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Abstract —We consider the representation of temporal data based on tuple and attribute timestamping. We identify the
requirements in modeling temporal data and elaborate on their implications in the expressive power of temporal query languages.
We introduce a temporal relational data model where N1NF relations and attribute timestamping are used and one level of nesting is
allowed. For this model, a nested relational tuple calculus (NTC) is defined. We follow a comparative approach in evaluating the
expressive power of temporal query languages, using NTC as a metric and comparing it with the existing temporal query languages.
We prove that NTC subsumes the expressive power of these query languages. We also demonstrate how various temporal
relational models can be obtained from our temporal relations by NTC and give equivalent NTC expressions for their languages.
Furthermore, we show the equivalence of intervals and temporal elements (sets) as timestamps in our model.

Index Terms —Attribute timestamping, expressive power of temporal query languages, N1NF relations, temporal relational algebra,
temporal relational calculus, temporal relational completeness, temporal relations, tuple timestamping.

——————————   ✦   ——————————

1 INTRODUCTION

HERE is a growing interest in temporal databases. This
is because many applications require information not

only about the present but also about the past. An object’s
attributes may assume different values over time. The set of
these values forms the history of that object. A temporal da-
tabase (TDB) is thus defined as a database that maintains
object histories, i.e., past, present, and possibly future data.

Maintaining temporal data within a traditional relational
database is not a straightforward endeavor. There are is-
sues peculiar to temporal data, such as comparing database
states at two different time points, capturing the periods for
concurrent events and accessing times beyond these con-
current periods, representing and restructuring temporal
data, etc. These issues form the basis for the diversity in this
field, which has been manifested by more than a dozen
temporal relational data models and query languages pro-
posed to date [1]. We believe that this diversity has helped
delineate the issues in modeling and querying temporal
data and has paved the way to explore the expressive
power of the temporal relational query languages.

A comprehensive treatment of various approaches for
handling temporal data is provided in [2]. A recent work-
shop was dedicated to the establishment of an infrastruc-
ture for temporal databases [3]. Data modeling, query lan-
guages, standardization, and implementation issues were
discussed. An outgrowth of this workshop has been an ef-

fort to design a temporal extension to SQL-92, called
TSQL2. The design of TSQL2 has been completed, and its
full specification is reported in [4]. This document includes
a wide array of specifications for timestamp representation,
data modeling, operations, and a core algebra.

Two studies have explored the expressive power of
temporal data models and their query languages [5], [6].
Gadia defines a temporal relational algebra and proposes
to use it as a yardstick in evaluating the expressive power
of temporal query languages [6]. Gadia and Yeung also
define a tuple calculus for this model [7] and use it to
compare intervals and temporal elements (defined below)
in modeling temporal data. They show that TQuel, a well-
known example of First-Normal-Form (1NF) relations and
interval tuple timestamping, can express temporal com-
plementation by the retrieve and delete statements. Clif-
ford, Croker, and Tuzhilin (CCT) introduce a Non-First-
Normal-Form (N1NF) relational model and a 1NF rela-
tional model, which they call a temporally grouped model
and a temporally ungrouped model, respectively [5]. For
these models, they define temporal calculi based on a
first-order logic with temporal operators. CCT also define
a calculus language, Lh, and use it as a metric to evaluate
four query languages: their own algebra [8], Gadia’s cal-
culus [9], TQuel [10], and Lorentzos and Johnson’s algebra
[11]. CCT provide a transformation from HRDM [8] to Lh,
excluding some operations, but not to the other lan-
guages. They also do not consider languages like Bhar-
gava and Gadia’s algebra [12], Gadia and Yeung’s tuple
calculus [7], Tansel’s algebra [13], etc. The latter in par-
ticular allows nonhomogeneous relations. CCT help us to
understand the issues in temporal relational complete-
ness. However, the scope of their study is limited since it
considers only some query languages, it does not provide
conversions between the data models compared, and Lh is
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not powerful enough to be a metric for temporal query
languages.

We will confine this study to the temporal relational al-
gebra and calculus languages developed so far and their
basic features. We do not consider temporal aggregates
[14], since they are not covered formally in many of these
languages. We also do not consider temporal extensions to
SQL, since formal semantics have not been defined for
these extensions. If their formal semantics are defined in
terms of relational algebra or calculus, our work naturally
applies to them. We include TQuel [10] since it has a
prominent position in temporal databases and its formal
semantics are defined in tuple calculus.

In this article, we use a temporal relational data model
based on N1NF relations with one level of nesting. We also
use a tuple relational calculus that includes set membership
formulae and set constructors. This model meets the re-
quirements of temporal data and captures a larger part of
the reality. Its calculus can express all the queries expressi-
ble by the relational database languages since it is a super-
set of traditional tuple calculus. Therefore, we use this lan-
guage as a yardstick in evaluating the expressive power of
the temporal query languages.

We feel that our work makes the following contribu-
tions to the field of temporal databases. First, it provides a
temporal relational data model and a calculus language
that meets all of the requirements of temporal data (see
Section 2.1). Second, it shows that intervals and temporal
elements (sets) are equivalent in expressive power by
showing that intervals can be obtained from temporal sets
and vice versa. Third, it provides a metric for comparing
the expressive power of temporal query languages. This
metric is a nested tuple calculus language with an equiva-
lent algebra [13] and subsumes traditional tuple calculus.
Fourth, it provides conversion, in both directions, between
various temporal relational data models and the model we
propose. It also shows how various temporal query lan-
guages can be expressed in our nested tuple calculus lan-
guage. Hence, it brings clarity to the field of temporal rela-
tional databases and provides a solid foundation for under-
standing and evaluating them as well as the expressive
power of their query languages. It also lays the ground-
work for unifying temporal relational data models and de-
signing commercial temporal query languages.

Representation of temporal data and its requirements are
considered in Section 2. In Section 3, a temporal relational
data model is introduced, and the formal definition of a
relational tuple calculus and its safety is given in Section 4.
Our notion of temporal relational completeness is defined
in Section 5. In the next eight sections, we follow a com-
parative approach in evaluating the expressive power of
temporal query languages. We show that our tuple calculus
is at least as expressive as the calculi of Gadia [9]; Clifford,
Croker, and Tuzhilin [5]; Tuzhilin and Clifford [15]; and
Snodgrass [10]. We also show that it is at least as expressive
as the temporal algebra of Bhargava and Gadia [12], Clif-
ford and Croker [8], and Lorentzos and Johnson [16]. We
then briefly examine the approaches of Navathe and Ah-
med [17], Sarda [18], McKenzie and Snodgrass [19], Clifford
[20], Tansel [20], and Tansel [21]). Section 14 is a compara-

tive summary of these query languages with some possible
directions for future research.

2 REPRESENTING TEMPORAL DATA

Atoms take their values from some fixed universe U. This
universe is the set of all atomic values such as reals, inte-
gers, and character strings. Some values in U represent
time, and T denotes the set of these values. We assume for
simplicity that time values range over the natural numbers
0, 1, … It is a commonly adopted view that time is discrete
and is linearly ordered. There are two special constants,
now and forever (fe), that represent the current time and the
largest time possible, respectively [4]. In the context of time,
a subset of T is called a temporal set. A temporal set that
contains consecutive time points {ti, ti+1, …, ti+n} is repre-
sented either as a closed interval [ti, ti+n] or as a half-open
interval [ti, ti+n+1). A temporal element is a finite union of dis-
joint (maximal) intervals [9]. Note that temporal element
and temporal set are the same constructs. There is only a
notational difference between them.

Time-varying data is commonly represented by times-
tamped values. The timestamps can be time points [8], in-
tervals [16], [17], [18], [10], [21], temporal sets [1], [22], or
temporal elements [9]. Timestamps can be added to tuples
or to attributes, which leads to two different approaches for
handling temporal data in a relational data model. Fig. 1
gives an example where time points, intervals, temporal
elements, and temporal sets are used as attribute times-
tamps to represent the same data. The example can also be
used for tuple timestamping; that is, these timestamps can
be attached to tuples. Since time points, intervals, temporal
elements, and temporal sets are needed in temporal query
languages, we have to clarify their relationships (see the
propositions in Section 4).

SALARY SALARY
1, 20K [1, 5), 20K

10, 20K [10, 16), 20K

16, 30K [16, fe], 30K

(a) (b)

SALARY SALARY
[1, 5) < [10, 16), 20K {1, 2, 3, 4, 10, 11, …, 15}, 20K

[16, fe], 30K {16, 17, …, fe}, 30K

(c) (d)

Fig. 1. Different timestamps: (a) time points; (b) intervals; (c) temporal
element; (d) temporal set.

Note that using time points cannot capture the full ex-
tent of the temporal reality if the history is not continuous
(Fig. 1a). This is because the time point at which a value
becomes valid is not sufficient to indicate the whole validity
period of this value, since the end of this period is indicated
by the starting time of the next value. This can be circum-
vented by introducing special null values [8].
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2.1 Requirements for Temporal Data Models
The representation capability of a data model depends on
the modeling constructs it allows and the query languages
it provides. In this study, we confine ourselves to the rela-
tional data model and relational query languages for han-
dling temporal data. The relational data model provides a
solid formal base for capturing the semantics of temporal
data.

