THE EXTENSION PROPERTY OF COMPLEX BANACH SPACES

MORISUKE HASUMI

(Received February 1, 1958)

The structure of real normed linear spaces with the extension property was clarified by Nachbin [10], Goodner [6] and Kelley [8]. Such a space is known to be equivalent to the Banach space of all real-valued continuous functions on a suitable stonean space with the topology of uniform norm. In connection with this, it has been conjectured that an analogous theorem will hold for complex normed linear spaces (cf. Grothendieck [7]). The object of the present note is to give an affirmative solution to this problem by utilizing the device of Kelley [8]. In our discussion, a theorem on continuous selections, proved in § 1, enables us to apply well the device of Kelley to our case.

I am indebted to Professor Z. Takeda for his helpful suggestions and encouragement, and I also wish to thank Professor M. Fukamiya for his guidance at the final stage of this work.

1. A continuous selection theorem. Let X, Y be any topological spaces and ψ a mapping which assigns to each $x \in X$ a non-void subset $\psi(x)$ of Y. ψ is called upper (lower) semi-continuous if $\{x \in X : \psi(x) \subset U\} (\{x \in X : \psi(x) \cap U \neq \phi\})$ is open in X for any open set U in Y. We denote by $\widetilde{v}(Y)$ the totality of non-void closed subsets of Y.

THEOREM 1. Let X be a stonean space, Y a compact space and ψ a mapping of X into $\widetilde{v}(Y)$. If ψ is upper semi-continuous, then there exists a continuous mapping f of X into Y such that $f(x) \in \psi(x)$ for every $x \in X$.

Before proceeding to the proof of the theorem, we state several lemmas.

LEMMA 1. Let X be a topological space, Y a compact space and ψ_1 , ψ_2 two upper semi-continuous mappings of X into $\mathfrak{F}(Y)$. If W is a closed entourage of Y such that $\theta(x) = \psi_1(x) \cap W(\psi_2(x))$ is non-void for every $x \in X$, then θ is an upper semi-continuous mapping of X into $\mathfrak{F}(Y)$.

PROOF. Since the closedness of $\theta(x)$ follows from the compactness of $\psi_1(x)$, $\psi_2(x)$ and W, it suffices to show that $\{x \in X : \theta(x) \cap F \neq \phi\}$ is closed for any closed set F in Y. As $\chi(x) = \psi_1(x) \times \psi_2(x)$ is an upper semi-continuous mapping of X into $\mathfrak{F}(Y \times Y)$, the lemma follows from the equality

 $\{x \in X : \theta(x) \cap F \neq \phi\} = \{x \in X : \chi(x) \cap \{W \cap (F \times Y\} \neq \phi\}.$

LEMMA 2. Let X be a topological space, Y a compact space and $\{\psi_{\lambda}\}$ a family of upper semi-continuous mappings of X into $\mathfrak{F}(Y)$. If $\{\psi_{\lambda}\}$ is decreasingly directed in the sense that, for any ψ_{λ} , $\psi_{\lambda'}$, there exists a $\psi_{\lambda''}$ satisfying $\psi_{\lambda}(x) \supset \psi_{\lambda''}(x)$ and $\psi_{\lambda'}(x) \supset \psi_{\lambda''}(x)$ simultaneously, then $\psi(x) = \bigcap_{\lambda} \psi_{\lambda}(x)$ is an upper semi-continuous mapping of X into $\mathfrak{F}(Y)$.

M. HASUMI

PROOF. $\psi(x)$ is clearly non-void and closed. For any open set U in Y, we have

$$\{x \in X : \psi(x) \subset U\} = \bigcup_{\lambda} \{x \in X : \psi_{\lambda}(x) \subset U\}.$$

Since ψ_{λ} is upper semi-continuous, $\{x \in X : \psi_{\lambda}(x) \subset U\}$ is open for each λ and consequently $\{x \in X : \psi(x) \subset U\}$ is open. Hence ψ is upper semi-continuous.

