=1.5,  λ=0.5,  a=0.5,  b=2,  θ=0.2
 α=0.5,  λ=0.8,  a=2,  b=5,  θ=0.3
 α=2,  λ=2.5,  a=0.5,  b=2,  θ=0.4
 α=1,  λ=3.5,  a=2,  b=4,  θ=0.5
 α=0.5,  λ=0.5,  a=0.5,  b=0.5,  θ=0.5

Figure 2. Pdf (top) and cdf (bottom) of EGPaP distribution

3 Mathematical Properties

In this section we provide some structural and mathematical properties of the EGGP distribution including

the quantile function, moments, entropy measure, residual and revered residual life.

3.1 Quantile Function

The quantile function of a distribution is the real solution of F(xq) = q for 0 ≤ q ≤ 1. The quantile function
is obtained by inverting equation (1) provided that closed form expression for QG(q) = G−1(q) is available.
Setting

F(x) = 1 − exp{−λ{1 − [1 − G(x;ψ)]
a}b}

[1 − exp (−λ)] = q,
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we have

G(x) = 1 − [1 − {−λ−1 log(1 − (1 − exp(−λ))q)}1/b]1/a .
Therefore

x = G−1(1 − [1 − {−λ−1 log(1 − (1 − exp(−λ))q)}1/b]1/a).
We can use the inversion method to simulate random numbers from a given distribution. For example,

we can simulate random numbers X from EGWP distribution by

1 − exp(−(αx)β) = 1 − [1 − {−λ−1 log(1 − (1 − exp(−λ))U)}1/b]1/a ,

which implies

x = 1
α
{−1

a
log[1 − {−λ−1 log(1 − (1 − exp(−λ))U)}1/b]}1/β ,

where U has uniform distribution on (0, 1).

3.2 General Properties

The rth ordinary moment of X is given by μ�r = E(Xr) = ∫∞−∞ xr f(x) dx. Using (2), we obtain

μ�r =
∞∑
k=0

tkE(Y r
k+1). (5)

Henceforth, Yk+1 denotes the Exp-G distribution with power parameter (k + 1), where

E(Y r
k+1) = (k + 1)

∞

∫
−∞

xrg(x;ψ)G(x;ψ)k dx,

which can be computed numerically in terms of the baseline quantile function (qf) QG(u;ψ) = G−1(u;ψ) as

E(Y r
k+1) = (k + 1)

1

∫
0

QG(u;ψ)ruk du.

Setting r = 1 in (5), we have themean of X. The last integration can be computed numerically for most parent

distributions. The skewness and kurtosis measures can be calculated from the ordinary moments using well-

known relationships:

Skewness(X) = E(X
3) − 3E(X)E(X2) + 2[E(X)]3

[Var(X)] 32
and

Kurtosis(X) = E(X
4) − 4E(X)E(X3) + 6E(X2)[E(X)]2 − 3[E(X)]4

[Var(X)]2 ,

where E(X2) = ∑∞j=0 tkE(Y2
k ) and Var(X) = E(X2) − [E(X)]2. The nth central moment of X, sayMn, are given by

Mn = E(X − μ)n =
n∑

h=0
(−1)h(n

h
)(μ�1)nμ�n−h .

The cumulants (κn) of X follow recursively from

κn = μ�n −
n−1∑
r=0
(n − 1
r − 1)κrμ�n−r ,

where κ1 = μ�1, κ2 = μ�2 − μ�21 , κ3 = μ�3 − 3μ�2μ�1 + μ�31 , etc. The skewness andkurtosismeasures also canbe cal-

culated from the ordinary moments using well-known relationships. The moment generating function (mgf)

of X, say MX(t) = E(etX), is given by

MX(t) =
∞∑
r=0

tr

r!
μ�r =

∞∑
k,r=0

tr tk
r!

