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Abstract 
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University of Toronto 

 

Immediately following a gene duplication event, if both gene copies are to be 

fixed into a species’ genome there is a period of enhanced selection acting on either one 

or both duplicates (paralogs) that results in some extent of functional divergence.  

However, as redundancy among extant duplicates is thought to confer genomic 

robustness, a consequent question is: how much functional overlap exists between 

duplicates that are retained over long spans of evolutionary time?  To examine this issue I 

determined the extent of shared protein interactions and protein complex membership for 

paralogous gene pairs resulting from an ancient Whole Genome Duplication (WGD) 

event in yeast, finding retained functional overlap to be substantial among this group.  

Surprisingly however, I found paralogs existing within the same complex tended to 

maintain greater disparities in expression, suggesting the existence of previously 

proposed “transcriptional back-up” mechanisms.  To test both for existence of such 

mechanisms and for any phenotypic manifestation of their shared functional overlap I 

surveyed for the presence of aggravating genetic interactions between 399 WGD-

resultant paralog pairs.  While these paralogs exhibited a high frequency (~30%) of 

epistasis, observed genetic interactions were not predictable based on protein interaction 

overlap.  Further, exposure to a limited number of stressors confirmed that additional 
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instances of epistasis were only observable under alternate conditions.  As only a small 

number of stress conditions were tested, the high frequency of genetic interactions 

reported appears to be a minimum estimate of the true extent of epistasis among WGD 

paralogs, potentially explaining the lack of overlap with protein interaction data.  As it is 

impossible to survey an infinite condition space, Synthetic Genetic Array (SGA) 

screening of yeast strains carrying double-deletions of paralog pairs was used to assess 

functional redundancy among a group of the remaining non-epistatic paralog pairs.  The 

resulting interactions demonstrated functional relationships in non-epistatic paralogs only 

obvious upon ablation of both duplicates, suggesting that these interactions had initially 

been masked through redundant function. These findings ultimately suggest an advantage 

to retained functional overlap among whole genome duplicates that is capable of being 

stably maintained through millions of years of evolutionary time. 
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1.1. The importance of understanding gene duplication  

Due to relaxation of selective constraints, duplication affords the opportunity for 

genes to develop novel functionality and as such has been seen as a substantial 

contributor to adaptation and speciation for over 70 years
1
.  Generally recognized as a 

central figure in duplicated gene (paralog) analysis, Susumu Ohno wrote: “natural 

selection merely modified, while redundancy created … had evolution been entirely 

dependent upon natural selection, from a bacterium only numerous forms of bacteria 

would have emerged”
2
.  Ohno postulated that having an additional copy of a gene 

allowed it to bypass certain “forbidden” mutations, meaning those that would directly 

disrupt its function.  In this sense, duplication (or perhaps more appropriately, the 

absence of selective pressure following duplication) provides the substrate for natural 

selection to mould as selective pressures dictate.  While controversy exists regarding the 

selective forces acting before and after duplication as well as the consequent advantages 

of retained redundancy (discussed in detail below), the importance of gene duplication to 

the evolution of the eukaryotic cell is consistently regarded as being vital
3
. 

Retaining duplicate gene copies has notable advantages, including an increased 

propensity to adapt to changing environments.  For example, whereas the mouse genome 

contains two copies of the gene encoding the photoreceptor Opsin, humans have retained 

multiple copies, allowing vision over a broader spectrum of light and facilitating (or 

perhaps facilitated by) dependence on visual sensory perception
4
.  Conversely, both the 

human and mouse genomes contain over 1000 genes encoding olfactory receptors which 

are reasoned to have arisen through multiple duplications, but while many of the human 

genes have become pseudogenized (i.e. functionally inactivated), those in mouse have 
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been maintained for olfactory perception
5
.  Such examples are pervasive in eukaryotic 

biology with duplicates abundantly spread throughout virtually all biological processes 

(see Table 1-1).  It is arguably the presence of duplicates within these processes that both 

mediates insensitivity to perturbation and facilitates adaptation.  Discussion of previous 

research aimed at analyzing the functional role of duplicates in extant genomes is the 

central theme of this chapter. 

 

1.2. Duplication event types and rates 

Duplication events occur through several mechanisms as part of the mitotic and 

meiotic processes and can involve the replication of anything from single genes to entire 

genomes.  One of the most commonly observed consequences of duplication is the 

tandem duplicated segment, which by definition is multiple similar genes within close 

chromosomal proximity.  Tandem duplications occur mainly through unequal exchange 

or crossing over occurring during mitosis and meiosis, respectively.  In these events 

either paired chromatids or chromosomes exchange nucleotide sequences unevenly (see 

Figure 1-1), resulting in daughter cells of varying zygosity for genes in the exchanged 

region.  In addition to crossing-over, tandem duplications can also occur through errors in 

homologous recombination or DNA damage repair
6
.  If occurring in gametic cells, such 

duplications could eventually become fixed
2
.  However it should be mentioned here that 

most genes arising through this or any other mechanism are subsequently lost through 

random mutation, suggesting that fixed genes bestow an alteration or generation of 

function that increases fitness (possible scenarios for this are discussed below).   
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Table 1-1 Presence of duplicates in various eukaryotic species 

Species Common Name 

Number of 

Genes 

Number of 

Duplicates 

Evidence for 

WGD in ancestor 

Caenorhabditis elegans Nematode 18424 8971 (49%) No 

Drosophila melanogaster Fruit fly 13601 5536 (41%) No 

Arabidopsis thaliana Plant (thale cress) 25498 16574 (65%) Yes 

Homo sapiens Human 20000-25000 15343 (~60-70%) Yes 

Saccharomyces 

cerevisiae Budding yeast 6241 1858 (30%) Yes 

 

Number of duplicated genes predicted for several sequenced eukaryotic species as 

reported by Zhang et al
7
.  Evidence for duplication was based on BLAST alignment

8
 and 

the number of assigned duplicates can vary depending on stringency in definition. 
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Figure 1-1 Basic mechanisms of gene and genome duplication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depicted are several common mechanisms for both gene and genome duplication.  

Beginning at top left and going clockwise, two well-described mechanisms for tandem 

duplication are unequal exchange or crossing over occurring due to mis-alignment 

(indicated by red squares and grey dotted lines) during mitosis and meiosis respectively.  

Retrotransposition involves the reverse-transcription of transcribed mRNA sequences 

into the genome as cDNA.  Allopolyploidy events involve the combination of the 

genomes of two species to increase the genetic complement (one described case 

depicted).  In contrast, autopolyploidies typically result from errors in the reduction of 

gametes among a single species.  Portions regarding auto and alloploidization adapted 

from Campbell and Reece
9
, and regarding tandem duplication adapted from Ohno

2
. 



 

 

6 

Over time, further unequal crossing over or translocation events may disturb the 

tandem orientation of duplicates. Consequently, either inter- or intra-chromosomally-

located duplicated genome segments over 1kb in length and with greater than 90% 

overall sequence similarity are referred to collectively using the blanket term ‘segmental 

duplications’
10

 (although due to this definition, segmental duplications also can include 

remnants of larger-scale duplication events such as aneuploidies or genome duplications; 

more below).  Regions of segmental duplication cover 5% of the human euchromatic 

genome
11

, and are thought to be selectively maintained
12

. 

Another less common mode of creating functional duplicates is retrotransposition, 

the process by which mRNA is reverse-transcribed and integrated into the genome.  Since 

this involves a transcribed gene, the parental intronic structure and core promoter 

sequence are typically lost.  For this reason, genes duplicated through retrotransposition 

are generally chimeric, containing a promoter sequence from another gene
13

 while those 

genes that do not acquire a promoter sequence will eventually become pseudogenes.  

Perhaps indicative of the fact that obtaining a promoter is an unlikely occurrence, gene 

duplication via retrotransposition is appreciably rare, with a retrogene being fixed into a 

population’s genome at approximately 1 gene per million years in the human 

evolutionary lineage
14

 (by contrast, eukaryotes typically fix variants generated through 

segmental duplications at a rate of between 0.002 to 0.2 per gene per million years
3
). 

Although not occurring with the frequency of tandem duplications or 

retrotranspositions, but creating duplicates on a tremendous scale, Whole Genome 

Duplication (WGD) represents a near or complete doubling in genomic content.  There 

are two basic categories of genome duplications: autopolyploidies, in which an organism 
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doubles its own DNA content, and allopolyploidies, meaning that each genome copy 

came from a distinct species
15

. Both allopolyploidies
16

 and autopolyploidies
17

 have been 

suspected to occur in the lineages of eukaryotic species; however allopolyploidies are 

generally more common in plants
18

 (however see Spring
19

).  For clarity, all paralogs not 

resulting from a WGD event will herein be referred to as Small Scale Duplication (SSD)-

resultant paralogs. 

WGD events are presumed to occur due to a lack of disjunction among 

chromosomes after DNA replication
7
 arising through either failures during mitotic 

segregation or following meiosis (termed genomic doubling and gametic nonreduction, 

respectively), or through polyspermy
18

.  WGD events are frequent within plant species 

(between 30-80% of plants are polyploid
20

) although the reason for their being more 

tolerated is unclear.  One notable, widely conserved ancestral gene family thought to 

have diversified through WGD is the hox genes, which are involved in morphological 

development.  While the homeobox superfamily is reasoned to have duplicated largely 

through tandem (or segmental) duplication
21

, presence of only one hox cluster in 

amphioxus, which diverged from the vertebrate lineage approximately 500 million years 

ago, versus 4 clusters in ray finned fish suggests that hox genes specifically may have 

expanded through 2 ancestral duplication events
22

. 

The increase in ploidy resulting from a WGD event is unstable
23

, presumably due 

to an inability to undergo proper chromosome segregation
24

.  This leads to increased 

pressure for rapid gene loss and subsequent genome degradation
17

.  In the case of yeast, 

gene loss occurred to the extent where post-WGD species were shown to contain only 

approximately 10% more extant genes than a related species diverging immediately prior 
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to WGD
17

.  However even at eventual an increase of 10% in genomic content, WGD 

events are profoundly influential and their determination in ancestors of extant species 

has helped to explain advances in species complexity. 

 

1.3. Evidence of whole genome duplication in various lineages 

WGD events represent a unique potential source of increased organismal 

complexity and functional diversity and have been described as a major determinant in 

the evolutionary history of yeasts
17,25

, plants
26

, and vertebrates
27-29

.  Because of the large 

amount of genomic substrate provided by their occurrence, WGD events are often 

associated with speciation, far more so than other modes of duplication. For example, 

occurrence of a WGD event in the vertebrate lineage is thought to have produced the 

teleost fishes
30

, and as evidence of this WGD event (and likely one other) still have 

detectable impacts on the human genome today.  Thus, understanding the nature of gene 

retention following WGD events could further our understanding of human genome 

architecture. 

Before the availability of genome sequence data, evidence for genome duplication 

events was largely inferred using either map-based (meaning identification of duplicated 

chromosomes or chromosome sections) or tree-based (consistency among ratios of 

branch lengths for duplicated groups of genes) techniques
31

, and was more circumstantial 

than concrete.  In 1997 the then-recently sequenced budding yeast S. cerevisiae produced 

the first suggestion of ancestral genome duplication using a sequenced genome
25

; 

however despite the obvious presence of large, non-overlapping blocks in the genome 

sequence, controversy existed as to whether these had been created by a single event, or 
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multiple, smaller duplications
32,33

.  Later Skrabanek and Wolfe identified as criteria for 

proving the existence of a WGD event that there be evidence of conserved, non-

overlapping gene order in paired chromosomal regions of the genome, and that 

phylogenic support exist for a 2:1 orthological relationship with an outgroup
34

.  These 

orthological relationships were firmly established in 2004 with the publication of genome 

sequences for additional yeasts
17,35

.  Most notably, using the sequence of a species 

diverging close to the purported event (Lachancea waltii, formerly Kluyveromyces 

waltii), Kellis and colleagues aligned the waltii sequence to that of cerevisiae, showing 

syntenic (see Figure 1-2) regions apparent occurred twice as often in cerevisiae, and 

identified 457 gene pairs present in the S. cerevisiae genome as a result of this ancient 

genome duplication.   

Adding additional outgroup species would allow Byrne and Wolfe to expand on 

the syntenic approach through the use of their Yeast Gene Order Browser (YGOB), and 

ultimately demonstrate that the number of S. cerevisiae WGD parlog pairs was as high as 

551, with 599 WGD gene pairs also retained in Saccharomyces castelli and 404 in 

Candida glabrata
36

 (see Figure 1-3).  Interestingly, results from the YGOB study show 

that post-WGD species exhibit varying patterns of gene loss at 20% of nearly 3000 

investigated loci
37

.  Further, in approximately 5% of cases single-copy genes alternated 

their patterns of gene loss in post-WGD species, and are subsequently not true orthologs 

(i.e. asymmetrical gene loss).  These differences in gene retention are thought to 

contribute to reproductive isolation following WGD
37

 and may reflect subsequent 

adaptation to varied environmental pressures.   
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Figure 1-2 Establishing paralogy through synteny 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depiction of synteny modeled after that presented by Kellis and colleagues
17

.  The 

process of assigning synteny begins by first finding regions of high similarity between 

two genomes through nucleotide sequence alignment of known or predicted open reading 

frames (as in upper right).  Using genes conserved between the two species, regions 

containing orthologous genes in conserved order (syntenic regions) can be identified.  

Finding syntenic regions doubly-conserved in S. cerevisiae and once in K. waltii 

bolstered the case for an ancient WGD event occurring in the yeast lineage.  The 457 

genes in the double-conserved S. cerevisiae blocks were taken to be WGD-derived 

paralogs. 

 

 

 



 

 

11 

Figure 1-3 Suggested location of the ancestral WGD in the yeast lineage 

 

 

 

 

 

 

 

 

 

 

Indicated is the suggested temporal location of the Whole Genome Duplication (WGD) 

event reasoned to occur between 100-150 million years ago in the yeast lineage.  

Phylogenic relationships are adapted from Wang et al
38

. 
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A syntenic procedure was also used in the analysis of a teleost fish genome to 

demonstrate genome duplication in an ancestral vertebrate
39

, and (albeit somewhat 

weaker due to lack of convincing outgroup comparison) evidence has been used to infer 

genome duplications in Arabidopsis thaliana.  Since the Arabidopsis genome contains 

large duplicated segments in no more than 3 copies each, they are thought to have been 

created simultaneously
40

.  Comparatively, the recent sequencing and analysis of the 

amphioxus genome
41

 provides confirmation that two rounds of genome duplication 

occurred in the vertebrate lineage.  The authors of the amphioxus study examined synteny 

on two gross orders: macro-synteny, meaning the conservation of whole chromosomes, 

and micro-synteny, conservation of local gene order.  By doing so the authors 

demonstrated clear conservation of macro, but not necessarily conserved micro-

synteny
41

, ultimately suggesting that 2 ancestral duplication events had been followed by 

extensive gene loss.  This phenomenon is at least anecdotally similar to what had been 

described in yeast
17

, suggesting that a greater understanding of the nature of selective 

forces acting post-WGD in yeast may help explain selective pressures that influenced 

gene retention in vertebrates. 

 

1.4.  S. cerevisiae as a model to study functional divergence following WGD 

Containing orthologs of many human genes
42

, the budding yeast S. cerevisiae 

represents a valuable model eukaryote from which to gain insight into the functioning of 

our own cells. Due to its compact genome, ease of culture, and ability to exist in both the 

haploid and diploid state, budding yeast is one of the most commonly studied and 

functionally annotated model organisms, and is often the testing ground for advanced 
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high-throughput experimental techniques (many of which could be insightful in 

investigation of the function of paralogs).  The model yeast S. cerevisiae was the first 

sequenced eukaryote
43

, with its gene expression patterns investigated extensively through 

DNA microarrays
44,45

 and protein abundance and sub-cellular localization studied via 

large-scale fluorescence labeling
46,47

 analysis, and the first to be used for large-scale 

protein interaction screening including by our group
48,49

.  Large-scale experimental 

results plus a wealth of data resulting from over a half-century of experimental 

assessment (much of which is assembled, manually curated and publically available at 

the Saccharomyces Genome Database
50

) have lead to an un-paralleled functional 

categorization of yeast gene products.   

In addition to in-depth descriptions of gene-product function, the genome of S. 

cerevisiae can be easily manipulated
51

, facilitating the creation of a strain collection 

containing deletions of nearly every known open reading frame (ORF) not encoding an 

essential gene
52

.  This collection was designed with unique nucleotide sequences inserted 

at each deletion site in a process known as molecular barcoding
52

.  Barcode sequences 

can be identified through microarray hybridization analysis, facilitating parallel assay of 

pooled yeast strain cultures and thus the systematic identification of gene-environment 

interactions.  This is of specific relevance to this project as it could be used to assess 

whether functional overlap among duplicates is retained specifically to deal with 

adaptation to alternate environments (more on this in Chapter 3). 

