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Inflammation drives atherosclerosis. Both immune and resident vascular cell types are involved in the development of
atherosclerotic lesions. The phenotype and function of these cells are key in determining the development of lesions. Toll-like
receptors are the most characterised innate immune receptors and are responsible for the recognition of exogenous conserved
motifs on pathogens, and, potentially, some endogenous molecules. Both endogenous and exogenous TLR agonists may be present
in atherosclerotic plaques. Engagement of toll-like receptors on immune and resident vascular cells can affect atherogenesis as
signalling downstream of these receptors can elicit proinflammatory cytokine release, lipid uptake, and foam cell formation and
activate cells of the adaptive immune system. In this paper, we will describe the expression of TLRs on immune and resident
vascular cells, highlight the TLR ligands that may act through TLRs on these cells, and discuss the consequences of TLR activation
in atherosclerosis.

1. Introduction

Atherosclerosis is the principal cause of coronary artery and
cerebrovascular disease, which together comprise the leading
cause of death, accounting for a fifth of all deaths worldwide

[1]. Over the past decade, a major change has occurred in

the understanding of the mechanisms responsible for the
development and progression of atherosclerosis, leading to
an increasing recognition of atherosclerosis as an “inflam-

matory disease” [2]. Similarities in cellular and molecular

mediators of disease can be found between atherosclerosis
and other classical chronic inflammatory diseases, such as

rheumatoid arthritis (RA) [3]. Similar to other inflamed

tissues such as rheumatoid synovium, the atherosclerotic
plaque is characterised by the migration into tissue of blood-
borne inflammatory cells, followed by interactions with
vascular endothelial cells and connective-tissue cells, leading
to a chronic inflammatory response. In support of a strong
link between inflammation and cardiovascular disease, RA,
is associated with an increased risk of cardiovascular events,
which account for 35% to 50% of excess premature mortality

in RA patients [4].

Endothelial dysfunction/activation, is the earliest step
in the pathogenesis of atherosclerosis [2]. Endothelial dys-
function can be induced by numerous factors including
cytokines, free radicals, lipids, and bacterial or viral infection.
In addition, endothelial cells may be primed for activation by
haemodynamic forces. Activated endothelial cells upregulate
adhesion molecule expression, promoting the recruitment
of monocytes into the subendothelial space. Recruited
monocytes ingest modified lipid and become foam cells,
hallmarks of early atherosclerosis, trapped in the vessel wall.
Progressive lipid accumulation and leucocyte recruitment
leads to the gradual formation of an atheroma that protrudes
into the lumen of the vessel wall, narrowing the artery.
In addition to monocytes, other leucocyte populations
including T lymphocytes, dendritic cells and mast cells
have been implicated in the pathogenesis of atherosclerosis.
As lesions progress, smooth muscle cells proliferate and
migrate into the intima where they deposit extracellular
matrix components and form a fibrous cap over the lesion.
Rupture of unstable lesions causes thrombus formation,
which may lead to myocardial infarction. These processes are
now recognised to involve components of both the innate
and adaptive immune systems [5].
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Innate immunity constitutes the first line of defence
against invading pathogens, and it is programmed to
detect highly conserved molecular motifs called pathogen-
associated microbial patterns (PAMPs) via specialised recep-
tors. Amongst several families of pattern-recognition recep-
tors (PPRs), Toll-like receptors (TLRs) are the most char-
acterised so far. Although the exact gene numbers may
differ between species, at least 13 different TLRs have been
identified in mammals, each one with a certain degree of
specificity for a range of ligands (reviewed later).

The members of the TLR family share the same cyto-
plasmic domain with the interleukin (IL)-1 receptor, known
as the Toll/IL-1R (TIR) homologous domain. As a result,
TLRs activate signalling pathways shared with IL-1. The TIR
domain recruits the adaptor protein myeloid differentiation
primary response gene 88 (MyD88), which activates a family
of IL-1R associated kinases (IRAKs). IRAKs in turn activate
tumour necrosis factor receptor associated factor 6 (TRAF6),
and elicit downstream signalling via the nuclear factor κB
(NFκB) pathway. NFκB translocation to the nucleus activates
transcription of proinflammatory genes, including tumor
necrosis factor (TNF)-α, IL-1, and IL-12. The MyD88-
dependent pathway is shared by all TLRs, with the exception
of TLR3. TLR4 signalling encompasses both the MyD88- and
the MyD88-independent pathway. The MyD88-independent
pathway, engaged by TLR-3 and -4, relies on TIR-domain-
containing adaptor protein inducing interferon β (TRIF) to
mediate interferon regulatory factor (IRF)-3 and NFκB acti-
vation. TLR4 utlises Trif-related adaptor molecule (TRAM)
to interact with TRIF and engage the MyD88-independent
pathway [6].

In this paper, we will describe the expression, ligands,
and functions of toll-like receptors in particular in reference
to atherosclerosis. The aspects of TLR signalling will be
treated in detail in other reviews in this series. We will
consider toll-like receptors in both the human and murine
systems highlighting important differences between the two
organisms with regard to inflammatory mechanisms and
TLR biology, which may hinder extrapolation of murine data
into human systems.

2. Expression of Toll-Like Receptors

Cells of the innate immune system including mono-
cytes/macrophages and dendritic cells are the main cellular
expressers of toll-like receptors. However cells of the adaptive
immune system and nonimmune cells have also been shown
to express TLRs. Studies attempting to detail TLR expression
on different cell types have some common shortcomings.
Firstly, they tend to rely on expression at the mRNA level, due
to limitations of existing antibodies. Secondly, discrepancies
between TLR gene expression and responsiveness to TLR
ligands are often observed. Thirdly, gene expression may be
influenced by contamination with other cell types when, for
example, purified populations of leucocytes are studied.