E(Y r
k+1).
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Themain application of the first incompletemoment refers to the Bonferroni and Lorenz curves. These curves

are very useful in economics, reliability, demography, insurance and medicine. The answers to many impor-

tant questions in economics require more than just knowing the mean of the distribution, but its shape as

well. This is obvious not only in the study of econometrics but in other areas as well. The sth incomplete

moments, say φs(t), is given by φs(t) = ∫t−∞ xs f(x) dx. Using equation (3), we obtain

φs(t) =
∞∑
k=0

tk

t

∫
−∞

xsπk+1(x) dx. (6)

The first incomplete moment of the EGGP family, φ1(t), can be obtained by setting s = 1 in (6). Another ap-

plication of the first incomplete moment is related to mean residual life and mean waiting time given by

m1(t;ψ) = (1 − φ1(t))/R(t;ψ) − t and M1(t;ψ) = t − (φ1(t)/F(t;ψ)), respectively. The amount of scattered-

ness in a population is evidently measured to some extent by the totality of deviations from the mean and

median. Themean deviations about themean [δμ(X) = E(|X−μ�1|)] and about themedian [δμ(X) = E(|X−M|)]
of X can be, used as measures of spread in a population, expressed by

δμ(X) =
∞

∫
0

|X − μ�1|f(x) dx = 2μ�1F(μ�1) − 2φ1(μ�1)

and

δM(X) =
∞

∫
0

|X −M|f(x) dx = μ�1 − 2φ1(M),

respectively, where μ�1 = E(X) comes from (5), F(μ�1) is simply calculated, φ1(μ�1) is the first incomplete

moment and M is the median of X. The mean deviations about the mean [δ1 = E(|X − μ�1|)] and about the

median [δ2 = E(|X −M|)] of X are given by δ1 = 2μ�1F(μ�1) − 2φ1(μ�1) and δ2 = μ�1 − 2φ1(M), respectively,
where μ�1 = E(X), M = Median(X) = Q(0.5) is the median, F(μ�1) is easily calculated from (1) and φ1(t) is the
first incomplete moment given by (6) with s = 1.

Now, we provide two ways to determine δ1 and δ2. First, a general equation for φ1(t) can be derived

from (3) as

φ1(t) =
∞∑
k=0

tkJk+1(x),

where

Jk+1(x) =
t

∫
−∞

xπk+1(x) dx

is the first incomplete moment of the Exp-G distribution. A second general formula for φ1(t) is given by

φ1(t) =
∞∑
k=0

tkVk+1(t),

where

Vk+1(t) = (k + 1)
G(t)

∫
0

QG(u)uk du

can be computed numerically. These equations for φ1(t) can be applied to construct Bonferroni and Lorenz
curves defined for a given probability π by B(π) = φ1(q)/(πμ�1) and L(π) = φ1(q)/μ�1, respectively, where
μ�1 = E(X) and q = Q(π) is the qf of X at π. For the EGWP model we have the following results for r > −β
and s > −β:

μ�r =
∞∑

k,h=0
tk
(k + 1)(−1)h
αr(h + 1)(r+β)/β

(k
h
)Γ(1 + r

β
)

and

φs(t) =
∞∑

k,h=0
tk
(k + 1)(−1)h

αs(h + 1)(s+β)/β
(k
h
)Γ(1 + s

β
, (α

t
)β).
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3.3 Probability Weighted Moments

The PWMs are expectations of certain functions of a random variable and they can be defined for any random

variable whose ordinary moments exist. The PWM method can generally be used for estimating parameters

of a distributionwhose inverse form cannot be expressed explicitly. The (s, r)th PWMof X following the EGGP

family, say ρs,r, is formally defined by

ρs,r = E{XsF(X)r} =
∞

∫
−∞

xsF(x)r f(x) dx.

Using equations (2) and (3), we can write

f(x)F(x)r =
∞∑
k=0

wkπk+1(x),

where

wk =
ab

[1 − exp(−λ)]r+1(k + 1)
∞∑

w,i,j=0

(−1)w+i+j+k( rw)(b(i+1)−1j )(a(1+j)−1k
)

i!λ−i−1(1 + w)−i .

Then the (s, r)th PWM of X can be expressed as

ρs,r =
∞∑
k=0

wkE(Y s
k+1).

3.4 Entropy Measures

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The Rényi

entropy is defined by

Iδ(X) = (1 − δ)−1 log
∞

∫
−∞

f(x)δ dx, δ > 0 and δ ̸= 1.

Using the power series expansion, the pdf in (2) can be expressed as

f(x)δ =
∞∑
k=0

mkg(x)δ[G(x)]k ,

where

mk =
aδbδ

[1 − exp(−λ)]δ
∞∑
i,j=0

(−1)i+j+k(b(i+δ)−δj )(a(j+δ)−δk
)

i!λ−δ−iδ−i
.