Numerous criteria have been adopted in temporal rela-
tional data models for fuller and better representation and
manipulation of temporal data. A comprehensive list of
these criteria is compiled in [1]. We believe that the follow-
ing requirements (explained below) are crucial in repre-
senting temporal data:

1) The data model should be capable of modeling and
querying the database at any instance of time, i.e., Dt
(the database state at time t). The data model should
at least provide the modeling and querying power of
a 1NF relational data model. Note that when t is now,
Dt corresponds to a traditional database.

2) The data model should be capable of modeling and
querying the database at two different time points,
i.e., Dt and Dt¢ where t ? t¢. This should be the case for
the intervals and temporal sets as well.

3) The data model should allow different periods of va-
lidity in attributes within a tuple, i.e., nonhomogeneous
(heterogeneous) tuples.

4) The data model should allow multivalued attributes at
any time point, i.e., in Dt.

5) A temporal query language should have the capability
to return the same type of objects that it operates on.

6) A temporal query language should have the capability
to regroup the data according to a different criterion.

7) The model should be capable of expressing set-
theoretic operations, as well as set comparison tests,
on the timestamps, be it time points, intervals, or
temporal sets (elements).

This core set of requirements is fundamental for captur-
ing the temporal data and determining the expressive
power of a temporal query language. Except for require-
ment 4, these requirements already appear in various pro-
posed data models, as follows: requirements 1 and 2 in [23],
[1], [10], requirement 3 (see discussion below) in [9], [19],
[1] and a restricted form of requirement 3 in [12], [5], [9],
[4], requirement 5 in [9], [1], requirement 6 in [12], [4], and
requirement 7 in [12], [9]. Moreover, references [23] and [1]
include additional desirable criteria for temporal databases
that we do not consider here since they are not relevant to
the expressive power of temporal query languages. The
requirements we list here are intended for the most general
case. Depending upon application needs, the user can relax
any of these requirements. For example, homogeneity is
widely assumed in temporal data models.

Requirements 1 and 2 are straightforward and do not
need any further justification.

Homogeneity [9] requires that the attributes of a tuple be
defined over the same period of time. This assumption
simplifies the model and is built into many models. How-
ever, it also limits the data model and its query language,

since the Cartesian product operation can be defined only
for the time period common to tuples participating in the
operation. Let t and t¢ be two tuples, and tT and ′τ T  be the
times (temporal sets) over which t and t¢ are defined, re-
spectively. The Cartesian product of these two tuples can be
defined only over tT > ′τ T . Portions of tT and ′τ T  outside of
their intersection are not accessible, i.e., tT - ′τ T  or ′τ T  - tT.
In a homogeneous temporal query language, one can set
the semantics to allow a virtual Cartesian product of tu-
ples with different times. Although this allows interpreta-
tion of one single expression, it is not possible to carry
the intermediate results from one expression to another.
Furthermore, conversion from one language to another (i.e.,
algebra/calculus transformations) would not be possible.
We have opted to relax this assumption (to allow nonho-
mogeneous tuples) to have a full representation of temporal
data. Examples supporting the usefulness of relaxing this
assumption can be found in [9].

Requirement 4 allows an attribute to have several values
at a point in time, and such attributes are common in real
life. Generally, multivalued attributes are decomposed
into 4NF relations in temporal models based on 1NF rela-
tions. Naturally, the data in a multivalued attribute is split
into several tuples. This is also the case for the data models
that define attribute values as functions of time or that
work by cutting 1NF relations (snapshots) from N1NF
temporal relations.

Requirement 5 specifies that a temporal query lan-
guage should return the same type of relations it operates
on. This is closely related to how the tuples of a relation
are formed. When attributes or tuples are timestamped,
we encounter a situation that does not arise in traditional
relations, i.e., keeping related data in one tuple (unique
relations) or breaking the data into several tuples (weak
relations [9]). There are two aspects of this issue [13]. First,
timestamp of a value can be broken into its subsets. For
instance, the timestamped value <[1, 5), a> can also be
represented as <[1, 3), a> and <[3, 5), a>, among many
other possibilities. Second, an object’s entire history can
be grouped into a single tuple with respect to an attribute
identifying that object. Relations containing such tuples
have a unique representation. We simply call them unique
relations. For example, the EMP relation in Fig. 3 is a
unique relation since each tuple contains all the data for
an employee, i.e., employee data is grouped with respect
to E#. Relations having unique representation are first
introduced by Tansel [20] and Gadia [6], [9] independ-
ently. Such relations are called temporally grouped (TG) in
[5]. Ideally, given unique relations a temporal query lan-
guage should retrieve unique relations. If it retrieves
weak relations, it should be capable of transforming them
into equivalent unique relations. Moreover, an operation
may return a weak relation even if its operands are in
unique representation. Consider the scheme of the EMP
relation in Fig. 3. Let r1 be the relation containing Ann’s
data in the interval [25, 27) and r2 be the relation having
Ann’s data in the interval [27, 30). r1 < r2 contains two
tuples, or they can be combined into one single tuple for
the time period [25, 30). The former would be a weak re-
lation, whereas the latter would be a unique relation.
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The ability to regroup a temporal relation with respect
to a different attribute [12] should be available in a tempo-
ral query language. Fig. 2 demonstrates regrouping of
temporal data. In the DEPARTMENT relation (Fig. 2a)
data is grouped with respect to DNAME. Fig. 2b repre-
sents the same data regrouped according to the manager
(MGR) attribute. Regrouping facilitates answering queries
with respect to manager values. A sample query might be
“given the DEPARTMENT relation, does the validity pe-
riod of any manager include [10, now) or are there manag-
ers having the same validity period?” The details of this
capability can be found in Section 7. Essentially, re-
grouping facilitates queries requiring a different view of
the data with respect to another attribute. A limited form
of regrouping is also needed in data models employing
tuple timestamping [4].

DEPARTMENT
DNAME MGR

<{[1, 5)}, Tom>
<{[1, 30)}, Toy> <{[5, 15)}, Ann>

<{[15, 30)}, Bill>

<{[5, fe)}, Shoe>
<{[5, 15)}, Tom>

<{[15, fe)}, Ann>

(a)

MANAGER
MGR DNAME

<{[1, 15)}, Tom>
<{[1, 5)}, Toy>

<{[5, 15)}, Shoe>

<{[5, fe)}, Ann>
<{[5, 15)}, Toy>

<{[15, fe)}, Shoe>
<{[15, 30)}, Bill> <{[15, 30)}, Toy>

(b)

Fig. 2. Example for the regrouping: (a) data is grouped with respect to
DNAME; (b) data is grouped with respect to MGR.

E# ENAME DEPARTMENT SALARY

<{[10, 12)}, Sales>
<{[10, 15)}, 20K>

121 Tom <{[15, 17)}, 25K>
<{[14, 18)}, Mktg>

<{[17, 20)}, 30K>

133 Ann <{[25,30)}, Sales> <{[25,30)}, 35K>

147 John <{[18,fe]}, Toys> <{[18,fe]}, 42K>

Fig. 3. EMP relation.

For requirement 7, any data model using temporal sets
(elements) as timestamps naturally supports set-theoretic
operations and set comparison tests on timestamps. How-
ever, the case of time points and intervals is not straight-
forward. Any data model using them should be able to
simulate these operations.

3 THE TEMPORAL RELATIONAL DATA MODEL

In this section, we define a temporal relational data model.
P(U) denotes the powerset of the set U, and ‘¥’ denotes
Cartesian product operation.

DEFINITION 1. A temporal atom is an ordered pair <t, v> where
t is a temporal set or an interval (t Õ T) and v is an atomic
value (v Œ U).

The temporal atom <t, v> asserts that v is valid for the
time period t, which may not be empty. If a is a temporal
atom, then a.T and a.v denote its temporal set and value
components, respectively. A temporal atom represents a
historical value of an attribute. The history of an attribute of
an object can be modeled by a set of temporal atoms.

There are four types of attributes in a temporal relation.
If an attribute, say A, has atomic values, then its domain is
a subset of U. If attribute A has temporal atoms, then
DOM(A) Õ Uta where Uta = P(T) ¥ U. The domain of an at-
tribute may also be a subset of P(U). In this case, the attrib-
ute’s values are sets of atoms. Finally, an attribute may
have sets of temporal atoms, in which case its domain is a
subset of P(Uta).

DEFINITION 2. R(A1, A2, …, An) is a temporal relation scheme
where n is its degree and A1, …, An are its attributes. An
attribute Ai has an associated domain, DOM(Ai).