Notwithstanding these limitations, it is important to
fully discern the expression patterns of TLRs in both health
and disease as their knowledge may influence the choice of
receptor or signalling pathway for therapeutic interventions

targeting TLRs. This is particularly pertinent in atheroscle-
rosis, a complex disease involving multiple inflammatory
and noninflammatory cells. Within atherosclerotic lesions
monocytes/macrophages, B and T lymphocytes, dendritic
cells, smooth muscle cells and endothelial cells have all been
described as expressing TLRs (Figure 1), or increasing their
expression during disease development. Increased expression
of TLR-1,-2, and -4 is found in inflammatory cells (includ-
ing CD68-positive macrophages), smooth muscle cells and
adventitial fibroblasts in human atherosclerotic vessels [7–
10]. Consistent with human atherosclerosis, both TLR2 and
TLR4 expression is increased in low-density lipoprotein
receptor deficient (LDLR−/−) and apolipoprotein E defi-
cient (ApoE−/−) mice, murine models of atherosclerosis
[10, 11]. This increase in TLR expression by cells during
atherogenesis may result in enhanced signalling through
the TLRs and thus an exacerbation of cell activation and
proatherogenic downstream pathways.

2.1. Monocytes/Macrophages. Monocytes and macrophages
are present at all stages during atherogenesis and, due to their
heterogenity, have numerous functions through which they
affect atherosclerotic plaque initiation and development.
Monocytes comprise 5–10% of peripheral blood leukocytes
in both humans and mice. Interestingly, this is the only
similarity between human and mouse blood. In humans,
neutrophils comprise 50–70% and lymphocytes the remain-
ing 30–50% of blood leucocytes. In contrast, lymphocytes are
the main leucocyte component of murine peripheral blood
comprising 75–95%, with neutrophils only accounting for
10–25% of peripheral blood leucocytes (reviewed in [12]). It
has been shown recently that blood is not the only compart-
ment where monocytes reside. Swirski et al. observed that the
spleen can act as a reservoir of undifferentiated monocytes,
which, upon ischemic myocardial injury, can relocate in
injured tissue, and participate in wound healing [13].

Two major subsets of monocytes have been described
in both humans and mice [14–16]. These subsets can be
delineated on the basis of size, granularity and the differential
expression of chemokine receptors and adhesion molecules.
In humans, “classical” monocytes, which represent 90–95%
of the total population of circulating blood monocytes,
can be identified by high expression of CD14 and by
a lack of CD16 (FCγRIII) expression. These monocytes
also express CCR2, CXCR2, CD62L, and CD64 [15]. In
contrast, the other major subset of human monocytes,
which have been shown to be similar to tissue macrophages,
are CD14lowCD16+ and express high levels of HLA-DR
(MHCII) and CX3CR1 but do not express CCR2 or CD62L
[17–19]. An intermediate subset of human monocytes that
expresses high levels of CD14 and that are CD16 positive has
also been described [20].

The two major subsets of murine monocytes resemble
those that have been described in humans. The “inflam-
matory” subset of murine monocytes can be defined by
their high expression of Ly6C/Gr1 and CCR2. In addi-
tion, these monocytes express CD62L and low levels of
CX3CR1, which makes them similar in phenotype to the
“classical” CD14+CD16− human monocyte subset [14]. The
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Figure 1: Toll-like receptor expression in atherosclerotic lesions is cell-type specific. Endothelial cell activation leads to increased expression
of adhesion molecules, promoting the infiltration of monocytes into the subendothelial space. Recruited monocytes differentiate into
macrophages, ingest lipid and become foam cells that are retained within the lesion, promoting plaque growth. Smooth muscle cells
proliferate and migrate into the intima where they form a fibrous plaque over the necrotic core of the lesion. In addition, myleloid dendritic
cells, plasmacytoid dendritic cells and lymphocytes are observed in lesions. Both immune and resident vascular cells in atherosclerotic arteries
express a variety of toll-like receptors or increase their expression during disease development. Each cell type expresses a specific combination
which might dictate its ability to respond to exogenous or endogenous ligands and the consequences of such stimulation. Ligation of toll-like
receptors on cells within atherosclerotic plaques can lead to numerous downstream effects including; promoting monocyte recruitment,
activation of plaque cells, induction of foam cell formation and activation of adaptive immune responses, which can all affect lesion
development.

other major murine monocyte subset expresses low levels
of Ly6C/Gr1 and high levels of CX3CR1. These mono-
cytes do not express CCR2 or CD62L and thus resemble
CD14lowCD16+ human monocytes [14]. In contrast to
humans, the two main monocyte subsets appear to be equally
represented in murine blood. High-cholesterol feeding leads
to an altered balance of the two major circulating monocyte
subsets in ApoE−/− mice. Both Swirski et al. and Tacke
et al. have demonstrated that high-cholesterol feeding of
ApoE−/− mice leads to monocytosis of the Ly6Chigh mono-
cyte subset [21, 22]. These “inflammatory” monocytes are
preferentially recruited into murine atherosclerotic plaques
[22]. Monocytes are continuously recruited to atheroscle-
rotic lesions, and their recruitment is proportional to lesion
size [23].

Human blood monocytes express TLR1, TLR2, TLR4,
TLR5, TLR6, TLR8, and TLR9 mRNA with TLR2 and TLR4
being the most highly expressed [24–27]. Surface expression
of TLR2 and TLR4 has been confirmed by flow cytometry
[26] and both the TLR2 ligand peptidoglycan and the TLR4
ligand LPS induce monocytes to secrete proinflammatory
cytokines [25]. Circulating monocytes from patients with
arterial disease exhibit increased expression of TLR4 and
TLR2 compared to healthy controls [28–31]. However, such

increases in expression do not always result in enhanced
TLR signalling [32–34]. Analagous with human coronary
artery disease, ApoE−/−mice with advanced atherosclerotic
disease also display increased surface expression of TLR2 and
TLR4 on circulating monocytes [35]. TLR4 expression in
atherosclerotic lesions in ApoE−/− mice has been shown to
colocalise with macrophage staining [10]. Increased expres-
sion of TLR2 and TLR4 in lesions may be a consequence of
exposure to oxidised low-density lipoproteins in the plaque
as expression of both receptors has been shown to increase
in vitro following oxidised LDL stimulation and foam cell
formation in monocyte-derived macrophages and THP1
cells [10, 36]. As we will discuss later, oxidised LDL can also
act as a ligand engaging TLR-4, inducing a vicious circle of
cell activation.