LEMMA 3. Let X be a stonean space, Y a uniform space and ψ a lower semi-continuous mapping of X into a family of non-void subsets of Y. Then, for any open symmetric entourage W of Y, there exists a continuous mapping f of X into Y such that $f(x) \in W(\psi(x))$ for every $x \in X$.

PROOF. For any $y \in Y$, define

 $G_y = \{x \in X : y \in W(\psi(x))\}.$

Since $G_y = \{x \in X : \psi(x) \cap W(y) \neq \phi\}$ and ψ is lower semi-continuous, G_y is open for any y. The totality of non-void G_y forms an open covering of X. Since X is stonean, there exists a refine nent $\{G'_i : i = 1, 2, \ldots, n\}$ of this covering which is a partition of X into a finite number of open-closed sets. Take, for any i $(1 \leq i \leq n)$, a set G_{y_i} satisfying $G'_i \subset G_{y_i}$ and define a mapping f of X into Y by setting

$$f(x) = y_i$$
 for $x \in G'_i$, $i = 1, 2, ..., n$.

Then f satisfies the required conditions in the lemma. q. e. d.

Let, once for all, X be a stonean space and Y a compact space. Let ψ be an upper semi-continuous mapping of X into $\mathfrak{H}(Y)$ and set

$$M_U = \{x \in X: \Psi(x) \subset U\}$$

for any open set U in Y. Since Ψ is upper semi-continuous and X is stonean, both $M_{\overline{U}}$ and $\overline{M}_{\overline{U}}$ are open in X. Now define

$$\widehat{\Psi}(x) = \bigcap (\overline{U} : x \in \overline{M_U}),$$

where the intersection is taken over all open subsets U of Y satisfying $x \in \overline{M_{v}}$. Then, as we shall see from the following lemma, $\widetilde{\psi}(x)$ is non-void for any $x \in X$ and we obtain a mapping of X into $\mathfrak{F}(Y)$. We shall call $\widetilde{\psi}$ the regularization of ψ .

Lemma 4.

$$\bigcap\nolimits_{i=1}^{n}\overline{M_{U_{i}}}\,=\,\overline{M_{V}}$$

where $\{U_i\}$ is any finite number of open sets in Y and $V = \bigcap_{i=1}^n U_i$.

PROOF. We denote by N the first member of the equality. Since $\overline{M_{V}} \subset N$ is clear, we may suppose that N is non-void. To prove $N \subset \overline{M_{V_1}}$, it is sufficient to show that, for any $x \in N$ and any open neighborhood G of x, $G \cap M_V \neq \phi$. Since N is open, we may assume $G \subset N$. As $G \subset \overline{M_{U_1}}$ and M_{U_1} is open, $G_1 = G \cap M_{U_1}$ is a non-void open set. Since $G_1 \subset \overline{M_{U_2}}, G_2 = G_1 \cap M_{U_2}$ is also non-void and open. Repeating the same argument a finite number of

136

times, we find that $G_n = G \cap \left(\bigcap_{i=1}^n M_{U_i} \right)$ is non-void. Since we can easily verify that $M_V = \bigcap_{i=1}^n M_{U_i}$, G contains a point of M_V .

LEMMA 5. The regularization $\widetilde{\Psi}$ of an upper semi-continuous mapping Ψ of X into $\mathfrak{F}(Y)$ is semi-continuous in both senses and satisfies $\Psi(x) \supset \widetilde{\Psi}(x)$ for every $x \in X$.