 One of the most surprising findings to stem from the ordered deletion of genes in 

yeast is that very few genes (less than 20%) are required for cell viability under standard 

laboratory growth conditions
52

.  One potential explanation for this finding is a high 
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degree of robustness afforded biochemical pathways by the presence of a large number of 

duplicated genes
53

 (in this context I define robustness as the ability to withstand mutation 

or gene-product inhibition).  In addition to having over 1000 (or more, depending on 

stringency in identification) genes reasoned to have arisen by SSD events
54

, nearly 15% 

of ORFs in the extant S. cerevisiae genome originated from a single, ancestral duplication 

event
17

.  The presence of such a large body of paralogs, coupled with the vast amount of 

phenotypic and functional data collected to date makes yeast ideal not only for overall 

comparisons of retained function, but to analyze these properties as they relate to other 

elements such as level of conservation, expression, or functional categorization. 

 

1.5. Advantages and potential biases of studying WGD-resultant paralogs in yeast 

 While duplication events arise through seemingly random events occurring as a 

by-product of DNA replication, the paralogs that tend to be subsequently retained are 

anything but arbitrarily selected (see Table 1-2).  In yeast (as in plants
55

 and animals
56

), 

duplicated genes show a striking bias to contain high levels of transcription factors, 

kinases and transporters
57

, although this trend can vary somewhat species to species
58

.  

The selective pressures underlying this functional enrichment can be subjects of 

speculation, but are currently uncertain.  Further, although initial gene loss is rampant 

following WGD, the genes fixed in the genome over long expanses of evolutionary time 

represent a functionally unique subset of genes that make an interesting body to study.  

Specifically, genes in S. cerevisiae originating from the ancient WGD event are highly  
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Table 1-2 Duplications by functional category in yeast 

Functional category 

Number of genes 

with classification 

WGD Paralogs 

in set (%) 

SSD paralogs in 

set (%) 

molecular function (unclassfified) 2782 28.22 17.28 

transferase activity 627 11.62 11.52 

structural molecule activity 331 11.43 2.65 

hydrolase activity 752 11.25 25.35 

protein binding 530 7.44 5.99 

DNA binding 326 6.81 4.95 

transcription regulator activity 319 6.53 2.07 

transporter activity 368 6.26 14.29 

oxidoreductase activity 265 5.35 7.49 

enzyme regulator activity 208 5.26 1.73 

protein kinase activity 129 4.90 2.76 

RNA binding 288 3.72 0.58 

other 286 3.45 6.22 

ligase activity 166 2.27 2.76 

lipid binding 70 1.72 0.69 

isomerase activity 56 1.45 1.15 

phosphoprotein phosphatase activity 47 1.36 1.15 

signal transducer activity 44 1.27 1.27 

peptidase activity 108 1.09 4.26 

translation regulator activity 52 1.09 0.46 

lyase activity 83 0.73 2.53 

nucleotidyltransferase activity 71 0.73 0.92 

motor activity 16 0.54 0.35 

helicase activity 83 0.36 5.76 

triplet codon-amino acid adaptor activity 299 0 0 

 

Shown are the number of duplicates originating from putative WGD and SSD events in 

each functional category for S. cerevisiae (1102 and 811 paralogs representing WGD and 

SSD respectively).  WGD Paralogs are those identified by Byrne et al
36

, and SSD 

paralogs were stringently identified in a manner similar to that used by Gu et al
53

.  WGD 

paralogs are deficient for hydrolase and transporter activity, but are enriched for genes 

with structural molecule activity
59

, and have a greater proportion of genes with 

unclassified function. 
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enriched for ribosomal and catalytic proteins when compared to SSD paralogs (again, as 

in plants
60

).  Further, SSD paralogs show an under-enrichment for transcription regulators 

that is not seen in WGD paralogs
61

. 

In addition to having unique functional biases, yeast whole-genome duplicates are 

far less likely to contain genes essential for cell viability (less than 10% essential versus 

nearly 20% genome average), and also tend to retain shared physical interactions at a rate 

greater than SSD-resultant paralogs of comparable age
59

 (more on this below).  One 

potential explanation for this retained overlap in function is thought to be due to 

maintained balance. For example, it has been suggested that duplication is preferential 

among genes with limited connectivity within the interaction network
62

, perhaps 

attributable to the fact that duplicating a gene with many interactions will disrupt too 

many processes as to be compensated for
62,63

.  However, since WGD events entail the 

duplication of entire networks or pathways, associations can be maintained post-

duplication and balance is not affected, potentially facilitating retained functional 

redundancy among WGD-paralogs
64

.  Assertions regarding the retention of physical 

interactions for WGD-resultant duplicates remain speculatory however, as protein 

interaction data has traditionally been too sparse to facilitate comprehensive examinations 

(discussed in more detail in Chapter 2).   

Although distinct from SSD paralogs from an evolutionary and functional 

standpoint, WGD-resultant duplicates represent a group of genes with inherent diversity 

in functional composition and conservation.  As mentioned briefly above, since all genes 

in this set have an identical time since duplication, large-scale comparisons of functional 

overlap with properties such as sequence conservation and co-expression can be 
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conducted without needing to scale or correct for duplicate age.  Additionally, since 

WGD events are established through the detection of synteny and not merely on the basis 

of sequence similarity, the case for shared ancestry is strengthened.  Among the questions 

remaining to be answered by this set are:  (i) to what extent duplicates of substantial age 

(in this case 100-150 million years) retain functional associations, (ii) if overlapping 

function is predictable based on other observable properties such as sequence 

conservation and co-expression, and ultimately (iii) what model best describes the nature 

of function retention for paralog pairs.  Since they vary in functional composition, any 

findings resulting from analysis of WGD-resultant paralogs may not be directly 

applicable to other duplicates of alternate origin, but the general properties of selection 

following WGD events may provide insight into understanding the human genetic 

landscape as nearly 2000 extant human genes are thought to have directly resulted from 

two ancient WGD events in a vertebrate ancestor
29,41

. 

 

1.6. Models of functional divergence following duplication 

Immediately following a gene duplication event, the resulting gene copies are 

presumably identical in sequence and expression, a condition not thought to be 

maintainable from an evolutionary standpoint
2,65

.  Conceptually, if two genes are both 

performing the same function, even if this function is essential for cell viability, one gene 

can be subject to random mutation with the function still maintained, allowing some 

degree of functional dispersal.  As mentioned briefly above, the vast majority of early 

research conducted on paralogs agreed that by far the most likely occurrence following 

duplication was degeneration and subsequent pseudogenization of one duplicate due to 
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random mutational innactivation
1,66,67

.  In the many known instances of duplicate 

retention however, there has long been controversy as to what forces influence the 

preservation of multiple gene copies.  Two main contradicting theories are commonly 

used to describe the potential long-term retention of paralogs (see Figure 1-4), each of 

which is discussed in detail below. 

The classical theory used to describe functional dispersal following duplication is 

known as neo-functionalization, and purports that duplication allows one gene to perform 

(and retain) the ancestral function, while the second undergoes natural selection and 

ultimately derives a new function, else it becomes non-functionalized.  In this model, 

retention of a given duplicate is based on the acquisition of a mutation in one paralog that 

endows a novel, selectable function
2
 (a rare occurrence

68
, thus explaining the great 

preponderance of duplicates to non-functionalize and become eliminated). As Kimura 

and Ohta wrote: “Gene duplication must always precede the emergence of a gene having 

a new function”
69

.  The neo-functionalization theory is often originally attributed to 

Ohno, who noted that duplicated genes typically evolve at different rates, implying that 

the slowly-evolving gene is preserving the ancestral function. The observation of 

asymmetrical evolution has also more recently been noted for a great number of yeast 

WGD-resultant paralogs
17

, initially suggesting that they had largely neo-functionalized.  

However, there is nothing conceptually regarding neo-functionalization that purports that 

the newly-obtained function be less rigorously protected through purifying selection.  

Further, Ohno himself acknowledged the potential for an alternative explanation when 

discussing isozymes with varying expression “Because of differential use, the duplicated 

genes are exposed to different pressures of natural selection”
2
.  
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Figure 1-4 Models of functional divergence following duplication 

 

 

 

 

 

 

 

 

 

 

 

 

In the event of gene duplication, by far the most likely occurrence is degradation of one 

gene copy from the genome.  In the case where both genes are fixed however, two 

competing theories describe the nature of paralog retention: one ascribing acquisition of 

functional novelty to be vital to maintenance of both duplicates, the other a potential 

division of the ancestral function.  As depicted here, partitioning of ancestral function has 

allowed for the generation of functional novelty (as in some escape from adaptive 

conflict models), however this not strictly a tenet of the Duplication Degeneration 

Complementation (DDC) model. 
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While the neo-functionalization model did offer an explanation as to how 

duplicates could be retained, the frequency of duplicates fixed in known genomes, 

specifically after supposed genome duplications
67,70-72

, was too high as to be described by 

acquisition of randomly acquired, advantageous mutations
73

.  Further, the neo-

functionalization model did not seem to suit the case of multifunctional genes, which had 

been demonstrated in some instances to divide functions immediately following 

duplication (i.e. without requiring a period of non-functionalization for one duplicate
74

).  

In 1999, Force and colleagues proposed an alternative theory, that by which paralogs 

acquire complementary, degenerative mutations and by so-doing, partition the original 

functions of the ancestral gene among them (model as presented also known as 

Duplication-Degeneration-Complementation, or DDC)
73

.  The authors described these 

sub-functions as any that: “might involve the expression of a gene in a specific tissue, cell 

lineage, or developmental stage, or individual functional domains within the polypeptide 

coding portion of the gene”, and the process of dividing such functions among derived 

genes was termed sub-functionalization.  This model suggested that degenerative 

mutations occurring in non-coding regions (or potentially even within the ORF
75

) could 

result in establishment of a complementary relationship among duplicates whereby 

varying functions could be distributed.   

Since it relied on degenerative rather than advantageous mutations, the sub-

functionalization model seemed more apt to describe the large number of duplicates 

retained following WGD events
76

.  Evidence of this in yeast was elegantly demonstrated 

by Ambro van Hoof, who showed for several gene pairs that the single ancestral gene 

copy from S. kluyveri was capable of performing the individual functions of the paralogs 
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in S. cerevisiae
77

.  However, systematic evidence demonstrating either the sub- or neo-

functionalization models is lacking, with models based on population genetics typically 

supported only by sporadic tangible examples.  Consequently, neither model currently is 

viewed as the dominant mode of functional dispersal post-duplication. 

Since the publication of the neo- and sub-functionalization models, numerous 

variations and hybrid models have been presented to accommodate observed genetic 

relationships that do not seem to fit either mould
78-83

.  One particularly notable variation 

is the proposed escape from adaptive conflict (EAC).  What is sometimes seen as a 

limitation of sub-functionalization is that (as originally presented), the DDC model did 

not allow the potential to acquire adaptive mutations
82

.  The term adaptive conflict 

specifically refers to the case in which a multifunctional gene cannot optimize one 

function without limiting its capability to perform others.  Therefore in the EAC model, 

following sub-functionalization one duplicate can undergo either regulatory or coding-

sequence changes that adapt its function towards new environments, as was demonstrated 

in yeast for two genes functioning in the galactose signaling pathway, GAL1 and GAL3
82

.  

While the ancestral gene was likely to encode both an enzyme and a transcription factor, 

two genes in S. cerevisiae uniquely perform each of these functions.   

Additionally, Nowak and colleagues
84

 present three cases for the long-term 

preservation of redundancy: genes A and B perform a given function with equal efficacy, 

genes A and B perform the function at varying efficiencies, but are compensated for by 

reciprocal mutation rates, and lastly, A and B perform different functions, but B retains 

the capacity to perform the function of A at lower efficiency.  However, just as above, 

practical examples of these mechanisms are even less common than for sub- and neo-
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functionalization, presumably due to the unlikely occurrence of exact balance between 

either between selective force on the duplicates, or selective pressure and expression.  

Due to their low practical occurrence, existence of such mechanisms for long-term 

preservation of exact functional redundancy can be considered minimal. 

The fact that no single model dominates in terms of being commonly accepted to 

describe evolution immediately post-duplication is perhaps owed to the fact that 

meaningful functional information has traditionally been lacking. Currently the amount 

of functional overlap retained by duplicated genes as well as the frequency and extent of 

functional retention ultimately remains unclear with compelling evidence presented
17,53,85-

87
 to demonstrate both limited and significant functional overlap among extant paralogs in 

the yeast S. cerevisiae.  At stake is the central question of not only what influenced the 

initial retention of duplicates, but also to what extent they share function, and by 

extension, contribute to robustness of the genome towards mutation or other insult 

(discussed in detail below).  Resolving these issues using large unbiased datasets is a 

central concern in this thesis. 

 

1.7. The contribution of duplicated genes to genomic robustness 

As data exists both supporting and contradicting a retained functional overlap 

among yeast duplicates, there has been a long-standing debate as to whether the presence 

of retained duplicates in a genome serves to increase genomic robustness (as defined 

above).  Specifically, availability of gene-deletion mutants in yeast has facilitated 

analysis of the fitness costs associated with deleting a paralogous gene and has 

subsequently sparked controversy.  In 2000 Andreas Wagner reasoned that if duplicates 
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were contributing to robustness, increased amino-acid sequence similarity should 

correlate negatively with their fitness defect upon deletion
88

.  Instead, when studying 45 

yeast paralogs, Wagner did not find a correlation between either sequence similarity and 

deletion cost, or sequence similarity and co-ordination of expression (also reasoned to be 

a hallmark of duplicates contributing to robustness) to be statistically significant, 

therefore concluding that genetic robustness was more greatly derived from non-

duplicates
88

.  However as this was a small subset of the large number of yeast duplicates, 

there was a substantial chance that this subset contained a bias that influenced the results. 

Gu and colleagues later re-visited the concept of duplicates and genomic 

robustness using fitness data for 5,766 yeast ORFs (ultimately comparing growth rates 

among 1,147 and 1,275 genes that could clearly be considered duplicates and non-

duplicates, respectively), finding differences between the fitness properties of these two 

groups
53

.  The authors noted that duplicated genes had a significantly lessened deletion 

cost (also subsequently demonstrated to be true in nematode using growth following 

inhibitory RNA addition
89

, and more recently in mouse using knockout phenotypes
90

).  

Further, deletion cost was positively correlated with similarity between duplicates, since 

less-similar duplicates were less likely to compensate, albeit still at a level greater than 

functionally-related singleton genes
53

. The same group would further demonstrate in a 

later publication that there was a relationship between the age of a duplicate and 

expression similarity, with genes becoming more divergent in expression over time
91

.  

Taken together these findings do suggest that functional overlap is maintainable over 

long expanses of evolutionary time, however that duplicates had a smaller fitness cost 

upon deletion has spurned two competing explanations.   
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The first presented explanation for the seeming expendability of duplicates was 

that there exist “transcriptional back-up” mechanisms between duplicated genes, 

whereby dissimilarly expressed paralogs can alter their expression patterns upon mutation 

or ablation of their sister gene
92

.  Specifically, Kafri et al examined correlation in 

expression over 40 experimental conditions for hundreds of duplicated gene pairs and 

reported that duplicates with the greatest variance in co-expression, and thus the greatest 

potential for expression modulation, showed the least consequence upon deletion
92

.  

Further, the authors demonstrated that similarities in the promoter sequences of 

duplicates are actively maintained, suggesting that purifying selection preserves this 

mechanism.  The same group would also later show that similar transcriptional 

mechanisms were present in multiple other eukaryotic organisms
93

, suggesting that 

expression modulation was not a species-specific phenomenon.   

In terms of more general evidence for transcriptional re-wiring following WGD, 

comparisons of the C. albicans and S. cerevisiae transcriptional networks during 

anaerobic growth showed alterations in the expression patterns for genes in S. cerevisiae, 

and Ihmels and colleagues attributed these changes to regulatory elements following the 

ancient WGD
94

.  It should be mentioned when interpreting this analysis however that C. 

albicans is a pathogenic fungus, and therefore may have had an unusually accelerated 

evolutionary path following speciation.  However, taken together these results provide at 

least anecdotal evidence for mechanisms of transcriptional compensation that could 

greatly benefit from validation through large-scale directed phenotypic assay (more 

below).   
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 An alternative theory presented to explain the decreased fitness cost of duplicated 

gene deletions was that duplication was reserved for genes of limited importance to the 

organism
95

.  He and Zhang showed that S. cerevisiae genes duplicated by both WGD and 

SSD in 7 other yeast species (but which were singletons in S. cerevisiae) were less likely 

to be essential, and generally showed less fitness cost upon deletion
95

.  A notable caveat 

to this survey however is that 6 out of 7 of the species used in the analysis by He and 

Zhang differentiated from S. cerevisiae before the WGD event, meaning that this 

comparison does not take into account how functional relationships may have changed 

post-WGD.  He and Zhang later demonstrated that the correlation between deletion 

fitness cost and expression similarity could be explained through correlation with a third 

variable, that of the number of protein interactions
96

 (i.e. interaction degree).  