Despite the description of two subsets of human CD14+
peripheral blood monocytes with different LPS responsive-
ness [37], to our knowledge, no study has examined the dif-
ferential expression of TLRs on different monocyte subsets.
The varied and key functions of monocytes/macrophages
in all phases of atherogenesis highlights the need for better
understanding of the innate immune receptors expressed by
these cells and their activation, in particular in relation to the
different subsets of monocytes that have been described.
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2.2. Dendritic Cells. Two broad subsets of dendritic cells have
been described: myeloid dendritic cells (mDCs) and plas-
macytoid dendritic cells (pDCs), although DC heterogeneity
is greater than this basic simplification (reviewed in [38]).
These two subsets, however, are relevant as they significantly
differ in terms of TLR expression.

In the intima of normal arteries, networks of dendritic
cells have been described [39–41]. According to Wick and
colleagues, these dendritic cells form part of a vascular-
associated lymphoid tissue (VALT), which also comprises
T lymphocytes, macrophages and mast cells [42]. The
function of VALT is postulated to be to monitor potential
danger signals in arteries [42]. Dendritic cells in VALT
are similar to skin Langerhan cells and are CD1a+S-
100+lag+CD31−CD83−CD86− [41]. These intimal DC
networks have also been observed in wild-type mice [43, 44].
In particular, dendritic cells have been identified in the
arterial intima at atherosusceptible sites such as branch-
points [41, 43, 45], suggesting that DCs may play a role in the
initiation of atherosclerosis. Whether this role is beneficial or
deleterious is not yet known.

mDCs express numerous TLRs at the mRNA level
including TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and
TLR8 [46–48]. Furthermore, mDCs secrete cytokines and
upregulate costimulatory molecule expression in response to
stimulation with the TLR ligands Poly(I:C), LPS and R848
[46–48]. Monocyte-derived dendritic cells (MoDCs) may be
obtained by in vitro culture of monocytes in the presence of
IL-4 and GM-CSF [49]. Similar to mDCs, monocyte-derived
dendritic cells express mRNA for TLR2, TLR3, TLR4, and
TLR5 and additionally express TLR1 mRNA [24]. Monocyte-
derived DCs exhibit a strong response to LPS stimulation
[50] and also respond to TLR3 stimulation with Poly(I:C)
[48] by producing cytokines.

In contrast to mDCs, pDCs strongly express both TLR7
and TLR9 mRNA and only weakly express TLR2 and TLR4
mRNA [47, 50, 51], which may allow these cells to be
particularly responsive to viruses. pDCs are activated, mature
and secrete cytokines following stimulation with the TLR9
ligand CpG [25, 27, 47, 50, 51]. Similar to mDCs, pDCs
also functionally respond to stimulation with the TLR7
ligand R848. However the engagement of TLR-7 in mDCs
and pDCS leads to different functional outcomes: pDCs
express IFNα, while mDCs express IL-12 in response to R848
stimulation [46].

In contrast to human mDC and pDC subsets, TLR1,
TLR2, TLR4, TLR6, TLR8, and TLR9 have been shown
to be expressed at the mRNA level by both murine DC
subsets [52]. Further dividing the murine splenic mDCs
into CD8+ and CD8− populations reveals that CD8+
mDC lack TLR5 or TLR7 expression but express more
TLR3 in comparison to CD8− mDCs. Functionally, murine
pDC and CD8− mDCs respond to ligands for TLR7 and
TLR9 and CD8+ mDC respond to a TLR9 ligand only, by
producing cytokines and increasing surface expression of co-
stimulatory molecules [52]. Interestingly, dyslipidemia has
been shown to functionally inhibit the CD8α− subset, and
their ability to respond to TLR ligands [53]. As the CD8
subsets have not been identified in humans [12], it is unclear

whether such differences are relevant in terms of human
disease. It is also unclear whether differences between human
and mouse DCs reflect true species-specificity or the fact that
in most studies human dendritic cells are normally obtained
from peripheral blood whereas murine dendritic cells are
generally isolated from spleen. Further studies are needed to
clarify these points.

Both pDCs and mDCs have been observed in human
carotid atherosclerotic plaques, particularly in shoulder-
regions, which are areas of plaque growth and instability, and
at the base of the plaque [54, 55]. CD11c+ dendritic cells
are recruited to atherosclerotic lesions via the chemokine
fractalkine in murine models [44]. The precise role of den-
dritic cells in atherosclerosis is not yet clear. Different expres-
sion patterns of TLRs have been described for pDCs and
mDCs and thus both subsets may contribute to atherogenesis
differentially through recognition and response to different
TLR ligands. pDCs in human plaques are high-producers of
IFNα following TLR-9 stimulation [55]. Patients with acute
coronary syndromes have lower levels of circulating mDCs,
probably due to increased recruitment at the lesion site and
secondary and tertiary lymphoid organs [56].

2.3. T Lymphocytes. T lymphocytes (both CD4+ and CD8+)
are present in human and murine atherosclerotic lesions
[57–60]. T cell clones isolated from human atherosclerotic
plaques have been shown to be immunospecific for self-
antigens including oxidised LDL [61]. Furthermore, the
transfer of CD4+ T lymphocytes from ApoE−/− mice
into ApoE−/− SCID mice has been shown to aggravate
atherosclerotic lesion development and T lymphocyte accu-
mulation in lesions [62]. In contrast, regulatory T cells have
an athero-protective role in lesion development [63, 64].