Therefore, the Rényi entropy of the EGGP family is given by

Iδ(X) = (1 − δ)−1 log{
∞∑
k=0

mk

∞

∫
−∞

g(x)δ[G(x)]k dx}.
The q-entropy, say Hq(X), can be obtained as

Hq(X) = (q − 1)−1 log{1 − [
∞∑
k=0

m∗k

∞

∫
−∞

g(x)q[G(x)]k dx]},
where

m∗k =
aqbq

[1 − exp(−λ)]q
∞∑
i,j=0

(−1)i+j+k(b(i+q)−qj )(a(j+q)−qk
)

i!λ−q−iq−i
, q > 0, q ̸= 1.

The Shannon entropy of a random variable X, say SI, is defined by

SI = E{−[log f(X)]}.

It is the special case of the Rényi entropy when δ ↑ 1.
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3.5 Residual Life and Reversed Residual Life

The nth moment of the residual life, say mn(t) = E[(X − t)n | X > t], n = 1, 2, . . . , uniquely determines F(x).
The nth moment of the residual life of X is given by

mn(t) =
1

1 − F(t)

∞

∫
t

(x − t)n dF(x).

Therefore

mn(t) =
1

1 − F(t)
∞∑
k=0

t∗k

∞

∫
t

xrπk+1(x) dx, (7)

where t∗k = tk ∑nr=0 (nr)(−t)n−r. The nth moment of the reversed residual life, sayMn(t) = E[(t − X)n | X ≤ t] for
t > 0 and n = 1, 2, . . . , uniquely determines F(x). We obtain

Mn(t) =
1

F(t)

t

∫
0

(t − x)n dF(x).

Then the nth moment of the reversed residual life of X becomes

Mn(t) =
1

F(t)
∞∑
k=0

t∗∗k

t

∫
0

xrπk+1(x) dx, (8)

where t∗∗k = tk ∑nr=0(−1)r(nr)tn−r. Another interesting function is the mean residual life (MRL) function or the

life expectation at age t defined by m1(t) = E[(X − t) | X > t], which represents the expected additional life

length for a unit which is alive at age t. The MRL of X can be obtained by setting n = 1 in equation (7). The

mean inactivity time (MIT) or mean waiting time (MWT), also called the mean reversed residual life function,

is given by M1(t) = E[(t − X) | X ≤ t], and it represents the waiting time elapsed since the failure of an item

on the condition that this failure had occurred in (0, t). The MIT of the EGGP family of distributions can be

obtained easily by setting n = 1 in equation (8). For the EGWPmodelwehave the following results: For n > −β

mn(t) =
1

1 − F(t)
∞∑

k,h=0
t∗k
(k + 1)(−1)h

αn(h + 1)(n+β)/β
(k
h
)Γ(1 + n

β
, (α

t
)β)

and

Mn(t) =
1

F(t)
∞∑

k,h=0
t∗∗k
(k + 1)(−1)h

αn(h + 1)(n+β)/β
(k
h
)Γ(1 + n

β
, (α

t
)β).

4 Stress-Strength Models

The stress-strength model is the most widely used approach for reliability estimation. This model is used in

manyapplications of physics and engineering, such as strength failure and systemcollapse. In stress-strength

modeling,

R = Pr(X2 < X1) =
∞

∫
0

f(x1)F(x2) dx

is ameasure of reliability of the systemwhen it is subjected to randomstress X2 andhas strength X1 (see [20]).

The system fails if and only if the applied stress is greater than its strength and the component will function

satisfactorily whenever X1 > X2. Moreover, R can be considered as ameasure of system performance and nat-

urally arises in electrical and electronic systems. Another interpretation can be that the reliability, say R, of

the system is the probability that the system is strong enough to overcome the stress imposed on it. Let X1
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and X2 be two independent random variables have EGGP(x; a1, b1, λ1,ψ) and EGGP(x; a2, b2, λ2,ψ) distri-
butions. The reliability R is given by

R =
∞

∫
0

f1(x; a1, b1, λ1,ψ)F2(x; a2, b2, λ2,ψ) dx.