R is an N1NF relation with a nesting depth of at most 1,
i.e., its attributes can be sets of atoms or temporal atoms. In
this study, we restrict nesting depth to 1 since it is capable
of simulating all the other proposed temporal relational
data models, excluding their feature we do not include in
our discussion. Moreover, one level of nesting is sufficient
to represent a history of objects and their relationships.
However, in cases where a relationship is embedded into a
relation as an attribute, more levels of nesting are needed,
one level for the relationship and another level for the his-
tory of the attribute that belongs to the relationship. It is
also straightforward to generalize the conclusions of this
study to arbitrarily nested temporal relations. In [13], we
give the formal definition of a generalized relational data
model that allows arbitrary levels of nesting.

DEFINITION 3. An instance of relation scheme R is a set of n-
tuples, <a1, º, an >, where ai is the value of attribute Ai
and n is its arity. Each ai is either an atom, a temporal
atom, a set of atoms, or a set of temporal atoms.

We use the terms atom, temporal atom, set of atoms, and
set of temporal atoms for the scheme and its instance. We
also use the terms relation and temporal relation inter-
changeably.

DEFINITION 4. A relational database schema D is {R, S, º}
where R, S, º are relation schemes.

In Fig. 3, we show a heterogeneous employee relation,
called EMP, over the scheme E# (employee number),
ENAME (employee name), DEPARTMENT, and SALARY.
E# and ENAME are atomic attributes, and DEPARTMENT
and SALARY are attributes with temporal atoms. Note
that there are no department values for Tom in the peri-
ods [12, 4) and [18, 20). Perhaps he was not assigned to any
department during this time. We can also convert E# and
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ENAME into temporal atoms by assigning an appropriate
validity period as their timestamps.

4 NESTED TUPLE CALCULUS

In this section, we define the Nested Tuple Calculus (NTC)
language [13] for the temporal relational data model
given in the previous section. We give the symbols and
the well-formed formulae of the language, followed by
their interpretations.

4.1 Symbols

• Predicate names: There is a finite number of predicate
names, P, Q, R, S, … one for each relation instance in
the database.

• Variables: There is a countable number of tuple vari-
ables, s, t, u, v, … A variable has the same scheme and
degree (arity) as the relation scheme it is associated
with. Variables may be indexed. If s is a variable, then
s[i] is an indexed variable where i is between 1 and
the arity of s. s[i] can be an atom, a temporal atom, a
set of atoms, or a set of temporal atoms. If s[i] is a
temporal atom, s[i].v and s[i].T are also variables de-
noting the value and the temporal set parts of this
temporal atom, respectively. We use t as a special
variable for time points and add a subscript whenever
more time variables are needed. This is done for the
sake of clarity; otherwise there is no need for such a
distinction.

• Constants: There is a countable number of constant
symbols, a, b, c, … Each constant has a scheme, an
atom, a temporal atom, a set of atoms, or a set of tem-
poral atoms.

4.2 Well-Formed Formulae

1) P(s); P is a predicate name and s is a variable.
2) s[i] op r[j]; s[i] op c; where op is one of =, ?, <, £, >, ≥;

and s[i], r[j], and c are atoms. The position of oper-
ands can be changed to form a new formula.

3) s[i].v op p[j].v; s[i].v op r[k]; or s[i].v op c; where op is
one of =, ?, <, £, >, ≥; s[i] and p[j] are temporal atoms;
and r[k] and c are atoms. The position of operands
can be reflected to form a new formula.

4) s[i] = r[j]; r[j] = s[i]; s[i] = c; or c = s[i]; where s[i], r[j],
and c have the same scheme, i.e., set of atoms, tempo-
ral atom, or set of temporal atoms. Here, = is an iden-
tity test, and hence π may also be used. s[i].T = r[j].T is
allowed if s[i] and r[j] are temporal atoms.

5) Formulae involving membership test:

• s[i] Œ r[j], where s[i] is an indexed variable that is
an atom and r[j] is an indexed variable that is a set
of atoms. If s[i] is a temporal atom, indexed vari-
able r[j] is also a set of temporal atoms. In this for-
mula, either of the indexed variables can be re-
placed by an appropriate constant.

• s[i].v Œ r[j], where s[i] is a temporal atom and r[j] is
a set of atoms. Either operand can be replaced by
an appropriate constant.

 

• s[i] Œ r[j].T, where s[i] is an indexed variable that is
an atom and r[j].T is also an indexed variable that
is a temporal atom. Either of the indexed variables
can be replaced by an appropriate constant. Fur-
thermore, s[i].v can also be specified if s[i] is a
temporal atom.

6) If y and l are formulae, so are y Ÿ l, y ⁄ l, and ÿy.
7) If y is a formula with the free variable s, then $sy(s)

and "sy(s) are formulae and s no longer occurs freely
in y.

8) r[i] = {s(1)| y(s, u, v, …)} is a formula with free vari-
ables s, u, v, … The variable s has arity 1 and does not
occur freely in y. The scheme of indexed variable r[i]
is a set of atoms or temporal atoms. In the resulting
formula, variables u, v, … are free and s is bound.
This formula is called a set constructor, and it may not
be used in y.

4.3 Interpretation of Calculus Objects
The domain of interpretation for a calculus object x is de-
fined relative to the set U, universe of atoms, and is de-
noted by Domx(U). Atoms take their values from U. The
domain of interpretation for temporal atoms is Uta.

An interpretation of a constant c, denoted as Ic, is a
member of Domc(U). If c is an atom or a set of atoms, then
Domc(U) is U or P(U), respectively. If c is a temporal atom
or a set of temporal atoms, then Domc(U) is Uta or P(Uta),
respectively. An interpretation of a predicate name P, de-
noted as IP, is a relation instance, and IP Œ DomP(U). A vari-
able s is interpreted as a tuple instance, and Is Œ Doms(U)
where Doms(U) = L1 ¥ … ¥ Ln and n is the degree of s. For
each i, Li is U, P(U), Uta, or P(Uta) if s[i] is an atom, set of
atoms, temporal atom, or set of temporal atoms, respec-
tively. Is(i) denotes the ith component of the tuple that is the
interpretation of variable s. Formulae are interpreted as
true or false by assigning interpretations to their constants,
predicate symbols, and free variables.

The following are the rules for the interpretation of for-
mulae in NTC.

1) P(s) is true if Is Œ IP.
2) s[i] op r[j] is true if Is(i) op Ir(j).
 s[i] op c is true if Is(i) op Ic.
3) s[i].v op p[j].v is true if Is(i).v op Ip(j).v.
 s[i].v op r[k] is true if Is(i).v op Ir(k).
 s[i].v op c is true if Is(i).v op Ic.
4) s[i] = r[j] is true if Is(i) = Ir(j).
 s[i] = c is true if Is(i) = Ic.
5) s[i] Œ r[j] is true if Is(i) Œ Ir(j).
 s[i].v Œ r[j] is true if Is(i).v Œ Ir(j).
 s[i] Œ r[j].T is true if Is(i) Œ Ir(j).T.
6) y Ÿ l is true if both y and l are true.
 y ⁄ l is true if either y or l is true.
 ÿy is true if y is false.
7) $sy(s) is true if there is at least one assignment to s

which makes y(s) true, i.e., y(s) is true for at least one
value of Is. "sy(s) is true if y(s) is true for any as-
signment to s.

8) r[i] = {s(1)| y(s, u, v, º)} is satisfied (made true) by the
interpretations Ir, Is, Iu, Iv, … of its free variables if the
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following condition is met: Ir(i) equals the set of as-
signments Is satisfying y(s, u, v, ...) for the interpreta-
tions Iu, Iv, º If there are no such tuples Is, and Ir(i) is
empty, then this formula evaluates to false. In other
words, the set constructor formula does not create an
empty set.

An NTC expression is {sk| y(s)} where s is a free variable
with arity k and y(s) is a well-formed formula. An inter-
pretation of this expression is the set of instances of s that
satisfy the formula y(s), i.e., an element of Doms(U).

4.4 Safety of NTC
We define a safe subset of NTC according to the definition
given in [24]. Let y be a formula with one free variable, t.
The formula y is safe if it satisfies the following conditions:

1) The universal quantifier (") is not allowed. This is not
a restriction, since the universal quantifier can always
be replaced by the existential quantifier ($).

2) Whenever a ⁄ operator is used, the two subformulae
connected, say y ⁄ l, should have the same free tuple
variables.

3) Consider any maximal conjunct y1 Ÿ y2 Ÿ º Ÿ yn of
y. All components of tuple variables appearing free in
any yi must be limited in the following sense:

a)  If yi is a nonnegated atomic formula in the form
R(u), then all components of tuple variable u are
limited.

b)  If yi is u[i] = c or c = u[i], where c is a constant,
then u[i] is limited.

c)  If yi is u[i] = v[j] or v[j] = u[i], and v[j] is limited,
then u[i] is limited. Note that rules b and c apply
to the parts of the temporal atoms as well. A tem-
poral atom is limited if its temporal set and value
parts are both limited.

d)  If yi is u[i] Œ v[j] and v[j] is limited, then u[i] is
limited. If u[i] is a temporal atom, its temporal set
and value parts are also limited.

e)  If yi is u[i] = {s,| y ¢(s, u, v, …)} and y ¢(s, u, v, …)
is safe, then u[i] is limited.