At the mRNA level, TLR1, TLR2, TLR3, TLR4, TLR5,
TLR7, and TLR9 have been detected in human peripheral
blood T lymphocytes [27, 65] and flow cytometry has
confirmed protein expression of TLR1, TLR2, TLR4, and
TLR9 [66]. Differences in TLR expression patterns between T
lymphocyte subsets and locations has been described, which
may reflect specialised immune functions. Surface expression
of TLR2 has been shown to increase following T cell
receptor (TCR) activation [67] and memory T cells display
enhanced responses to TLR-2, TLR-5 and TLR-7 activation
compared to naı̈ve T cells [65]. Tonsillar CD4+ T cells
express more TLR1 and TLR9 than CD8+ T cells whereas
CD8+ cells express more TLR3 and TLR4 than CD4+ cells
[68]. In conjunction with TCR activation, ligands for TLR2,
TLR3, TLR5, TLR7/8 and TLR9 act as costimulators for
promoting proliferation and cytokine production by human
T lymphocytes [65, 67, 69–71]. Interestingly, although both
αβ and γδ T lymphocytes express TLR3, only stimulation
of γδ T lymphocytes with PolyIC, in association with TCR
activation, leads to increased IFNγ secretion [71].

Murine T lymphocytes also express TLRs and respond to
their ligands although discrepancies in the literature exist.
Gelman et al. reported that activated splenic CD4+ T cells
express and respond to ligands for TLR3 and TLR9 but
not TLR2 and TLR4 [72]. However, Sobek and colleagues
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showed splenic murine T cells to express and respond to
TLR2 following activation [73]. Different mouse strains were
used in these studies, which may account for the differences
observed. In addition to mRNA expression of TLR1, TLR2,
TLR6, TLR7, and TLR9, murine CD8+ cells have also been
shown to be responsive to TLR2 ligands with receptor
ligation lowering the threshold for activation by antigen-
presenting cells [74].

Murine CD4+CD25+ T regs express mRNA for TLR1,
TLR2, TLR4, TLR5, TLR6, TLR7, and TLR8. Exposure
of murine CD4+CD25+ regulatory cells to LPS leads to
increased expression of activation markers, enhanced prolif-
eration and augmented suppressor activity [75]. Costimula-
tion of human CD4+CD25+ regulatory T cells with the TLR5
ligand flagellin increases the suppressive capacity of these
cells [70]. The suppressor function of murine CD4+CD25+
cells is also increased following TLR7 stimulation [76].

2.4. B Lymphocytes. B lymphocytes express numerous TLRs
at the mRNA and protein level. Human B cells express
TLR1, TLR6, TLR7, TLR9, and TLR10 [27, 68, 77, 78] and
secrete cytokines such as IL6 and TNFα in response to
stimulation with CpG oligonucleotides [27, 78, 79] although
discrepancies in the literature exist. Different patterns and
levels of TLR expression have been described depending
on the location and maturity of B lymphocytes [79]. For
example, TLR2 is functionally expressed by a small subset
of circulating B cells with intermediate CD19 expression and
most tonsillar B cells [68, 80]. Naı̈ve B cells express low levels
of most TLRs but expression is increased upon activation and
on memory B cells [79].

Naı̈ve murine B cells express a wide repertoire of TLRs
and proliferate in vitro in response to ligands for TLR2,
TLR7, TLR9 and TLR4 [81–83]. In contrast to human B
lymphocytes, murine B cells express TLR4 and respond to
stimulation with LPS [82]. Furthermore, TLR expression
levels on naı̈ve murine B cells and memory B cells does
not appear to differ as has been reported for their human
counterparts [82].

2.5. Mast Cells. Mast cells are long lived tissue resident
cells that derive from progenitors in the bone marrow,
and circulate as progenitors in the peripheral blood until
they are recruited to specific tissues where they undergo
maturation [84]. Mast cells have important roles in host
defence to helminth, bacterial and viral infections, and in
allergic reactions. Upon activation, they release a variety
of preformed mediators such as histamine, cytokines and
proteases. Increased numbers of mast cells are observed at
sites of plaque erosion, rupture, and haemorrhage in human
atherosclerotic plaques, suggesting a role in the pathogenesis
of thin cap fibroatheroma (TCFA) or vulnerable plaques

[85]. Crossing mast cell deficient mice (KitW-sh/W-sh) with
LDLR−/− mice identified the requirement for mast cells
in plaque development and inflammatory cell infiltration
via mast cell IL-6 and IFN-γ induced protease production
by endothelial and smooth muscle cells [86]. Human and

rodent mast cells have been shown to express TLR-1 to -7
and TLR-9 [87].

2.6. Resident Vascular Cells. Expression of several TLRs
can be found on normal human vessels. However primary
arterial endothelial and smooth muscle cells have been
shown to respond to a wider range of TLR ligands than these
cell types from venous tissues [88]. In addition, differential
expression of TLRs in vessels occurs across different vascular
beds. For example, TLR3 mRNA is expressed in the aorta
whereas the temporal and iliac arteries do not express
TLR3 but instead express TLR8 mRNA. The carotid artery,
however, expresses mRNA for both TLR3 and TLR8 [89]. In
contrast to normal human vessels, which express relatively
low-levels of TLRs, protein expression of TLR1, TLR2, and
TLR4 is increased in human atherosclerotic vessels [7]. TLR-
2 is expressed on endothelial cells in atheroprone regions
[11], as we will discuss later in more detail.

Human vascular smooth muscle cells constitutively
express TLR1, TLR3, TLR4, and TLR6 at the mRNA level
[90]. In addition, murine aortic SMCs constitutively express
TLR2 mRNA [91]. However, TLR2 expression is inducible on
human SMCs following exposure to Chlamydia pneumoniae,
TLR3 and TLR4 ligands [92]. Expression of TLR4 on human
vascular SMCs at the protein level has been shown [93, 94]
and more importantly, functional expression of TLRs on
smooth muscle cells has also been described. Exposure of
aortic SMCs to the TLR4 agonist LPS induces MCP-1, IL6
and IL-8 production [91, 94, 95]. Stimulation of SMCs with
the synthetic dsRNA ligand Poly:IC results in MCP1 and IL6
release [90] and exposure of SMCs to Chlamydia pneumoniae
leads to TLR2-dependent MCP-1 release [92].