Then

R =
∞∑

k,w=0
Ωk,w ,

where

Ωk,w =
a1a2b1b2(−1)k+w

[1 − exp(−λ1)][1 − exp(−λ2)](w + 1)(k + w + 2)

×
∞∑

i,j,m,h=0

(−1)i+j+m+h(b1(i+1)−1j )(b2(m+1)−1h )(a1(j+1)−1k
)(a2(h+1)−1w )

i!m!λ−i−11 λ−m−12

.

5 Order Statistics

Let X1, . . . , Xn be a random sample from the EGGP family of distributions and let X(1), . . . , X(n) be the corre-
sponding order statistics. The pdf of the ith order statistic, say Xi:n, can be written as

fi:n(x) =
f(x)

B(i, n − i + 1)
n−i∑
j=0
(−1)j(n − i

j
)F j+i−1(x), (9)

where B( ⋅ , ⋅ ) is the beta function. Substituting (1) and (2) into equation (9), we get

f(x)F(x)j+i−1 =
∞∑
k=0

dkπk+1(x),

where

dk =
ab

[1 − exp(−λ)]j+i(k + 1)
∞∑

w,m,h=0

(−1)w+m+h+k(j+i−1w )(b(m+1)−1h )(a(h+1)−1k )
m!λ−m−1(1 + w)−m .

Moreover, the pdf of Xi:n can be expressed as

fi:n(x) =
n−i∑
j=0

(−1)j(n−ij )
B(i, n − i + 1)

∞∑
k=0

dkπk+1(x),

therefore, the density function of the EGGP order statistics is a mixture of EG densities. Based on the last

equation, we note that the properties of Xi:n follow from those properties of Yk+1. For example, the moments

of Xi:n can be expressed as

E(Xq
i:n) =

n−i∑
j=0

(−1)j(n−ij )
B(i, n − i + 1)

∞∑
k=0

dkE(Yq
k+1). (10)

For the EGWP model we have

E(Xq
i:n) =

∞∑
k,h=0

n−i∑
j=0

(k + 1)(−1)j+h(n−ij )(kh)dk
αqB(i, n − i + 1)(h + 1)(q+β)/β

Γ(1 + q
β
).

The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order

statistics. They exist whenever the mean of the distribution exists, even though some higher moments may

not exist, and are relatively robust to the e�ects of outliers. Based upon the moments in equation (10), we
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can derive explicit expressions for the L-moments of X. They are linear functions of expected order statistics

defined by

λr =
1

r

r−1∑
d=0
(−1)d(r − 1

d
)E(Xr−d:r), r ≥ 1.

The first four L-moments are given by

λ1 = E(X1:1),

λ2 =
1

2
E(X2:2 − X1:2),

λ3 =
1

3
E(X3:3 − 2X2:3 + X1:3),

λ4 =
1

4
E(X4:4 − 3X3:4 + 3X2:4 − X1:4).

One can simply obtain the L-moments λr for X from (10) with q = 1.

6 Estimation

Let X1, . . . , Xn be a random sample from the EGGP distribution with parameters λ, a, b and ψ. Further, let

Ψ = (a, b, λ,ψ⊺)⊺ be a ((p + 3) × 1) parameter vector, where ψ is a (p × 1) baseline parameter vector. For

determining the MLE of Ψ, we have the log-likelihood function

ℓ = n log a + n log b + n log λ − n log[1 − exp(−λ)] +
n∑
i=1

log g(xi;ψ)

+ (a − 1)
n∑
i=1

logG(xi;ψ) + (b − 1)
n∑
i=1

log si − λ
n∑
i=1

sbi ,

where G(xi;ψ) = 1 − G(xi;ψ), si = 1 − G(xi;ψ)a. The components of the score vector

U(Ψ) = ∂ℓ
∂Ψ
= ( ∂ℓ

∂a
,
∂ℓ
∂b

,
∂ℓ
∂λ

,
∂ℓ
∂ψ
)⊺

are given by

Ua =
n

a
+

n∑
i=1

logG(xi;ψ) + (b − 1)
n∑
i=1

pi
si
− bλ

n∑
i=1

pis
b−1
i ,

Ub =
n

b
+

n∑
i=1

log si − λ
n∑
i=1

log si

s−bi
,

Uλ =
n

λ
+ n exp(−λ)
1 − exp(−λ) −

n∑
i=1

sbi

and (for r = 1, 2, . . . , p)