Specifically, He and Zhang suggested that high protein interaction degree, and not low 

correlation in expression, indicated essentiality for paralog pairs.  Kafri and colleagues 

responded to this assertion by demonstrating that when controlling for degree there was 

still a clear relationship between fitness and concerted expression
97

.  This demonstrated 

clearly that co-expression was inherently predictive of the functional relationship 

between duplicated genes.  However, while analyses of expression and fitness can 

potentially highlight systematic mechanisms of retained function, they do not directly 

illustrate the extent, and nature of that functional overlap.  Studies that directly compare 

the functional overlap among both WGD and SSD duplicates are discussed in detail 

below. 
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1.8. Direct functional comparisons of yeast duplicates conducted to date 

While the above mentioned surveys of fitness and expression have instilled 

controversy regarding mechanisms and advantages of functional dispersal, examinations 

of the biological properties of extant paralogs based on the putative physical 

interactome
54,98-100

 and reconstructed metabolic network
85,86

 in S. cerevisiaie have 

generally implied extensive functional similarity among both WGD and non-WGD 

resultant paralogs, supporting an advantage to retaining substantive functional overlap. 

The first large-scale analysis of duplicate function based on protein interaction 

data was published by Andreas Wagner
101

 and was generated using a high-throughput 

Yeast-2-Hybrid protein-protein interaction dataset
102

 (for a description of high-

throughput interaction screening methodologies, as well as an introduction to the 

properties of graph theory as pertaining to interaction network analysis, see Musso et al, 

Chemical Reviews
103

, portions of which are provided in the Appendix).  Since paralogs 

were not any more likely than random to share protein interaction partners or exist in the 

same network sub-graph, Wagner concluded that yeast duplicates had largely lost their 

initial functional overlap.  However as only a small number of paralogs were represented 

in the dataset used, this conclusion may have resulted from a lack of a truly reliable or 

comprehensive interaction dataset.  

A later similar analysis using more extensive and likely more accurate interaction 

dataset (the manually curated set maintained in the Munich Information center for Protein 

Sequences (MIPS) database
104

) in yeast found alternate support for widespread functional 

overlap
100

.  Specifically, Baudot and colleagues
100

 used a functional classification 

algorithm on a network of over 4000 putative protein-protein interactions (generated 
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largely from small-scale surveys and collected using literature-mining techniques; see 

Appendix) to demonstrate that 41 yeast paralogs resulting from the WGD could largely 

be functionally grouped into the same gene ontology (GO)
105

 category based on physical 

associations.  This implies that paralogs generally maintain enough similar physical 

associations so as to be functionally linked, however this does not inherently support 

either neo- or sub-functionalization as a model for their divergence.  Further, the small 

number of paralogs surveyed limits widespread interpretations as to the extent or 

advantages of retained functional overlap between paralogs in the interaction network.  

However, the publication of two landmark genome-scale proteomic surveys of protein 

complexes in budding yeast, one by our group, using affinity purification – mass 

spectrometry based on the Tandem Affinity Purification (TAP) procedure
48,49

 several 

years after Wagner’s initial publication facilitated re-analysis of the function of gene 

duplicates based on the properties of a far more extensive physical association 

network
54,99

.  The results of these surveys were the initial focus of this project and are 

discussed in detail in the next Chapter. 

In addition to function elicited through physical association with other proteins, 

function among duplicates has also been assessed using enzymatic information from the 

yeast metabolic network.  Two recent studies investigating the gross function of paralogs 

showed a preponderance for duplicated genes to exist in yeast central metabolism 

pathways (i.e. glycolysis, pentose phosphate shunting and the citric acid cycle), which are 

demonstrably highly robust
106,107

.  However these studies do not necessarily provide 

direct evidence of compensation, as they do not eliminate the possibility that genes 

existing in well-buffered pathways are more likely to retain duplicates.  Specifically, it is 
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unknown whether it is the duplicates themselves that contribute to the robustness of these 

pathways, or whether it is the robustness of a system that permits tolerance to gene 

duplication.   

 To directly assay whether paralogs contribute to system robustness through 

compensation, Papp and colleagues used Flux Balance Analysis (FBA), a method for in 

silico modeling of the metabolic network and subsequent analysis of perturbation effects, 

to demonstrate that between 15-28% of extant duplicates functioning as metabolic 

enzymes in S. cerevisiae can be compensated for by their paralog through altered 

metabolic flux
85

.  It should be noted as a caveat however that in FBA metabolic reactions 

are modeled as opposed to the underlying genes.  Therefore while predictions can be 

made about whether compensation is on behalf of a paralog, ultimately experimental 

evidence is needed to verify these claims.  Harrison and colleagues performed a similar 

FBA procedure, and although not studying paralogs specifically, demonstrated via 

multiple gene deletion assay that approximately 60% of their 98 predictions of 

compensation to be accurate.  Notably Harrison et al also describe that the majority of 

their reported compensatory mechanisms were not observable under standard laboratory 

conditions.  Therefore in order to effectively demonstrate compensation among paralogs, 

direct fitness experimentation, potentially conducted in multiple conditions, may be 

needed. 

 

1.9. Paralogs and epistasis 

The term epistasis is consistently used to refer to a genetic interaction between 

genes, although the exact meaning can vary depending on context.  William Bateson 
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originally coined the term epistatic (literally “standing over”) in 1909 to describe a case 

in which expression of an allele at a given locus masked the effects of a variant allele at a 

second locus
108

.  Bateson used this term initially to describe heredity of coloration in 

rabbits, noting that alleles controlling coloration could be either epistatic or hypostatic 

depending on whether or not they were masking or being masked, respectively: “We shall 

then speak of the determiner for grey as epistatic to that for black”.  Bateson reasoned 

that the alleles were connected in the sense that they were acting in pathways ultimately 

related to the same phenotype
109

.  One other notable property of this operational 

definition is that it reflects an asymmetric relationship: if allele A is epistatic to allele B, 

the reverse cannot possibly be true. Alternatively, RA Fisher would later refine this 

classical definition by considering epistasis in terms of quantitative traits.  Fisher 

described epistasis as a deviation from the linear expectation of the contributions to 

phenotype when two alleles are expressed at different loci
110

.  Notably, Fisher did not 

believe that epistasis substantially affected the evolutionary process, asserting that 

interactions among alleles in different loci did not contribute to overall fitness, and 

doubted whether they were transmissible.  Fisher would have a long-standing debate on 

this issue with Sewall Wright who believed they were integral
111

.  However while Fisher 

and Wright debated the influence of gene combinations on the overall fitness of a 

population, in the context of this thesis I will consider only how genes combine to affect 

the fitness of an individual.  

Throughout this thesis I will refer to epistasis using a definition that is akin to that 

employed by the population geneticist
112

: when the effect of perturbing the function of 

two genes within the same species results in a phenotype not predictable based on the 
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individual deletions alone, those genes are said to be epistatic.  This type of relationship 

is also referred to as a “synthetic genetic interaction”, if a systematic experiment is 

performed to examine gene relationships (rather than measuring natural variance in a 

population).  A commonly reported type of synthetic interaction is synthetic lethality, in 

which individual gene mutations or deletions result in a viable cell, but a double-mutant 

causes inviability
113

.  Similarly, synthetic sickness describes a substantial worsening of 

phenotype upon allelic combination.  Those epistatic interactions causing an un-expected 

worsening of phenotype (models used to derive phenotypic expectation are discussed in 

more detail below) are also generally termed “aggravating”, and those that result in a 

suppression of a sick phenotype are usually referred to as “alleviating” (see Figure 1-5).  

Classically, aggravating genetic interactions are thought to occur among genes in 

alternate pathways that converge on a related essential process (as the cell can 

compensate for compromised function of either pathway individually, but not to defects 

in concert), and alleviating interactions among genes within the same pathway (since the 

pathway has already been compromised by single loss-of-function alleles, further intra-

pathway perturbations do not have any consequence)
114

.   

Various models have been proposed to determine what is an appropriate 

expectation for epistatic genes when combining defects in growth (see Figure 1-5), 

however a recent comparison of the various growth models shows multiplication of 

fitnesses to be the most accurate at predicting known instances of epistasis
115

.  Basically, 

this model supposes that if the double-mutant has a quantifiable fitness defect worse than 

expected based on multiplying the fitness defects of the two constitutive single-deletions,  
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Figure 1-5 Existing epistatic growth models 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation of epistasis generally involves first determination of the quantitative growth 

defects associated with particular mutations (a).  This is typically achieved through 

comparison with an appropriate wild-type control.  Once growth defects are measured for 

single- and double-deletion mutants, the presence of epistasis is determined through 

comparison with an expectation model (b).  While the min model (lower equation) is 

commonly applied in yeast genetic interaction screening, recent evidence suggests that 

the multiplicative model is reportedly more accurate at predicting bona fide instances of 

epistasis
116

. 
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an aggravating genetic interaction is assumed.  Due to the nature of these experiments, 

their assay is typically restricted to genes of non-essential function, although use of 

conditional allelic variants (such as temperature sensitive, or ts alleles) does allow for 

survey of genetic interactions involving an essential gene. Also, in addition to identifying 

the effects of reducing gene dosage (i.e. loss of function phenotypes), identifying gain-of-

function phenotypes through over-expression can also be useful in identifying gene 

function
117

, however gain of function experiments seem less likely to identify potential 

mechanisms of phenotypic buffering through functional compensation, and therefore are 

not addressed experimentally in this work. 

The concept and functional informativeness of genetic interactions has been 

established in yeast for decades, facilitating systematic surveys of the functional 

architecture of biological processes such as the secretion system and cytoskeleton
113,118

.  

However the capacity to perform genetic interaction screening on a large-scale was first 

demonstrated in 2001 with the development of the Synthetic Genetic Array (SGA) 

screening technique by our Departmental colleagues Charlie Boone and Brenda Andrews 

and associates
119

. Their approach involves the mating of a single gene deletion strain 

(known as the query strain) against an ordered array of single gene deletion strains 

representing the majority of non-essential ORFs in the yeast genome and each carrying 

an alternate selectable marker (see Figure 1-6).   

Large-scale screening conducted using the SGA technique
119,120

 and subsequently-

derived similar methods
121,122

 has facilitated the creation of high confidence genetic 

interaction networks that can be used to infer gene function.  These maps generally show  
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Figure 1-6 Synthetic Genetic Array screening 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depicted is the SGA procedure as published by Tong et al
120

.  Briefly, a strain carrying 

Nourseothricin resistance in place of a gene of interest (represented by blue bar) is mated 

against a collection of over 4000 individual deletion mutants with Kanamycin resistance 

(represented by white bar) through pinning in 384-spot format.  Each individual deletion 

strain is present in quadriplicate in the 385-spot plate, outer colonies contain control 

strains (Kanamycin resistance inserted in place of a null allele).  Following mating, 

strains are sporulated, and haploid cells showing appropriate dual resistance to both 

Nourseothricin and Kanamycin selected through successive pinning steps. The plates are 

imaged, and colony sizes analyzed to determine growth defects.   
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an overall binary gene interaction rate of 0.5% (comparable density to physical 

interactions) indicating that there is substantial buffering of deletion effects in yeast (as 

has long been suggested
114

).  However, given that the interaction frequency is 8-10 times 

more likely for genes with similar functional annotation, interactions for genes queried 

can be used to infer function (so-called “guilt-by-association”) and have been useful in 

defining the molecular functions of unannotated yeast genes
120

.  Given that they serve as 

an indicator of molecular function, and that they can be used to assay for phenotypic 

buffering (i.e. the cell should be able to cope with loss of either buffered paralog 

individually but not both in the same strain, manifesting as an aggravating genetic 

interaction), genetic interactions seem an ideal avenue to test for retained redundancies 

and compensatory mechanisms existing between yeast duplicates.  Over the past 2 years, 

our group
123

 and others
124

 have used SGA to examine epistasis between paralogs in 

detail, the results of these and subsequent analyses are discussed in detail in Chapter 3. 

 

1.10. Project Rationale 

Despite the importance of gene duplication events, patterns of functional 

divergence of paralogs following a duplication event are poorly understood.  Availability 

of an increasing number of genome sequences has facilitated postulation of various 

theories regarding the evolutionary mechanisms of duplicate retention, and emergence of 

various high and low-throughput interaction screening techniques has allowed detailed 

analysis of duplicate gene function; however several major questions remain un-

answered.  Notably, many genes retain functional overlap for long spans of evolutionary 

time and the extent, advantages, and nature of this retained redundancy remain unclear.   
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The purpose of the studies presented in this thesis is to examine in depth the 

overlap in terms of paralog function based on a large body of extant duplicates created by 

the WGD event, how extensive this overlap is, what potential role it has played in the 

natural evolutionary process, and to determine what biological properties define the 

subset of paralogs that have maintained detectable functional redundancy.  This work 

serves to test one major and consistent hypothesis: that retained functional overlap is 

extensive among WGD duplicates in yeast, and that previous indications suggesting 

widespread functional dispersal were in fact based on incomplete or biased 

representations of functional relationships.  I address this hypothesis by analyzing the 

physical and genetic interactions between these extant pairs.   

Protein-protein interactions mediate the proper operation of most cellular 

processes, and genetic interaction screens can reveal the existence of maintained 

compensatory mechanisms.  Therefore, in Chapter 2 I use two newly-generated high-

throughput interaction datasets to re-visit analyses of functional overlap among extant 

duplicates through shared physical associations.  I demonstrate that there is substantial 

retention of interaction partners for WGD-resultant paralogs, and notably that those most 

similar in interactions are also most dis-similar in patterns of expression.  As this 

provides support of previously proposed mechanisms of transcriptional back-up, I next 

turn to genetic interaction analysis to survey function among paralogs.   

In Chapter 3 I describe a series of experiments directly assaying for aggravating 

genetic interactions occurring between 399 surveyed WGD-resultant yeast paralogs.  

Finding that epistasis was very high among these paralogs, I also note that experimental 

condition has a notable effect on detection of epistasis.  As survey of the near-infinite 
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condition space is not feasible, I turn to novel applications of the SGA technique for 

functional overlap among the remaining non-epistatic paralogs. 

In Chapter 4 I describe modifications made to the standard SGA procedure in 

order to survey for interactions using query strains containing double-deletions of non-

epistatic paralogs.  By comparison of these double-deletion profiles with the profiles of 

the constitutive single-deletion strains I attempt to identify notable differences, and 

subsequently, evidence of functional redundancy.   I present as a result not only a 

protocol that can be used specifically to assay function of any gene pair, but also notable 

evidence of redundancy among non-epistatic paralogs. 

Through these experiments I demonstrate the prevalence of functional association 

among WGD-resultant paralog pairs, ultimately suggesting that there is an advantage to 

long-term retention of functional overlap.  
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Chapter 2  

 

Retention of protein complex membership 

by whole-genome duplicates in yeast 

 

 

 

 

 

 

 

 

 

Portions of this chapter have been reprinted or adapted from *Musso et al
99

 

* With permission from Trends in Genetics, Copyright 2007 

I performed all experiments in the corresponding manuscript; Andrew Emili and Zhaolei 

Zhang supervised and advised the experimentation. 
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2.1. Introduction 

2.1.1. The importance of protein interactions in the eukaryotic cell 

Physical interactions among proteins mediate virtually every molecular process 

and as such their survey allows elucidation and ultimately classification of protein 

function.  Traditionally physical associations among proteins have been assayed on the 

order of single complexes through the use of techniques like immunoprecipitation and co-

sedimentation, however the recent emergence of high-throughput interaction detection 

techniques such as Yeast-2-Hybrid
125

 (Y2H) and Tandem Affinity Purification followed 

by Mass Spectrometry
126

 (TAP-MS), has facilitated large-scale determination of the 

network of protein interactions underlying biological processes. Delineation of 

associative protein units from these networks is useful in elucidating the mechanistic 

basis of complex molecular systems and in functionally characterizing interacting clusters 

of proteins (for an in-depth review of the formation of protein clusters from large-scale 

datasets, see Appendix). 