3. Toll-Like Receptor Ligands

A wide-repertoire of both exogenous and endogenous TLR
ligands have been described (Table 1). TLRs 1, 2, 4, 5, and
6 specialise in the recognition of mainly bacterial products.
TLRs 3, 7, 8, and 9, in contrast, specialise in the detection
of viral and bacterial nucleic acids. For instance, TLR-2 is
essential for the recognition of bacterial lipoproteins, and
lipotheicoic acid. TLR-3 is implicated in recognition of
viral double stranded (ds) RNA. TLR-4 is predominantly
activated by lipopolysaccharide (LPS), while TLR-5 detects
bacterial flagellin, and TLR-9 is required for responses to
unmethylated CpG DNA typically of bacterial origin [6].
Viruses can also be recognized by TLR2 and TLR4. Very
recently, it has been reported that TLR2 activation by viruses
led to the production of type I interferon only in response to
viral ligands in Ly6Chi inflammatory monocytes [96].

Many exogenous TLR ligands are expressed in atheroscle-
rotic lesions. Infectious agents, such as Chlamydia Pneu-
moniae, have been detected in atherosclerosis [97, 98].
Human atherosclerotic plaques contain numerous bacterial
signatures, including nucleic acids [99], peptidoglycan [100],
and exogenous heat shock proteins (HSP) [101]. Viruses
have also been detected (reviewed in [102]). It is worth
noting, however, that peptydoglican—derived molecules are
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Table 1: Exogenous and Endogenous TLR ligands. Ligands in italics represent ligands for which a link to atherosclerosis has been identified.

TLR Receptor Exogenous Ligand Endogenous Ligand

TLR1
Mycoplasma tri-acyl lipopeptides [184], N.meningitides soluble
factors (with TLR2) [185]

TLR2

Pam3CSK4 (synthetic TLR2/TLR1 agonist) [127], Necrotic cells [186–189],

Mycobacterial lipoprotein (with TLR1) [190], Apoliprotein CIII [120],

Bacterial lipoproteins (with TLR6) [191, 192] Oxidised LDL [36],

Yeast carbohydrates, [192] Serum amyloid A [193],

Borrelia burgdorferi lipoprotein (with TLR1) [194] Amyloid beta [195]

Staph epidermidis phenol-soluble modulin [196] Versican [110],

Viral envelope glycoproteins [197, 198]

Peptidoglycan (Gram + bacteria) [199]

Glycoinositolphospholipids (Trypanozoma cruzi),

Glycolipids (Treponema maltophilum),

Porins (Neisseria), Zymosan (fungi),

Atypical LPS (Leptospira interrogans and Porphyromonas gingivalis)
[200–202]

TLR2/TLR4

HSP60 [203],
HSP60, HSP70, Gp96, HMGB1,
[204–211]

Chlamydia pneumoniae [138], Hyaluronan fragment [109, 212, 213]

HSP60 from Chlamydia pneumoniae [106], Biglycan [214]

Porphyromonas gingivalis [215]

TLR3 Viral dsDNA [48, 90, 216] mRNA [217]

TLR3/TLR9 CMV [218, 219]

TLR4

Lipopolysaccharide, [220–224] Lung surfactant protein-A, [225]

Viral envelope glycoproteins, [226, 227] Tenascin C, [108]

Taxol (plant), RSV fusion protein, MMTV envelope proteins, [200] Fibrinogen, [228, 229]

HSP60 from Chlamydia pneumoniae [93, 105] Fibronectin EDA, [230]

Heparan sulphate, [231–233]

Beta-defensin 2, [234] [235]

Minimally-modified LDL, [113, 236]

Oxidised LDL, [10]

Amyloid beta peptide and oxididised
LDL [115]

TLR5 Bacterial flagellin [237, 238]

TLR6
Mycoplasma di-acyl lipopeptides [239],

Group B Strep heat-labile soluble factor, Staph phenol-soluble
modulin [200]

TLR7
Various synthetic compounds including imidazoquinoline, loxoribine
and bropirimine [200]

TLR7/TLR8 Single stranded RNA [240–242]

TLR7/TLR9
Nucleic acid-containing immune
complexes [243–245]

TLR9
Hypomethylated CpG motifs in microbial DNA [241, 246, 247],

HSV-2 [241]
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also sensed by nucleotide oligomerization binding domain
(Nod)-like receptor family members [103].

There is growing evidence that TLR signalling may be
elicited in the absence of infection though “endogenous”
ligands generated at sites of tissue remodelling and inflam-
mation, as reviewed in [104]. The atherosclerotic plaque is
characterised by accumulation of lipoproteins, extracellular
matrix turnover during tissue remodelling, and finally
formation of debris from necrotic cells in the necrotic core.
As such, the atherosclerotic plaque is likely to contain many
endogenous ligands (Table 1). For example, HSPs induce the
production of proinflammatory cytokines in a TLR2- and
TLR4-dependent pathway [105, 106]. Degradation products
of extracellular matrix macromolecules are generated during
tissue injury, or remodelling, and have been found to
function as TLR ligands. The alternative splice of fibronectin,
extra domain A (EDA) that has been shown to signal through
TLR4 is detected in atherosclerotic plaques [107]. Tenascin
C has recently been identified as a TLR-4 ligand with
relevance in chronicity of inflammatory arthritis and given
the similarities between RA and atherosclerosis, may also
be relevant in atherosclerosis [108]. Hyaluronan (HA), one
of the major glycosaminoglycans of the extracellular matrix
that undergoes rapid degradation at sites of inflammation,
is another ligand for TLR2 and TLR4 [109]. A recent study
has documented that versican, a large extracellular matrix
proteoglycan, can activate tumour-infiltrating myeloid cells
through TLR-2 and its coreceptors TLR-6 and CD14 and
elicit the production of proinflammatory cytokines including
TNF-alpha that enhance tumor metastasis [110]. A similar
mechanism may occur in infiltrating atherosclerotic plaque
monocytes/macrophages.

