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We study some mathematical properties of a new generator of continuous distributions with two extra parameters called the
exponentiated half-logistic family. We present some special models. We investigate the shapes of the density and hazard rate
function. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, probability
weighted moments, Bonferroni and Lorenz curves, Shannon and Rényi entropies, and order statistics, which hold for any baseline
model. We introduce two bivariate extensions of this family. We discuss the estimation of the model parameters by maximum
likelihood and demonstrate the potentiality of the new family by means of two real data sets.

1. Introduction

�e use of new generators of continuous distributions from
classic distributions has become very common in recent
years. One example is the beta-generated family of distri-
butions proposed by Eugene et al. [4]. Another example
is the gamma-generated family of distributions de	ned by
Zografos and Balakrishnan [5]. Based on a baseline continu-

ous distribution�(�)with survival function�(�) and density�(�), their families are de	ned by the cumulative distribution
function (cdf) and probability density function (pdf) (for� ∈ R):

� (�) = 1Γ (�) ∫
− log[�(�;�)]

0

�−1�−��
,

 (�) = 1Γ (�){− log [� (�; �)]}�−1� (�; �) ,
(1)

respectively, where Γ(�) = ∫∞
0 ��−1�−��� is the gamma

function.

Based on Zografos and Balakrishnan’s [5] paper, we
replace the gamma distribution by the exponentiated half-
logistic (“EHL” for short) distribution to de	ne a new family
of continuous distributions by the cdf:

� (�) = ∫− log[1−�(�;�)]

0

2���−	�[1 − �−	�]
−1
[1 + �−	�]
+1 �


= {1 − [1 − � (�; �)]	
1 + [1 − � (�; �)]	}


,
(2)

where �(�; �) is the baseline cdf depending on a parameter
vector � and � > 0 and � > 0 are two additional shape
parameters. For any continuous � distribution, the EHL-�
distribution is de	ned by the cdf (2). Equation (2) is a wider
family of continuous distributions and includes some special
models as those listed in Table 1.
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Table 1: Some special models.

� � �(�) Reduced distribution

1 — �(�) HL-G family of distributions [1]

1 — 1 − �−� half-logistic distribution [2]

— — 1 − �−� exponentiated half-logistic distribution [3]

1 — 1 − �−�� half-logistic Weibull distribution (new)

1 — 1 − �(−1/�)(���−1) half-logistic Gompertz distribution (new)

— — 1 − �(−1/�)(���−1) exponentiated half-logistic Gompertz distribution (new)

1 — Beta distribution half-logistic beta distribution (new)

1 — Gamma distribution half-logistic gamma distribution (new)

1 — Frechét distribution half-logistic Frechét distribution (new)

1 — log-logistic distribution half-logistic log-logistic distribution (new)

1 — Generalized half half-logistic generalized

Normal distribution half normal distribution (new)

1 — Normal distribution half-logistic normal distribution (new)

�e density function corresponding to (2) is given by

 (�, �, �, �) = 2��� (�; �) [1 − � (�; �)]	−1

×{1 − [1 − � (�; �)]	}
−1

{1 + [1 − � (�; �)]	}
+1 , (3)

where �(�; �) is the baseline pdf. Equation (3) will be most
tractable when �(�; �) and �(�; �) have simple analytic
expressions. Herea�er, a random variable � with density
function (3) is denoted by � ∼ EHL-�(�, �, �). Further, we
can omit sometimes the dependence on the vector � of the
parameters and simply write �(�) = �(�; �).

A physical interpretation of the EHL-� distribution
can be given as follows. Consider a system formed by �
independent components having the half-logistic-� (“HL-�”)
cdf given by

�(�) = 1 − [1 − � (�; �)]	
1 + [1 − � (�; �)]	 . (4)

Suppose that the system fails if all of the � components fail
and let � denote the lifetime of the entire system. �en, the
pdf of� is given by (3).

�e hazard rate function (hrf) of� becomes

ℎ (�; �, �, �, �)
= 2��� (�; �) [1 − � (�; �)]	−1
× {1 − [1 − � (�; �)]	}
−1

× ({{1 + [1 − � (�; �)]	}
 − {1 − [1 − � (�; �)]	}
}
× {1 + [1 − � (�; �)]	} )−1.

(5)

�e EHL family of distributions is easily simulated by invert-
ing (2) as follows: if % has a uniform &(0, 1) distribution, the
solution of the nonlinear equation

� = �−1 (1 − [1 − %1/


1 + %1/
]
1/	) (6)

has the density function (3).
�is paper is organized as follows. In Section 2, some

special cases of the EHL family of distributions are de	ned. In
Section 3, the shapes of the density and hazard rate functions
are described analytically. A useful expansion for the new
density family is obtained and we derive a power series
for the EHL quantile function in Section 4. General explicit
expressions for some special EHL moments are obtained in
Section 5.

In Section 6, we derive the generating function, the
incomplete moments are investigated, we obtain the mean
deviations and the reliability and provide expressions for the
Rényi and Shannon entropies, and the order statistics and
their moments are determined. We introduce two bivariate
extensions of the new family in Section 7. Estimation of the
model parameters by maximum likelihood is performed in
Section 8. Applications to two real data sets illustrate the
performance of the new family in Section 9. �e paper is
concluded in Section 10.

2. Special EHL-� Models

Here, we introduce only three of the many distributions
which can arise as EHL special models, where � and � are
positive shape parameters of the new generator. We consider
three baseline distributions, namely, Fréchet, log-logistic,
and generalized half-normal distributions, although we can
generate as many new distributions as desirable.

2.1. Exponentiated Half-Logistic-Fréchet (EHLF) Model. �e
Fréchet (or type II extreme value) distribution has been useful
for modeling of market-returns which are o�en heavy-tailed
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in applications to 	nance [6]. Now, we introduce a new four-
parameter distribution called the EHLF distribution. Taking�(�; �) = �−(/�)� to be the Fréchet distribution with scale
parameter 3 > 0 and shape parameter 4 > 0, where � =(4, 3)�, the EHLF density function (for � > 0) is given by

EHLF (�) = 2��43��−(�+1)

× exp [−( 3�)
�]{1 − exp [−( 3�)

�]}	−1

× {1 − {1 − exp [−( 3�)
�]}	}
−1

× {1 + {1 − exp [−( 3�)
�]}	}−(
+1).

(7)

�e cdf and hrf corresponding to (7) are given by

�EHLF (�) = {1 − {1 − exp[−(3/�)�]}	1 + {1 − exp[−(3/�)�]}	}

,

ℎEHLF (�) = 2��43��−(�+1) exp [−( 3�)
�]

× {1 − exp [−( 3�)
�]}	−1

× {1 − {1 − exp [−( 3�)
�]}	}
−1

× ({1 + {1 − exp [−( 3�)
�]}	}(
+1)

× [1 − �EHLF (�)])
−1

,

(8)

respectively. A characteristic of the EHLF distribution is that
its hrf can be monotonically increasing or decreasing and
upside-down bathtub depending basically on the parameter
values. Plots of its density function and hrf for some param-
eter values are displayed in Figures 1 and 2, respectively.