Protein complexes, consisting of stable protein-protein interactions (PPIs), are 

ubiquitous and essential to the proper conduct of all eukaryotic functional pathways, 

serving to coordinate virtually every aspect of cellular biology
127

.  The term ‘protein 

complex’ has traditionally been used to describe heteromeric groups of tightly associated 

proteins that interact to form a unified cellular component such as the ribosome or 

proteasome (approximately 30% of the gene products in yeast are involved in such 

complexes
104

).  Yet, as large-scale interaction data has become increasingly available, 

and global interaction networks discovered, the idea of the protein complex has evolved 

somewhat to the notion of interconnected ‘modules’ consisting of groups of physically-
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associated proteins functioning in a unified manner, although not necessarily with 

exclusive membership
128

. This has introduced a dichotomy in the interpretation of 

experimental datasets, as some would define the protein complex as a stable 

macromolecule, while others see it as a more dynamic, non-exclusive set of interacting 

proteins.  Indeed, recent experimental evidence derived from genome-scale studies using 

yeast as a model system has begun to blur the heuristic boundaries that have historically 

been applied to define protein complexes as discrete biological articles.  Consequently, 

researchers have begun to note heterogeneity, both in terms of the apparent limited 

correlation of attributes such as gene co-expressions and functional incongruence of 

putative members of certain protein complexes
129-131

 and in profiles of genetic 

interactions
122

.  

One other intriguing aspect of resolved interaction networks has been the 

prevalence of cross-connections between various protein modules, as projected by certain 

high-throughput screens in yeast
132,133

, which suggests a preponderance of cross-talk 

among biological systems.  Therefore while shared membership within a complex or 

module is indicative of shared function, substantial functional overlap may still exist 

among non-co-complexed proteins.  The role that duplicated genes might play in both the 

evolution of the protein complex, as well as the unique functional associations that link 

these modules remains unresolved.   

 

2.1.2. The retention of paralogs in protein complexes 

The functional bias of WGD-resultant paralogs as compared to those resulting 

from SSD events (discussed in detail above) are thought to be due at least in part to 



 

 

40 

maintenance of dosage among proteins within a complex or pathway.  Sensitivity to 

altered dosage could potentially explain why genes resulting from the WGD event have 

unique functional properties when compared to other duplicates
61

, specifically, an 

enrichment for ribosomal genes which are particularly sensitive to imbalance
134

 and 

therefore less amenable to individual duplications.  The concept of haploimbalance was 

originally used to describe the formation of inactive complexes due to an imbalance 

through either increased or decreased dosage of one member when examining 

haploinsufficiency among transcription factors
135

.  The subsequent dosage balance 

hypothesis purported that duplicating a sub-component of a complex alters its inherent 

stoichiometry and is potentially harmful, demonstrating that genes with dosage sensitivity 

were more than twice as likely to be involved in protein complexes
136

 and that many 

subunit pairs with associated fitness defects are co-expressed
136

. 

WGD events represent a potential mechanism for the duplication of entire 

complexes or pathways, and as such relieve constraints of imbalance.  For this reason, 

genome duplications are thought to not only contribute a set of genes that vary in 

function from other duplication events, but also that add uniquely to genome complexity.  

Retention of entire functional modules is thought to facilitate morphological gain, with 

suggestions that this has played a role in plant body plan evolution
137

.  Comparable 

evidence in yeast had been more controversial.   Pereira-Leal and Teichmann suggested 

that since retained duplicates do not frequently exist in known complexes, the 

contribution of WGD to this mechanism is minimal, rather novel modules emerge in a 

step-wise fashion
87

.  However, this contradicts work by Conant and Wolfe who 

demonstrated based on expression that there is distinct network partitioning following 
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genome duplication
64

.  Consequently, the role of complex retention on the functional 

overlap of paralogs (who would inherently be in alternate complexes) is difficult to 

predict. 

 

2.1.3. Specific rationale and hypothesis 

Although previous investigations had found minimal overlap in shared physical 

interaction partners for gene duplicates, these observations were made on a limited 

interaction network, and thus may have provided an inaccurate interpretation (see Table 

2-1 and Figure 2-1). Recently, two landmark genome-scale proteomic surveys of protein 

complexes in budding yeast were published
48,49

 (herein referred to as Gavin and Krogan, 

after their respective first authors) describing rigorous mass-spectrometry-based analyses 

of global collections of purified protein complexes systematically isolated from 

engineered yeast strains using Tandem-Affinity-Purification (TAP).  The TAP method is 

recognized as being among the most accurate and comprehensive experimental methods 

for determining PPI and the sub-unit composition of protein complexes
138

.  Hence, to 

more conclusively re-examine the degree of functional divergence between duplicated 

gene products, I compared the extent of overlap in the physical interactions mediated by 

paralogous proteins reported in these two datasets.   

My focus was on the 450 extant paralog pairs resulting from the ancient WGD 

event in S. cerevisiae
17,25

 as these would have had a substantial (~100-200 million years) 

and equal divergence time, thus providing a basis for horizontal comparisons (excluding 

partial duplicates and pseudogenes).  As a specificity control, I compared these PPI  
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Table 2-1 Size of interaction datasets used 

Source Proteins Interactions Average Degree 

Krogan et al 2708 7123 2.63 

Gavin et al 1462 6942 4.75 

BioGRID 3162 11348 3.59 

 

Indicated is the number of physical interactions contained in each dataset used for this 

analysis.  Degree represents the average number of interactions per protein in the dataset.  

BioGRID data was filtered to remove data resulting from large-scale survey (specifically 

TAP and Y2H) before use.   
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Figure 2-1 Network interaction diagrams 

A. 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

Visualizations of the protein interaction data using proteins as nodes and interactions as 

edges (A represents data published by Krogan et al, B data published by Gavin et al). 
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patterns and complex memberships with those derived for randomized pairs selected 

from the same sub-networks (averaged over 10,000 iterative permutations; see Figure 2-

2).  Given previous observations regarding the advantages of their retained functional 

overlap (discussed above), and the nature of gene balance hypothesis I felt this analysis 

would reveal a widespread tendency to share physical interactions and complex 

membership between WGD-resultant paralogs.   

 

2.2. Methods 

2.2.1. Datasets used 

All paralog sequences were obtained from the supplementary section of the 2004 

publication by Kellis et al
17

.  In this paper the authors described 457 paralog pairs as 

resulting from the ancient whole genome duplication event in S. cerevisiae.  Of these 457 

duplicated genes, 450 resulted in the creation of exactly 2 genes; these are the pairs 

analyzed here.  Random sets were drawn from the same set of proteins present in the 

valid paralog set.  The Krogan et al TAP interaction data
49

 as well as cluster data were 

generously provided by the Emili and Greenblatt labs at the University of Toronto 

(http://tap.med.utoronto.ca).  This dataset represented the high confidence interactions 

obtained through the machine-learning algorithm implemented by the authors (7123 

unique non-self protein interactions)
49

.  Protein clusters containing less than 3 members 

were discarded from this dataset.  The interaction cluster set published by Gavin et al
48

 

was obtained from the supplementary section of their related publication.  All protein 

interactions with a Socio-Affinity Index above 5 were used in this analysis (this was the  
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Figure 2-2 Experimental workflow 

 

 

 

 

 

 

 

 

 

 

 

Experimental design for the comparison of true paralog pairs with a random subset to 

derive an empirical p-value.  After randomly shuffling the 450 WGD paralog pairs, true 

paralogs were compared to random in terms of various properties of interaction, co-

expression, and conservation (see Methods).  Shuffling procedure was repeated 10,000 

times. 
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value indicated by the authors to have high reproducibility), which was 6942 

interactions
48

.  Clusters used from the Gavin et al publication were derived from the core 

cluster set.  The full BioGRID
139

 dataset (version 2.0.24) was downloaded from the 

publicly available website and all genetic interactions, protein interactions resulting from 

high-throughput experimental protocols (specifically TAP and Y2H), and interactions not 

found experimentally in S. cerevisiae were manually removed.  There were 11,348 

remaining interactions that were then used in the described analyses (Table 2-1).  

MIPS
104

 complex data was also web-downloaded and consisted of 55 protein complexes.  

Due to the immense size of two MIPS complexes (266 members in the first and 195 in 

the second compared to the remaining average complex size of 15.04), they were 

removed from the dataset. 

 

2.2.2. Randomization protocol 

All random sets were comprised of 10,000 randomly paired full sets derived from 

the true paralog list.  For example, there were 124 paralog pairs having protein 

interactions in the Krogan dataset.  Each of the comparable 10,000 random sets was then 

comprised of pairs drawn at random from the resulting 248 paralogs (true pairs were 

excluded).  The reasons for performing the randomization this way were two-fold.  First, 

by shuffling only the respective pairs being examined and not the interactions themselves 

the network topology is exactly preserved.  Second, comparing true paralogs against 

randomly-derived proteins from the same set maintains any interaction properties 

pertaining to that specific group.  Comparing against outside proteins may have provided 
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a greater pool from which to draw random protein pairs, but may have also made for less 

accurate comparisons. 

 

2.2.3. Metrics used for analysis of network properties 

Interaction scores 

The Non-Shared Interaction (NSI) score was calculated using the method 

described by de Lichtenberg et al
140

.  This score is a measure of the number of non-

shared interaction partners for each paralog set.  Specifically, the formula was:  

 

-log ((N1+1)(N2+1)) 

 

where N1 represents the non-shared interaction partners of protein 1 and N2 represents the 

same for the second protein.  The interaction overlap score was calculated as the number 

of overlapping interactions of two paralogs divided by the total number of unique 

interactors of the two proteins.  It was calculated as: 

 

(A " B) / (A # B) 

 

where A and B represent the set of interactors of given proteins.     

 

Gene and protein expression ratio 

Gene expression data was based on the datasets compiled by Greenbaum et al
141

.  

These expression levels represent absolute gene expression for each paralog.  For each 
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pair, the expression ratio was described as the greater expression value divided by the 

lesser.  A similar method was used to calculate the protein expression ratios using the 

expression data collected by Ghaemmaghami et al
46

. 

 

Evolutionary rate and variation 

Non-synonymous substitution rate (Ka) was calculated using Codeml
142

 (as part 

of the EMBOSS suite of programs
143

).  For every paralog pair, this value was calculated 

pairwise (between paralogs) and against the described K. waltii ancestor (as described by 

Kellis et al
17

).  All sequence identity comparisons were derived from global sequence 

alignments of amino acid sequences generated using Needle
143

 from the EMBOSS 

package.  Paralog pairs that have been evolving at an equal rate should have similar Ka 

values when compared to their common ancestor.  Therefore, the Ka values were plotted 

for each paralog pair and the evolutionary variation between paralogs was calculated as 

the Euclidean distance between the corresponding graph point for that pair and the 

diagonal line.  The formula for this was: 

 

Distance = ((K1 - K2)
2
/2)

1/2
 

 

Where K1 is the Ka value for the gene 1 and K2 is the Ka value for the corresponding 

paralog.   
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Edge distance and Interaction Graphs 

The minimum edge distance was calculated for all paralog pairs using both 

interaction sets independently.  Minimum edge distance represents the minimum number 

of edges (interactions) required to link two nodes (proteins) on a network graph (for a 

more detailed overview of graph theory, see Appendix).  For each interaction dataset all 

minimum distances were calculated using Pajek
144

. 

 

2.2.4. Statistical analysis 

When comparing against random groups, all reported p-values were empirically 

derived.  All reported statistical comparisons between co-clustered and non-co-clustered 

paralog groups were conducted using 2-tailed student t-tests assuming unequal variance.   

 

2.3. Results 

2.3.1. Paralogs have different interaction properties than non-paralogs 

High confidence PPI data was available for over one-third (158) of the WGD 

paralog pairs (124 pairs in Krogan, 60 pairs in Gavin; see Figure 2-3).  While both 

Krogan and Gavin employed similar TAP experimental protocols, the subsequent 

computational assignment of confidence to putative PPI was distinct, resulting in two 

high-confidence but only moderately overlapping datasets
145

.  For this reason, all 

analyses described herein were performed independently on both the Krogan and Gavin 

datasets with the logic being that concordant trends are further validated.  I applied two 

complementary metrics to measure the degree of functional overlap: First, a non-shared  
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Figure 2-3 Overlap in interaction coverage for the three datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

Venn diagram illustrating the overlap in paralog pairs covered by the three applied 

datasets (GRID represents all physical interaction data contained in the BioGRID 

database at the time of analysis).  Minimal overlap between the Gavin et al and Krogan et 

al datasets was due largely to variations in analysis and clustering techniques. 
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interaction (NSI) score, which represents the product of the number of non-shared PPI 

detected between two paralogs (in logarithmic scale, as reported in de Lichtenberg et 

al
140

); and second, an interaction-overlap (IO) score, which represents the number of 

shared interactions divided by total number of PPI reported for the paralogs (i.e. 

intersection divided by union).  As shown in Table 2-2, I found that the true paralog pairs 

were far more likely to (i) share interaction partners, (ii) interact with each other, and (iii) 

to lack non-shared interactions, as compared to randomized datasets (p<0.001 in all cases 

for both Krogan and Gavin, as compared to random).  Likewise, comparative analysis of 

the complete PPI networks (see Methods), with proteins represented as nodes and the 

interactions as edges, indicated a much closer average functional similarity among the 

extant paralog pairs (Table 2-2).  True paralogs had a shorter average minimum edge 

distance, representing the number of PPI separating any two nodes, as compared to the 

shuffled pairs (p<0.001 Krogan, p=0.002 Gavin).  This demonstrates that duplicated gene 

products generated by the ancient WGD are closely linked in the physical networks, and 

hence more likely to be functionally associated. 

 

2.3.2. Validation of findings 

To eliminate any potential ambiguity (i.e. mis-assignments) in the original 

proteomic datasets caused by highly similar protein sequences among the paralogs (see 

Methods), I re-analyzed the interaction data after excluding the 80 of 457 paralog pairs 

that had sequence identities greater than 80%.  All mass spectrometry experiments suffer 

from the failing of not being able to distinguish between closely related sequences.   
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Table 2-2 Elevated interaction overlap for true paralog pairs 

A. 

Maximum 

Similarity 

(%) Group 

Number 

of pairs 

in set 

Number of 

pairs with 

shared 

interaction(s) 

Number of 

pairs that 

interact with 

each other 

Interaction 

overlap 

score (IO) 

Non-

shared 

interaction 

score 

(NSI) 

Minimum 

edge 

distance 

Frequency of 

co-clustering 

(%) 

80 Random 

Pairs 

367 <1 <1 0 -1.09 5.63 <1 

80 Paralogs 367 28 24 0.1* -1* 3.14* 41 

100 Random 

Pairs 

447 <1 <1 0 -1.19 5.9 <1 

100 Paralogs 447 42 48 0.11* -1.09* 2.66* 56 

 

B. 

Maximum 

Similarity 

(%) Group 

Number 

of pairs 

in set 

Number of 

pairs with 

shared 

interaction(s) 

Number of 

pairs that 

interact 

with each 

other 

Interaction 

overlap 

score (IO) 

Non-

shared 

interaction 

score 

(NSI) 

Minimum 

edge 

distance 

Frequency of 

co-clustering 

(%) 

80 

Random 

Pairs 367 <1 <1 0 -1.42 5.51 <1 

80 Paralogs 367 13 10 0.23* -1.06* 1.52* 50 

100 

Random 

Pairs 447 <1 <1 0 -1.44 5.67 <1 

100 Paralogs 447 26 14 0.13* -1.25* 3.19* 41 

   

Interaction overlap among true paralog pairs (all pairs, or only those pairs with less than 

80% amino-acid similarity) as compared to randomized pairs drawn from the same 

datasets (averaged over 1000 iterations).  While Kellis and colleagues identified 457 

putative paralog pairs as resulting from the WGD, 7 of these pairs had paralogs divided 

across multiple open reading frames and 3 contained proteins with no confirmed amino-

acid sequence. Therefore these 10 pairs were removed from our analysis.  Panel A 

represents comparisons made using the interaction data from Krogan dataset
49

, while 

Panel B represents data drawn from Gavin
48

. All scores (IO, NSI and minimum edge 

distance) were compared statistically (see text); significance is indicated with an asterisk. 

Analyses of both datasets show a significant difference in the interaction properties of 

valid paralogs, indicating an elevated level of functional similarity. 
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During mass spectrometry, the protein of interest is digested via trypsin, and the 

sequences of the resulting peptides are mapped to proteins using a mapping algorithm 

such as SEQUEST
146

.  As these algorithms tend to take the first FASTA sequence to 

provide a perfect match with the sequence of interest, it is conceivable that SEQUEST 

mistakenly returns the paralog of the true protein instead of the true protein itself.  To 

verify this, I ran a mock trypsin digestion of all 900 members of the paralog set and 

determined the fraction of peptides that could also match to the corresponding paralog.  