Lipids are also putative ligands for TLR-2 and 4.
Saturated fatty acids display the capacity of delivering a
TLR4 signal and to induce inflammatory gene expression,
while polyunsaturated fatty acids block the activation of
TLR4 [111]. However, the ability of saturated fatty acids to
directly induce TLR signalling has recently been questioned
[112]. Minimally modified (mm) low-density lipoproteins
(LDL) have been shown to induce cytokine production
via TLR-4/MyD88 signalling [113] and reactive oxygen
species via TLR4/MyD88-independent signalling [114] in
murine macrophages. Very recently, oxidised LDL and
amyloid-β peptide have been shown to initiate inflammatory
responses through a TLR-4 and -6 heterodimer in asso-
ciation with CD36 [115]. Amongst phospholipids relevant
to innate immunity, particular attention has been given to
phosphorylcholine—a universal prokaryotic and eukaryotic
membrane molecule, also represented in the phospholipid
quota within lipoproteins. Watson et al. identified oxi-
dised products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphorylcholine (oxPAPC) as the major bioactive lipid
in mmLDL [116]. Other oxidized phospholipid moieties
contained within the fatty acid side chains, have been
shown to elicit signalling through CD36 [117]—a class B
scavenger receptor that mediates platelet aggregation and
adhesion after injury, dendritic-cell recognition and uptake
of apoptotic cells. Interestingly, CD36 acts as a coreceptor
of TLR-2/6 heterodimers during recognition of microbial

diacylglycerides [118]. In addition, the scavenger recep-
tor lectin-like oxidised low-density lipoprotein receptor-1
(LOX-1) cooperates with TLR2 during cellular responses
to klebsiella pneumoniae [119]. ApoCIII, a component of
very-low-density lipoprotein (VLDL), was also found to be
recognised by TLR2 and to induce proinflammatory signals
in monocytes [120].

4. Functional Consequences of Toll-Like
Receptor Activation in Atherosclerosis

4.1. TLRs Regulate Leukocyte Subset Recruitment and Acti-
vation in Atherosclerosis. Interestingly the first cells that
display TLR expression in early atherosclerosis appear to be
resident vascular cells such as the endothelium. Atheroscle-
rotic lesions do not develop uniformly throughout the
arterial system. Instead, lesions preferentially occur at sites
of disturbed blood flow such as curvatures, branches, and
bifurcations such as the lesser curve of the aortic arch [121].
TLR-2 expression is increased in endothelial cells placed
at regions of susceptibility of atherosclerosis, such as the
inner curvature, and it is associated with areas of mono-
cyte recruitment in atherosclerosis-prone LDLR−/− mice
[11]. However, whether endothelial cell expression of TLR2
precedes temporally the migration or is a consequence of
monocyte recruitment and production of proinflammatory
mediators, is unknown.

The recruitment of cells belonging to innate and adaptive
immunity from the circulation into the subendothelial space
is a critical step in atherosclerotic lesion development. Over
the last decade this process has been extensively studied and
the sequence of events that lead to leucocyte recruitment
have been termed “the adhesion cascade” [122]. Leucocytes
tether and roll along the endothelium through low-affinity
interactions that are mediated by the selectin family of
adhesion molecules. Integrin activation via interactions
between chemokines on the apical surface of endothelial
cells and chemokine receptors on the leucocyte results in
the firm adhesion of leucocytes to the endothelial cells
and their arrest from flow. Firmly adherent leucocytes then
migrate across the endothelial cell (EC) layer towards a
chemotactic gradient by either passing through the borders
between adjoining ECs (paracellular pathway) or by passing
directly through the cytoplasm of ECs (transcellular path-
way). The specific expression patterns of adhesion molecules
and chemokines on both endothelial cells and leucocytes
coupled with the dynamic regulation of these molecules
allows highly regulated recruitment of different leucocyte
subsets, that results in specific tissue responses. Activation
of toll-like receptors induces the expression of adhesion
molecules including selectins, chemokine and chemokine
receptor genes and thus TLR signalling can regulate cell
migration to sites of inflammation [88, 123–125].

Crossing of MyD88−/− mice with ApoE−/− mice has
been shown to reduce the development of atherosclerotic
lesions by approximately 60% and macrophage infiltration
by 75% [126]. Whole body deficiency of TLR4 or TLR2 in
ApoE−/−mice resulted in a 55% reduction of atherosclerotic
lesion development [126, 127] and a 65% reduction in
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macrophage infiltration in ApoE−/−TLR4−/− mice [126].
In these studies, decreased lesion size is associated with a
reduction in serum CCL2/MCP-1 levels [126–128]. Mul-
lick et al. have shown that bone marrow transfer from
TLR2−/− to LDLR−/− mice was effective in preventing
exogenous TLR2 ligand-induced disease amplification, but
not baseline atherosclerotic lesion formation [127]. Inter-
estingly, C3H/HeJ mice, which carry a missense mutation
affecting the cytoplasmic portion of TLR4, are resistant
to diet-induced atherosclerosis [129, 130]. However, bone
marrow transplantation from C3H/HeJ to Apolipoprotein E
(ApoE)−/−, did not alter atherosclerosis development [131].
This finding points towards a key role for TLR expression
in vascular cells [11]. Of relevance, only endothelial cells,
but not myeloid cells, express TLR2 in murine lesions [11].
However, in human lesions TLR2 expression was detected
in macrophages, endothelial cells and smooth muscle cells
[7]. Differences in expression of TLR2 could result either
from differences between early versus late disease stage, or
a difference between murine and human atherosclerosis.

Recruited macrophages can be activated by a large
number of signals within an atherosclerotic lesion, including
innate activation through TLRs. The nature of macrophage
activation plays a key role in determining the phenotype
and development of an atherosclerotic plaque. Plaque
macrophages display features of activation and can exert
numerous effects on other vascular cells via release of a host
of proinflammatory mediators including tumour necrosis
factor (TNF)-α, which leads to the engagement of the proin-
flammatory cytokine cascade, resulting in interleukin (IL)-
1, and IL-6 production. In addition, activated macrophages
play key roles in lipid uptake and plaque stability. All
of these functions may be initiated or enhanced by toll-
like receptor engagement. Indeed, we have recently shown
in human atherosclerosis that TLR-2 and MyD88 play a
predominant role in NFκB activation, and in the production
of inflammatory mediators, and matrix degrading enzymes
in human atherosclerosis [132], suggesting that TLR-2
signaling influences the plaque vulnerability to rupture. In
contrast, signalling though TLR-4 and the downstream TLR-
4 signaling adaptor TRAM was not rate-limiting for cytokine
production in human atherosclerotic plaques, but may have
a role in MMP production.