PROOF. Let J be any open set in Y such that $G = \{x \in X : \widehat{\Psi}(x) \subset J\}$ is nonvoid. If x_0 is any point in G, then $\widetilde{\Psi}(x_0) \subset J$. Since $\widetilde{\Psi}(x_0)$ is the intersection of compact sets \overline{U} such that $x_0 \in \overline{M_{U_i}}$, there exist a finite number of open sets $U_i(i = 1, 2, ..., n)$ in Y such that $x_0 \in \overline{M_{U_i}}$ (i = 1, 2, ..., n) and $\widetilde{\Psi}(x_0) \supset \bigcap_{i=1}^n \overline{U_i} \subset J$. By Lemma 4, $x_0 \in \bigcap_{i=1}^n \overline{M_{U_i}} = \overline{M_V}$ where $V = \bigcap_{i=1}^n U_i$. If $x \in \overline{M_V}$, then $\widetilde{\Psi}(x) \subset \overline{V} \subset \bigcap_{i=1}^n \overline{U_i} \subset J$. Thus $x_0 \in \overline{M_V} \subset G$. Since $\overline{M_V}$ is open and x_0 is arbitrary in G, G is open. Hence $\widetilde{\Psi}$ is upper semi-continuous.

To show that $\widetilde{\Psi}$ is lower semi-continuous, it suffices to verify that $A = \{x \in X : \widetilde{\Psi}(x) \subset F\}$ is closed for any closed set F in Y. Suppose that $x_{\lambda} \in A$ and $x_{\lambda} \to x$. Let W be any open entourage of Y. Since W(F) is open and $\widetilde{\Psi}(x_{\lambda}) \subset F \subset W(F)$, there exist, for each λ , a finite number of open sets $U_{\lambda,i}$ $(i = 1, 2, \ldots, n_{\lambda})$ in Y such that $x_{\lambda} \in \overline{M_{\sigma_{\lambda}:i}}(i = 1, 2, \ldots, n_{\lambda})$ and $\widetilde{\Psi}(x_{\lambda}) \subset \bigcap_{i=1}^{n_{\lambda}} \overline{U_{\lambda,i}} \subset W(F)$. It follows that

$$x_{\lambda} \in \bigcap_{i=1}^{n_{\lambda}} \overline{M}_{\overline{v_{\lambda}};i} = \overline{M}_{\overline{v_{\lambda}}} \subset \overline{M}_{W(F)}$$
 for each λ ,

where $V_{\lambda} = \bigcap_{i=1}^{n_{\lambda}} U_{\lambda;i}$. Since $M_{II(F)}$ is closed, $x \in \overline{M_{W(F)}}$. Thus $\widetilde{\psi}(x) \subset \overline{W(F)}$. As W is arbitrary, $\widetilde{\psi}(x) \subset \bigcap_{W} \overline{W(F)} = F$. Hence $x \in A$ and A is closed.

The latter part is clear. q.e.d.

PROOF OF THEOREM 1. Let \mathbb{I} be the set of all upper semi-continuous mappings of X into $\mathfrak{F}(Y)$. If we define an ordering relation in \mathbb{I} by setting $\Psi_1 \geq \Psi_2$ when and only when $\Psi_1(x) \supset \Psi_2(x)$ for every $x \in X$, then Lemma 2 implies that \mathbb{I} is inductively ordered with respect to \geq . Now, let Ψ be any upper semicontinuous mapping of X into $\mathfrak{F}(Y)$, i.e. any element in \mathbb{I} . Then there exists, by the Zorn lemma, a minimal element $\theta \in \mathbb{I}$ satisfying $\Psi \geq \theta$. Let $\tilde{\theta}$ be the regularization of θ . Since $\tilde{\theta}$ is upper semi-continuous and $\theta \geq \tilde{\theta}$, we have $\tilde{\theta} = \theta$ by the minimality of θ . Hence θ is also lower semi-continuous. We assert that $\theta(x)$ consists of a single point for any $x \in X$. Suppose, on the contrary, that $\theta(x_0)$ contains two distinct points y_1 and y_2 for some $x_0 \in X$. Then we can find symmetric entourages W_1 , W_2 of Y such that W_1 is closed, W_2 is open, $W_1 \supset W_2$ and $y_1 \notin W_1^2(y_2)$. By Lemma 3, there exists a continuous mapping g of X into Y such that $g(x) \in W_2(\theta(x))$ for any $x \in X$. Then $\theta_1(x) = \theta(x) \cap W_1(g(x))$ is non-void for any $x \in X$ and, by Lemma 1, θ_1 is upper semi-continuous. Since $\theta \geq \theta_1$, we have $\theta_1 = \theta$ by the minimality of θ . Thus