When plotting this fraction against percent amino acid sequence identity, I found an 

exponential curve, drastically increasing above 80% similarity (see Figure 2-4).  

Therefore, analyses were re-performed only using proteins below 80% sequence 

similarity.  Again, extensive PPI overlap was observed among the remaining paralog 

pairs (p<0.01 for all comparisons).  The fact that even after removing the most conserved 

duplicated gene pairs still revealed substantive evidence of functional overlap among the 

more divergent paralogs demonstrates the robust prevalence of this propensity, and 

indicates that functional relatedness is not a trait exclusive to paralogs under the most 

rigid evolutionary constraint or due to a possible confounding effect of near identical 

duplicates or close isoforms.   

 Next, as both the Krogan and Gavin interaction datasets were generated using 

TAP, I sought to determine whether the apparent PPI conservation was influenced by 

artifacts specific to this particular experimental procedure. Hence, I obtained the latest 

literature-curated interactions from the BioGRID
139

 web resource (version 2.0.24), 

removing all PPI resulting from high-throughput experimentation, reasoning that the  
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Figure 2-4 Mass spectrometry detection of duplicates 

 

 

 

 

 

 

 

 

The peptides that would result from Trypsin digestion were matched against the 

corresponding paralog.  The ratio of peptides that match exactly for each paralog pair 

versus sequence identity is indicated and shows a clear increase above 80% sequence 

similarity.   
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remaining interactions, while not necessarily more accurate, would not be subject to the 

same bias as for TAP.  With over 200 paralog pairs having curated PPI in the filtered 

BioGRID dataset, the trend was not only mirrored, but further pronounced across all 

statistical tests performed (p<0.001).  

 I also re-performed the analyses after randomly removing one half of the PPI 

from each of the three datasets (Krogan, Gavin and BioGRID). Again, the true paralog 

pairs showed significantly more PPI overlap than the comparable randomized pairs 

across all performed tests, indicating resilience to incomplete, inaccurate or missing PPI. 

 

2.3.3. Paralogs more frequently co-complexed 

Using the protein complexes reported by Krogan and Gavin
48,49

 as an alternative, 

more rigorous gauge of functional relatedness, I observed that the WGD paralogs were 

far more likely to be associated within the same complex as compared to random pairs.  

Among all cases where both sister paralogs had been confidently assigned to a given 

complex, nearly half (40-56% depending on the dataset and amino acid similarity cut-off) 

were assigned to the same protein complex (Figure 2-5).  In contrast, less than 1% of the 

shuffled paralogs were typically assigned to the same complex (p<0.001 for both Krogan 

and Gavin).   

Co-clustered paralog pairs were shown to have slightly more protein interactions 

on average than no-co-clustered paralogs (5.98 and 4.20 respectively), however these 

proteins were also shown to exist in smaller interaction clusters (average of 7.3 members 

versus 10.03 members in no-co-clustered), indicating that co-clustering was not an  
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Figure 2-5 Frequent co-clustering of paralog pairs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Co-assignment of pairs of duplicated gene products together in the same putative protein 

complex (interaction clusters) in both the Krogan and Gavin predicted interaction clusters 

as compared with randomized pairs. The figure shows the percent of true paralogs 

wherein both members were assigned to the same complex (co-clustered) at varying 

amino-acid similarity cut-offs as compared to control pairs (averaged over 10000 

iterations). In all cases, the true paralog pairs exhibit a statistically significant level of 

overlap. 
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artifact of within-cluster protein interactions and thus potentially influenced by the 

experimental method.  Also, as there has been evidence presented showing hubs to have 

distinct evolutionary properties from non-hub proteins
147

, I sought to determine if the 

presence of hubs may be biasing my noted trend of increased conservation in co-clustered 

proteins.  Assuming hubs to be in the top 10% in terms of connectivity (a liberal 

definition when compared to the approximately 7% initially used by Jeong et al
148

), this 

classifies all proteins with 13 or more interactions (286) proteins within the Krogan 

interaction dataset as being hubs.  As there are 385 paralogs with interactions in the 

Krogan set, one would expect 38 (approximately 10%) to be represented as hubs by this 

definition, when in fact only 27 are, making WGD paralogs less likely than average to be 

hub proteins.  To extend one step further, there are 11 hub paralogs studied in my pair-

wise analysis (included because both sister paralogs had interactions in the dataset), 7 of 

which were deemed to have co-clustered with their partner.  Upon removal of these 11 

paralogs and their respective partners, co-clustered paralogs were still significantly more 

conserved than non-co-clustered (p<0.001), indicating that conservation is not a result of 

the inclusion of hub proteins (it is worth noting here that there were no studied paralog 

pairs in the Gavin et al dataset containing hub proteins). 

 As a final stringent benchmark, I re-performed my analysis using a public “gold-

standard” reference consisting of the well-established manually curated MIPS protein 

complex database
104

.  Even more prominently, all of the true paralog pairs were found to 

be co-clustered in the same complex as compared to only ~7% in the randomized group 

(n.b. the smaller number of MIPS complexes resulted in an inflation in the proportion of 

co-clustered pairs within the random set), confirming the validity of my major finding 
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that the products of gene duplicates produced by WGD have an elevated propensity to be 

functionally linked. 

 

2.3.4. Co-clustered paralogs are under tighter evolutionary constraint 

In an effort to better understand the evolutionary adaptations resulting in the 

physical complexing of duplicated gene products, I next asked whether the two classes of 

paralog pairs, i.e. those that are co-clustered in same complex (herein referred to as CC) 

versus the non-co-clustered (grouped into different complexes and referred to as NCC), 

exhibited other commonly studied functional properties in common. The properties 

investigated were similar in nature to those previously applied to examine functional 

overlap in paralog pairs
17,53,85-87

.  These included: (i) the level of amino acid sequence 

similarity (inferred from sequence alignment), (ii) concordance in combined gene/protein 

expression levels (as assessed by Greenbaum et al
141

), (iii) the correlation of expression 

patterns, (iv) the codon-adaptation index
149

 (CAI), (v) the non-synonymous substitution 

rate (Ka) which served to gauge the conservation rate as calculated against predicted 

orthologs in K. waltii
17

 and, lastly, (vi) the Euclidean distance between the Ka values of 

the paralog pairs was calculated between to assess differences in selective pressure (see 

Methods for full description of the methods used).  Due to the small number of paralog 

pairs in the Gavin dataset, I restricted all subsequent comparisons to the Krogan dataset 

(123 clustered pairs, see Methods).   

As a group, the CC paralog pairs had a higher average sequence similarity 

(p<0.001) than the NCC paralogs. Likewise, when comparing Ka, which quantifies the 

evolutionary rate against an ancestral out-group, the CC paralogs were found to be far 
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more conserved (p<0.001) than their NCC counterparts (see Figure 2-6).  Intriguingly, 

however, these two classes showed no difference in the overall distributions of Euclidean 

divergence distances among the respective paralog Ka values. As this value indicates the 

relative symmetries of divergence between sister paralogs (or, in other words, the degree 

of concerted evolution), this finding implies that while the sister paralogs associated in 

the same protein complex are generally more highly conserved than those not, the extent 

of bilateral conservation is generally similar to that observed for the NCC paralogs.   

As a relationship between evolutionary conservation and gene expression has 

previously been established for WGD paralogs in yeast
150

, I next sought to examine the 

co-expression properties of CC and NCC paralogs.  As might be expected, I found that 

both the CAI and expression levels (as determined through combination of various gene 

and protein expression datasets
141

) of the CC paralogs were significantly higher  than 

NCC (p<0.01; Figure 2-6).  Surprisingly, however, there was no difference in the 

correlation of expression patterns among the CC and NCC sister paralogs; indeed, 

comparison of the expression ratios (see Methods) showed a trend (p<0.06) towards a 

greater difference in expression abundance between pairs of CC paralogs.  This trend was 

further exaggerated (p<0.05) when examining only the protein abundance data reported 

by Ghaemmaghami et al
46

.  These observations support a previously proposed 

mechanism
92

 (see comment by Koonin
151

) whereby one copy of a duplicated gene 

maintains a minimally supportive role, as evidenced by lower relative expression under 

normal conditions, but which can be up-regulated as needed to support cell viability 

under perturbed growth conditions.   
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Figure 2-6 Differential properties of CC and NCC paralogs 

 

 

 

 

 

 

 

 

 

 

 

Those paralog pairs existing in different annotated complexes (non-co-clustered, or NCC) 

showed properties varying from those pairs existing in the same complex (co-complexed, 

or CC).  The NCC paralogs generally had lower sequence similarity and lower 

abundance, however the CC paralogs showed a lower expression ratio (see Methods), 

suggesting that they are actively maintained at varying transcript levels. 
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One obvious question that arises from these new results is whether the distinctive 

properties of CC paralogs are a consequence of their physical association or rather 

whether the increased conservation and co-expression predisposes them to the retention 

of PPI.  During my investigations, I found no overall correlations between various 

measures of similarity, including sequence identity, conservation, CAI, gene expression 

correlation, and any previously mentioned interaction quantification score (such as the 

number of shared interactions, IO, NSI, or minimum edge distance) among the WGD 

paralog pairs reported in the Krogan, Gavin and BioGRID datasets.  This implies that 

similarity in such former parameters does not necessarily imply that paralogs are likely to 

share the same interaction partners and that co-membership in a protein complex is not 

merely a consequence of elevated sequence conservation.  This observation has also 

subsequently been noted by Guan et al using an interaction dataset assembled from 

multiple sources through machine-learning
54

.  It is, however, presently impossible to 

determine whether the physical associations of sister paralogs (i.e. co-clustering) causes 

increased conservation and gene expression or vice versa.   

 

2.4. Discussion 

Although PPI information was available for only about 1/3 of all surveyed paralog 

pairs produced by WGD, the results presented here indicate that after at least 100 million 

years of evolution, a substantial number (about half) of extant paralogs retain substantial 

functional conservation as evidenced by co-clustering into the same interaction 

complexes.  While different lines of evidence suggests that the WGD paralogs are under 

different initial evolutionary constraint than singleton duplicates
3
, clouding extrapolations 
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towards paralogs of non WGD-origin, my analysis represents one of the largest 

comparisons of the functional behavior of paralogs in a eukaryotic model setting. 

Increasing, albeit somewhat speculative evidence for the so-called ‘Duplication-

Degeneration-Complementation’ (DDC) models of sub-functionalization has emerged 

over the past few years
73,74

.  Although my data do not rule out neo-functionalization as a 

means of initial functional divergence (since it is at present impossible to calibrate the 

rate of functional divergence without knowledge of PPI for orthologs in the ancestor), the 

surprisingly high degree of extensive functional overlap (co-clustering) among paralog 

seems more compatible with the DDC hypotheses. Consequently, my results contrast 

with previous reports that species with large population sizes are unlikely to experience 

substantial sub-functionalization of gene duplicates
73,152

, highlighting the need for 

alternate measures to accurately determine patterns of functional divergence. 

 While the algorithmically-derived complexes identified in the Krogan and Gavin 

datasets are not macromolecular associations in the traditional sense, data clearly 

demonstrate that duplicated genes frequently retain close association.  This seems to 

contradict the balance hypothesis in that duplicates to not appear to remain sequestered in 

independent functional modules.  Therefore while maintained balance
135

 may have 

mediated their initial retention, subsequent gene loss coupled perhaps with a drive for 

maintained functional overlap has forced their co-retention inside a pathway or complex. 
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Chapter 3  

 

Extensive, condition-dependent epistasis 

among WGD paralogs 

 

 

 

 

 

 

 

 

Portions of this chapter have been reprinted or adapted from *Musso et al
123

 

* With permission from Genome Research, Copyright 2008 

Corey Nislow, Andrew Emili, Zhaolei Zhang, Charles Boone, and Michael Costanzo 

supervised and/or advised the experimentation and I performed all relevant analysis. I 

also performed all of the described experimentation with the exception of microarray 

analysis (I was assisted in this by Andrew Smith and Larry Heisler), tetrad dissections 

(performed by Manqin HuangFu under my supervision) and growth curve analysis 

(assisted by Bryan Joseph San Louis and Jadine Paw).   
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3.1. Introduction 

As mentioned briefly above, Harrison et al used FBA to predict functional 

compensation among yeast genes, ultimately confirming 12 of 17 (~60%) predicted 

cases
153

.  Further, 3 of the 5 non-interacting pairs were shown to be epistatic upon 

deletion of a third, additional gene. This represented the first systematic test of functional 

compensation between genes in yeast, and importantly the first evidence that detection of 

genetic interactions among metabolic genes was dependent on environmental 

condition
153

.  The capacity for duplicates to retain redundancy so as to facilitate 

environmental adaptability was initially suggested by Papp et al using FBA
85

 and is akin 

to a finding of Gu and colleagues
53

  when investigating single gene deletions (see above).  

Gu et al would importantly suggest that examination of fitness under standard media 

conditions may bias observations for duplicated genes as: “it is possible that when a gene 

deletion showed no effect in any of these conditions it was not due to compensation by 

other genes but was because the gene deleted was not related to the growth conditions 

used”
53

.  These authors also divided their systematic results by functional category, 

noting that effects varied based on the nature of the genes identified
91

.  Ultimately the 

extent of epistasis among both metabolic and non-metabolic paralogs remained largely 

unknown. 

 

3.1.1. Specific Rationale / Hypothesis 

Previous examinations of the biological properties of extant paralogs based on the 

physical interactome
54,98-100

, metabolic networks
85,86

, and single-gene deletion 

phenotypes
53

 in the budding yeast S. cerevisiaie have implied extensive functional 
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similarity among both WGD and SSD resultant paralogs, supporting an advantage to 

retaining substantive functional overlap.  Conversely, analysis of synthetic genetic 

interactions of a small subset of yeast WGD and SSD paralogs has lead an alternate 

hypothesis that while some paralog pairs have maintained the ability to buffer loss of a 

respective sister, this mechanism is limited in scope and does not function over a wide 

range of compromising environmental conditions
154

. This assertion contrasted with 

previous suggestions that duplicates may be preferentially retained to compensate for 

cellular stresses or perturbations
53,99

.  Consequently, the extent and context of functional 

buffering among WGD-resultant duplicates as well as the molecular properties of 

buffering paralogs remain to be resolved. 

To address these issues directly, I examined the relative fitness of yeast strains 

bearing single and double deletions of all surveyable WGD-resultant paralog pairs in 

yeast.  Further, as I had previously asserted that any potential “transcriptional back-up” 

mechanisms might be retained specifically to deal with stress or pertubation, I (with 

assistance from members of the Nislow & Gaiever labs) examined interactions not only 

in normal growth media, but in several alternate conditions designed to mimic common 

cellular stressors (see Figure 3-1).  Since evidence suggests not only a widespread 

functional overlap among extant paralogs but also mechanisms of transcriptional 

compensation, I expect to observe extensive genetic interactions between WGD paralogs 

in yeast. 
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Figure 3-1 Experimental outline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 399 WGD paralog pairs with viable constituent single-deletion strains
52

 were 

analyzed for genetic interaction using Random-Spore-Analysis (RSA) and Growth-

Curve-Analysis (GCA).  The overlap in terms of duplicates exhibiting significant 

phenotypic buffering is shown in inset Venn diagram.  The 259 WGD paralog pairs not 

exhibiting epistasis (and hence deemed to not buffer phenotypically) in rich growth 

media were further analyzed through Environmental Screening in five alternate media 

conditions designed to either mimic common cellular stress states or introduce 

competition
52

. 
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3.2. Methods 

3.2.1. Assessment of synthetic lethality 

Method for screening of synthetic lethality through Random Spore Analysis 

(RSA) was based on that previously used
119,120

.  Briefly, yeast strains carrying a deletion 

of a given paralog were mated with strains harboring deletion of the corresponding 

paralog (with deletion confirmed through two resistance markers; Kanamycin and 

Nourseothricin) and of opposite mating type.  Following mating, cells were sporulated at 

22°C for five days.  Individual colonies were then diluted and grown on appropriate 

selective media (SD – Arg – His + Canavanine + G418/NAT; see Figure 3-2) for 2-3 

days at 30°C, photographed, and classified by two independent observers as being either 

synthetic lethal, synthetic sick, having no interaction, being unclear, or being abnormal 

(abnormal indicates that a single deletion or control strain was inviable).  Any strain 

determined by both observers to be either synthetic lethal or synthetic sick was classified 

as such.  Strains classified by one observer as synthetic lethal or synthetic sick but by the 

other as unclear were further investigated by tetrad analysis (see Figure 3-2).  Lastly, all 

abnormal crosses (either one deletion strain or control strain inviable) were re-analyzed.   