Uψr
=

n∑
i=1

g�(xi;ψ)
g(xi;ψ)

− (a − 1)
n∑
i=1

G�(xi;ψ)
G(xi;ψ)

+ (b − 1)
n∑
i=1

qi
si
− bλ

n∑
i=1

qi

s1−bi

,

where

g�(xi;ψ) =
∂g(xi;ψ)
∂ψr

,

G�(xi;ψ) =
∂G(xi;ψ)

∂ψr

,

pi = −
logG(xi;ψ)
G(xi;ψ)−a

,

qi =
aG�(xi;ψ)
G(xi;ψ)1−a

.
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Setting the nonlinear system of equations Ua = Ub = Uλ = 0 and Uψ = 0 and solving them simultane-

ously yields theMLE Ψ̂ = (â, b̂, λ̂, ψ̂⊺)⊺. To solve these equations, it is usually more convenient to use nonlin-

ear optimization methods, such as the quasi-Newton algorithm, to numerically maximize ℓ. For interval esti-
mationof theparameters,weobtain the p × p observed informationmatrix J(Ψ) = { ∂2ℓ

∂r∂s
} (for r, s = a, b, λ,ψ),

whose elements can be computed numerically. Under standard regularity conditions when n →∞, the dis-
tribution of Ψ̂ can be approximated by amultivariate normal Np(0, J(Ψ̂)−1) distribution to construct approxi-
mate confidence intervals for the parameters. Here, J(Ψ̂) is the total observed informationmatrix evaluated at

Ψ̂. Themethod of the re-sampling bootstrap can be used for correcting the biases of theMLEs of themodel pa-

rameters. Good interval estimates may also be obtained using the bootstrap percentile method. The elements

of J(Ψ) are given in Appendix A.

7 Applications

In many statistical applications, the interest is centered on estimating the parameters and evaluate the

goodness-of-fit of the model to analyze the data on hand. In this section, we provide the e�ectiveness of the

EGGPdistributionbymeansofmodeling twodi�erent data sets choosing two specialmodels discussed in Sec-

tion2. These data sets have beenusedby several authors to show the applicability of other competingmodels.

We also provide a formative evaluation of the goodness-of-fit of themodels andmake comparisonswith other

distributions. The measures of goodness-of-fit, including the Akaike information criterion (AIC), Bayesian

information criterion (BIC), Anderson–Darling (A∗), Cramér–von Mises (W∗) and Kolmogrov–Smirnov (KS)

statistics, are computed to compare the fitted models. The statistics A∗ and W∗ are described in detail by

Chen and Balakrishnan [9]. In general, the smaller the values of these statistics, the better the fit to the data.

One can employ the Likelihood Ratio Test (LRT) to contrast the adaptability of the EGGP distribution over the

other distributions. The required computations are carried out in the R language.

Example 1: Cancer Patient Data. This data set describes the remission times (in months) of a random sam-

ple of 128 bladder cancer patients studied by Lee and Wang [21]. For these data, we compare the fit of the

EGWP with the other five parameter distributions which has been generalized using the Weibull genesis. We

compare the fits of the EGWPwith the generalized transmuted-W (GTW) distribution (Nofal, Afify, Yousof and

Cordeiro [30]), the McDonald Weibull (McW) distribution (Cordeiro, Hashimoto and Ortega [15]), the mod-

ified beta Weibull (MBW) distribution (Khan [19]) and the transmuted additive Weibull (TAW) distribution

(Elbatal and Aryal [16]) with the corresponding densities given by (for x > 0)

McW: f(x) = βλαβ

B(a/λ, b) x
β−1e−(αx)

β [1 − e−(αx)β ]a−1{1 − (1 − e−(αx)β )λ}b−1,
MBW: f(x) = βα−βλa

B(a/λ, b) x
β−1e−b(

x
α )β [1 − e−( xα )β ]a−1{1 − (1 − λ)[1 − e−( xα )β ]λ}−a−b ,

GTW: f(x) = βαβxβ−1

e(αx)β [1 − e−(αx)β ]1−a
{a(1 + λ) − λ(a + b)[1 − e−(αx)β ]b},

TAW: f(x) = (αbx
b−1 + aβxβ−1)
e(αxb+axβ)

{1 − λ + 2λe−(αxb+axβ)}.
The parameters of the above densities are all positive real numbers except |λ| ≤ 1 for the GTW and TAW dis-

tributions. The statistics of the fitted models are presented in Table 2 and the MLEs and the corresponding

standard errors are given in Table 3. We note from Table 2 that the EGWP gives the lowest values for the AIC,

BIC, CAIC, HQIC, A∗ and W∗ statistics as compared to the other generalizations of the Weibull distribution.