2.2. ExponentiatedHalf-Logistic-Log-Logistic (EHLLL)Model.
�e log-logistic (LL) distribution is widely used in practice
and it is an alternative to the log-normal distribution since
it presents a failure rate function that increases, reaches a
peak a�er some 	nite period, and then declines gradually.
�e properties of the LL distribution make it an attractive
alternative to the log-normal and Weibull distributions in
the analysis of survival data [7]. �is distribution can exhibit
a monotonically decreasing failure rate function for some

parameter values. For � > 0, let �(�; �) = 1 − [1 + (�/4)]−1
be the LL cdf, where 3 > 0 is the shape parameter and 4 > 0

is the scale parameter, where � = (4, 3)�. �e EHLLL density
function becomes

EHLLL (�) = 2��34−�−1[1 + (�4)
]−(	+1)

× {1 − [1 + (�4)
]−	}
−1

× {1 + [1 + (�4)
]−	}−(
+1).

(9)

In Figure 3, we display some possible shapes of the
EHLLL density function. �e corresponding cdf and hrf are
given by

�EHLLL (�) = {{{
1 − [1 + (�/4)]−	
1 + [1 + (�/4)]−	

}}}



,
ℎEHLLL (�)
= 2��34−�−1[1 + (�4)

]−(	+1)

×{1 − [1 + (�4)
]−	}
−1

× ({1 + [1 + (�4)
]−	}(
+1) [1 − �EHLLL (�)])

−1

,
(10)

respectively. Plots of the EHLLL hrf for some parameter
values are displayed in Figure 4.

2.3. Exponentiated Half-Logistic Generalized Half-Normal
(EHLGHN) Model. �e most popular models used to
describe the lifetime process under fatigue are the half-
normal (HN) and Birnbaum-Saunders (BS) distributions.
When modeling monotone hazard rates, the HN and BS dis-
tributions may be an initial choice because of their negatively
and positively skewed density shapes. Consider �(�; �) to
be the generalized half-normal (GHN) distribution [8] with
scale parameter 3 > 0 and shape parameter 4 > 0, where � =(4, 3)�, given by �(�; �) = 2Φ[(�/3)�] − 1 = erf[(�/3)�/√2],
where erf(⋅) is the error function. Note that

Φ (�) = 0.5 [1 + erf ( �√2)] , erf (�) = 2√O ∫�

0
�−�2�
.

(11)
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Figure 1: �e EHLF density function: (a) for � = 2.0, 4 = 0.1, and 3 = 3.1; (b) for � = 1.5, 4 = 2.0, and 3 = 3.1; (c) for 4 = 2.0 and 3 = 3.1.
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Figure 2: Plots of the EHLF hrf for some parameter values. (a) �e distribution has a unimodal hrf for di�erent values of �, � with 4 = 0.5
and 3 = 61.5. (b) �e distribution has an increasing and decreasing hrf for di�erent values of �, � with 4 = 0.5 and 3 = 0.5.
�en, the four-parameter EHLGHN density (for � > 0) can
be expressed as

EHLGHN (�) = 2	��√ 2O (4�) (�3 )
�

× exp [−0.5(�3 )
2�] {1 − Φ[(�3 )

�]}	−1

× {1 − 2	{1 − Φ[(�3 )
�]}	}
−1

× {1 + 2	{1 − Φ[(�3 )
�]}	}−(
+1).

(12)
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Figure 3: �e EHLLL density function: (a) for � = 2.0, 4 = 1.5, and 3 = 4.5; (b) for � = 1.5, 4 = 1.5, and 3 = 4.5; (c) for 4 = 1.5 and 3 = 4.5.
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Figure 4: Plots of the EHLLL hrf for some parameter values. (a) �e distribution has a unimodal hrf for di�erent values of �, � with 4 = 1.5
and 3 = 4.2 (b) �e distribution has a bathtub and unimodal hrf for di�erent values of �, � with 4 = 5.0 and 3 = 3.1.
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Figure 5: �e EHLGHN density function: (a) for � = 2.0, 4 = 2.0, and 3 = 3.1; (b) for � = 1.5, 4 = 2.0, and 3 = 3.1; (c) for 4 = 1.5,
and 3 = 2.1.
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Figure 6: Plots of the EHLGHN hrf for some parameter values. (a)�e distribution has a bathtub hrf for di�erent values of �, � with 4 = 1.5
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If 4 = 1, the EHLGHN distribution model reduces
to the exponentiated half-logistic half-normal (EHLHN)
distribution. �e cdf and hrf corresponding to (12) are

�EHLGHN (�) = {1 − 2	{1 − Φ [(�/3)�]}	
1 + 2	{1 − Φ [(�/3)�]}	}


,
ℎEHLGHN (�) = 2	��√ 2O (4�)(�3 )

�

× exp [−0.5(�3 )
2�]

× {1 − Φ[(�3 )
�]}	−1

× ({1 − 2	{1 − Φ[(�3 )
�]}	}−(
−1)

× {1 + 2	{1 − Φ[(�3 )
�]}	}(
+1)

× [1 − �EHLGHN (�)])
−1

,
(13)

respectively. A characteristic of the EHLGHN distribution is
that its hrf can be bathtub shaped, monotonically increasing
or decreasing, and upside-down bathtub depending basically
on the parameter values. Plots of the EHLGHN density
function and hrf for some parameter values are displayed in
Figures 5 and 6, respectively.

3. Shapes

�e shapes of the density and hazard rate functions can
be described analytically. �e critical points of the EHL-�
density function are the roots of the equation:

�� (�)� (�) + (1 − �) � (�)1 − � (�)
= �� (�) [1 − � (�)]	−1
× { 1 − �1 − [1 − � (�)]	 − � + 11 + [1 − � (�)]	} .

(14)

�ere may be more than one root to (14). Let �(�) =�2 log[(�)]/��2. We have

� (�) = ��� (�) � (�) − ��(�)2�2 (�)
+ (1 − �) �� (�) [1 − � (�)] + �2 (�)[1 − � (�)]2
+ � (� − 1){{{�� (�) [1 − � (�)]	−11 − [1 − � (�)]	 − (� − 1)

× �2 (�) [1 − � (�)]	−21 − [1 − � (�)]	
−��2 (�) [1 − � (�)]2	−2

{1 − [1 − � (�)]	}2
}}}

+ � (� + 1){{{�� (�) [1 − � (�)]	−11 + [1 − � (�)]	 − (� − 1)
× �2 (�) [1 − � (�)]	−21 + [1 − � (�)]	
+��2 (�) [1 − � (�)]2	−2

{1 + [1 − � (�)]	}2
}}} .
(15)

If � = �0 is a root of (14), then it corresponds to a local
maximum if �(�) > 0 for all � < �0 and �(�) < 0 for all� > �0. It corresponds to a local minimum if �(�) < 0 for
all � < �0 and �(�) > 0 for all � > �0. It refers to a point of
in�exion if either �(�) > 0 for all � ̸= �0 or �(�) < 0 for all� ̸= �0.

�e critical point of the hrf of �, say ℎ(�), is obtained
from the following equation:

�� (�)� (�) + (1 − �) � (�)1 − � (�) + � (� − 1) × � (�) [1 − � (�)]	−11 − [1 − � (�)]	
+ �� (�) [1 − � (�)]	−11 + [1 − � (�)]	 − ��� (�) [1 − � (�)]	−1

× {1 + [1 − � (�)]	}
−1 − {1 − [1 − � (�)]	}
−1
{1 + [1 − � (�)]	}
 − {1 − [1 − � (�)]	}
 = 0.