137

 $\theta_1(x_0)$ must contain y_1 and y_2 . Therefore, we have $y_1, y_2 \in W_1(g(x_0))$, which implies $y_1 \in W_1'(y_2)$. This contradiction shows that $\theta(x)$ consists of a single point for every $x \in X$. If f denotes a mapping of X into Y which assings to each $x \in X$ the point contained in $\theta(x)$, then f is clearly continuous and f(x) $\in \theta(x) \subset \Psi(x)$ for any $x \in X$. This completes the proof.

2. The extension property. Let K be a compact space and C(K) the Banach space of all complex-valued continuous functions on K with the uniform norm. The dual of C(K) is denoted by $C^*(K)$, whose elements are measures on K. For each $p \in K$, an elements $\mathcal{E}_p \in C^*(K)$, defined by $\mathcal{E}_p(f) = f(p)$ for $f \in C(K)$, is called an evaluation at p.

LEMMA 6. Each measure μ on a combact space K is weakly^{*} adherent to the set Γ of linear combinations $\sum \alpha_{j} \varepsilon_{p_{j}}$ of evaluations $\varepsilon_{p_{j}}$ where $\{p_{j}\}$ varies over all finite subsets of the carrier of μ and $\{\alpha_{j}\}$ varies over all finite systems of complex numbers such that $\sum |\alpha_{j}| \leq ||\mu|| |(\text{cf. Bourbaki [4], p.75)}.$

LEMMA 7. A measure μ on a compact space K is an extreme point (in the sense of the real vector space theory) of the unit sphere Σ^* of $C^*(K)$ if and only if there exists a point $p \in K$ and a complex number α with $|\alpha| = 1$ such that $\mu = \alpha \varepsilon_p$.

PROOF. Suppose μ is an extreme point of Σ^* and the carrier S of μ contains more than one point. Let S_1 be a proper closed subset of S such that $S-S_1 \neq S$ and let Γ be the same as in the preceding lemma. Then any $\nu \in \Gamma$ can be written uniquely in the form $\nu = \varphi_1(\nu) + \varphi_2(\nu)$ where the carriers of $\varphi_1(v)$ and $\varphi_2(v)$ are contained in S_1 and in $S - S_1$, respectively. φ_1 and φ_2 are mappings of Γ into itself. By Lemma 6, there is a filter-base \mathfrak{F} on Γ which is convergent weakly* to μ . Then $\mathfrak{F}_1 = \varphi_1(\mathfrak{F})$ is a filter-base on Γ . By the weak* compactness of Σ^* , there is a filter-base \mathfrak{F}'_1 on Γ which is finer than \mathfrak{F}_1 and convergent weakly* to a $\mu_1 \in \Sigma^*$. Let \mathfrak{F}_2 be the family of sets of the form $\varphi_2(M \cap \varphi_1^{-1}(M_1))$ where $M \in \mathfrak{F}$ and $M_1 \in \mathfrak{F}_1'$. Then \mathfrak{F}_2 is also a filterbase on Γ and there is a filter-base \mathfrak{F}'_2 on Γ which is finer than \mathfrak{F}_2 and convergent weakly^{*} to a $\mu_2 \in \Sigma^*$. It is easy to see that $\mu = \mu_1 + \mu_2$ and $\|\mu\| = \|\mu_1\|$ $+\|\mu_2\| = 1$. Since the carriers of μ_1 and μ_2 are included in S_1 and in $S - S_1$, respectively, we have $\mu_1 \neq 0$, $\mu_2 \neq 0$ and $\mu_1 \neq \mu_2$. Putting $\|\mu_1\| = \alpha_1$ and $\|\mu_2\| = \alpha_2$, we get $\mu = \mu_1 + \mu_2 = \alpha_1(\alpha_1^{-1} \cdot \mu_1) + \alpha_2(\alpha_2^{-1} \cdot \mu_2)$, which is clearly a contradiction. Thus S consists of a single point $p \in K$ and we have $\mu = \alpha \varepsilon_p$ where $|\alpha| = 1$.