4)  A ÿ can apply only to a term in a conjunction of the
type discussed in condition 3. Furthermore, there
should be at least one nonnegated formula in a
maximal conjunct.

We now give some examples, using the EMP relation of
Fig. 3 to illustrate NTC. Answers to the example queries are
shown in Fig. 4. For the reader’s convenience, we use at-
tribute names instead of position indexes in the following
NTC expressions.

QUERY 1. What are the names and salaries of those employ-
ees in the Sales department at time 16?

{x(2)| ($r) (EMP(r) Ÿ
($u) ($z) (u Œ r[DEPARTMENT] Ÿ

    z Œ r[SALARY] Ÿ
($t) (t Œ u.T Ÿ t = 16 Ÿ

t Œ z.T Ÿ u.v = ‘Sales’ Ÿ
x[1] = r[ENAME] Ÿ x[2] = z.v)))}.

QUERY 2. What are the histories of those employees who
have worked only in the Sales department?

{x(4)| ($r) (EMP(r) Ÿ
($u) (u Œ r[DEPARTMENT] Ÿ u.v = ‘Sales’ Ÿ

ÿ($z) (z Œ r[DEPARTMENT] Ÿ
z.v ? ‘Sales’) Ÿ

x[1] = r[E#] Ÿ x[2] = r[ENAME] Ÿ
x[3] = r[DEPARTMENT] Ÿ
x[4] = r[SALARY]))}.

QUERY 3. What are the name and salary histories of the em-
ployees whose current salary is the same as the salary
of another employee when that employee was work-
ing for the Sales department?

{x(2)| ($r)($s) (EMP(r) Ÿ EMP(s) Ÿ
($u) (u Œ r[SALARY] Ÿ now Œ r[SALARY].T Ÿ

($z)($y) (z Œ s[SALARY] Ÿ
y Œ s[DEPARTMENT] Ÿ
y.v = ‘Sales’ Ÿ
($t) (t Œ y.T Ÿ t Œ z.T Ÿ u.v = z.v) Ÿ
x[1] = s[ENAME] Ÿ
x[2] = s[SALARY])))}.

QUERY 4. What was the salary and department of Tom im-
mediately after his last salary increase?

{x(3)| ($r) (EMP(r) Ÿ r[ENAME] = Tom Ÿ
($u)($s) (u Œ r[SALARY] Ÿ s Œ r[SALARY] Ÿ
($t1)($t2) (t2 < t1 Ÿ t1 Œ u.T Ÿ t2 Œ s.T Ÿ

s.v < u.v Ÿ
ÿ($z) (z Œ r[SALARY] Ÿ

($t3) (t3 Œ z.T Ÿ t2 < t3 Ÿ
t3 < t1)) Ÿ

ÿ($t4) (t1 < t4 Ÿ
($y)($w) (y Œ r[SALARY] Ÿ

   w Œ r[SALARY] Ÿ
($t5) (t5 < t4 Ÿ t4 Œ y.T Ÿ

  t5 Œ w.T Ÿ w.v < y.v Ÿ
ÿ($q) (q Œ r[SALARY] Ÿ

($t6) (t6 Œ y.T Ÿ t5 < t6 Ÿ t6 < t4)))
)) Ÿ

($h) (h Œ r[DEPARTMENT] Ÿ t1 Œ h.T Ÿ
x[1] = r[ENAME] Ÿ x[2] = h.v Ÿ
x[3] = u.v))))}.

We now give some useful propositions that will be
needed in the remainder of the article.

ENAME SALARY
Tom 25K

Query 1

E# ENAME DEPARTMENT SALARY
133 Ann <{[25, 30)}, Sales> <{[25, 30)}, 35K>

Query 2

∆
Query 3

ENAME DEPARTMENT SALARY
Tom Mktg 30K

Query 4

Fig. 4. Results of the example queries.
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PROPOSITION 1. NTC can form the union, intersection, and dif-
ference of temporal sets (and hence of temporal atoms).

PROOF. Straightforward from the definition of NTC. �

PROPOSITION 2. NTC can simulate formulae involving set com-
parison, e.g., set inclusion.

PROOF. Straightforward from the definition of NTC. �

PROPOSITION 3. NTC can convert temporal atoms with temporal
sets to temporal atoms with intervals.

PROOF. Let R(A) be a relation scheme where values of at-
tribute A are temporal atoms. We first take the Carte-
sian product of the relation T with itself to obtain a
relation (TI) having tuples giving all possible intervals
over the temporal domain T. For each time interval in
TI, we obtain the set of time points in this interval.
Then, we select the time intervals containing time
points in the temporal atoms of R. Some of these in-
tervals are superset of intervals in the temporal at-
oms. Such intervals are weeded out to yield the final
result. For the detailed proof, see [26]. �

PROPOSITION 4. NTC can convert temporal atoms with temporal
sets to temporal atoms with time points.

PROOF. A conversion procedure similar to the one in the
proof of Proposition 3 can be devised. �

PROPOSITION 5. NTC can convert temporal atoms with intervals
to equivalent temporal atoms with temporal sets.

PROOF. Combine the intervals of temporal atoms whose
values are the same into a temporal set. It is obvious
that this can be done in NTC. �

5 A NOTION OF TEMPORAL RELATIONAL
COMPLETENESS

In traditional database theory, relational calculus (RC) is
used as the standard in evaluating the expressive power of
query languages [25]. A language that has the same expres-
sive power as RC is called relationally complete. We use the
same approach in defining temporal completeness as was
used in [5], [6]. We take NTC as the yardstick against which
a temporal language is evaluated. There are several reasons
for this. First, NTC is a superset of relational calculus. Ad-
ditionally, it has set membership test and set constructor
formulae. If only 1NF relations are used, these formulae are
not needed, and thus NTC reduces to the relational calcu-
lus. Therefore, NTC subsumes the expressive power of re-
lational calculus. Second, the data model of NTC is very
powerful, and it meets all of the requirements listed in Sec-
tion 2.1. It can handle both heterogeneous and homogene-
ous tuples, since the latter is a subclass of the former. We
believe that this model provides full representation of real-
ity. Third, NTC can generate both relations in unique repre-
sentation and weak relations, and allows conversion be-
tween these two types of relations. Fourth, there is a tempo-
ral relational algebra that has the same expressive power as
NTC [13]. Fifth, NTC provides conversion in both direc-
tions, between various temporal data models and our tem-
poral relations.

In the following, we compare various temporal query

languages with NTC. In these comparisons, we consider
only those features of the temporal query languages rele-
vant to the requirements specified in Section 2.1. Some of
these languages may have additional features that we
briefly mention but do not consider in our comparisons. We
provide a transformation procedure from the temporal re-
lational data model to each of the proposed data models.
The reverse, conversion from these models to temporal re-
lations, can similarly be done by NTC. The only exception is
HRDM [8]; for an explanation see the last paragraph in
Section 2. After the transformation procedure, we give an
equivalent NTC expression for the language constructs of
these models, showing that NTC is as expressive as these
languages and that these languages are bounded in expres-
sive power by NTC.

In the remainder of the article, we will write NTC for-
mulae as if all the attributes of a temporal relation consist
of sets of temporal atoms. We assume that attributes whose
values are atoms or sets of atoms (i.e., E# and ENAME)
are assigned appropriate timestamps. We will also use at-
tribute names instead of position indexes, whenever it is
more convenient.

6 GADIA’S APPROACH

Gadia proposes a homogeneous relational model [9]. Each
attribute value is assigned a temporal element. A temporal
assignment to an attribute Ai is a function from a temporal
element into the domain of Ai. Each tuple has a temporal
domain that varies from tuple to tuple. However, all attrib-
utes of a tuple must have the same temporal domain. In
other words, temporal tuples in his model are homogene-
ous. A subset of attributes of R is defined as the temporal key
for r, a (temporal) relation over scheme R, if that subset is a
key for all snapshots of r. Fig. 5 illustrates the EMP relation
under Gadia’s model. Gadia introduces a relational algebra
and a temporal tuple relational calculus for this model. He
then proves the equivalence of the algebra and the calculus.
In the next subsection, we will consider only his calculus,
which we call GTC.

PROPOSITION 6. Gadia’s relations can be generated from a tempo-
ral relation by NTC.

PROOF. Directly follows from the equality of temporal sets
and temporal elements. �

6.1 Expressiveness of GTC and NTC

1) Relation formula. Let R be a predicate name and x be a
tuple variable in GTC. R(x) is also a formula in NTC.

2) Q-comparison. Let Q be a binary comparator, A and B
be two attributes that are Q-comparable, and c be a
constant in the domain of attribute A. Also let x and y
be tuple variables. Then,

• x(A) Q y(B) ∫
 ($u)($z) (u Œ x[A] Ÿ z Œ y[B] Ÿ

 ($t) (t Œ u.T Ÿ t Œ z.T Ÿ u.v Q z.v Ÿ d)).
• x(A) Q c ∫

 ($u) (u Œ x[A] Ÿ ($t) (t Œ u.T Ÿ u.v Q c Ÿ d)).
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 d represents an NTC expression to restrict the time
of x(A) and y(B) if they appear in the target specifi-
cation. It is null otherwise. d is the same as the se-
lection formula without a Boolean condition of
Bhargava and Gadia (see Section 7, case 3).