(16)

�ere may be more than one root to (16). Let ^(�) =�2 log[ℎ(�)]/��2. We have

^ (�)= ��� (�) � (�) − ��(�)2�2 (�)
+ (1 − �) �� (�) [1 − � (�)] + �2 (�)[1 − � (�)]2
+ � (� − 1){{{�� (�) [1 − � (�)]	−11 − [1 − � (�)]	

− (� − 1) �2 (�) [1 − � (�)]	−21 − [1 − � (�)]	
−��2 (�) [1 − � (�)]2	−2

{1 − [1 − � (�)]	}2
}}}
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+ � (� + 1){{{�� (�) [1 − � (�)]	−11 + [1 − � (�)]	
− (� − 1) �2 (�) [1 − � (�)]	−21 + [1 − � (�)]	
+��2 (�) [1 − � (�)]2	−2

{1 + [1 − � (�)]	}2
}}}

− ���� (�) [1 − � (�)]	−1
× {1 + [1 − � (�)]	}
−1 − {1 − [1 − � (�)]	}
−1

{1 + [1 − � (�)]	}
 − {1 − [1 − � (�)]	}

+ �� (� − 1) �(�)2[1 − � (�)]	−2
× {1 + [1 − � (�)]	}
−1 − {1 − [1 − � (�)]	}
−1

{1 + [1 − � (�)]	}
 − {1 − [1 − � (�)]	}

+ � (� − 1) �2�(�)2[1 − � (�)]2	−2
× {1 + [1 − � (�)]	}
−2 − {1 − [1 − � (�)]	}
−2

{1 + [1 − � (�)]	}
 − {1 − [1 − � (�)]	}

− {��� (�) [1 − � (�)]	−1

× ( ({1 + [1 − � (�)]	}
−1
− {1 − [1 − � (�)]	}
−1)
× ({1 + [1 − � (�)]	}


− {1 − [1 − � (�)]	}
)−1)}−2.
(17)

If � = �0 is a root of (16), then it refers to a local maximum
if ^(�) > 0 for all � < �0 and ^(�) < 0 for all � > �0. It
corresponds to a local minimum if ^(�) < 0 for all � < �0
and ^(�) > 0 for all � > �0. It gives an in�exion point if either^(�) > 0 for all � ̸= �0 or ^(�) < 0 for all � ̸= �0.

4. A Useful Expansion and Quantile
Power Series

We can demonstrate that the cdf of� given by (2) admits the
following expansion:

� (�) = ∞∑
�=0

3��� (�) , (18)

where��(�) = �(�)� denotes the exponentiated-� (“exp-�”)
cumulative distribution with power parameter `,

3� = ∞∑
�,�=0

a�,�,�,
a�,�,� = (−1)�+� (−�b )(�c)((b + c) �` ) .

(19)

Some structural properties of the exp-� distributions are
investigated by Mudholkar et al. [9], Gupta and Kundu [10],
and Nadarajah and Kotz [11], among others.

�e density function of � can be expressed as an in	nite
linear combination of exp-� density functions:

 (�; �, �, �) = ∞∑
�=0

3�+1ℎ�+1 (�; �) , (20)

where ℎ�+1(�; �) = (` + 1)�(�; �)�(�; �)� denotes the density
function of the exp-� random variable d�+1 ∼ exp-�(` + 1)
with power parameter ` + 1. Equation (20) reveals that the
EHL-� density function is a linear combination of exp-�
density functions.�us, somemathematical properties of the
new family can be obtained directly from those properties of
the exp-� distribution.

Here, we derive a power series expansion for the quantile
function � = e(%) = �−1(%) of � by expanding (6). If the� quantile function, say e�(%) = �−1(%), does not have a
closed-form expression, it can usually be expressed in terms
of a power series

e� (%) = ∞∑
�=0
4�%�, (21)

where the coe�cients 4� are suitably chosen real numbers
which depend on the parameters of the � distribution. For
several important distributions, such as the normal, the
Student 
, and gamma and beta distributions,e�(%) does not
have explicit expressions but it can be expanded as in (21). As
a simple example, for the normalf(0, 1) distribution, 4� = 0
for b = 0, 2, 4, . . . and 41 = 1, 43 = 1/6, 45 = 7/120, and47 = 127/7560, . . ..

We use throughout the paper a result of Gradshteyn and
Ryzhik ([12], Section 0.314) for a power series raised to a
positive integer h (for h ≥ 1):

e�(%)� = (∞∑
�=0
4�%�)� = ∞∑

�=0
j�,�%�, (22)

where the coe�cients j�,� (for b = 1, 2, . . .) are easily obtained
from the recurrence equation (with j�,0 = 4�

0 ):

j�,� = (b40)−1 �∑
�=1

[k (h + 1) − b] 4�j�,�−�. (23)

Clearly, j�,� can be determined from j�,0, . . . , j�,�−1 and then
from the quantities 40, . . . , 4�.
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Next, we derive an expansion for the argument of e�(⋅)
in (6):

l = 1 − [1 − %1/
]1/	
[1 + %1/
]1/	 . (24)

Using the generalized binomial expansion four times
since % ∈ (0, 1), we can write

l = 1 − ∞∑
�,�,�=0

�∑
�=0

(−1)�+�+� (−�−1

b ) (�−1

c )
× ((b + c) �−1

` )(m̀) %�

(25)

and then

l = 1 − ∞∑
�,�,�=0

∞∑
�=�


�,�,�,�%� = 1 − ∞∑
�=0

4�%� = ∞∑
�=0

3�%�, (26)

where 4� = ∑∞
�,�=0 ∑∞

�=� 
�,�,�,� and 3� = −4� for m ≥ 1, 30 = 1−40,
and


�,�,�,� = (−1)�+�+� (−�−1

b ) (�−1

c )((b + c) �−1

` )(m̀) . (27)

�en, the quantile function of� can be expressed from (6) as

e (%) = e�( ∞∑
�=0

��%�) , (28)

where

�� = ∞∑
�,�=0

∞∑
�=�

(−1)�+�+�+1 (−�−1

m )(�−1

q )
× ((m + q) �−1


 ) ( 
k) ,
(29)

fork ≥ 1 and
�0 = 1 − ∞∑

�,�,�=0
(−1)�+�+1 (−�−1

m )(�−1

q )((b + c) �−1


 ) . (30)

For any baseline�distribution,we can combine (21)with (28)
to obtain

e (%) = e�( ∞∑
�=0

��%�) = ∞∑
�=0
4� ( ∞∑

�=0
��%�)�, (31)

and then using (22) and (23), we have

e (%) = ∞∑
�=0

��%�, (32)

where �� = ∑∞
�=0 4���,�, ��,0 = ��

0, and, fork > 1,
��,� = (k�0)−1 �∑

�=1
[h (b + 1) − k] ����,�−�. (33)

Equation (32) is the main result of this section since it allows
to obtain various mathematical quantities for the EHL family
as shown in the next sections.

�e formulae derived throughout the paper can be easily
handled in most symbolic computation so�ware platforms
such as Maple, Mathematica, and MATLAB.�ese platforms
currently have the ability to deal with analytic expressions of
formidable size and complexity. Established explicit expres-
sions to calculate statistical measures can be more e�cient
than computing them directly by numerical integration. �e
in	nity limit in these sums can be substituted by a large
positive integer such as 20 or 30 for most practical purposes.