To show that \mathcal{E}_p is an extreme point of Σ^* , suppose that $\mathcal{E}_p = \alpha \mu_1 + (1 - \alpha)\mu_2$ where $\mu_1, \mu_2 \in \Sigma^*$ and $0 < \alpha < 1$. Of course, $\mathcal{E}_p(f) = f(p) = \alpha \mu_1(f) + (1 - \alpha)\mu_2(f)$ for any $f \in C_r(K)$ where $C_r(K)$ denotes the Banach space of all real-valued continuous functions on K. We may write $\mu_j = \mu_j^{(1)} + i\mu_j^{(2)}$ for j = 1, 2, where $\mu_j^{(k)}$ are real measures on K. Then a theorem of Arens-Kelley [1] implies that $\mu_1^{(1)}(f) = \mu_2^{(1)}(f) = f(p)$ and $\mu_1^{(2)}(f) = \mu_2^{(2)}(f) = 0$ for any $f \in C_r(K)$. Thus $\mu_1(f) = \mu_2(f) = \mathcal{E}_p(f)$ for any $f \in C_r(K)$. Hence, by linearity, $\mu_1(f) = \mu_2(f) = \mathcal{E}_p(f)$ for any $f \in C(K)$. This shows that \mathcal{E}_p is an extreme point. It is then clear that $\alpha \mathcal{E}_p$ with $|\alpha| = 1$ are extreme points of Σ^* . q.e.d.

We say that a complex normed linear space *B* has the extension property if, for any complex normed linear space *D* and for any linear subspace D_1 of *D*, every bounded linear mapping φ of D_1 into *B* has a linear extension Φ of *D* into *B* such that $\|\Phi\| = \|\varphi\|$.

THEOREM 2. A complex normed linear space B has the extension property if and only if B is isomorphic in an algebraic and norm preserving fashion to C(X) where X is a stonean space.

PROOF. It is easy to show the "if"-part of the theorem. Let D be a complex normed linear space, D_1 any linear subspace of D and φ a bounded linear mapping of D_1 into C(X) where X is a stonean space. If we denote by $C_r(X)$ the totality of real-valued functions in C(X) and define

$$[\varphi_1(a)](x) = \text{real part of } [\varphi(a)](x)$$

for any $a \in D_1$ and any $x \in X$, then φ_1 is a mapping of D_1 into $C_r(X)$ which is linear with respect to the real scalars and satisfies $\|\varphi_1\| \leq \|\varphi\|$ and $\varphi(a) = \varphi_1(a) - i\varphi_1(ia)$ for any $a \in D_1$. Since $C_r(X)$ has the extension property as a real Banach space by a theorem of Nachbin [10], there exists a real-linear mapping Φ_1 of D into $C_r(X)$ which extends φ_1 and satisfies $\|\Phi_1\| = \|\varphi_1\|$. Put $\Phi(a) = \Phi_1(a) - i\Phi_1(ia)$. Then Φ is a bounded linear mapping of D into C(X)which extends φ . We assert that $\|\Phi\| \leq \|\Phi_1\|$. By definition,

$$\|\Phi\| = \sup_{||a|| \le 1} \|\Phi(a)\|_{\mathcal{C}(X)} = \sup_{||a|| \le 1, x \in X} |[\Phi(a)](x)|$$

and

$$\|\Phi_1\| = \sup_{||a|| \leq 1} \|\Phi_1(a)\|_{C_r(X)} = \sup_{||a|| \leq 1, x \in X} |[\Phi_1(a)](x)|.$$