3) ' x l(x) is a temporal expression in GTC where l(x) is
a formula with the free variable x. ' x l(x) represents
the temporal domain of the tuple denoted by x. It can
be computed by taking the union of temporal sets of
all temporal atoms in any attribute A of tuple x. Let
y(x) be the NTC expression for l(x).

' x l(x) ∫ ($x)($u) (u Œ x[A] Ÿ t Œ u.T Ÿ y(x)).

Note that t may be existentially quantified, depending
on the use of ' x l(x) in the larger GTC expression.

4) Let v1 and v2 be two temporal expressions in
GTC, and let l1(t1) and l2(t2) be the corresponding
NTC expressions.

• v1 , ∫ ($t1) (l1(t1) Ÿ t ? t1) Ÿ t Œ T,
• v1 < v2 ∫ ($t1)($t2) (l1(t1) Ÿ l2(t2) Ÿ (t = t1 ⁄ t = t2)),
• v1 > v2 ∫ ($t1)($t2) (l1(t1) Ÿ l2(t2) Ÿ t = t1 Ÿ t = t2),
• v1 - v2 ∫ ($t1)($t2) (l1(t1) Ÿ l2(t2) Ÿ t = t1 Ÿ t ? t2).

5) For a temporal expression v and a tuple variable x,
x : v is a formula in GTC such that x : v restricts the
temporal domain of the tuple x to 'x > v. Let the
scheme of x be A1, …, An. The equivalent formula in
NTC is:

x : v ∫
($t)($u1) … ($un)

(t Œ u1.T Ÿ … Ÿ t Œ un.T Ÿ l(t) Ÿ
 u1 Œ x[A1] Ÿ … Ÿ un Œ x[An])

where l(t) is an NTC expression for v. If the GTC
expression returns any attributes, then the temporal
domain of these attributes should also be restricted
to 'x > v. In this case, the GTC expression is the
same as case 3 in Section 7 where there is no Boolean
formula.

Logical operators, quantification, and constant
temporal elements of GTC can directly be expressed
in NTC.

{x,| l(x)} is a relational expression in GTC where
l(x) is a formula with one free variable. The corre-
sponding temporal relational calculus expression in
NTC is given as {x(n)|y(x)} where y(x) ∫ l(x), n is the
degree of the result.

PROPOSITION 7. NTC is at least as expressive as GTC.

PROOF. Directly follows from the preceding analysis. �

GTC meets only requirements 1 and 5 listed in Section 2.1.
However, it cannot convert weak relations into relations in
unique representation. GTC does not satisfy requirement 2,
since it cannot express query 3 in Section 4. It cannot handle
multivalued attributes, since attribute values are defined as
functions of time. Moreover, GTC does not have the re-
grouping capability.

7 BHARGAVA AND GADIA’S APPROACH

Bhargava and Gadia introduce a temporal relational data
model that includes a data history store and a transaction log
as parts of their zero information loss model for database
transactions [12]. We consider only the data history store,
since transaction data is beyond the scope of this study. A
data history relation is the same as the homogeneous tempo-
ral relation of Gadia [9]. Fig. 5 shows the EMP relation in
the data store model. Bhargava and Gadia introduce an
algebra for their data model. We will call this algebra BGA
and compare it with NTC. An equivalent tuple calculus
language is given in [7].

7.1 Expressiveness of BGA and NTC
In order to demonstrate that NTC is at least as powerful as
BGA in expressiveness, we will consider all algebraic ex-
pressions of BGA and give their semantic equivalents in
NTC. We first examine the binary comparators, which play
a crucial role in the algebraic expressions of BGA. Given
two Q-comparable attributes A and B, and a constant c,
then A Q B, A Q c, and c Q A are valid formulae used in
selection operations of BGA. Equivalent NTC expressions
are the same as the ones provided for Q-comparison in
Section 6.1.

Bhargava and Gadia classify algebraic expressions into
temporal expressions, Boolean expressions, and relational expres-
sions. We will define expressions in each category and then
show that they are expressible by NTC formulae.

1) Temporal expressions. Basic temporal expressions in
BGA are of the form [[A]], [[r]], [[A Q B]], and
[[A Q c]]. The notation [[…]] represents the temporal
domain of the object specified. More complex expres-
sions can be formed by using the union (<), intersec-
tion (>), and difference (-) operations. Note that in-
corporating the converted subformula into the larger
NTC expression may sometimes require quantifica-
tion over the free variables. Let x be a tuple variable.

 

E# ENAME DEPARTMENT SALARY

[10, 12)
[10, 12) [10, 12) [10, 12)  Sales     <         20K
     <      121     <        Tom [14, 15)
[14, 18) [14, 18) [14, 18)   Mktg [15, 17)   25K

[17, 18)   30K

[25, 30)  133 [25, 30)   Ann [25, 30)  Sales [25, 30)    35K

[18, fe]  147 [18, fe]   John [18, fe]    Toys [18, fe]    42K

Fig. 5. The temporal relation EMP in Gadia’s temporal model.
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• Temporal elements are also temporal expressions.
The NTC equivalent of a constant temporal ele-
ment n, [l1, u1) < … < [ln, un), is:

          (t ≥ l1 Ÿ t < u1) ⁄ … ⁄ (t ≥ ln Ÿ t < un) Ÿ t Œ T,

• [[A]] ∫ ($u) (t Œ u.T Ÿ u Œ x[A]),
• [[A Q B]] ∫ ($u)($z) (t Œ u.T Ÿ t Œ z.T Ÿ

     u.v Q z.v Ÿ u Œ x[A] Ÿ z Œ x[B]),
• [[A Q c]] ∫ ($u) (t Œ u.T Ÿ u.v Q c Ÿ u Œ x[A]),
• [[r]] ∫ ($x)($u) (P(x) Ÿ t Œ u.T Ÿ u Œ x[A])

where A is an attribute of R and P is an NTC
predicate name representing r.

2)  Boolean expressions. TRUE, FALSE, A Q B, and m Õ n,
where m and n are temporal expressions, are the ba-
sic Boolean expressions in BGA. More complex
Boolean expressions can be obtained by using the
logical connective Ÿ and ⁄ and the negation ÿ. TRUE
and FALSE can easily be represented in NTC. The
Boolean expressions of the form A Q B are expressi-
ble in NTC as shown under Q-comparison in Section
6.1. Logical connectives of BGA directly correspond
to the logical connectives of NTC. As for the expres-
sion m Õ n, it is expressible in NTC (Proposition 2).

3)  Relational expressions. Restructuring operator, union,
selection, difference, projection, Cartesian product, and
renaming are all expressible in NTC. We illustrate the
selection operation below. Semantic equivalents of
other expressions in NTC can be found in [26].

Selection (s). Given a relational expression r, a
Boolean expression y, and a temporal expression m,
the selection operation s(r ≠ m, y) of BGA selects
those tuples of r satisfying the expression y and re-
stricts their temporal domain to m. Let P, f(t), and y ¢
be the NTC expressions for r, m, and y, respectively.
We first determine the tuples satisfying y ¢ and then
restrict the temporal domain of these tuples to f(t).
Each attribute of P is restricted by m individually,
which afterwards combines by forming a side-by-
side copy of P to regain the original structure. In the
following, for two tuple variables x and y we use
x = y as a shorthand for x[A1] = y[A1] Ÿ … Ÿ x[An] =
y[An].

        l1(x) ∫ P(x) Ÿ ($y) (P(y) Ÿ x = y Ÿ y ¢)

where y ¢ is a formula on tuple variable y,

l2(x) ∫
($y) (l1(y) Ÿ x[A1] = y[A1] Ÿ … Ÿ x[An] = y[An] Ÿ

x[An+1] = y[A1] Ÿ … Ÿ x[An+n] = y[An]),
λ A1

(x) ∫
($y) (l2(y) Ÿ x[A1] = y[A1] Ÿ … Ÿ x[An] = y[An] Ÿ

($z) (z Œ y[An+1] Ÿ x[An+1].v = z.v Ÿ
($u) (x[An+1].T = u Ÿ

u = {t | f(t) Ÿ t Œ  n+1].T Ÿ
                t Œ z.T}))),

′λ A1
(x) ∫

($y) (lA1
(y) Ÿ
x[A1] = y[A1] Ÿ … Ÿ x[An] = y[An] Ÿ

x[An+1] = {z[An+1] | λ A1
(z) Ÿ

z[A1] = y[A1] Ÿ … Ÿ z[An] = y[An]}).