5. Moments

Herea�er, we will assume that �(�) is the cdf of a random
variable r and that �(�) is the cdf of the random variable� having density function (3). �e moments of � can be
obtained from the (m, `)th probability weighted moments
(PWMs) of r given by

�̂,� = s [r��(r)�] = ∫∞

−∞
t��(t)�� (t) ��

= ∫1

0
e�(%)�%��%.

(34)

An alternative expression for �̂,� can be determined using
(22) and (23):

�̂,� = ∞∑
�=0

j�,�b + ` + 1 . (35)

�e PWMs for several distributions can be calculated from
(34) and (35).

We can write from (20)

s (��) = ∞∑
�=0

(` + 1) 3�+1 �̂,�. (36)

�us, the moments of any EHL-� distribution can be
expressed as an in	nite weighted linear combination of the
baseline PWMs. Equations (34)–(36) are the main results of
this section.

Further, the central moments (u�) and cumulants (v�) of� can be calculated as

u� = �∑
�=0

(−1)� (m̀) u��
1 u�

�−�,
v� = u�

� − �−1∑
�=1

(m − 1` − 1) v�u�
�−�,

(37)

respectively, where v1 = u�
1. �en, v2 = u�

2 − u�2
1 , v3 =u�

3 − 3u�
2u�

1 + 2u�3
1 , v4 = u�

4 − 4u�
3u�

1 − 3u�2
2 + 12u�

2u�2
1 − 6u�4

1 ,

and so forth. �e skewness w1 = v3/v3/2
2 and kurtosis w2 =v4/v2

2 quantities follow from the second, third, and fourth
cumulants.
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Figure 7: Skewness and kurtosis of the EHLLL distribution as a function of � for some values of �.

5.1. EHLFModel. Consider the Fréchet baseline cdf��,	(�) =�−(�/�)� for � > 0 and corresponding pdf ��,	(�) discussed in
Section 2.2. �e EHLF density function can be written from
(20) as

 (�) = ∞∑
�=0

3�+1��∗ ,	 (�) = �x	�−(	+1)

× ∞∑
�=0

3�+1 exp{− (` + 1) (x�)
	} ,

(38)

where ��∗ ,	(�) = ���∗ ,	(�)/��. �is equation reveals that
the EHLF density function can be expressed as an in	nite
mixture of Fréchet densities.

�e (m, `)th PWM of the Fréchet distribution becomes

�̂,� = �x	 ∫∞

0
��−(	+1) exp{− (` + 1) (x�)

	}��. (39)

Setting % = (` + 1)(x/�)	, �̂,� reduces to

�̂,� = x�

(` + 1)1−�/	 ∫∞

0
%−�/	 exp (−%) �%. (40)

�e integral converges absolutely for m < � and then

s (��) = x�Γ (1 − m�)
∞∑
�=0

3�+1(` + 1)1−�/	 . (41)

Plots of the skewness and kurtosis for some choices of �
as functions of �, for 4 = 2.1 and 3 = 3.1, are displayed in
Figure 7.

5.2. Exponentiated Half-Logistic Logistic (EHLLo) Model. For
the EHLLo distribution, the baseline cumulative function is�(�) = (1 + �−�)−1. Using a result from Prudnikov et al. ([13],
Section 2.6.13, equation (4)), we can write from (34) (for 
 <1) the following:

�̂,� = ( yy
)
�z (
 + ` + 1, 1 − 
)||||||||�=0, (42)

where z(4, 3) = ∫1
0 
�−1(1 − 
)−1�
 = Γ(4)Γ(3)/Γ(4 + 3) is

the beta function.�e mthmoment of the EHLLo distribution
comes from (36) as

s(��) = ∞∑
�=0

3�+1( yy
)
�z (
 + ` + 1, 1 − 
)||||||||||�=0. (43)

5.3. Exponentiated Half-Logistic Gamma (EHLGa) Model.
Using the power series expansion for the gamma cdf

��, (�) = (3�)�Γ (4)
∞∑

�=0

(−3�)�(4 + k)k! , (44)

we obtain from (20) the following series expansion:

 (�) = 3���−1�−�Γ (4)
∞∑
�=0

3�+1 (3�)��Γ(4)�
× ∞∑

�1=0
⋅ ⋅ ⋅ ∞∑

��=0

(−3�)�1+⋅⋅⋅+��(4 + k1) ⋅ ⋅ ⋅ (4 + k�)k1! ⋅ ⋅ ⋅ k�! .
(45)
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�eEHLGamoments follow from (36) and the expression
for �̂,� given by

�̂,� = Γ (m + 4 (` + 1))4�3�Γ(4)�+1 �(�)
�

× (m + 4 (` + 1) ; 4, . . . , 4; 4 + 1, . . . , 4 + 1, −1, . . . , −1) .
(46)

5.4. Exponentiated Half-Logistic Normal (EHLN) Model. �e
moments of r ∼ f(u, x) can be obtained from the moments
of � ∼ f(0, 1) using s(r�) = ∑�

�=0 u�−�x�s(��), and then
we can work with the standard normal distribution. We can
expand the EHLN cumulative function (18) (with u = 0 andx = 1) as

� (�) = ∞∑
�=0

3�2�
�∑

�=0
( �̀) erf ( �√2)

�. (47)

From the series expansion for the error function erf(⋅)
erf (�) = 2√O

∞∑
�=0

(−1)��2�+1

(2k + 1)k! , (48)

we obtain a series expansion from (20) (with u = 0 andx = 1)
given by

 (�) = 21/2O1/2�−�2/2 ∞∑
�=0

3�+12�
�∑

�=0
( �̀) 2�/2O−�/2

× ∞∑
�1=0

⋅ ⋅ ⋅ ∞∑
�	=0

(((−1)�1+⋅⋅⋅+�	�2(�1+⋅⋅⋅�	)+�)
× (2�1+⋅⋅⋅+�	 (2k1 + 1)
⋅ ⋅ ⋅ (2k� + 1)k1! ⋅ ⋅ ⋅ k�!)−1) .

(49)

�e EHLN moments can be obtained from (36) and the
PWMs �̂,� given by Cordeiro andNadarajah [14]. Plots of the
skewness and kurtosis for some choices of � as functions of �,
for 4 = 0.51, 4 = 0.1 and 3 = 3.01, 3 = 2.1, are displayed for
the EHLLL and EHLHGN distributions in Figures 8 and 9,
respectively. �ese plots show that the skewness and kurtosis
are very �exible.

6. Other Measures

In this section, we calculate the following measures: generat-
ing function, incompletemoments, mean deviations, reliabil-
ity, entropies, and order statistics for the EHL-� family.

6.1. Generating Function. Here, we provide two formulae for

the moment generating function (mgf)�(q) = s(���) of �.
A 	rst formula for�(q) comes from (20) as

�(q) = ∞∑
�=0

3�+1��+1 (q) , (50)

where ��+1(q) is the generating function of the exp-�
distribution with power parameter ` + 1. Hence, �(q) can
be determined from the exp-� generating function.