Therefore, we conclude that the EGWP distribution yields the best fit to model the remission times of bladder

cancer patients.

Example 2: Flood Data. This data set describes the exceedances of flood peaks (in m3/s) of the Wheaton

River near Carcross in Yukon Territory, Canada for the years 1958–1984. These data were analyzed by many
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Goodness-of-őt criteria

Model AIC CAIC HQIC BIC W∗ A∗

EGWP 829.448 829.939 835.242 843.708 0.0227 0.1505

GTW 831.347 831.839 837.141 845.607 0.0469 0.3058

McW 831.680 832.172 837.474 845.94 0.0504 0.3299

MBW 838.027 838.519 843.821 852.288 0.1068 0.7207

TAW 838.478 838.97 844.272 852.739 0.1129 0.7033

Table 2. The AIC, CAIC, HQIC, BIC, W∗ and A∗ statistics for cancer patient data.

Estimates

Model â b̂ α̂ β̂ λ̂

EGWP 0.4202 1.5857 0.1540 0.9237 3.7776

(2.3728) (0.7778) (0.9355) (0.3111) (2.4207)

GTW 2.7965 0.0128 0.2991 0.6542 0.002

(1.117) (7.214) (0.151) (0.121) (1.769)

McW 4.0633 2.6036 0.1192 0.5582 0.0393

(2.111) (2.452) (0.109) (0.178) (0.202)

MBW 57.4167 19.3859 10.1502 0.1632 2.0043

(37.317) (13.490) (22.437) (0.044) (0.789)

TAW 0.00003 1.0065 0.1139 0.9722 −0.1630
(0.0061) (0.035) (0.032) (0.125) (0.280)

Table 3.MLEs and their standard errors (in parenthesis) for the cancer patient data.

authors including Choulakian and Stephenes [10], Akinsete, Famoye and Lee [4], Nadarajah [27], Merovci

and Puka [24], Bourguignon, Silva, Zea and Cordeiro [8], among others. We compare the fits of EGPaP with

the Kumarswamy Pareto (KwP) distribution, the beta Pareto (BP) distribution, the transmuted Pareto (TP)

distribution, the exponentiated Pareto (EP) distribution and the Pareto(P) distribution whose pdf are given

by

KwP: f(x; a, b, α, θ) = abαθ
α

xα+1
[1 − ( θ

x
)α]a−1{1 − [1 − ( θ

x
)α]a}b−1,

BP: f(x; a, b, α, θ) = 1

B(a, b)
αθα

xα+1
[1 − ( θ

x
)α]a−1( θ

x
)α(b−1),

TP: f(x; α, θ, λ) = αθα

xα+1
[1 − λ + 2λ( θ

x
)α].

The parameters of the above densities are all positive real numbers except |λ| ≤ 1 for TP distribution. The

MLEs and corresponding standard errors are given in Table 4 and the statistics of the fitted models are pre-

sented in Table 5. We note from Table 5 that the EGPaP gives the lowest values for the AIC, CAIC, BIC, HQIC

and KS statistics as compared to the other generalizations of the Pareto distribution. Therefore, the EGPaP

distribution yields the best fit to model the exceedances of flood peaks.

Fitted pdf, cdf and QQ-plots for both data are provided in Figure 3. It can be observed that the EGWP

distribution is appropriate to model the cancer patient data and the EGPaP distribution is appropriate to

model the flood peak exceedance data.

8 Conclusions

In this study, we have introduced the so-called exponentiated generalized G-Poisson family of distribution.