For Growth Curve Analysis (GCA), MATa spore progeny obtained as described 

for RSA were grown in 96 well format in media selecting for double mutants (YPD + 

Canavanine + G418 + NAT).  Growth rate was monitored for 5 generations using a 

TECAN reader and corresponding curves analyzed visually.  The resulting growth-curves 

deemed to either: have a lower point of saturation, have an obvious growth lag, or have a 

decreased slope in exponential growth phase when compared to plate-specific controls  
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Figure 3-2 Random Spore Analysis 

A. 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

Double mutant colonies with obvious lethal (a) or sick (b) phenotypes scored as genetic 

interactions.  In both (a) and (b) top left colony represents cells with no mutation, top 

right represents mutation of one paralog, bottom left deletion of the corresponding sister 

paralog, and bottom right the strain carrying the dual-deletion.  Media used was SD – Arg 

– His containing (clockwise from top left): Canavanine, Canavanine + G418, Canavanine 

+ G418 + NAT, Canavanine + NAT. 
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were labeled potential interactors.  Next, growth rates of the constitutive single-mutant 

deletion strains of potential interactors were assayed in duplicate, and area under growth 

curve calculated after 20 hours growth (see Figure 3-3).  Genetic interaction between 

gene pairs was assessed as that beyond the predictions of the multiplicative model 

(analogous to
115

): 

 

Let Wx equal the fitness of mutant strain x (as compared to plate-specific control), 

Wy the fitness of the strain carrying the deletion for the corresponding sister, and 

Wxy the fitness of the dual-deletion strain.  A genetic interaction then is 

characterized as: 

 

Wxy < (Wx * Wy) – (!x + !y) 

 

Where !k represents the standard deviation of deletion strain k measured over 

replicates. 

 

3.2.2. Screening for phenotypic rescue 

To assay for phenotypic rescue among genes essential for cell viability, strains 

containing a temperature-sensitive (ts) allele of the gene of interest were used where 

available and transformations performed using both the corresponding paralog and the 

gene itself on both low (MoBY
155

) and high copy (2µ) plasmids using a standard Lithium 

Acetate transformation procedure.  Following appropriate selection at room temperature 

growth for ts strains was assessed using spot dilution. 
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Figure 3-3 Growth Curve Analysis 

 

 

 

 

 

 

 

After 20 hours of growth the area of the curve is calculated and compared to wild-type 

strains (black).  Use of the area method ensures that the three common phenotypes 

indicative of delayed growth (increased lag from stationary phase, decreased slope during 

exponential growth, and lowered point of colony saturation) are captured.  A genetic 

interaction would be observed if the growth defect associated with double-mutant (red) 

compared to constitutive single-deletions (blue) surpassed expectations of the 

multiplicative model (see Methods).   
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3.2.3. Information gain analysis to indicate features predictive of epistasis 

In order to determine properties generally indicative of epistasis for paralog pairs 

a large list of pertinent features was compiled and analyzed for predictive value.  These 

features included: the number of additional duplicates (see Chapter 2 above), sequence 

similarity (Ka, local sequence alignment percent identity, local sequence alignment 

percent similarity), physical interaction degree and overlap (using data from BioGRID
156

, 

Krogan et al
49

, Gavin et al
48

, and Batada et al
132

), difference in transcript and protein 

expression magnitude (as calculated in Chapter 2 above) and co-expression across 

multiple conditions (as published by Kafri et al
92

, and Tirosh & Barkai
157

).  Information 

gain of each of these properties with epistasis for paralog pairs was calculated using the 

Weka software environment
158

 both for all paralog pairs, and for paralog pairs divided by 

GO SLIM functional category
105

.   

 

3.2.4. Environmental screening and barcode analysis 

Combined lethality of double-mutant haploid yeast strains grown as described 

above and combined into a pool of 499 members (399 WGD paralog pairs, 100 double-

mutant control strains; slow-growers supplemented to obtain equal starting concentration 

of each double-mutant strain) was examined in 5 media conditions previously designed
52

 

to either introduce competition or mimic common stress states (1M NaCl, 1.5M Sorbitol, 

YPGal (where 2% galactose was substituted for dextrose), 10µM Nystatin, and YPD pH 

8; see Figure 3-4).  Equalized concentrations of cells were grown in respective media 

conditions for 5 generations, at which time cells were lysed using a Qiagen DNeasy kit  
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Figure 3-4 Assaying genetic interaction in multiple conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence of molecular barcodes was used to facilitate screening of genetic 

interactions in multiple conditions.  In addition to Kanamycin resistance, each strain in 

the deletion collection contains two unique nucleotide sequences (denoted as UT and DT 

above).  This allows the strains to be pooled in liquid culture and analyzed; facilitating 

the determination of condition-specific strain sensitivity.  Once a double-deletion strain 

was determined to be sensitive to a give condition, growth of that strain as well as the 

constitutive single-deletion strains were analyzed in that condition and epistasis 

determined. 
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and DNA was isolated.  Both UPTAG and DNTAG barcodes were amplified via PCR, 

and hybridized to high-density oligonucleotide Affymetrix (as described previously
52

, 

except with use of Tag4 arrays
159

). 

 

3.2.5. Determination of condition-specific synthetic lethality 

For each of the five media conditions tested, intensity values resulting from 

hybridization (described above) were Lowess normalized using ~1000 barcoded strains 

which had been independently grown in YPD and additionally hybridized to each chip 

used (done to remove potential spatial bias).  Abundance data for WGD paralogs was 

then normalized both by row and column.  Row values (dual-deletion strain abundance) 

for the five experimental conditions were normalized using each strain’s hybridization in 

control YPD.  Columns (conditions) were normalized using the average abundance value 

of hybridizing non-WGD double-mutant deletion strains grown in each condition.  

Normalization was performed independently for both experimental runs and for UPTAG 

and DNTAG expression.  Data were then combined, and those strains with below 75% 

normalized abundance in a given condition were treated as potential interactors.   

A subset of the most consistently affected potential interactor strains was then 

selected to be further analyzed through GCA.  To determine this subset, all strains in the 

initial pool of 499 (399 paralog double-deletion strains + 100 internal controls) with 

abundance two-fold beyond background in control YPD (background determined as the 

average abundance value of non-existing strains) were given an incremental rank in each 

condition according to their abundance magnitude.  For each strain, the difference 

between rank within the control state and in any given media state was calculated 
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(changes in rank for entire cell population were found to be roughly normally distributed 

around 0 for each condition).  Those strains indicated as above to be potential interactors 

and with changing rank beyond one standard deviation in both experimental runs (in both 

UPTAG and DNTAG expression) were selected.  Corresponding single-mutant and 

double-mutant strains were then grown and analyzed similar to described above for GCA, 

however in this instance, GCA was performed entirely in the given media condition.  

Those paralog pairs passing the multiplicative model (see above) were confirmed as 

being sensitive to the given condition.  

 

3.2.6. Analysis of physical interactions 

Physical interactions of genetic interactors and non-interactors were compared as 

above using two published tandem affinity purification interaction datasets
48,49

, and the 

data compiled in BioGRID
139

 following removal of all data generated using high-

throughput assay (performed manually). Lists of protein complexes were also obtained 

from Krogan et al and Gavin et al publications, as well as the MIPS database
104

.  Briefly, 

genetic interactors were compared against non-interactors in 5 categories: number of 

shared interactions, interaction overlap score (number of shared interactions per unshared 

interactions), non-shared interaction score (previously described as the negative 

logarithm of the fraction of non-shared interactions
140

), propensity to interact with each 

other, propensity to co-cluster (the latter two analyzed by Fisher exact test, all else 

analyzed using Mann-Whitney rank sum test).   
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3.2.7. Comparisons of conservation and expression 

Sequence identity among paralogs was evaluated through application of a global 

alignment algorithm (Needle as part of the EMBOSS suite of programs
143

) calculated on 

amino-acid sequences.  Non-synonymous substitution rate (Ka) was calculated using 

Codeml
142

 (again through EMBOSS
143

) against the appropriate K. waltii ancestor
17

.  

While the ratio of non-synonymous to synonymous substitution rate is the preferred 

metric when assessing evolutionary conservation, the synonymous substitution rates were 

saturated and therefore un-usable.  Protein
46

 and mRNA
141

 expression data were obtained 

as published.  To compare temporal expression patterns of paralog pairs, expression data 

compiled at various time points throughout the cell cycle
44

.  This data was first 

normalized based on the logarithm of each gene’s median intensity value, then the 

Pearson Correlation Co-efficient for every paralog pair over the first 8 time points was 

determined (internal analysis revealed that all points correlated poorly beyond the first 8 

time-points, data not shown). 

  

3.2.8. Determination of instances of multiple paralogy 

Additional (i.e. non-WGD-resultant) cases of paralogy were determined for 449 of 

the initial set of 457 WGD paralog pairs (the 7 pairs initially described
17

 as being split 

into multiple open reading frames as well as one pair containing a categorized 

pseudogene were excluded), similar to the method previously described
160

.  Briefly, 

protein sequences corresponding to every known cDNA sequence in S. cerevisiae 

(excluding hypothetical or dubious open reading frames, 5880 total) were downloaded 

from the SGD database (www.yeastgenome.org) and BLAST analysis was performed 
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aligning each of the 898 individual WGD paralog genes against all S. cerevisiae protein 

sequences with an expectation (e-value) cutoff of 0.1.  From there, resulting alignments 

in which the aligned region covered at least 50% of the sequence of the larger protein 

were retained (50% used as the cutoff for the aligned region as opposed to the more 

common value of 80% in order to identify a greater number of paralogs (as previously 

described
53

).  As a final criterion, alignments were required to meet a threshold of percent 

sequence identity in order to be retained
53

.  For alignments where the aligned region was 

greater than 150aa in length, a minimum sequence identity of 30% was required. Based 

on previous empirical evidence indicating that a more stringent sequence identity cutoff 

is needed for smaller proteins
161

, for all alignments shorter than 150aa, sequence identity 

was required to surpass the value determined by a pre-determined formula
161

:  

 

   n + 480 * L
-0.32 x (1 + e-L/1000) 

 

Where n = 6 (as previously established
53

) and L represents the length of the aligned 

region.   

 

3.2.9. Statistical Analysis 

All statistical calculations and correlations were performed using SigmaStat 3.1.  

Heatmap was drawn using MATLAB.  Representation of statistically enriched GO terms 

drawn using Cytoscape
162

. 
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3.3. Results 

3.3.1. Frequent phenotypic buffering between WGD-resultant duplicates 

I used two complementary experimental growth assays to systematically monitor 

the fitness of single and double mutants to determine the extent of phenotypic buffering 

among putative yeast WGD paralog pairs
17

 under standard culture conditions.  I was 

unable to assess 7 pairs because one or both paralogs was split into multiple open reading 

frames
17

, while 51 pairs were excluded from analysis due to the inviability of one or both 

of the single-deletion strains (these strains were investigated using temperature-sensitive 

alleles, see below) leaving 399 surveyable pairs out of the initial set of 457. 

Random-Spore Analysis (RSA) was first applied to measure the overall viability 

of the progeny of genetic crosses between individual single gene deletion strains.  

Haploid yeast strains containing deletions corresponding to either one or both paralogs of 

a WGD pair were grown on solid minimal media and selected for based on specific drug 

sensitivities (deleted genes were replaced by drug resistance cassettes, see Methods).  

Visual inspection conducted by two independent evaluators was ultimately used to define 

51 obvious cases of synthetic sickness or lethality (see Table 3-1).  Tetrad dissection 

additionally confirmed 18 of the 31 pairs initially deemed non-obvious by either or both 

evaluators, ultimately leading to the identification of epistasis among 69 WGD paralog 

pairs (17% of all pairs tested, 15% of all WGD paralog pairs).  This frequency of 

epistasis for WGD paralog pairs is well beyond what would be expected for randomly 

selected gene pairs (<1% based on synthetic genetic array data
120

), and furthermore, 

beyond the 8- to 10-fold increases in epistasis expected for gene pairs with similar or 

identical GO annotations, respectively
120

.   
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Table 3-1 Results of RSA screening 

  Scorer 1 

  SS SL Unclear No Interaction Dead Cells 

SS 37 5 10 0 0 

SL 1 8 8 0 0 

Unclear 0 1 12 10 0 

No Interaction 0 0 1 278 0 

Scorer 2 

Dead Cells 0 0 3 13 12 

Resulting colonies from all assayed WGD paralog pairs were photographed and assessed 

by 2 independent researchers (indicated as Scorer #1 and Scorer #2).  Pairs evaluated by 

both scorers as being either synthetic sick (SS) or synthetic lethal (SL) were treated as 

genetic interactors (indicated in red).  Any pairs evaluated by either researcher as being 

‘Unclear’ (indicated in blue) were analyzed through tetrad dissection. 
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Next, Growth-Curve Analysis (GCA) was applied as an alternate means to 

quantify growth rates to detect attenuated instances of epistasis among WGD paralogs.  

Unlike in RSA, growth for GCA is assayed in rich liquid media and culture growth 

monitored through optical density, allowing more precise calculations of fitness, and 

hence, identification of more subtle growth defects (see Methods).  Through GCA, 119 

double-mutant strains were identified as having growth decreased beyond that predicted 

by multiplying the fitness defects of the corresponding individual mutations (i.e. using a 

multiplicative model; see Methods), 71 of which had not been witnessed through RSA 

(see full list in Appendix Table 1).  These data suggest that epistasis exists to some 

extent among 140 WGD paralog pairs (35% of those surveyed, 31% of all 457 WGD 

paralogs).   

The RSA and GCA data were not completely overlapping (see Figure 3-1 and 

Appendix Table 1), as nearly one-third of paralog pairs with obvious growth defects 

detected in RSA showed normal growth properties through GCA.  These remaining 21 

pairs may have a function that specifically limited double mutant growth in the minimal 

media of the RSA experiments (for example, included in this list are ENO1 and ENO2 

which are known to function in concert only in low-glucose conditions
163

) or the ability 

to grow on solid media. 

Overall, these results indicate that epistasis occurs among approximately one-third 

of WGD paralog pairs.  However, the difference in epistasic relationships as measured 

across liquid and solid media suggests a prevalence of condition-specific lethality, 

underscoring the importance of assaying genetic buffering under multiple conditions. 
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3.3.2. Further buffering relationships only evident under stress conditions 

To further explore epistasis in alternate conditions, and to investigate previous 

hypotheses that buffering relationships may specifically be maintained to cope with 

cellular perturbations
53,99

, I expanded the assay to include a series of stresses. The relative 

fitness of the 259 double-deletion mutants corresponding to non-buffering WGD pairs 

(i.e. those not defined to be epistatic by either RSA or GCA; see Methods) were 

monitored for sensitivity in five media designed to induce cellular stress (alkaline pH, 

high salt, the presence of the antifungal agent Nystatin (decreases membrane 

permeability), high levels of Sorbitol, or with galactose substituting for dextrose as the 

main carbon source)
52

 (Figure 3-4).  As a competitive growth assay suited to examining 

multiple media types, we measured the relative fitness of bar-coded double-mutant strains 

simultaneously by quantitative microarray hybridization
52

.  Double-deletion strains 

exhibiting sensitivity within any of the 5 stress conditions (Figure 3-5) were further 

analyzed using GCA conducted in the specific condition, allowing independent validation 

of these results. 

To be considered epistatic in a stress condition, the paralog pair had to satisfy two 

criteria.  First, the pair had to not be epistatic in standard media conditions, indicating that 

if epistatis was detected in a stress condition, it was unique to that condition.  Second, 

epistatic paralogs had to pass the multiplicative model in the given condition, meaning 

that either individual knockout could not be responsible for the stress sensitivity.  We 

first detected candidate condition-specific fitness defects through microarray, as indicated 

by a >25% decrease in strain abundance for a given condition (see Methods), among 61  
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Figure 3-5 Stress responsive paralogs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 10 of the 261 WGD dual-deletion strains, significantly decreased abundance 

(decreased detection of tag in microarray hybridization indicated in red above) were 

observed in at least one of the 5 media conditions tested.  Rankings indicated were 

averaged for all 10 tags present on array, and over 2 independently conducted 

experimental runs.  Only pairs showing abundance rank decreasing beyond one standard 

deviation of average (see methods) independently in both experiments.  All 16 pairs 

meeting this criteria were later further confirmed through GCA in the appropriate 

condition. 
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paralog pairs not detected as buffering in standard media by either RSA or GCA (23.5% 

of those tested).  To ensure that fitness defects were the result of the combined mutation 

and not the deletion of either single mutant, we conducted GCA for each of these 61 pairs 

in the appropriate sensitive condition. I found that 10 of the 61 pairs met the stringent 

confines of a multiplicative fitness model, and thus were epistatic under the given stress 

conditions (see Table 3-2).   