A second formula for�(q) can be derived from (20) as

�(q) = ∞∑
�=0

(` + 1) 3�+1�� (q) , (51)

where

�� (q) = ∫1

0
exp [qe� (%)] %��%. (52)

We can derive the mgf ’s of several EHL distributions
directly from (50)-(51). For example, the mgf ’s of the expo-
nentiated half-logistic exponential (EHLE) (with parameter� and q < �−1) and EHLLo (with q < 1) distributions are
given by

�(q) = ∞∑
�=0

(` + 1) 3�+1z (` + 1, 1 − �q) ,
� (q) = ∞∑

�=0
(` + 1) 3�+1z (q + ` + 1, 1 − q) ,

(53)

respectively.
Clearly, two representations for the characteristic func-

tion (chf) �(q) = s(�i��) of � can be derived from (50)–(52)

by �(q) = �(iq), where i = √−1.
6.2. Incomplete Moments. Incomplete moments of the
income distribution form natural building blocks for
measuring inequality. For example, the Lorenz and
Bonferroni curves depend upon the incomplete moments of
the income distribution. �e mth incomplete moment of � is

de	ned ask�(�) = s(�� | � < �) = ∫�
−∞ ��(�)��. Here, we

provide two formulae to calculate the incomplete moments
of the EHL family. First, the mth incomplete moment of �
can be expressed as

k� (�) = ∞∑
�=0

3�+1 ∫�(�;�)

0
e�(%)�%��%. (54)

�e integral in (54) can be computed at least numerically
for most baseline distributions.

A second formula follows from (54) using (22) and (23).
We can write

k� (�) = ∞∑
�,�=0

3�+1 (` + 1) j�,��(�; �)�+�+1` + b + 1 , (55)

where j�,� is given by (23).
�e 	rst incomplete moment can be used to obtain

Bonferroni and Lorenz curves de	ned for a given probabilityO by z(O) = k1(�)/(Ou�
1) and �(O) = k1(�)/u�

1, respectively,

where � = e�(1 − [(1 − O1/
)/(1 + O1/
)]1/	) is immediately
calculated from the parent quantile function.
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Figure 8: Skewness and kurtosis of the EHLLL distribution as a function of � for some values of �.
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Figure 9: Skewness and kurtosis of the EHLGHN distribution as a function of � for some values of �.
6.3. Mean Deviations. �e mean deviations about the mean
(�1(�) = s(|�−u�

1|)) and about the median (�2(�) = s(|�−�|)) of� can be expressed as

�1 (d) = 2u�
1� (u�

1) − 2k1 (u�
1) ,

�2 (d) = u�
1 − 2k1 (�) , (56)

respectively, where� = e�(1−[(1 − 0.51/
)/(1 + 0.51/
)]1/	)
is the median of �, �(u�

1) and u�
1 = s(�) come from (2)

and (36), respectively, and k1(t) = ∫�
−∞ �(�)�� is the 	rst

incomplete moment.

Now, we provide two alternative ways to compute �1(�)
and �2(�). A general equation fork1(t) can be derived from
(20) as

k1 (t) = ∞∑
�=0

3�+1��+1 (t) , (57)

where

��+1 (t) = ∫�

−∞
�ℎ�+1 (�) ��. (58)
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Equation (58) is the basic quantity to compute the mean
deviations for the EGL distributions.

A second general formula for k1(t) can be derived by
setting % = �(�) in (57):

k1 (t) = ∞∑
�=0

(` + 1) 3�+1�� (t) , (59)

where

�� (t) = ∫�(�)

0
e� (%) %��% = ∞∑

�=0

4��(t)�+�+1b + ` + 1 . (60)

Equations (55)–(59) are the main results of this section.

6.4. Reliability. Here,we derive the reliability�=�(�2 < �1)
when �1 ∼ EHL-�(�1, �1, �1) and �2 ∼ EHL-�(�2, �2, �2)
are independent random variables with a positive support. It
has many applications especially in engineering concepts. Let� denote the pdf of �� and let �� denote the cdf of ��. By
expanding the binomial terms in 1 and �2, we obtain

� = ∞∑
�,�=0

3(1)� 3(2)�+1��,�+1, (61)

where

��,�+1 = ∫∞

0
�� (�; �1) ℎ�+1 (�; �2) ��,

3(1)� = ∞∑
�,�=0

(−1)�+� (−�1b ) (�1c )((b + c) �1` ) ,
3(2)�+1 = ∞∑

�,�=0
(−1)�+�+1 (−�2b ) (�2c )((b + c) �1q + 1 ) .

(62)

If �1 = �2, we obtain
� = ∞∑

�,�=0
3(1)� 3(2)�

q + 1q + ` + 1 . (63)

Further, if �1 = �2 and �1 = �2, then � = 1/2.
6.5. Entropies. An entropy is a measure of variation or
uncertainty of a random variable �. Two popular entropy
measures are the Rényi and Shannon entropies. �e Rényi
entropy of a random variable with pdf (�) is de	ned (forj > 0 and j ̸= 1) as

�� (j) = 11 − j log(∫
∞

0
 (�) ��) . (64)

�e Shannon entropy of a random variable � is given bys{− log[(�)]}, which is the special case of the Rényi entropy
when w ↑ 1. Direct calculation gives

s {− log [ (�)]} = − log (2��) − s {log [� (�; �)]}
− (� − 1) s {log [1 − � (�; �)]}
− (� − 1) s {log {1 − [1 − � (�; �)]	}}
+ (� + 1) s {log {1 + [1 − � (�; �)]	}} .

(65)

A�er some algebraicmanipulations, we obtain the follow-
ing.

Proposition 1. Let � be a random variable with pdf given by
(3). �en,

s {log [1 − � (�)]}
= 2�� ∞∑

�,�=0
(−1)� (−� − 1b )(� − 1c ) 1

[� (b + c)]2 ,
s {log {1 − [1 − � (�; �)]	}}

= 2� ∞∑
�,�=0

(−1)� (−� − 1b )
× [ yy
 (
 + � − 1c )||||||||�=0]

1b + c + 1 ,
s {log {1 + [1 − � (�; �)]	}}

= 2� ∞∑
�,�=0

(−1)� (� − 1c )
× [ yy
 (
 + � − 1b )||||||||�=0]

1b + c + 1 .

(66)

�e simplest formula for the entropy of � becomes

s {− log [ (�)]}
= − log (2��) − s {log [� (�; �)]}
− 2�� (� − 1) ∞∑

�,�=0
(−1)� (−� − 1b )
× (� − 1c ) 1

[� (b + c)]2
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− 2� (� − 1) ∞∑
�,�=0

(−1)� (−� − 1b )
× [ yy
 (
 + � − 1c )||||||||�=0]

1b + c + 1
+ 2� (� + 1) ∞∑

�,�=0
(−1)� (� − 1c )

× [ yy
 (
 + � − 1b )||||||||�=0]
1b + c + 1 .

(67)

A�er some algebraic developments, we obtain an alternative
expression for ��(j):

�� (j) = j1 − j log (2��) + log (�)1 − j
+ (log

{{{
∞∑

�,�=0
(−j (� + 1)b ) (j (� − 1)c )

× (−1)�� (b + c) + j (� − 1) + 1
× s!
,� {� −1 [�−1 (d)]}}}})

× (1 − j)−1,

(68)

where d�,� ∼ Beta(1, �(b + c) + j(� − 1) + 1).
6.6. Order Statistics. Order statistics make their appearance
in many areas of statistical theory and practice. Suppose
that �1, �2, . . . , �� is a random sample from the EHL-�
distribution. Let ��:� denote the bth order statistic. From (18)
and (20), the pdf of��:� is given by

�:� (�) = � �−�∑
�=0

(−1)� (h − bc ) (�) ��+�−1 (�)

= � �−�∑
�=0

(−1)� (h − bc ) [∞∑
�=0

m3��(�)�−1� (�)]

×[∞∑
�=0

3��(�)�]
�+�−1,

(69)

where � = h!/[(b − 1)!(h − b)!]. Using (22) and (23), we can
write

[∞∑
�=0

3��(�)�]
�+�−1 = ∞∑

�=0
��+�−1,��(�)�, (70)

where ��+�−1,0 = 3�+�−10 and

��+�−1,� = (`30)−1 �∑
�=1

[k (c + b) − `] 3���+�−1,�−�. (71)

Hence,

�:� (�) = ∞∑
�=0

��ℎ�+1 (�) , (72)

where �� = �∑�−�
�=0 ∑�

�=0 3�+1��+�−1,�−�.
Equation (72) is the main result of this section. It

reveals that the pdf of the EHL-� order statistics is a linear
combination of exp-� density functions. So, several struc-
tural quantities of the EHL-� order statistics like ordinary,
incomplete moments, generating function, mean deviations,
and several others can be obtained from the corresponding
quantities of exp-� distributions.