Some mathematical properties of the new family including ordinary and incomplete moments, quantile and

generating functions, mean deviations, order statistics and their moments, reliability and Shannon entropy



20 | G. R. Aryal and H.M. Yousof, The Exponentiated Generalized-G Poisson Family of Distributions

Model â b̂ λ̂ α̂ θ̂

EGPaP 6.5163 4.9880 20.4148 0.0264 0.1

(2.2125) (0.8487) (8.9005) (0.0088) –

KwP 2.8553 85.8468 – 0.0528 0.1

(0.3371) (60.4213) – (0.0185) –

BP 3.1473 85.7508 – 0.0088 0.1

(0.4993) (0.0001) – (0.0015) –

TP 1 1 −0.952 0.3490 0.1

– – (0.089) (0.072) –

EP 2.8797 1 – 0.4241 0.1

(0.4911) – – (0.0463) –

P 1 1 – 0.2438 0.1

– – – (0.0287) –

Table 4. Estimated parameters and their standard errors for Wheaton river data.

Statistics

Model −ℓ( ⋅ , x) AIC CAIC BIC HQIC KS

EGPaP 255.131 520.262 521.171 531.645 524.794 0.1428

KwP 271.200 548.400 548.753 555.230 551.119 0.1700

BP 283.700 573.400 573.753 580.230 576.119 0.1747

TP 286.201 576.402 576.575 580.954 578.214 0.2870

EP 287.300 578.600 578.774 583.153 580.413 0.1987

P 303.100 608.200 608.257 610.477 609.106 0.3324

Table 5. The AIC, CAIC, BIC, HQIC and KS test statistics of Wheaton river data.

are derived. Although this generalization technique can be used to generalize many other distributions, for

illustration purposes we have chosen the Weibull distribution and the Pareto distribution as base distribu-

tions. The importance and flexibility of the new family are illustrated by means of two di�erent examples,

one for each generalized family. We hope that this study will serve as a reference and help to advance future

research in the subject area.

A Appendix

The elements of the observed matrix J(Ψ) are given below:

Uaa = −
n

a2
− (b − 1)

n∑
i=1
{ G(xi;ψ)a

si[logG(xi;ψ)]−2
+
p2i

s2i
} − b(b − 1)λ n∑

i=1

sb−2i

p−2i
+ bλ

n∑
i=1

sb−1i G(xi;ψ)a

[logG(xi;ψ)]−2
,

Uab =
n∑
i=1

pi
si
− λ

n∑
i=1

pis
b−1
i (1 + b log si),

Uaλ = −b
n∑
i=1

pi

s1−bi

,

Uaψ = −
n∑
i=1

G�(xi;ψ)
G(xi;ψ)

+ (b − 1)
n∑
i=1

simi − piqi
s2i
− bλ

n∑
i=1

mi + (b − 1)piqis−1i
s1−bi

,

Ubb = −
n

b2
− λ

n∑
i=1

(log si)2

s−bi
,

Ubλ = −
n∑
i=1

log si

s−bi
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Figure 3. Top: Fitted pdf (left), cdf (center) and QQ-plots (right)of the EGWP distribution. Bottom: Fitted pdf (left), cdf (center)

and QQ-plots (right) of the EGPaP distribution.

and

Uλψ = −b
n∑
i=1

qi

s1−bi

,

Ubψ =
n∑
i=1

qi
si
− λ

n∑
i=1

{1 + b log si}
q−1i s1−1i

,

Uλλ = −
n

λ2
+ ne
−λ(1 − e−λ) + ne−2λ
(1 − e−λ)2

,

Uψrψl
=

n∑
i=1

g(xi;ψ)g��(xi;ψ) − [h�(xi;ψ)]2
g(xi;ψ)2

+ (b − 1)
n∑
i=1

wi

si
− (b − 1)

n∑
i=1

q2i

s2i

− (a − 1)
n∑
i=1

G(xi;ψ)G��(xi;ψ) + [G�(xi;ψ)]2

G(xi;ψ)2
− bλ

n∑
i=1
[(b − 1)q2i sb−2i + wis

b−1
i ],

where

g��(xi;ψ) = [∂2g(xi;ψ)
∂ψr∂ψl

], G��(xi;ψ) = [∂2G(xi;ψ)
∂ψr∂ψl

]
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and

mi = G(xi;ψ)aG(xi;ψ)−1G�(xi;ψ) +
a logG(xi;ψ)G�(xi;ψ)

G(xi;ψ)1−a
,

wi = a{G(xi;ψ)a−1G��(xi;ψ) − (a − 1)[G�(xi;ψ)]2G(xi;ψ)a−2}.
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