The last two steps should be repeated for the remaining
attributes Ai, i.e., λ Ai

 and ′λ Ai
 for 2 £ i £ n, by changing

z Œ y[An+1] to z Œ y[An+i] in λ A1
(x). Finally,

l(x) ∫
($y1) … ($yn)

( ′λ A1
(y1) Ÿ … Ÿ ′λ An

(yn) Ÿ

y1 = y2 Ÿ y2 = y3 Ÿ … Ÿ yn-1 = yn Ÿ
x[A1] = y1[An+1] Ÿ … Ÿ x[An] = yn[An+1]).

l(x) is the desired equivalent expression for s(r ≠ m, y).

PROPOSITION 8. NTC is at least as expressive as BGA.

PROOF. Direct result of the previous conversions. �

BGA meets requirements 1, 2, 5, 6, and 7 of Section 2.1.
BGA retrieves relations in unique representation from one
relation. It may return weak relations when tuple compo-
nents from several relations appear in the target specifica-
tion. The result can be converted to unique representation
by the restructuring operation.

8 CLIFFORD AND CROKER’S APPROACH

Clifford and Croker introduce a temporal relational data
model, namely HRDM, and an algebra based on the notion
of lifespans [8]. A subset, L, of T is called a lifespan. They
attach time to every tuple and every attribute. Each tuple is
associated with a lifespan and can have values only at time
points in its lifespan. Each attribute of a relation scheme R,
including its key attributes, is assigned a value domain,
which is a set of atomic values, and a lifespan. Attribute
values are timestamped by time points and seen as func-
tions from time to the values in the value domain. All the
key attributes must be constant-valued. Fig. 6 illustrates the
employee relation EMP in this model. LTuple denotes the
lifespan for each tuple. Note that the discontinuity in de-
partment values of Tom’s tuple requires the introduction of
a special null value. Clifford and Croker define a historical
algebra, which we will call CCA. In order to show that NTC
is at least as expressive as CCA, we provided an equivalent
expression in NTC for each algebraic operation and expres-
sion in CCA [26].

PROPOSITION 9. NTC can generate an equivalent historical rela-
tion in HRDM from a temporal relation.

PROOF. See [26] for the proof. �

CCA meets requirement 1 and partially meets require-
ment 5 of Section 2.1. It retrieves relations in unique repre-
sentation as well as weak relations. CCA does not meet re-
quirement 2, since it cannot express query 3 in Section 4. It
does not support multivalued attributes, since attribute
values are defined as functions of time. CCA does not have
the capability to convert weak relations to unique relations
and to regroup temporal data.
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9 THE LANGUAGE Lh

In [15], Clifford, Croker, and Tuzhilin (CCT) name the
N1NF temporal relational models as temporally grouped and
the 1NF temporal relational models as temporally ungrouped
models. We now examine their grouped model and con-
sider the expressive power of its associated language, Lh.

In the temporally grouped model, as in HRDM, every
tuple has a lifespan, and its attributes can have values at
the time points in its lifespan. Each attribute value is a
temporal-based function that assigns a value from its asso-
ciated domain to time points in tuple’s lifespan. Tuples of
the temporally grouped model are homogeneous.

The key of a relation is specified as a subset of the attrib-
utes A of R such that there cannot be a time point at which
two different tuples agree on the key. The temporally
grouped relation EMP is shown in Fig. 7. Note that CCT use
intervals as timestamps, unlike HRDM, where time points
are the timestamps.

PROPOSITION 10. A temporal relation can be transformed into an
equivalent temporally grouped relation where intervals are
the timestamps.

PROOF. Break (unnest) the sets of temporal atoms and con-
vert them into equivalent temporal atoms where
timestamps are intervals by Proposition 3. Regroup
(nest) the results into sets of temporal atoms. Details
of a procedure to break and regroup tuples can be
found in [13].

9.1 Expressiveness of Lh and NTC
Lh is a temporal relational tuple calculus that is based on a
many-sorted logic. Variables over temporal values as well
as ordinary values are allowed in Lh. Thus, it is possible to
explicitly refer to the time points in the language.

An expression in Lh is defined as of the form [x1.A1,
x2.A2, …, xn.An : t]f where each xi.Ai is a value term, t is a
free temporal variable that forms a common  lifespan  for the

resulting tuple, and f is a formula in Lh. The semantically
equivalent temporal relational calculus expression in NTC
is of the form {x(n) | y(x) Ÿ l(x, t)} where x is a free variable
with arity n such that x(n) ∫ x1.A1, x2.A2, …, xn.An and y(x) is
a well-formed formula in NTC such that y(x) ∫ f. l(x, t)
restricts the lifespan of the result to the set of t values. It is
the same NTC expression provided for the selection opera-
tion in BGA. Details of transforming an Lh formula to an
equivalent NTC formula l(x, t) can be found in [26].

PROPOSITION 11. NTC is at least as expressive as Lh.

PROOF. Expressing the terms and formulae of Lh in NTC is
straightforward. Details of the proof can be found
in [26].

Lh meets requirements 1 and 2 of Section 2.1. Lh supports
homogeneous relations and does not meet requirement 4,
since values of a multivalued attribute are split into several
tuples. This is against the grouping concept of Lh. Lh is not
closed and does not support requirement 5, since it re-
trieves weak relations if several relations are used. Lh does
not have the capability to convert weak relations into
unique relations nor the capability to regroup temporal
relations. As an example, consider the EMP relation in Fig.
7 and the temporal relation DEPARTMENT given in Fig. 2a
and the query “for each employee give his/her managers.”
Lh retrieves a tuple for each manager an employee worked
for. The result is a weak relation.

10   TUZHILIN AND CLIFFORD’S APPROACH

Tuzhilin and Clifford [15] define two temporal relational
algebras for a discrete linear bounded model of time. They
also define two temporal calculi based on temporal logic.
Semantics of the temporal logic formulae and algebra op-
erations is defined by the notion of temporal structure, which
is a mapping K : T Æ P1 ¥ P2 ¥ º ¥ Pn where each Pi is the
set of all possible    interpretations of the   predicate Pi. Hence,

E# ENAME DEPARTMENT SALARY Ltuple

10 Æ 121 10 Æ Tom     10 Æ Sales 10 Æ 20K  [10, 12)

    12 Æ Null 15 Æ 25K
14 Æ 121 14 Æ Tom

    14 Æ Mktg 17 Æ 30K  [14, 18)

25 Æ 133 25 Æ Ann     25 Æ Sales 25 Æ 35K  [25, 30]

18 Æ 147 18 Æ John     18 Æ Toys 18 Æ 42K  [18,Æ]

Fig. 6. The temporal relation EMP in HRDM.

E# ENAME DEPARTMENT SALARY lifespan

[10, 12) Æ 20K

[10, 12) Æ 121 [10, 12) ÆTom [10, 12) Æ Sales [14, 15] Æ 20K
{10,11,14, …, 17}

[14, 17] Æ 121 [14, 17] Æ Tom [14, 17] Æ Mktg [15, 17) Æ 25K

[17, 17] Æ 30K

[25, 29] Æ 133 [25, 29] Æ Ann [25, 29] Æ Sales [25, 29] Æ 35K {25, …, 29}

[18, fe] Æ 147 [18, fe] Æ John [18, fe] Æ Toys [18, fe] Æ 42K {18, …, fe}

Fig. 7. The temporally grouped temporal relation EMP.
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K assigns to each time point an instance of each of the
predicates P1, P2, º, Pn at that time point. This means that
each predicate Pi in a temporal structure provides a tempo-
ral relation and that each relation changes over time, in-
stead of each of its individual attributes changing over
time. The temporal structure for the EMP relation is shown
in Fig. 8. Note that for the time points 12, 13, 18, and 19, no
data is specified for Tom since there are no department
values.

Time Ki (EMP)

i = 10, 11 EMP(121, Tom, Sales, 20K)

i = 14 EMP(121, Tom, Mktg, 20K)

i = 15, 16 EMP(121, Tom, Mktg, 25K)

i = 17 EMP(121, Tom, Mktg, 30K)

i = 18 … 24 EMP(147, John, Toys, 42K)

i = 25 … 29
EMP(133, Ann, Sales, 35K)

EMP(147, John, Toys, 42K)

i = 30 … fe EMP(147, John, Toys, 42K)

Fig. 8. The temporal structure for the EMP relation.

PROPOSITION 12. A temporal structure can be obtained from a
temporal relation.

PROOF. We give a sketch of a procedure to obtain a tempo-
ral structure from a temporal relation by using NTC.
First, break (unnest) sets of temporal atoms. Second,
trim the temporal set of each attribute by every other
attribute. This makes sure that every temporal atom
has the same temporal set, i.e., there is no change in a
tuple for this period. Third, discard the time of all the
attributes except one attribute, say, A1. Then break
attribute A1 into its temporal set and value parts.
Fourth, break this temporal set into its time points.
Then group (nest) the tuples whose time is the same.
Finally, group the time points of the tuples whose
value parts are the same. This gives the desired tem-
poral structure.