7. Bivariate Extensions

In this section, we introduce two extensions of the proposed
model. �e 	rst extension is based on the idea of [15]. Let�1 ∼ EHL-�(�1, �, �), �2 ∼ EHL-�(�2, �, �), and �3 ∼
EHL-�(�3, �, �) be independent random variables. Further,
we de	ne� = max{�1, �3} and d = max{�2, �3}. �en, the
pdf of the bivariate random variable (�, d) is given by

��,! (�, �) = {1 − [1 − � (�; �)]	
1 + [1 − � (�; �)]	}


1

× {1 − [1 − � (�; �)]	
1 + [1 − � (�; �)]	}


2

× {1 − [1 − � (t; �)]	
1 + [1 − � (t; �)]	}


3 ,

(73)

where t = min{�, �}. �e marginal cdf ’s are

�� (�) = {1 − [1 − � (�; �)]	
1 + [1 − � (�; �)]	}


1+
3 ,

�! (�) = {1 − [1 − � (�; �)]	
1 + [1 − � (�; �)]	}


2+
3 .
(74)

Clearly, if we consider � ∼ EHL-�(�1 + �3, �, �) and d ∼
EHL-�(�2 + �3, �, �), the pdf of (�, d) is given by

�,! (�, �)

=
{{{{{{{{{{{{{{{{{{{{{

EHL-� (�; �1, �, �) EHL-� (�; �2 + �3, �, �) ,
for � < �;EHL-� (�; �1 + �3, �, �) EHL-� (�; �2, �, �) ,
for � > �;�3�1 + �2 + �3

EHL-� (�; �1 + �2 + �3, �, �, �) ,
for � = �.

(75)



Journal of Probability and Statistics 15

�e marginal pdf ’s are given by

� (�; �1, �3�, �) = 2 (�1 + �3) �� (�; �) [1 − � (�; �)]	−1
× {1 − [1 − �(�; �)	]}
1+
3−1
{1 + [1 − � (�; �)]	}
1+
3+1

,
! (�; �2, �3, �, �) = (�2 + �3) �� (�; �) [1 − � (�; �)]	−1

× {1 − [1 − � (�; �)]	}
2+
3−1

{1 + [1 − � (�; �)]	}
2+
3+1
.

(76)

A second extension is given by

��,! (�, �) = {1 − [1 − � (�, �; �)]	
1 + [1 − � (�, �; �)]	}


, (77)

where �(�, �; �) is a bivariate continuous distribution with
marginal cdf ’s �1(�; �) and �2(�; �). �e marginal cdf ’s are
given by

�� (�) = {1 − [1 − �1 (�; �)]	1 + [1 − �1 (�; �)]	}

,

�! (�) = {1 − [1 − �2 (�; �)]	1 + [1 − �2 (�; �)]	}

.

(78)

�e joint pdf of (�, d) is easily obtained by �,!(�, �) =y2��,!(�, �)/y�y� and then

�,! (�, �) = 2��[1 − � (�, �; �)]	−1

× {1 − [1 − � (�, �; �)]	}
−1

{1 + [1 − � (�, �; �)]	}
+1l (�, �; �) , (79)

wherel (�, �; �) = � (�, �; �)
+ y� (�, �; �)y� y� (�, �; �)y�
× 1 − �1 − � (�, �; �)
+ � (� − 1) y� (�, �; �)y� y� (�, �; �)y�
× [1 − � (�, �; �)]	−1
1 − [1 − � (�, �; �)]	

+ � (� + 1) y� (�, �; �)y� y� (�, �; �)y�
× [1 − � (�, �; �)]	−1
1 + [1 − � (�, �; �)]	 .

(80)

�e marginal pdf ’s are

� (�, �, �, �) = 2���1 (�; �) [1 − �1 (�; �)]	−1

× {1 − [1 − �1 (�; �)]	}
−1

{1 + [1 − �1 (�; �)]	}
+1

! (�, �, �, �) = 2���2 (�; �) [1 − �2 (�; �)]	−1

× {1 − [1 − �2 (�; �)]	}
−1

{1 + [1 − �2 (�; �)]	}
+1 .

(81)

�e conditional cdf ’s are

� (��) = {1 − [1 − � (�, �; �)]	
1 + [1 − � (�, �; �)]	}




× {1 − [1 − �2 (�; �)]	1 + [1 − �2 (�; �)]	}
−
,

� (� | �) = {1 − [1 − � (�, �; �)]	
1 + [1 − � (�, �; �)]	}




× {1 − [1 − �1 (�; �)]	1 + [1 − �1 (�; �)]	}
−
.

(82)

�e conditional density functions reduce to

 (� | �)
= [1 − � (�, �; �)]	−1{1 − [1 − � (�, �; �)]	}
−1l (�, �; �)

[1 − �2 (�; �)]	−1{1 − [1 − �2 (�; �)]	}
−1�2 (�; �)
× { 1 + [1 − �2 (�; �)]	1 + [1 − � (�, �; �)]	}


+1 ,
 (� | �)
= [1 − � (�, �; �)]	−1{1 − [1 − � (�, �; �)]	}
−1l (�, �; �)

[1 − �1 (�; �)]	−1{1 − [1 − �1 (�; �)]	}
−1�1 (�; �)
× { 1 + [1 − �1 (�; �)]	1 + [1 − � (�, �; �)]	}


+1.
(83)

8. Estimation

We derive the maximum likelihood estimates (MLEs) of
the parameters of the EHL-� family. Let �1, . . . , �� be
a random sample of size h from the random variable
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� ∼ EHL-�(�, �, �), where � is a � × 1 vector of unknown
parameters of the baseline distribution �(�; �). �e log-

likelihood function for � = (�, �, �)� can be expressed as

� (�) = h log (2��) + �∑
�=1

log [� (��; �)] + (� − 1)
× �∑

�=1
log [1 − � (��; �)]

+ (� − 1) �∑
�=1

log {1 − [1 − � (��; �)]	} − (� + 1)
× �∑

�=1
log {1 + [1 − � (��; �)]	} .