For any $\varepsilon > 0$, there exists an $a_0 \in D$ with $||a_0|| \leq 1$ and an $x_0 \in X$ such that $||\Phi|| < |[\Phi(a_0)](x_0)| + \varepsilon$. There exists a real number $\theta = \theta(x_0, a_0)$ such that $[\Phi(e^{i\theta}a_0)](x_0) = e^{i\theta}([\Phi(a_0)](x_0))$ is real and therefore $[\Phi_1(e^{i\theta}a_0)](x_0) = [\Phi(e^{i\theta}a_0)](x_0)$. Thus we have

$$\|\Phi\| < |[\Phi(a_0)](x_0)| + \mathcal{E} = |[\Phi(e^{i\theta}a_0)](x_0)| + \mathcal{E}$$

= $|[\Phi_1(e^{i\theta}a_0)](x_0)| + \mathcal{E} < \|\Phi_1\| + \mathcal{E}.$

As \mathcal{E} is arbitrary, $\|\Phi\| \leq \|\Phi_1\|$. Consequently, $\|\Phi\| \leq \|\Phi_1\| = \|\varphi_1\| \leq \|\varphi\|$. Since $\|\varphi\| \leq \|\Phi\|$ is clear, we conclude that $\|\Phi\| = \|\varphi\|$. Hence the space C(X) has the extension property.

Now we have to show the "only if" part of the theorem. Suppose *B* has the extension property. Let *E* be the set of extreme points of the unit sphere Σ^* of B^* , the dual of *B*, and *Y* the weak* closure of *E*. *Y* is clearly weakly* compact. If we set $y_1 \equiv y_2$ for $y_1, y_2 \in Y$ when and only when there exists a complex number α with $|\alpha| = 1$ such that $y_1 = \alpha y_2$, then we obtain an equivalence relation in *Y* which we denote by R_0 . We say that an equivalence relation *R* defined in a topological space *M* is closed if the saturation of any closed subset of *M* with respect to *R* is closed in *M*. Then the relation R_0

M. HASUMI

is closed with respect to the relative weak* topology for Y. Let F be any weakly* closed subset of Y. If we denote by h the mapping of $C_0 \times Y$ into Y defined by $h(\alpha, y) = \alpha y$ where C_0 is the unit circle($\{\alpha : |\alpha| = 1\}$) in the complex plane, then the saturation of F with respect to R_0 is obviously $h(C_0 \times F)$. Since C_0 and F are compact and h is continuous, $h(C_0 \times F)$ is weakly* compact and, consequently, weakly* closed in Y. Hence R_0 is closed.

Next, we shall prove

LEMMA 8. The quotient space $X = Y/R_0$ is a stonean space where the topology of X is the quotient of the relative weak* topology for Y.

We recall that a non-void subset L of a convex set K in any (real or complex) linear space is called a support of K if each line segment contained in K which has an interior point in L is contained in L, and that, if a point is an extreme point of a support of K, it is also an extreme point of K.

PROOF OF LEMMA 8. X being clearly compact, we shall show that \overline{G} is open for any open set G in X. Let h be the natural mapping of Y onto X and put $U = h^{-1}(G)$. Then U is a saturated open set in Y. Since R_0 is a closed equivalence relation, $h(\overline{U})$ is closed and we have $\overline{G} = \overline{h(U)} = h(\overline{U})$. As U is saturated with respect to R_0 , we have only to prove that $\overline{U} \cap \overline{V} = \phi$ where V is the complement of \overline{U} in Y. For this end, we argue as follows. Set $Z = (\{0\} \times \overline{U}\} \cup (\{1\} \times \overline{V})$, the topology of which is defined such that a set in Z is open if and only if it is of the form $(\{0\} \times U_1\} \cup (\{1\} \times V_1)$ where U_1 and V_1 are relatively open in \overline{U} and in V, respectively. We notice that \overline{V} is also saturated. Now, Z being the union of disjoint compact spaces, C(Z)is the direct sum of $C(\{0\} \times \overline{U})$ and $C(\{1\} \times \overline{V})$, each of which is weakly* closed in $C^*(Z)$.