These 10 WGD pairs (herein referred to as Sensitive to Stress or SS) both confirm 

previously described observations and suggest new functional synergies. Among those 

relationships confirmed are the hypersensitivity to high salt of the BUL1/BUL2 double 

mutant
164

, and the hypersensitivity to carbon-source starvation of the MSN2/MSN4 

double mutant
165

. Interestingly, the PYC1/PYC2 double mutant with known 

hypersensitivity to glucose
166

 was found here to be epistatic in multiple conditions, but 

showed normal growth with galactose as the primary carbon source.  Other 

characterizations of epistasis can also be explained given known protein functions.  For 

example, YGK3 & MCK1 are members of the cell-wall integrity pathway
167

, while CHS6 

& BCH2 are involved in the transport of membrane proteins
168

; both pairs were found 

here to be epistatic in the presence of Nystatin.  Further, CNA2 and CMP2 which were 

epistatic here in 1M NaCl are involved in ion homeostasis and confer tolerance to high 

levels of sodium
169

. My interpretation of these findings is that WGD paralog pairs which 

are non-epistatic in standard conditions may be epistatic in a condition that emphasizes 

their principal function, despite the fact that neither individual paralog is essential for 

survival in that function (i.e. epistasis can be evolved for specific circumstances).   
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Table 3-2 Pairs indicated as sensitive to stress 

Systematic 

Name 1 

Systematic 

Name 2 

Standard 

Name 1 

Standard 

Name 2 Condition 

YML111W YMR275C BUL2 BUL1 NaCl 

YLR433C YML057W CNA1 CMP2 NaCl 

YBR218C YGL062W PYC2 PYC1 Sorbitol, Nystatin 

YPR074C YBR117C TKL1 TKL2 Nystatin 

YJL099W YKR027W CHS6 BCH2 Nystatin 

YNL307C YOL128C MCK1 YGK3 Nystatin 

YDR326C YHR080C YSP2  Nystatin 

YKL062W YMR037C MSN4 MSN2 Galactose 

YCR073W-A YNR034W SOL2 SOL1 

NaCl, Nystatin, 

Galactose 

YGL228W YFR039C SHE10  NaCl, Galactose 

 

Listed are the set of 10 non-buffering WGD paralog pairs assessed to be sensitive to at 

least one of the five experimental conditions examined (first identified through reduced 

hybridization of competitively grown bar-coded double-mutants to a microarray, then 

subsequently confirmed using GCA).  
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Based on our observations of condition-specific epistasis among SS paralogs, I 

am able to propose function for some genes that are either uncharacterized or poorly 

understood.  Specifically, as YSP2 and its paralog YHR080C are epistatic in multiple 

conditions, I propose that the known pro-apoptotic protein YSP2 may also exercise an 

inherent rescue function in conjunction with its paralog in response to cell wall or plasma 

membrane damage.  Also, the epistasis of SOL1 & SOL2 in multiple conditions suggests 

that they may be involved in a general stress response.  Lastly, I submit that the putative 

protein of unknown function YFR039C functions synergistically (either in conjunction or 

within an alternate functional pathway) with the glycosylphosphatidylinositol anchored 

protein SHE10 in response to cell stress, notably high salt and alterations in carbon 

source.   

 

3.3.3. Experimental condition impacts composition of paralogs deemed epistatic 

As investigation above had revealed SS paralogs to generally have functions 

related to their incident condition (analogous to what has been previously reported for 

metabolic enzymes using flux balance analysis
153

), I next tested whether those paralogs 

epistatic only under standard conditions (i.e. those initially detected by RSA and GCA) 

had any common functional properties.  Enrichment analysis
162

 of functional 

categorization as assessed by the Gene Ontology (GO) database
170

 indicated that these 

paralogs were biologically disparate from their non-buffering counterparts. Specifically, 

WGD paralogs epistatic under standard laboratory conditions were more frequently 

involved in cell-growth, protein metabolism, and division.  
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Many buffering paralogs (RSA and GCA) are annotated as ribosomal proteins or 

metabolic enzymes (23 pairs in each).  However, even upon removal of these proteins, 

functional GO enrichment analysis revealed that, although somewhat more functionally 

diverse, the remaining paralogs epistatic under normal growth conditions were still 

significantly enriched for growth related processes.  More specifically, while paralogs 

detected jointly by both RSA and GCA were mainly involved in protein production, those 

detected solely by GCA were notably enriched for involvement in the cell-cycle (i.e. 

septin ring formation, cell-cycle checkpoint, regulation of cell-cycle), and those detected 

solely by RSA were seemingly enriched for metabolic processes and structure 

development.  No paralog pairs detected to be epistatic jointly by both RSA and GCA 

contained genes of unknown function.  In contrast, non-epistatic paralogs were 

significantly enriched for elements of signal transduction (e.g. amino-acid 

phosphorylation, signal transduction, cell communication; see Figure 3-6), and 

frequently (25% of pairs) one or both paralogs was of unknown molecular function. 

These results suggest a distinct impact of survey condition on the functional properties of 

detected epistatic relationships. 

 

3.3.4. Paralogs buffering under standard conditions are highly conserved 

I next investigated whether buffering paralogs had any additional unique 

evolutionary or genomic properties correlating with their epistatic capacity.  To eliminate 

any potential method-specific bias, when evaluating paralogs epistatic under normal  
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Figure 3-6 Functional composition of epistatic paralogs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depicted are the GO functional categories over-represented for paralogs both epistatic 

(above) and non-epistatic (lower half) under normal growth conditions (i.e. those 

detected by either RSA or GCA, the union group).  The size of the node reflects the 

fraction of paralogs involved in that over-represented process, and darker coloring 

denotes higher significance.  While the significance of each term was calculated 

independently (regardless of placement within the GO classification system), arrows 

indicate continuance along the path of the GO directed acyclic graph. Increased statistical 

stringency (p < 0.0005) was used for depicted terms in order to account for increased 

representation of more general terms.  Picture created using the BinGO plug-in for the 

Cytoscape software environment. 
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laboratory conditions I confirmed results using paralogs separated on the basis of joint 

detection by both the RSA and GCA (intersect group, IG), and using either of these two 

methods alone (union group, UG).   

First, I examined whether presence of additional (i.e. non-WGD-resultant) 

duplicates impacted the potential for phenotypic buffering.  To analyze the affect of 

multiple paralogy on epistasis I sub-divided WGD paralogs based on the existence of 

additional duplicates and compared frequencies of epistasis. Based on these 

identifications, I sub-divided WGD paralog pairs into three groups: those pairs where 

both members had additional paralogs, those pairs where only one member had an 

additional paralog, and those pairs where neither had additional paralogs (21%, 4% and 

75% of all WGD paralog pairs respectively).  Upon comparison, epistatic and non-

epistatic paralogs showed no appreciable differences in the representation of the three 

groups of WGD duplicates (see Figure 3-7).  Therefore I conclude that presence of an 

additional duplicate does not influence the propensity of a WGD paralog pair to be 

epistatic.   

Next, upon examining sequence conservation, buffering paralogs (IG and UG) 

had significantly higher average sequence similarity (86% for IG, 77% for UG, versus 

65% for non-buffering) than corresponding non-buffering paralogs, and a consequent 

decrease in non-synonymous mutation rate (tallied using K. waltii as the ancestral out-

group; see Methods).  These findings were statistically robust (p <0.05 for all 

comparisons, Mann Whitney Rank Sum test; see Figure 3-8a) against the removal of 

ribosomal proteins which exhibit disproportionately high levels of sequence conservation.   
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Figure 3-7 Impact of additional duplicates on epistasis 

 

 

 

 

 

 

 

 

WGD paralogs were divided into three groups based on the presence of additional (non-

WGD) paralogs.  Paralogs were classified as being: Both (both members of a pair of 

WGD paralogs have additional duplicates in the S. cerevisiae genome), One (only one 

pair member has additional duplicates), or None (neither WGD paralog has additional 

duplicates).  Depiction of epistasis as assessed by both RSA and GCA (a), or by either 

RSA or GCA (b) indicates no overall difference in the composition of WGD paralogs 

with additional, non-WGD, duplicates. 
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Figure 3-8 Properties of epistatic paralogs 

 

 

 

 

 

 

 

 

 

 

 

 

All relationships depict comparisons between epistatic paralogs (IG and UG) and 

respective non-epistatic following the removal of ribosomal proteins.  a Buffering 

paralogs have significantly more conservation of sequence than non-buffering (p < 0.001 

for IG and UG, as indicated by asterisk).  b Buffering paralogs are significantly more 

highly expressed than non-buffering (protein abundance depicted, same results noted for 

transcript abundance) and additionally exhibit a trend towards (p < 0.1 as indicated by ‡) 

being more highly correlated throughout the cell cycle (displayed in c).  d All WGD 

paralog pairs were binned based on their number of combined protein interactions 

(degree) within the BioGRID dataset, with the respective percentage epistatic (both IG 

and UG) indicated, demonstrating a clear relationship between the number of physical 

interactions and the likelihood for epistasis under normal growth conditions. 
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Despite these trends, it is interesting to note that this increased within-species 

conservation is not exclusive to buffering paralogs.  For example, the UG contained 3 

buffering paralog pairs sharing less than 40% sequence identity (PHD1 & SOK2, MGA2 

& SPT23, and BOI1 & BOI2), implying that conservation is not a pre-requisite for 

phenotypic buffering.  Furthermore, SS paralogs did not exhibit the same stringent 

conservation of sequence as IG and UG paralogs (average sequence similarity among the 

10 confirmed SS paralogs was 68%).   

On average, buffering paralogs (IG and UG) also exhibited significantly higher 

basal mRNA
141

 and protein
46

 expression levels (p <0.05, Mann-Whitney Rank Sum test, 

Figure 3-8b) when compared to non-buffering (robust against removal of ribosomal 

proteins, see Figure 3-8b). As expression magnitude is intrinsically linked to sequence 

conservation for yeast paralogs
150

, and epistatic paralogs are more highly conserved, this 

finding is not unexpected.  However, while IG and UG paralogs initially had more highly 

correlated mRNA expression both throughout the cell cycle (p <0.01; see Methods), and 

across varying cell conditions
97

, following the removal of ribosomal proteins, these 

relationships are no longer significant.  Therefore, expression correlation does not appear 

to be generally predictive of epistatic capacity for WGD-resultant paralogs.  

A breakdown of WGD paralogs by functional category as assigned by GO Slim 

(http://geneontology.org/GO.slims.shtml) demonstrates that epistasis under standard 

conditions is much more frequent among those paralogs involved in certain growth and 

division related processes (Figure 3-9).  Also, there is a direct linear correlation between 

the fraction of buffering paralogs within a functional group, and the overall sequence  
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Figure 3-9 Epistasis by functional category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WGD paralogs were grouped into functional categories based on the broad definitions of 

the GO slim hierarchy and ranked in decreasing order based on the percentage of 

paralogs found to be buffering (IG), indicated with bars.  Only those paralog pairs with 

single, matching annotations were included, resulting in 315 depicted pairs (categories 

‘other’ and ‘molecular function’ were removed).  The juxtaposed dotplot indicates the 

average percent sequence identity of functional groups (buffering and non-buffering 

paralogs combined), the overlayed line indicates linear regression.  There is a significant 

correlation (r=0.64, p<0.005) between the epistatic capacity of a functional group and the 

conservation of paralogs contained therein. 
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similarity between paralogs in that group (r=0.64, p<0.005, linear regression p < 0.05; see 

Figure 3-9).  Therefore, as function and conservation appear to be intertwined, the 

possibility that functional bias is responsible for the observed increase in conservation of 

paralogs epistatic under normal conditions cannot be immediately discounted.   

Information gain analysis was used to further examine the nature of epistasis in 

various functional gene categories (see Methods).  While high sequence similarity and 

co-expression are generally predictive of epistasis for all pairs detected through RSA, 

division by functional category suggests that high average physical interaction degree is 

predictive of epistasis among genes classified as RNA, DNA and protein binding.  

Further, correlation across various experimental conditions is predictive of epistasis for 

genes involved in transcriptional regulation.  Together these results suggest that while 

certain features of epistatic duplicates are generally true, greater insight regarding 

epistatic relationships can be gleaned through functional dissection. 

 

3.3.5. Physical interactions are not indicative of phenotypic buffering 

To test a recently observed correlation between the number of physical interaction 

partners (the ‘degree’ of a protein) and the propensity to backup a sister paralog
97

, I next 

compared interactions of epistatic and non epistatic paralogs.  Using the identical dataset 

that this assertion had been based on (the full interaction dataset contained at 

BioGRID
139

), both IG and UG paralogs had significantly more interactions per pair than 

non-buffering (Figure 3-8d, p < 0.05; Mann Whitney Rank Sum Test).  The significance 

of this relationship was robust against removal of ribosomal proteins which had a 

disproportionately high number of interactions.  Alternately, SS paralogs were not 
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significantly greater or lesser in degree than the remaining WGD paralogs, suggesting 

again that increased degree may be linked to the functional bias, increased expression, or 

increased conservation of IG and UG paralogs, and not necessarily an inherent property 

of epistatic relationships.  The difference in degree between sister paralogs had no 

noticeable correlation with epistasis. 

One could logically assert that paralog pairs capable of buffering deletion of their 

sister should be more congruent in function than those that do not.  I next attempted to 

test this assertion using annotated physical interactions as a direct proxy of function
100

. I 

compared the extent of shared protein-protein interaction partners of buffering versus 

non-buffering WGD sister paralogs based on the results of two high-throughput 

proteomic screens
48,49

.  To eliminate potential biases created by high-throughput assay, I 

further confirmed all results using the aforementioned BioGRID dataset
139

 following the 

manual removal of data resulting from high-throughput screens. Buffering and non-

buffering WGD paralogs were compared in the following aspects: (i) propensity of the 

sisters to physically interact with each other, (ii) propensity to be co-grouped into 

associative protein complexes, (iii) the number of shared interacting partners, and (iv) the 

proportion of non-shared partners (first two analyzed by Fisher exact test, all else using 

Mann-Whitney rank sum test; see Methods).  

Only one comparison achieved marginal statistical significance. IG paralogs were 

more likely to interact with each other in the Krogan et al interactome dataset (p <0.05), 

but this trend was not confirmed in either the Gavin et al genome-wide study or using the 

BioGRID dataset.  Although my findings depend on the assumption that the current 

physical interaction data provides a fairly complete and consistent coverage of the WGD 
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paralogs, these results perplexingly suggest that paralog pairs deemed to be buffering 

under standard laboratory conditions are not necessarily more functionally redundant.  As 

previous studies have indicated a pervasive overlap in terms of the physical interaction 

partners of WGD-resultant duplicates
54,99,100

, one potential explanation for the lack of 

correlation between physical interaction data and epistatic capacity is that not all epistatic 

relationships have been revealed. 

 

3.3.6. Epistasis present among paralog pairs containing only one essential gene 

Finally, examination of phenotypic rescue using strains containing temperature-

sensitive (ts) alleles of paralogous essential genes demonstrated that some of these pairs 

have maintained capacity for phenotypic rescue (see Figure 3-10).  Of six WGD-

resultant paralog pairs with available ts strains, two showed obvious phenotypic rescue 

(DED1/DBP1 and GSP1/GSP2) confirming previously observed relationships
171,172

.  

Analysis of conservation and co-expression do not reveal any properties that generally 

differentiate these two pairs from the four not demonstrating phenotypic rescue.  

Although a small sample set, these results clearly demonstrate the possibility for 

functional retention among paralogs with one essential member, contradicting 

assumptions that these genes had lost their ancestral (essential) function
17

. 
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Figure 3-10 Phenotypic rescue of essential paralogs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic illustrating the principle of phenotypic rescue detection among WGD 

paralogs.  A strain carrying a temperature-sensitive allele of essential gene ‘A’ is inviable 

at 37C, however expression of ‘A’ via plasmid allows growth. (B) Results for the paralog 

pair DED1/DBP1.  Growth shown for strains carrying a temperature-sensitive allele of 

the essential gene DED1 and either: endogenous expression via the MoBY plasmid of 

DED1 (MoBY-DED1) or DBP1 (MoBY-DBP1), increased expression via 2µ plasmid of 

DED1 (2µ -DBP1) or DBP1 (2µ -DBP1), or the corresponding empty plasmids. Growth 

is at 37C, columns represent decreasing dilution (left to right).  The resulting growth 

clearly demonstrates a rescue effect when DBP1 is over-expressed.  Although not 

depicted, identical results were observed for GSP1/GSP2. 
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3.4. Discussion 

The noted lack of cell morbidity when deleting individual yeast genes with at 

least one paralog has lead to speculation that duplication is reserved for genes of limited 

functional importance
95

. By extension, WGD-resultant paralogs (which have generally 

less consequence upon single-gene deletion than SSD-resultant
59

), should be of even less 

functional importance than duplicates of other origin.  However this absent decrease in 

phenotypic consequence upon deletion of a WGD-resultant duplicate can alternately be 

explained by the elevated capacity of this group to buffer deletions. The degree of 

epistasis among duplicates is inevitably a compromise between the maintenance of 

mechanisms that could both protect against gene loss and confer stress resilience, and the 

establishment of functional novelty. As I have witnessed here that epistasis is possible 

among even minimally co-maintained WGD paralogs, complete abolition of functional 

overlap would seem to have very little comparative benefit.  