10.1 Expressiveness of the Temporal Calculi Based
on Temporal Logics

10.1.1 Temporal Logic TL¢
TL¢ is a predicate temporal logic derived from the first-
order logic by associating the temporal operators necessity
(u), possibility (e), and next (o), and their past versions. In
this logic, time is not explicitly referenced. Reference to
time is embedded in the temporal operators and there are
no temporal constants or temporal variables. TL¢ can be
expressed by NTC [26].

Another type of temporal logic, TL, uses the binary tem-
poral operator until and its past version since. Tuzhilin and
Clifford show that TL is more powerful than TL¢ for the
discrete linear bounded model of time (cf. Proposition 1 in
[15, p. 15]). Other temporal operators such as atfirst and its
past version atlast are allowed in TL as well. These opera-
tors can be expressed in terms of the until and since op-

erators and vice versa. Below we give the NTC expressions
for until and since operations.

• until. Given predicate temporal logic formulae f1 and
f2 in TL, f1 until f2 is true if f1 holds at all the future
time points up to a time point at which f2 holds. In
other words, f1 until f2 is true at time t if there is a
time t¢ > t such that f2 is true at t¢, and for all t¢¢ where
t < t¢¢ < t¢, f1 is true at t¢¢.

f1 until f2 ∫
($t¢) (y2(t¢) Ÿ t < t¢ Ÿ
("t¢¢) (ÿ(t < t¢¢ Ÿ t¢¢ < t¢) ⁄ y1(t¢¢))) Ÿ t Œ T.

• since. f1 since f2 is true if f1 holds at all past time
points after a time point at which f2 holds. That is,
f1 since f2 is true at time t if there is a time t¢ < t such
that f2 is true at t¢, and for all t¢¢ where t¢ < t¢¢ < t, f1 is
true at t¢¢.

f1 since f2 ∫
($t¢) (y2(t¢) Ÿ t¢ < t Ÿ
("t¢¢) (ÿ(t¢ < t¢¢ Ÿ t¢¢ < t) ⁄ y1(t¢¢))) Ÿ t Œ T.

PROPOSITION 13. NTC is at least as expressive as TL.

PROOF. Directly follows from the preceding analysis. �

10.1.2 The Temporal Calculi TC¢ and TC

The temporal calculi TC¢ and TC are based on the predicate
temporal logic TL¢ and TL, respectively. A temporal calcu-
lus query expression is of the form {A1, A2, º, An | f(Ai,
A2, º, An)} where f is a predicate temporal logic formula
and A1, A2, º, An are free variables in f.

It should be noted that a temporal calculus query ex-
pression is evaluated at every time instance in the discrete
bounded temporal domain T. Consider query 4 (taken from
[15]) in Section 4. The TC expression for this query is:

{ENAME, DEPT2, SALARY2|
(EMP(E#, ENAME, DEPT2, SALARY2) Ÿ
   ENAME = ‘Tom’) atlast
((EMP(E#, ENAME, DEPT1, SALARY1) Ÿ
   EMP(E#, ENAME, DEPT2, SALARY2) Ÿ
    SALARY1 < SALARY2)}.

This expression is evaluated at each time point in the
interval [10, tn] over which the relation EMP is defined. tn is
taken as the current time. As demonstrated in Section 4, this
query is expressible in NTC.

PROPOSITION 14. NTC is at least as expressive as TC¢ and TC.

PROOF. Follows from the preceding discussions. �

Two versions of the temporal relational algebra, TA¢ and
TA, are also defined for a discrete linear bounded model of
time [15]. TA¢ and TA have the same expressive power as
TC¢ and TC, respectively.

We are not sure whether TL, TL¢, TA, and TA¢ meet re-
quirement 1 for the temporal data models. Tuzhilin and
Clifford, in [15], do not provide a complete definition for
these languages. It is not clear whether time can explicitly
be referenced in a selection formula. Moreover, a temporal
structure is, by definition, homogeneous, and it is possible
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to compare two database instances at different time points
only if all of the required relations are defined at these
points. These languages support multivalued attributes. It
is claimed that these languages return the same type of ob-
jects as the type of their operands [15]. Definitions of their
operations do not provide sufficient detail to determine the
validity of this claim.

11   SNODGRASS’S APPROACH

Snodgrass adds implicit timestamps for valid time and
transaction time to 1NF relations [10]. We consider only
valid time in the following analysis. There are two types of
temporal relations:

• interval relations and
• event relations.

In an interval relation, there exist two temporal attributes
for each tuple. These two additional attributes, valid-from
and valid-to, determine the time interval during which the
tuple is valid. For an event relation, there is only one tem-
poral attribute, named valid-at. In this way, the validity of
each tuple is defined for a single point in time. By defini-
tion, the tuples of the relations in this model are homoge-
neous. Fig. 9 shows the EMP relation for Snodgrass’s tem-
poral relational data model.

E# SALARY VALID

E# ENAME from to

121 Tom 121 20K 10 15

133 Ann 121 25K 15 17

147 John 121 30K 17 18

133 35K 25 30

147 42K 18 fe

E# DEPARTMENT VALID

from to

121 Sales 10 12

121 Mktg 14 18

133 Sales 25 30

147 Toys 18 fe

Fig. 9. The EMP relation in the Snodgrass model.

PROPOSITION 15. In NTC, a nested temporal relation can be con-
verted into equivalent 1NF relations in the Snodgrass model.

PROOF. First, project the key attribute(s) (E# in EMP rela-
tion) and each of the temporal attributes into a sepa-
rate relation. Secondly, break (unnest) the temporal
attribute(s) in each relation into temporal atoms.
Then, break the temporal atoms into their intervals by
Proposition 3. Finally, place the end points of an in-
terval in a tuple as the valid-from and valid-to attrib-
utes. Note that this process is reversible. �

11.1   Expressiveness of TQuel and NTC
Snodgrass develops a temporal query language, TQuel, by
augmenting Quel statements with new clauses, namely
When, Valid, and “As of.” The “As of” clause, which rolls
back the database to a previous time point is beyond the
scope of this study. The When clause performs temporal
selection. As for the Valid clause, it determines the valid
interval (point) of the tuples derived as the result of the
query. The Quel retrieve statement has the form:

range of r1 is R1
…
range of rq is Rn

retrieve r A r Ai ij js s1 1
⋅ ⋅FH IK, . . . ,

valid from v1 to v2
where w
when t

In this expression, w is a Boolean formula, and t is an
expression made up of temporal predicates. v1 and v2 are
temporal expressions specifying the end points of an inter-
val over which the resulting tuple is valid. t can be trans-
lated into NTC in a straightforward manner by specifying
the value components of temporal atoms. The temporal
expression w includes predicates like overlap and extend,
which can be done by set operations in NTC. The predicates
begin of and end of refer to the end points of intervals. Since
NTC uses temporal sets, the end points of intervals in a
temporal set can be obtained by Proposition 3. The interval
specified in the Valid clause is used to restrict the time of
the result. This can be implemented in NTC as explained
for the selection operation of BGA (Section 7.1).

As an alternative, Snodgrass shows in [10] that each
TQuel statement has an equivalent expression in tuple cal-
culus. This equivalent expression of tuple calculus is also a
valid NTC expression, since NTC subsumes tuple calculus.

PROPOSITION 16. NTC is at least as expressive as TQuel.

PROOF. Convert the nested temporal relations to equivalent
relations in the Snodgrass model. Apply the equiva-
lent tuple calculus expression for the TQuel query.
Reform a nested temporal relation from the result by
Proposition 5. �

TQuel meets requirements 1, 2, 4, and 5 of temporal data
models (see Section 2.1). However, it cannot compare an
attribute whose values are temporal with the tuple time-
stamps. This prevents TQuel from satisfying requirement 1
completely. TQuel requires that tuples be collapsed, if pos-
sible, in the result. But this requirement is not built into the
logic of equivalent tuple calculus expressions. TQuel does
not have a regrouping capability.

12   LORENTZOS AND JOHNSON’S APPROACH

The data model of Lorentzos and Johnson ([16], [2, chapter 3])
is basically similar to the data model of Snodgrass. A rela-
tion can have three additional attributes, Fdate, Tdate,
and/or Date. The first two attributes specify the interval
during which a tuple is valid, whereas Date specifies the
time point at which a tuple is valid. The model allows
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switching between interval and point representations. It
also supports more than one timestamp, which we do not
discuss here since it is beyond the scope of our study.
Proposition 15 allows conversion of a nested temporal rela-
tion into equivalent relations in Lorentzos and Johnson’s
model. Lorentzos and Johnson propose an algebra that we
will call LJA. A few new operations are defined in LJA; we
examine them below.

1) FOLD. This operation converts a relation in which
data is timestamped with time points to an equivalent
relation in which the data is timestamped with time
intervals. In terms of algebraic operations, grouping
(nesting) the time points of tuples whose value parts
are the same yields a relation where each tuple has a
set of time points representing an interval. The end
points of each interval can be extracted in a way
similar to the proof of Proposition 3 and then placed
as the Fdate and Tdate attributes.

2) UNFOLD. The UNFOLD operation converts a relation
in which data is stamped with time intervals to an
equivalent relation in which data is stamped with
time points. This can also be done by NTC expres-
sions in a straightforward way.