Define a mapping φ of B into C(Z) by putting $[\varphi(b)](0, u) = \langle b, u \rangle$ and $[\varphi(b)](1, v) = \langle b, v \rangle$, where $b \in B$, $u \in \overline{U}$ and $v \in V$. It is clear that φ is a linear isometric mapping of B into C(Z). A simple calculation shows that, for any $u \in \overline{U}$, any $v \in \overline{V}$ and any complex number α ,

(1) $\varphi^*(\alpha \mathcal{E}_{(0,u)}) = \alpha u$ and $\varphi^*(\alpha \mathcal{E}_{(1,v)}) = \alpha v$,

where φ^* is the adjoint of φ . For any $w \in U \cup V$, we set $K(w) = \varphi^{*-1}(w) \cap \Sigma_1^*$ where Σ_1^* is the unit sphere of $C^*(Z)$. If $u \in U$ is an extreme point of the unit sphere Σ^* of B^* , then K(u) is a support of Σ_1^* which is weakly* compact. By the Krein-Milman theorem (cf. Bourbaki [3], p. 84), K(u) is the closed convex envelope of the extreme points of K(u). Since every extreme point of K(u) is an extreme point of Σ_1^* , it follows from Lemma 7 and the first equality in (1) that the extreme points of K(u) are of the form $\alpha^{-1}\mathcal{E}_{(0,au)}$ with $|\alpha| = 1$. Thus $K(u) \subset C^*(\{0\} \times \overline{U})$. Similarly, if $v \in V$ is an extreme point of Σ^* , then $K(v) \subset C^*(\{1\} \times \overline{V})$.

Since B has the extension property, there exists a linear mapping Φ of

C(Z) onto B such that $\|\Phi\| = 1$ and $\Phi\varphi$ is the identity mapping on B. It is obvious that Φ^* carries Σ^* into Σ_1^* and $(\Phi\varphi)^* = \varphi^*\Phi^*$ is the identity mapping on B*. Thus $\varphi^*\Phi^*(w) = w$ implies $\Phi^*(w) \in K(w)$ for any $w \in U \cup V$. Set $U_1 = U \cap E$ and $V_1 = V \cap E$. Then $\Phi^*(u) \in K(u) \subset C^*(\{0\} \times \overline{U})$ for any $u \in$ U_1 and $\Phi^*(v) \in K(v) \subset C^*(\{1\} \times \overline{V})$ for any $v \in V_1$. Thus we have $\overline{\Phi^*(U_1)} \cap$ $\overline{\Phi^*(V_1)} = \phi$, where the bars denote the weak* closure in $C^*(Z)$. Since U_1 and V_1 are dense in \overline{U} and in V, respectively, we have

 $\Phi^*(U) \cap \Phi^*(\overline{V}) = \Phi^*(\overline{U_1}) \cap \Phi^*(\overline{V_1}) \subset \overline{\Phi^*(U_1)} \cap \overline{\Phi^*(V_1)} = \mathscr{G}.$

Hence $\overline{U} \cap \overline{V} = \emptyset$, which proves Lemma 8.

Since $X = Y/k_0$, each element $x \in X$ is regarded as a subset of Y which is denoted by $\Psi(x)$. $\Psi(x)$ is clearly a closed subset of Y for every $x \in X$. From the weak* closedness of the equivalence relation R_0 follows that $\Psi(x)$ is upper semi-continuous. Hence, by Theorem 1, there exists a continuous mapping π of X into Y such that $\pi(x) \in \Psi(x)$ for every $x \in X$.