4.2. TLR Engagement Influences Foam Cell Formation.
Toll-like receptor pathways can influence lipid uptake by
macrophages and thus foam cell formation. Stimulation of
murine macrophages with TLR2, TLR4 and TLR9 ligands
promotes lipid uptake and foam cell formation [110, 133–
135]. Chlamydia pneumoniae stimulation of macrophages
can induce foam cell formation via MyD88-dependent and
MyD88-independent pathways downstream of TLR2 and
TLR4 [136–138]. Expression of the scavenger receptors SRA,
macrophage receptor with collagenous structure (MARCO)
and lectin-like oxidised low-density lipoprotein receptor-1
(LOX-1) are upregulated by macrophages following TLR3,
TLR4 or TLR9 stimulation [134, 139], which is one potential
mechanism of enhanced foam cell formation following TLR
stimulation. Almeida et al. recently showed a role for TLR2

in increased lipid body formation in mycobacterium bovis
bacillus Calmette-Guerin infection [140]. In addition, TLR4-
dependent fluid phase uptake (macropinocytosis) of lipids
has been shown to occur in differentiated macrophages
[141].

Fatty acid binding proteins including aP2 (FABP4)
and Mal1 (FABP5) facilitate the uptake of fatty acids by
cells. Activation of TLR2, TLR3, and TLR4 on murine
macrophages leads to increased expression of aP2 [142] and
TLR2 and TLR4 agonists increase murine macrophage Mal1
expression [143]. However, increased expression of aP2 and
Mal1 are not observed in human macrophages following
TLR stimulation [143], suggesting different mechanisms of
regulation of these molecules. Agonists of TLR2, TLR3, TLR4
and TLR7 have also been shown to increase ADRP/ADFP
expression, which is associated with the formation of lipid
droplets [143, 144]. Overexpression of ADRP/ADFP has
been shown to increase macrophage cholesterol ester storage
[145].

TLRs and their ligands may also interfere with cholesterol
efflux mechanisms. Cholesterol efflux may be achieved
through genes including ATP-binding cassette transporter
A1 (ABCA1) and G1 (ABCG1), which are regulated by
lipid-X receptors (LXRs). Signalling pathways involving IRF3
downstream of TLR3 and TLR4 activation can lead to
inhibition of LXR transcriptional activity and thus reduced
expression of LXR target genes and consequently reduced
cholesterol efflux [146]. Interestingly, LXRs can inhibit
inflammatory signalling pathways following TLR stimulation
in a MyD88-dependent mechanism [147]. Thus, TLRs
may affect lipid uptake and accumulation in macrophages
through several mechanisms.

4.3. TLRs May Control Antigen Presentation and T Cell
Activation in Atherosclerotic Plaques. Proposed antigens in
atherosclerotic plaques include oxidised LDL, oxidised phos-
phatidylcholine, heat shock proteins, beta-2-glycoprotein-
1 and antigens of infectious organisms such as herpes
virus, cytomegalovirus, and Chlamydia pneumoniae. The
generation of an adaptive immune response starts with the
encounter between an antigen presenting cell (APC) and an
antigen in the peripheral tissues. This process requires the
acquisition by DCs of a mature phenotype through upregu-
lation of costimulatory molecules such as CD80, CD86 and
CD40. TLR ligation typically induces expression of these cos-
timulatory molecules (reviewed in [148]) in all DC subsets
regardless of their differential TLR expression profiles.

DC maturation is followed by their migration to the
draining lymph nodes. This migration is also mediated by
TLR-induced downregulation of inflammatory chemokine
receptors and upregulation of the receptors for lymphoid
chemokines. CCR6 downregulation and CCR7 upregulation,
is observed in experimental models of atherosclerosis [149].
This change in chemokine receptor expression is crucial
for dendritic cells to migrate from the peripheral tissues to
the T lymphocyte areas of draining lymph nodes. Besides
secondary lymphoid organs, antigen presentation can hap-
pen in other sites in atherosclerosis. A variety of antigen
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presenting cells might perform antigen presentation within
an atherosclerotic plaque, including professional dendritic
cells and lesional macrophages. Recently, tertiary lymphoid
organs are proposed to be alternative sites of antigen
presentation within atherosclerotic vessels [150, 151].

The next step is the differentiation of naive CD4+ T
lymphocytes into either TH1 or TH2 or TH17 cells [152].
The direction of differentiation is influenced by both the
concentration of presented peptide and the presence of
specific cytokines. For instance IL-12 and IL-18 tend to
promote the generation of a TH1 response. TH1 responses
appear to dominate in both humans and mice during
atherogenesis and has been shown to be proatherogenic
[153]. Exogenous treatment with either IL-12 or IL-18
accelerates atherosclerotic lesion development [154, 155]
whereas deficiency of either IL-12 or IL-18 results in
decreased lesion formation in ApoE−/− mice [156, 157].
Lesions in ApoE−/−IL-12−/− mice also display a more
stable phenotype. Furthermore, both ApoE−/−IL-12−/−
and ApoE−/−IL-18−/− mice exhibit a switch from TH1 to
TH2 immunoglobulin subclass [157]. TH1 cells may exert
proatherogenic actions in part through secretion of proin-
flammatory cytokines such as interferon gamma (IFNγ)
and tumour necrosis factor (TNF)-α that can then activate
macrophages, induce protease and inflammatory cytokine
production and inhibit smooth muscle cell proliferation
and collagen production [158]. Indeed, genetic deletion of
IFNγ in LDLR−/− and ApoE−/− mice leads to decreased
atherosclerotic lesion size [155, 159] as does deletion of its
receptor IFNγR in ApoE−/− mice, which also results in a
more stable lesion phenotype [160]. Interestingly, genetic
deficiency of MyD88, known to be associated with a decrease
of atherosclerosis development [128], leads to impaired TH1
differentiation and a switch towards TH2 responses [161,
162].