(84)

Equation (84) can be maximized either directly, for example,
using SAS (Proc NLMixed) or Ox (subroutine MaxBFGS)
(see [16]) or by solving the nonlinear likelihood equations
obtained by di�erentiating the score function. Initial esti-
mates of the parameters � and � may be inferred from the
estimates of ^. �e components of the score vector &(�) are
given by

&
 (�) = h� + �∑
�=1

log {1 − [1 − � (��; �)]	}
− �∑

�=1
log {1 + [1 − � (��; �)]	} ,

&	 (�) = h� + �∑
�=1

log [1 − � (��; �)] − (� − 1)
× �∑

�=1

[1 − � (��; �)]	 log [1 − � (��; �)]{1 − [1 − � (��; �)]	}
− (� + 1)
× �∑

�=1

[1 − � (��; �)]	 log [1 − � (��; �)]{1 + [1 − � (��; �)]	} ,

(85)

&� (�) = �∑
�=1

[ ̇� (��; �)]�� (��; �) − (� − 1)

× �∑
�=1

[�̇ (��; �)]�[1 − � (��; �)] + � (� − 1)

× �∑
�=1

[1 − � (��; �)]	−1[�̇ (��; �)]�
{1 − [1 − � (��; �)]	} + � (� + 1)

× �∑
�=1

[1 − � (��; �)]	−1[�̇ (��; �)]�
{1 + [1 − � (��; �)]	} ,

(86)

where

[ ̇� (��)]� = y� (��; �)y� , [�̇ (��)]� = y�(��; �)y� (87)

are � × 1 vectors.
For interval estimation and hypothesis tests on the model

parameters, we require the (� + 2) × (� + 2) observed
information matrix � = �(�) calculated numerically. Under
conditions that are ful	lled for parameters in the interior of

the parameter space but not on the boundary, √h(�̂ − �)
is asymptotically normal f�+2(0, �(�)−1), where �(�) is the
expected information matrix. We can substitute �(�) by �(�̂),
that is, the observed information matrix evaluated at �̂, and
then themultivariate normalf�+2(0, �(�̂)−1) distribution can
be used to construct approximate con	dence regions for the
model parameters.

We can compute the maximum values of the unrestricted
and restricted log-likelihoods to construct likelihood ratio
(LR) statistics for testing some special models of the EHL-�
distribution. For example, for comparing, the EHLGHN and
EHLHN distributions are equivalent to test�0 : 4 = 1 versus�1 : 4 ̸= 1 and the LR statistic reduces to

a = 2 {ℓ (�̂, �̂, 4̂, ĵ) − ℓ (�̃, �̃, 1, j̃)} , (88)

where �̂, �̂, ĵ, and 4̂ are theMLEs under� and �̃, �̃, and j̃ are
the estimates under�0.

9. Applications

In this section, the potentiality of the EHL-� family is
illustrated by means of two applications using well-known
data sets. We demonstrate the �exibility and applicability of
the proposed model. �e reason for choosing these data is
that they allowus to showhow in di�erent 	elds it is necessary
to have positively skewed distributions with nonnegative
support.�ese data sets present di�erent degrees of skewness
and kurtosis.

9.1. Application 1: Tubercle Data. �e 	rst data set corre-
sponds to the survival times of guinea pigs injected with
di�erent doses of tubercle bacilli reported by Bjerkedal [17].
It is well known that guinea pigs have high susceptibility
to human tuberculosis and that is because they were used
in that study. Here, we are primarily concerned with the
animals in the same cage that are under the same regimen;
the data includes h = 72 observations. �ese data were also
analyzed by Kundu et al. [18] using the Birnbaum-Saunders
distribution.

An alternative approach for modeling these data can
be provided by the Weibull and Birnbaum-Saunders (BS)
distribution. �ere are various extensions of these lifetimes
distributions. For example, Famoye et al. [19] proposed
the beta Weibull (BW) distribution and Cordeiro et al. [1]
study some mathematical properties of the BW distribution,
which is a quite �exible model in analysing positive data.
More recently, Cordeiro and Lemonte [20] proposed the



Journal of Probability and Statistics 17

Table 2: MLEs of the model parameters for the tubercle data, the corresponding SEs (given in parentheses) and the statistics AIC, CAIC, and
BIC.

Model � � 4 3 AIC CAIC BIC

EHLF
3.5736 22.0208 0.2963 1248.81

787.9 788.5 797.0
(2.4999) (3.3821) (0.1909) (847.78)

Fréchet
1.4148 54.1888

795.3 795.5 799.9
(0.1173) (0.7874)� � 4 3

EHLLL
0.2879 0.1938 67.7085 8.6238

784.7 785.3 793.8
(0.1173) (0.1085) (7.8493) (3.3236)

LL
75.2758 2.5404

783.9 784.1 788.5
(6.0174) (0.2537)� � 4 3

EHLGHN
19.3763 4.3720 0.3165 128.87

788.2 788.8 797.3
(12.7017) (2.0573) (0.0662) (138.49)

GHN
1.0164 129.24

807.5 807.6 812.0
(0.0912) (11.8973)� w 4 3

BW
5098.72 0.3662 15.0280 60.7976

790.3 790.9 799.4
(875.79) (0.1882) (5.2590) (8.4854)� � 4 3

�-BS 1.1519 316.10 0.6513 4.1942
789.1 789.7 798.2

(0.0743) (101.04) (0.0324) (0.4878)

Table 3: Statistics�∗ and l∗.

Model �∗ l∗

EHLF 0.126 0.695

Fréchet 0.215 1.283

EHLLL 0.039 0.300

LL 0.116 0.655

EHLGHN 0.145 0.797

GHN 0.579 3.197

�-Birnbaum-Saunders (�-BS) distribution for fatigue life
modeling. �ey investigated various properties of the �-BS
model including expansions for the moments, generating
function, mean deviations, density function of the order
statistics, and their moments. �e BW and �-BS distribution
are as follows.

(i) BW Distribution. �e BW distribution [19] with four
parameters� > 0, w > 0, 4 > 0, and 3 > 0has density function
given by (for � > 0)

 (�) = w(1/�)�z (4, 3) ��−1 exp {−3(��)
�}

× [1 − exp {−(��)
�}]�−1,

(89)

where z(4, 3) = [Γ(4)Γ(3)]/Γ(4 + 3) is the beta function
and Γ(⋅) is the gamma function. Here, 4 and 3 are two
additional shape parameters to the Weibull distribution to
govern skewness and kurtosis. For 4 = 3 = 1, we obtain the
Weibull distribution.

(ii) �-BS Distribution. �e �-BS density function (with four
parameters � > 0, � > 0, 4 > 0, and 3 > 0) is
 (�) = v (�, �)z (4, 3) �−3/2 (� + �)

× exp{−^ (�/�)(2�2) }Φ(V)�−1{1 − Φ (V)}−1, � > 0,
(90)

where 4, 3, and� > 0 are shape parameters and� > 0 is a scale
parameter, v(�, �) = exp(�−2)/(2�√2O�), ^(t) = t + t−1,
V = �−1�(�/�), �(t) = t1/2 − t−1/2, and Φ(⋅) is the standard
normal cumulative distribution. For 4 = 3 = 1, we obtain the
BS distribution.

We 	t the EHLF, EHLLL, EHLGHN, Fréchet, LL, GHN,
BW, and �-BS distributions to the current data. In order to
estimate the parameters �, �, and �, we adopt the maximum
likelihood estimation method discussed in Section 8. We use
the MLEs of 4 and 3 applied to the corresponding wider
models for theWeibull, LL, andGHNdistributions as starting
values for the iterative procedure. �e computations were
done using the NLMixed procedure in SAS. Table 4 lists the
MLEs (and the corresponding standard errors in parenthe-
ses) of the model parameters and the values of the following
statistics for the 	tted models: AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion), and CAIC
(Consistent Akaike Information Criterion). �ese results
indicate that the EHLLL and LL models have the lowest AIC,
BIC, and CAIC values, and therefore they could be chosen as
the best models.
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Table 4: MLEs of the model parameters for the carbon monoxide data, the corresponding SEs (given in parentheses) and the AIC, CAIC,
and BIC statistics.