3) EXTEND. This operation extracts the time points of
intervals in a folded relation. That is, the time inter-
vals are maintained, but for each time point in an in-
terval of a tuple, the tuple is repeated. The EXTEND
operation can be done in a manner similar to the
UNFOLD operation except that the Fdate and Tdate
attributes are kept for each tuple obtained in this way.

PROPOSITION 17. NTC is at least as expressive as LJA.

PROOF. Direct consequence of the preceding analysis. �

LJA meets requirements 1, 2, 4, 5, and 6 of Section 2.1.
LJA’s relations are homogeneous; however, nonhomogene-
ous tuples can be created in a Cartesian product operation.
Overlapping or adjacent intervals can be restructured into
one single interval. LJA does not have full support for set-
theoretic operations.

13   OTHER APPROACHES

In this section, we briefly discuss other data models and
their languages.

Navathe and Ahmed [17] use tuple timestamping and
1NF relations that are the same as in Fig. 9, extend SQL for
temporal data manipulation, and propose an algebra that
we call NAA. NAA meets requirements 1, 2 and 4, and
partially meets 5.

Sarda [18] also uses a temporal data model based on 1NF
relations. He proposes a temporal extension to SQL and
defines a relational algebra that we call SA. This algebra
includes Expand and Coalesce operations in addition to
regular relational algebra operations. The Expand and Coa-
lesce operations are similar to the FOLD and UNFOLD op-
erations of LJA, which can be expressed in NTC. Its concur-
rent Cartesian product operation is similar to the ones in
other homogeneous data models. SA meets requirements 1,
2, and 4, and partially meets 5.

McKenzie and Snodgrass [19] propose a 1NF relational
model where attribute values are timestamped by temporal
sets. Each attribute value is a temporal atom. They also de-
fine an algebra, which we call MSA. Set-theoretic opera-
tions of MSA can be expressed in NTC in a manner similar
to the set operations of BGA. In these operations, the
equality of key attributes is replaced by the equality of all
the attribute values. Translation of Cartesian product and
selection operations into NTC expressions is straightfor-
ward. The temporal derivation operation performs a tem-
poral selection operation and restricts the time of qualifying
tuples. This operation can be expressed in a manner similar
to the selection operation of BGA. MSA meets requirements
1, 2, 3, and 4, and partially meets 5.

Tansel uses intervals to timestamp attribute values in
N1NF relations (Clifford and Tansel in [20] and Tansel in
[21]). Here, a temporal atom is called a triplet. This model is
also used in [5] by adding lifespans to tuples. The EMP re-
lation of Fig. 7 is an example for this model when tuple
lifespans are dropped. Tansel defines an algebra (TaA) that
includes restructuring and temporal operators in addition
to regular algebra operations. Operations are defined at the
attribute level. This algebra meets all of the requirements
listed in Section 2.1. NTC is more expressive than this
algebra since it can form a powerset of a relation, whereas
this algebra cannot. This algebra is generalized to arbitrar-
ily nested relations and augmented with a looping con-
struct to have the same expressive power as NTC [13], [27].
HQUEL [22] and Time-by-Example [28] are two user-
friendly query languages based on a tuple calculus equiva-
lent to this algebra.

14   SUMMARY AND CONCLUSIONS

We have identified requirements for temporal databases
and have analyzed temporal query languages with respect
to these requirements. We have also defined a calculus lan-
guage, NTC, that meets all of these requirements. We have
compared the expressive power of proposed temporal
query languages to that of NTC and have shown that NTC
is as expressive as these languages and subsumes their ex-
pressive power.

Table 1 is a comparative summary of the temporal query
languages with respect to the requirements identified in
Section 2.1. All the languages meet requirement 1, i.e., that
the model be able to query a database state at a time point,
except TL, TL¢, TC, and TC¢, which do not seem to support
explicit reference to time. GTC, BGA, and Lh do not seem to
be able to access any arbitrary value in the history of an
attribute [7]. Most of the temporal languages except GTC
and CCA support querying two different database states
simultaneously (requirement 2). LJA, MSA, NTC, and TaA
support nonhomogeneous relations (requirement 3). The
rest are all based on homogeneous relations in both attrib-
ute and tuple timestamping. BGA, CCA, and GTC do not
support multivalued attributes (requirement 4), because
they see attribute values as functions from time to values.
All languages based on 1NF relations support multivalued
attributes, albeit with data redundancy, since they split the
data into several tuples. This is also the case for the tempo-
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ral data models based on N1NF relations except NTC and
TaA that support multivalued attributes by storing the at-
tribute value of an object in one single tuple.

Relations in unique representation (requirement 5) are
especially important in cases involving comparing grouped
data (i.e., part or all of the history of an attribute) with an-
other attribute’s history. BGA, GTC, CCA, and Lh aim at
retrieving relations in unique representation. In general,
they achieve this. However, in cases where several relations
are used, they sometimes fail to retrieve relations in unique
representation. BGA can convert them into relations in
unique representation, whereas GTC, CCA, and Lh cannot.
NTC and TaA return both weak relations and relations in
unique representation, and can convert one type of relation
to another. TQuel requires the results to be in unique repre-
sentation. LJA and SA include operations to combine inter-
vals so that they can obtain 1NF relations in unique repre-
sentation. However, in these relations, the history of an ob-
ject is represented by several tuples. BGA, TaA, and NTC
have the restructuring capability to regroup temporal data
into a different form (requirement 6). Set operations and
comparisons on temporal sets (requirement 7) are provided
in NTC, TaA, and BGA. Languages using intervals as
timestamps cannot express set comparison for predicates
that involve several intervals.

NTC is a powerful language satisfying all of the re-
quirements listed in Section 2.1 and it subsumes the expres-
sive power of all of the relational temporal query languages
proposed so far. NTC can also generate various forms of
proposed temporal relations from our temporal relations.
This is a two-way transformation, i.e., any temporal rela-
tional data model can be converted to our temporal rela-
tions and vice versa. Furthermore, there is an equivalent
relational algebra for NTC. Considering all these factors,
NTC is a sound metric for evaluating the expressive power
of temporal query languages. We have focused here on

valid time relations [10]. The formalism we developed can
be extended to transaction time relations as well. Transac-
tion time relations have different properties than valid time
relations, such as no-deletion and append-only. These can
also be accommodated in our formalism.

We believe that our work brings clarity to the area of
temporal relational data models and their query languages.
It provides a unified framework with which to conceptual-
ize and parameterize the diversity of research in temporal
relational databases over the last decade, which has helped
us to understand various issues in this field. It also lays a
foundation for determining fundamental constructs needed
in commercial temporal query languages. The requirements
we have identified for the temporal data are intended for
the general case. Depending on the application require-
ments and user needs, some of these requirements can be
relaxed. This is a user decision and ultimately will be re-
solved in the marketplace by commercial implementation
of temporal databases. Our formalism will help designers
in this process by giving them a comparative perspective of
various proposed temporal query languages.

There are several directions for future research. We have
used NTC as a metric for evaluating the expressive power
of temporal query languages. Extending the notion of BP
completeness [29] to temporal query languages to deter-
mine what data can be extracted from a temporal relation is
a crucial research problem. We have considered only valid
time. Incorporating transaction time and studying query
languages of bitemporal relations is another direction for
future work. Implementation of temporal relations and
NTC requires a database engine supporting nested rela-
tions, since existing commercial database technology does
not support nested relations. We have modified [30] to
build a prototype of TaA algebra. This prototype can be
upgraded to support temporal sets. Furthermore, proto-
types of user-friendly query languages such as TBE [28] or

TABLE  1
COMPARISON OF TEMPORAL RELATIONAL QUERY LANGUAGES

Requirements

Language Dt Dt Q Dt’ Homogeneity Multivalued
Attributes

Relations
in unique

representation

Regrouping Set operations
and comparison

Nested Tuple Calculus, NTC Y Y NH         Y Y Y Y

Bhargava and Gadia [12], BGA Y Y H Yq Y Y Y

Gadia [9], GTC Y N H Yq P N P

Clifford and Croker [8], CCA Y N H Yq P N P

Tuzhilin and Clifford [15], TL & TA P P H Yq Y N P

Clifford, Croker and Tuzhilin [5], Lh Y Y H Yq N N P

Lorentzos and Johnson [16], LJA Y Y NH Yq Y Y P

McKenzie and Snodgrass [19], MSA Y Y NH Yq Y N P

Navathe and Ahmed [17], NAA Y Y H Yq P N N

Sarda [18], SA Y Y H Yq Y Y N

Snodgrass [10], TQuel Y Y H Yq Y N P

Tansel [21], TaA Y Y NH         Y Y Y Y

Legend: Y: Yes; N: No; H: Homogeneous; NH: Nonhomogeneous; P: Partial; q: Splits the data into several tuples)
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a temporal extension to SQL can be implemented on this
platform. This will pave the way for the commercial im-
plementation of products based on the formalism we have
developed in this study.
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