Conversely, Th2 responses are broadly considered
antiatherogenic. Extreme hypercholesterolemia itself in
ApoE−/− mice has been shown to skew T cell responses
towards a TH2 phenotype [163]. Examining atherosclerotic
lesion development in ApoE−/− mice on either a C57BL/6
or BALB/c genetic background, which display opposing TH

responses revealed that ApoE−/−mice on a C57BL/6 genetic
background, which have predominantly TH1 responses,
develop significantly more atherosclerosis than ApoE−/−
mice on a BALB/c genetic background, which have pre-
dominantly TH2 responses [164]. Furthermore, ApoE−/−
mice on a BALB/c genetic background display decreased
CD4+ T cell accumulation and reduced MHCII expression
in atherosclerotic lesions compared to ApoE−/− mice on
a C57BL/6 genetic background [164]. The TH2 cytokine
interleukin (IL)-10, produced both by lymphocytes and
macrophages, is antiatherogenic. IL-10-deficient (IL-10−/−)
mice or LDLR−/− mice in which the leucocytes are IL-
10−/− develop larger atherosclerotic lesions than matched
controls [165, 166]. Lesions in IL-10−/− mice also exhibit
increased accumulation of activated T cells, increased IFNγ
secretion and decreased collagen production [165, 166].
Paradoxically, TLR-2 signalling, known to be proatherogenic,
has been shown to promote TH2 differentiation [167, 168].

TLR-2 has also been linked to regulatory T cell responses.
The synthetic bacterial lipoprotein Pam3Cys-SK4, a TLR-
2 ligand, leads to expansion of regulatory T cells and a
temporal inhibition of their suppressive activity [169, 170].
Recently, Manicassamy et al. have shown that TLR-2 stimu-
lation of dendritic cells leads to an induction of T regulatory
cells [171]. An athero-protective role for regulatory T cells in
murine atherosclerosis, in part through suppression of TH1
responses has been described [64, 153, 172].

Very recent evidence is presenting a complex role of
TH17 in atherosclerosis, which encompasses both modu-
latory [173] and proatherogenic functions of IL-17 [174].
Interestingly, SIGIRR (Single Ig IL-1-related receptor), a
negative regulator of IL-1 receptor and Toll-like receptor
signaling, has been shown to govern Th17 cell differentiation
and expansion [175]. It also emerged recently that pDCs are
capable of promoting Th17 differentiation in response to
TLR7 stimulation [176].

Although few B lymphocytes have been observed in
human atherosclerotic plaques [58], studies in mice have
revealed a potential protective role for B lymphocytes
in atherogenesis [177, 178]. B lymphocytes express both
antigen-specific B-cell receptors and pattern-recognition
receptors, including TLRs (described above). Ligation of
TLRs on B lymphocytes has been shown to induce polyclonal
activation and secretion of immunoglobulin M (IgM) anti-
bodies [179, 180]. In addition, it has recently been shown
that activation of TLR-2 and TLR-4 on murine B1 cells
results in enhanced production of IgM antibodies against
oxidation-specific epitopes [181]. Interestingly, serum IgM
has been described as atheroprotective in LDLR−/− mice as
LDLR−/−mice deficient in serum IgM exhibit larger lesions
with increased cholesterol crystal formation [182].

4.4. TLRs as Therapeutic Targets in Atherosclerosis. Given
the large body of data suggesting that TLRs can contribute
to several atherosclerotic mechanisms key to the inititation
and development of lesions such as leucocyte recruitment
and foam cell formation (discussed above), these molecules
may be important targets for the development of novel
antiatherogenic therapeutics. To date, TLR-2 and TLR-4 have
been the best characterised in terms of their contribution
to atherosclerotic lesion development. Antagonism of TLR-
2 or TLR-4 signalling is currently perceived as the most
attractive target for development of therapeutics for the
treatment of atherosclerosis. Indeed, deletion of either TLR-2
or TLR-4 confers a similar degree of protection from lesion
development in murine models of atherosclerosis [126, 127].
However, as discussed, there are many differences between
the human and murine immune systems, including the
cellular expression patterns of TLRs. This may hinder the
extrapolation of targets from murine studies into human
targets. Indeed, we have recently demonstrated that a TLR-
2 blockade can inhibit cytokine, chemokine and MMP
production in human atherosclerosis, while interruption of
TLR-4 signalling did not have a significant impact on the
production of proatherogenic mediators [132]. Additionally,
in a murine model of myocardial ischemia/reperfusion
injury, TLR-2 blockade has recently been shown to reduce
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infact size and maintain heart function through reduction of
proinflammatory mechanisms [183]. Together these studies
support the idea that TLR-2 blockade may be beneficial
in cardiovascular disorders. It is possible to envisage that
blockade of TLR-2 during acute phases of the disease could
be preferred to its chronic use. As TLRs are essential compo-
nents of both the innate and adaptive immune responses and
as they are expressed on both resident vascular and leucocyte
populations, further studies are needed to ascertain the most
effective timing of TLR inhibition in cardiovascular disease.

5. Conclusions

The role of TLRs in the development of atherosclerosis has
just started to be unravelled. The key immune and resident
vascular cells in the initiation and development of atheroscle-
rosis all express various TLRs, suggesting these receptors
and their ligands are critical players in atherogenesis. So
far, it appears that TLR-2 and -4 activation has profound
consequences on the recruitment of monocytes and foam
cell formation in murine models of atherosclerosis. TLR-2
signalling appears to be a predominant event for activation of
inflammation and matrix degradation in human atheroscle-
rotic lesions. The consequences of activation and blockade
of other TLRs in atherosclerosis remains to be explored. Due
to the intricate outcomes of activation of TLRs on adaptive
immunity, further studies need to explore the relationship
between innate and adaptive responses in atherosclerosis.
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