Model � � 4 3 AIC CAIC BIC

EHLF
0.7763 32571 0.2372 214859

2053.2 2053.3 2068.6
(0.0231) (39.0598) (0.00083) (258.3702)

Fréchet
0.6922 6.4136

2753.5 2753.6 2761.2
(0.0199) (0.5315)� � 4 3

EHLLL
0.3606 1.7327 14.7483 6.4320

1965.6 1965.7 1981.0
(0.0243) (0.2559) (0.5335) (0.1514)

LL
11.0946 3.7223

2111.6 2111.7 2119.2
(0.2693) (0.1724)� � 4 3

EHLGHN
0.6920 0.2596 2.2792 8.7710

1931.2 1931.4 1946.6
(0.0856) (0.0307) (0.2490) (0.8810)

GHN
2.4436 13.3254

1957.1 1957.2 1964.8
(0.1117) (0.2214)� w 4 3

BW
7.5373 4.5942 0.3081 0.0644

1930.1 1930.2 1945.5
(0.7844) (0.2797) (0.0434) (0.0221)� � 4 3

�-BS 160.55 0.0064 319.49 212.23
2020.8 2020.9 2036.1

(63.2068) (0.0050) (0.3590) (0.0256)
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Figure 10: Fitted density functions for the tubercle data. (a) Fitted EHLF versus Fréchet models. (b) Fitted EHLLL versus LL models. (c)
Fitted EHLGHN versus GHNmodels.

Now, we will apply formal goodness-of-	t tests in order
to verify which distribution 	ts better to the carbon data.
In particular, we consider the Cramér-von Mises (�∗) and
Anderson-Darling (l∗) statistics. �e �∗ and l∗ statistics
are described in detail in Chen and Balakrishnan [21]. In
general, the smaller the values of these statistics, the better
the 	t to the data. Let �(�; �) be the cdf, where the form

of � is known but � (a `-dimensional parameter vector) is
unknown. To obtain the statistics�∗ andl∗, we can proceed

as follows: (i) compute V� = �(��; �̂), where the ��’s are in
ascending order, and then �� = Φ−1(V�), where Φ−1(⋅) is the
inverse of Φ(⋅); (ii) compute %� = Φ{(�� − �)/q�}, where� = (1/h)∑�

�=1 �� and q2� = (h − 1)−1 ∑�
�=1(�� − �)2; (iii)
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Figure 11: Estimated cumulative functions and the empirical cdf for tubercle data. (a) Fitted EHLF versus Fréchet models. (b) Fitted EHLLL
versus LL models. (c) Fitted EHLGHN versus GHNmodels.
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Figure 12: Fitted density functions for the carbonmonoxide data. (a) Fitted EHLF versus Fréchetmodels. (b) Fitted EHLLL versus LLmodels.
(c) Fitted EHLGHN versus GHNmodels.

calculate �2 = ∑�
�=1{%� − (2b − 1)/(2h)}2 + 1/(12h) andl2 = −h−(1/h)∑�

�=1{(2b−1) ln(%�)+(2h+1−2b) ln(1−%�)} and
then�∗ = �2(1+0.5/h) andl∗ = l2 (1+0.75/h+2.25/h2)
(see Table 2).

�e �∗ and l∗ statistics for all the models are given in
Table 3. From the 	gures in this table, the proposed EHLLL
model 	ts the current data better than the other models.
�erefore, the new family may be an interesting alternative

to the other models available in the literature for modeling
positive real data.

More information is provided by a visual comparison
of the histogram of the data with the 	tted EHLF, EHLLL,
EHLGHN, Fréchet, LL, and GHN distributions. �e plot of
the 	tted EHLLL density is displayed in Figure 10(b) for the
tubercle data. Clearly, the new EHLLL distribution provides
a closer 	t to the histogram.
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Figure 13: Estimated cumulative functions and the empirical cdf for carbonmonoxide data. (a) Fitted EHLF versus Fréchet models. (b) Fitted
EHLLL versus LL models. (c) Fitted EHLGHN versus GHWmodels.

Table 5:�∗ and l∗ statistics.

Model �∗ l∗

EHLF 6.912 37.867

Fréchet 10.222 53.028

EHLL 6.933 39.479

LL 7.357 39.092

EHLGHN 7.152 44.131

GHN 6.958 40.223

Figure 11(a) displays plots of the empirical function and
the estimated cdf ’s of the EHLF, EHLLL, EHLGHN, Fréchet,
LL, and GHN distributions. We note a good 	t of the EHLLL
and LL models to these data.

9.2. Carbon Monoxide Data. �e 	rst data set consists of
the carbon monoxide (CO) measurements made in several
brands of cigarettes in 1998. �e reports show that nicotine
levels, on average, had remained stable since 1980, a�er falling
in the preceding decade. �e report entitled “Tar, nicotine,
and carbonmonoxide of the smoke of 1206 varieties of domestic
cigarettes for the year of 1998” includes the data sets and some
information about the source of the data, smoker’s behavior
and beliefs about nicotine, and tar and carbon monoxide
contents in cigarettes.

�e CO data includes h = 345 records of measurements
of CO content, in milligrams, in cigarettes of several brands.

We 	t the EHLF, EHLLL, EHLGHN, Fréchet, LL, GHN,
BW, and �-BS distributions to the data. �e computations
were done using the NLMixed procedure in SAS. Table 4
lists the MLEs (and the corresponding standard errors in
parentheses) of the model parameters and the values of AIC,

BIC, and CAIC statistics for some models. �ese results
indicate that the EHLF, EHLGHN, BW, and GHN models
have the lowest AIC, BIC, and CAIC values.

�e �∗ and l∗ statistics for all the models are given in
Table 5. From the 	gures in this table, the proposed EHLF
model 	ts the current data better than the other models.

In order to assess if the EHL-� model is really appropri-
ate, the plots of the 	tted EHLF, EHLLL, EHLGHN, Fréchet,
LL, and GHN density functions are displayed in Figure 12.
Based on these plots, we conclude that the EHLF distribution
provides the best 	t to the carbon monoxide data.

Figure 13(a) displays plots of the empirical function and
the estimated cdf ’s of the EHLF, EHLLL, EHLGHN, Fréchet,
LL, and GHN distributions. We note a good 	t of the EHLF
model to these data.

10. Conclusions

We propose a new exponentiated half-logistic (EHL) fam-
ily which represents a competitive alternative for lifetime
data analysis. For any parent continuous distribution �,
we can de	ne the corresponding EHL-� distribution with
two positive parameters. So, the new family extends several
common distributions such as Fréchet, normal, log-normal,
Gumbel, and log-logistic distributions. �e mathematical
properties of the new family such as ordinary, incomplete and
factorial moments, generating and quantile functions, mean
deviations, Bonferroni and Lorenz curves, Shannon entropy,
Rényi entropy, reliability, and order statistics are obtained for
any EHL-� distribution.�emodel parameters are estimated
by maximum likelihood. Two examples to real data illustrate
the importance and potentiality of the new family.
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