Let φ be a linear mapping of B into C(X) defined by $[\varphi(b)](x) = \langle b, \pi(x) \rangle$ for any $b \in B$ and any $x \in X$. Then φ is clearly isometric. Since B has the extension property, there exists a linear mapping Φ of C(X) onto B such that $\|\Phi\| = 1$ and $\Phi\varphi$ is the identity mapping on B. Let Σ^* and Σ^*_1 be the unit spheres of B^* and $C^*(X)$, respectively. If u is an extreme point of Σ^* , then $K(u) = \varphi^{*-1}(u) \cap \Sigma^*_1$ is a support of Σ^*_1 which is weakly* compact. If μ is any extreme point of K(u), then μ is an extreme point of Σ^*_1 and, by Lemma 7, there exists a point $x \in X$ and a complex number α with $|\alpha| = 1$ such that $\mu = \alpha \mathcal{E}_x$. Since $\varphi^*(\mu) = u$, we have, for any $b \in B$,

Hence $u = \alpha \pi(x)$ and, since $|\alpha| = 1$, $u \equiv \pi(x) \pmod{R_0}$. It follows from the hypothesis on π that x and α are determined uniquely by u. Thus K(u) consists of a single point $\alpha \mathcal{E}_x$ and we have $\Phi^*(u) = \alpha \mathcal{E}_x$. Putting $\Omega_1 = \{\alpha \mathcal{E}_x : \pi(x)\}$ $\in E, |\alpha| = 1$, we have shown that Φ^* maps E into Ω_1 . Conversely, let $\alpha \mathcal{E}_{\pi}$ be any element in Ω_1 . Then $\alpha \pi(x)$ is an element in E and $\Phi^*(\alpha \pi(x)) = \alpha \mathcal{E}_x$. Hence Φ^* maps E onto Ω_1 . Denote by E_1 the set of extreme points of Σ_1^* . Lemma 7 implies that $E_1 = \{\alpha \mathcal{E}_x : x \in X, |\alpha| = 1\}$. Since E is weakly* dense in Y, Ω_1 is weakly* dense in E_1 . Thus we conclude, by the weak* compactness of Y, that $\Phi^*(Y) \supset E_1$. Hence, by the Krein-Milman theorem, $\Phi^*(\Sigma^*) \supset \Sigma_1^*$ and therefore Φ^* maps B^* onto $C^*(X)$. On the other hand, since $\Phi \varphi$ is the identity mapping on $B, (\Phi \varphi)^* = \varphi^* \Phi^*$ is the identity mapping on B^* and, consequently, φ^* must be a one-to-one mapping of $C^*(X)$ onto B^* . It is an easy matter to see that any normed linear space with the extension property is necessarily complete, i.e., a Banach space. Hence $\varphi(B)$ is closed in C(X) and therefore φ maps B onto C(X). Thus B and C(X) are isometrically isomorphic and Theorem 2 is established.

M. HASUMI

References

- [1] R.F.ARENS AND J.L.KELLEY, Characterizations of the space of continuous functions over a compact Hausdroff space, Trans. Amer. Math. Soc., 62 (1947), 499-508.
- [2] N.BOURBAKI, Topologie générale, Chaps. I-II, 2d ed., Paris, 1951.
- [3] —, Espaces vectoriels topologiques, Chap. II, Paris, 1953.
- ___, Intégration, Chap.III, Paris, 1952. [4] ----
- [5] J. DIXMIER, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math., 2(1951), 1-32. [6] D.B.GOODNER, Projections in normed linear spaces, Trans. Amer. Math. Soc.,
- 69(1950), 89-108.
- [7] A.GROTHENDIECK, Une characterisation vectorielle métrique des espaces L^1 , Canad. Journ. Math., 7(1955), 552-561.
- [8] J.L.KELLEY, Banach spaces with the extension property, Trans. Amer. Math. Soc., 72(1952), 323-326.
- [9] E. MICHAEL, Continuous selections I, Ann. of Math., 63(1956), 361-382.
 [10] L. NACHBIN, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc., 68(1950), 28-46.

DEPARTMENT OF MATHEMATICS, IBARAKI UNIVERSITY.