The frequency of WGD paralog pairs exhibiting phenotypic buffering under 

normal media conditions (~35% of those surveyed, or ~31% of all 457 WGD paralogs) 

observed in this study is similar to that previously determined through examination of a 

much smaller subset of duplicates (25 WGD- and 20 SSD-resultant) using a high-density 

genetic interaction map
154

 and to two subsequently-published similar surveys
124,173

. 

However, while the previous study suggested that there was little additional evidence of 

functional redundancy in alternate environmental conditions, my results conversely 

suggest there may be limitless potential to reveal buffering.  

While paralogs epistatic in solid minimal media and rich liquid media are notably 

more rigorously co-conserved and highly expressed, neither of these properties appear to 
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be essential for epistasis.  Further, overlap in shared physical interaction partners, which 

serves as a proxy for overlapping function, showed no consistent difference between 

epistatic and non-epistatic paralogs. In a finding just as perplexing, presence of 

additional, non-WGD-resultant duplicates appeared to have little to no impact on 

phenotypic buffering.  As the nature of epistasis among WGD paralogs is highly 

dependent on the environmental context, i.e. “environmental robustness”
153

, and as only a 

small fraction of the potential stresses (as well as the endless permutations of stress 

magnitudes and combinations) and alternate environmental conditions were explored 

here, many non-epistatic WGD paralog pairs (25% of which are of unknown function) 

may yet have preserved an un-witnessed buffering mechanism over ~100 million years of 

evolution.  This is reminiscent of what had previously been observed in comprehensive 

phenotypic studies of single-gene deletion strains in S. cerevisiae wherein loss of only 

~19% of genes results in morbidity (the so-called essential genes
52

).  Just as many single 

genes serve a function imperceptible under laboratory conditions but are required for 

viability specifically under cellular duress
52,174

 or are suspected to function in non-

laboratory growth conditions
175

, certain WGD paralogs may retain a condition-specific 

buffering capacity. 

The observations regarding concerted expression of buffering paralogs presented 

herein are surprising given previous findings. Specifically, it had been demonstrated that 

dispensable (i.e. buffering) paralogs generally have both a higher degree and more 

disparate expression patterns than non-buffering
92,97

. While I do confirm here that WGD 

paralogs epistatic under standard conditions have higher degree, they displayed no more 

disparity in expression than non-buffering (initially found to be significantly more 
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correlated, although this was a byproduct of the influence of ribosomal proteins), 

illustrating potential differences between the epistatic mechanisms of WGD-resultant 

paralogs and duplicates of other origin (i.e. SSD). 

As the existence of duplicated genes can confound predictions of epistasis
153

, a 

comprehensive understanding of the buffering capacity of paralogs is essential before 

extrapolating the knowledge gleaned form model organisms such as budding yeast to 

higher eukaryotes. Since the human genome has arguably been profoundly influenced by 

genome duplication events
29

 it will ultimately be the understanding of adaptive epistatic 

mechanisms, evolved to cope with the abnormal states of stress and perturbation, that will 

lend the most insight into disease-related maladaptive processes.  However as many of 

these relationships may not be obvious either under standard assay conditions or using 

standard techniques, new approaches are necessary to determine the full extent of 

epistasis and thus the full impact of WGD events on the genome. 
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Chapter 4  

 

Discovering functional redundancies 

through triple-deletion SGA 
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4.1. Introduction 

Evidence collected in several laboratories and using varying methodologies 

(including my own work above) has demonstrated the frequency of synthetic genetic 

interactions to be as high as 35% among extant yeast duplicates
124,173

, suggesting overlap 

in function to be substantial among this group.  Further, my previous examination of 

condition-specific epistasis (confirming similar observations based on single-deletion 

profiles
53

 and FBA
85

) suggested that observation of these interactions is highly dependent 

upon survey condition, and that many further paralog pairs may be epistatic in alternate 

conditions.  As the condition space is infinite, an alternate means is necessary to assess 

redundant function in these (non-epistatic) paralogs.  While not representing a change in 

extracellular environment, successive gene deletions perturb the cell in unique ways, and 

thus may be useful in understanding the coordinated response of duplicated genes. 

Genetic interactions among three or more genes are more rarely surveyed than 

digenic interactions, but have been useful in understanding the nature of multi-component 

pathways such as DNA-damage
176,177

, stress
178

, and nutrient
179

 response.  Typically 

multi-gene interactions are used to determine impacts of successive deletions on a 

previously established phenotype.  However as most pathways and complexes involve 

more than 2 members, and since complex diseases such as cancer can have etiologies that 

involve multiple simultaneous mutations
180

, assays for large scale screening of multiple 

genes would be highly insightful.  For this reason, screening of double-deletion query 

strains is thought to be the next frontier of large-scale genetic interaction assay
181

; 

however examples of double-deletion screens are currently lacking. 
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In the only previously published large-scale assay of the genetic interactions of 

double-deletion queries, Tong et al investigated the interactions resulting from Synthetic 

Genetic Array (SGA) screening of 3 mutant strains containing deletions of the pairs: 

BIM1/BNI1, BNI1/KRE1 and the WGD-resultant paralog pair CLN1/CLN2.  While many 

interactions were initially detected in both the BIM1/BNI1 and BNI1/KRE1 screens, a 

comparatively small number were determined to be specifically the result of the triple 

deletion during tetrad dissection (4 confirmed out of 171 detected for BIM/BNI1 and 29 

out of 156 for BNI1/KRE1), suggesting that a good deal of rigor is required to confirm 

triple-mutant interactions.  The paralog pair CLN1/CLN2 showed 36 interactions 

uniquely attributable to the triple deletion, indicating that SGA conducted using double-

deletion queries (herein referred to as triple-deletion SGA) can be used to demonstrate 

unique interactions for non-epistatic paralog pairs.  However, the extent of interactions 

detectable through triple-deletion SGA as well as the possible implications toward 

predicting epistasis or other functional associations remain unexplored. 

 

4.1.1. Specific rationale and hypothesis 

Useful both as a gauge of functional overlap and to assay for the presence of 

potential back-up mechanisms, aggravating synthetic genetic interactions occur when 

genes have a greater detriment to either cell viability or another observable phenotype 

when deleted within the same strain than would be predicted based on individual 

deletions.  In an effort to further characterize any functional redundancies among non-

epistatic paralog pairs I used the SGA protocol to facilitate screening using query strains 

carrying double-deletions of paralog pairs under the assumption that redundant functions 
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would uniquely be identified in the double-deletion SGA profile (see Figure 4-1).   

Through application of this technique I expect to demonstrate manifested instances of 

redundancy among paralog pairs with no other obvious indication of functional overlap. 

 

4.2. Methods 

4.2.1. Construction of SGA double-deletion query strains 

To facilitate double-deletion screening, resistance to Hygromycin B (hyg) was 

used as a selectable marker in addition to the Nourseothricin and Kanamycin resistance 

markers traditionally applied in SGA screening
119

.  Since Hygromycin B inhibits similar 

processes as the already employed Nourseothricin and Kanamycin analogs (protein 

synthesis
182

), I reasoned that there should be very little additional toxicity.  A three-step 

process was used to create double-deletion query strains for assay in SGA (see Figure 4-

2).  First, a diploid strain from the SGA deletion array (kanMX) containing the 

Kanamycin resistance gene in place of a gene of interest (referred to as p1; MATa/MAT! 

p1::kanR/P1) as well as other auxototrophic markers used in the SGA process (ura3"0 

leu2"0 his3"1 met15"0) was replaced with hygromycin resistance via a standard lithium 

acetate transformation protocol
183

.  Switching involved transformation of a PCR fragment 

amplified from the pFA6a-hphMX6 plasmid
184

 using primers annealing directly upstream 

and downstream of the promoter and terminator sequence, respectively (5’-

GACATGGAGGCCCAGAATAC-3’ and 5’-TGGATGGCGGCGTTAGTATC-3’).   

Next, Hygromycin B resistant strains were transferred to sporulation media and tetrads  
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Figure 4-1 Detection of redundant functions through triple-deletion SGA 

 

 

 

 

 

 

 

 

The concept underlying triple-deletion SGA is that any interactions detected uniquely in 

the profile of the double-mutant (in this case !A!A’) were initially masked by redundant 

function and therefore not obvious in either single deletion screen. I expect interactions 

resulting from divergent (unique) functions will be obvious in the double-mutant screen 

as well. 
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Figure 4-2 Creation of query strains 

 

 

 

 

 

 

 

 

Strains from the available Kanamycin resistance collection (with the Kanamycin 

resistance gene in place of a given paralog ‘a’) undergo marker switching via 

transformation to contain HPH, the Hygromycin B resistance gene in place of gene ‘a’. 

The ‘a’ deletion strain will then be mated with one containing Nourseothricin resistance 

in place of the sister paralog’s gene (gene a’ above).  Appropriate progeny will be 

selected and mated against the SGA deletion collection.  To ensure equal expression of 

markers, the same promoter and terminator sequences (indicated by P and T respectively 

above) will be used for all 3 deletion markers.   
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dissected after 5-7 days to confirm lack of potential aneuploidies and to select for proper 

mating type and appropriate reporters.  Finally, selected strains (MATa p1"::hygR) were 

mated overnight with standard SGA query strains containing Nourseothricin resistance in 

place of corresponding paralog (MAT! p2"::natR), sporulated, dissected and selected 

based on resistance and mating type to yield MAT! p1"::hygR p2"::natR strains.  These 

strains were mated against the SGA array strain collection in 1536-spot format. 

 

4.2.2. SGA pinning protocol 

Pinning and selection of mated strains was performed as previously described
120

, 

except for the addition of Hygromycin B at 300ug/L (determined previously to be the 

optimal selective concentration
185

) in the diploid selection media (YPD +G418 

+ClonNAT +Hygromycin B), and addition of a pinning step following selection of 

Nourseothricin and Kanamycin resistant haploids on SD –arginine –lysine –hystidine 

+G418 +ClonNAT +Hygromycin B +Canavanine +Thiolysine.  Briefly, deletion strains 

were arrayed in quadruplicate in 1536-spot format using an automated Virtek colony 

arrayer (http://www.virtekbiotech.com).  Query strains were grown in an even lawn 

overnight and mated to the deletion collection through robotic pinning.  Following 

mating, appropriate haploids were selected through successive pinning steps and growth 

on appropriate solid media.  After final pinning step plates were digitally imaged and 

growth scored.  
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4.2.3. Scoring of interactions and batch correction 

Once pinned and photographed, images were digitally processed using an in-

house software program and pixel counts corresponding to each colony obtained.  Colony 

sizes measurements were then analyzed according to an established protocol 

(Baryshnikova et al; in preparation for submission).  Briefly, each colony size 

measurement was corrected for: plate-specific effects (based on plate-to-plate variability), 

spatial and position-related systematic effects, row/column effects, and batch survey 

effects.  The purpose of correcting for batch-specific effects was to remove the 

confounding impact of similarities among plates being run by one individual at one time.  

However in this instance as all screens were run and photographed by myself using 

consistent machinery, all 10 surveyed screens were considered to be in the same batch.  

This should not only remove any consistent effects on behalf of the surveyor, but also any 

systematic interactions resulting from the modification of the SGA procedure (i.e. 

addition of Hygromycin B).  To further ensure that any interactions were not due solely to 

the use of Hygromycin B, a strain carrying the hph gene inserted at a locus containing a 

phenotypically-null allele was screened three times by another investigator (Ji Young 

Youn) and array strains showing significant fitness defects in at least 2 of the 3 screens 

were removed from all future triple-deletion screens.  Additionally, to remove linkage-

effects
186

 associated with gene deletions all double-mutant scores were manually 

examined by location and chromosomal regions displaying notable stretches of decreased 

colony size were removed from further assay. 

Once the corrected colony scores were obtained, the fitness of each array strain 

was calculated through comparison with the median of all previous occurrences.  
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Variations in colony size for each strain were used to calculate standard deviations and p-

values for inherent growth changes, and interactions calculated as: 

$ = WAB – (WA x WB) 

where $ represents the interaction score, WA and WB represent the query and array 

starting fitness scores, and WAB the observed array score.  Systematic analysis of the 

distribution of $ scores has previously indicated an optimal cutoff of -0.08 for 

aggravating genetic interactions (Costanzo et al; submitted for publication).  Those 

strains producing an $-value below this cutoff and with p-value less than 0.05 were taken 

to be aggravating genetic interactions. 

 

4.2.4. Analysis of function 

Functional enrichment analysis was performed on double-mutant interaction data 

using the BINGO plugin
162

 for the Cytoscape software environment
187

.  Where 

mentioned, correlation was performed using a Pearson’s correlation of epsilon values 

resulting from SGA screening. 

 

4.2.5. Microscopy 

 Log phase haploid deletion strains were fixed with formaldehyde, permeabilized 

using triton, and phalloidin-stained.  Following staining cells were imaged using a DMI 

6000B fluorescence microscope (Leica Microsystems) equipped with a spinning-disk 

head and argon laser (458, 488, and 514 nm; Quorum Technologies, Guelph, ON, 

Canada) coupled with an ImageEM-charge-coupled device camera (Hamamatsu 
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Photonics, Hamamatsu City, Japan).  Images from the microscope were analyzed using 

Volocity software (Improvision, Coventry, United Kingdom). 

 

4.3. Results 

4.3.1. Selection of strains for SGA screening 

As previous results had suggested a lack of overlap in genetic interactions for 

duplicated genes
154

, I sought to first test triple-deletion SGA on a body of paralogs that 

could directly demonstrate that this was the result of phenotypic masking.  For this reason 

I sought to chose an initial starting set of paralog pairs with low similarity in SGA 

profiles.  After dividing genes by functional category based on the broad associations in 

the GO
105

 SLIM database (http://www.geneontology.org/GO.slims.shtml), I examined 

similarity in SGA results for paralogs in the various categories via correlation in SGA 

profiles (SGA data was from an ongoing full-genome screening effort, taken with 

permission from the Boone lab).  This SGA data used consisted of over 2200 full-genome 

queries (over 6 million datapoints) and thus represents a more in-depth depiction of 

functional association than has been used in previous assessments.   

Upon comparing correlation values for paralogs in the various functional 

categories, I found that in addition to having low similarity in profile, genes encoding 

kinases and transcription factors showed no marked increase in similarity when epistatic, 

as one might generally expect for genes that are functionally similar (see Figure 4-3).  As 

paralog pairs in these gene categories are also depleted for pairwise interaction (see 

Chapter 3), a possible explanation for this finding is that not all genetic interactions  
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Figure 4-3 Correlation in SGA profile by functional category 

 

 

 

 

 

 

 

 

 

Following division by functional category, similarity in SGA profile was compared for 

epistatic and non-epistatic WGD-resultant paralogs.  Among those both displaying no 

general similarity in SGA interaction profile and no difference in similarity between 

epistatic and non-epistatic pairs are kinases and transcription factors.   
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between paralogous kinases and transcription factors have been observed.  Thus to 

demonstrate not only phenotypic masking, but also any possible instances of manifested 

redundancy among these groups, an initial set of kinases and transcription factors was 

selected for triple-deletion SGA assay (see Table 4-1). 

 

4.3.2. Modified SGA protocol shows reproducible results 

The standard SGA protocol implements 5 pinning steps after mating to select for 

appropriate haploid double-mutant strains
120

.  To determine if additional pinning steps 

were necessary to select triple mutants, two initial screens were run in quadruplicate with 

Hygromycin B added to selection media (see Figure 4-4).  Visual inspection of colonies  

indicated that the optimal protocol involved supplementing diploid selection media with 

Hygromycin B, and adding an additional final pinning step to select specifically for 

Hygromycin B resistance.  However, despite having a slightly worsened phenotype when 

the final Hygromycin B selection step was excluded, correlation analysis indicated that 

the strains reported scores that were still highly similar, specifically in the range of scores 

that indicates aggravating genetic interactions (see Figure 4-5).  This suggests that both 

the procedure and the scoring algorithm are robust to these variations in protocol, as well 

as demonstrating the reproducibility of screening results.  However, to ensure that strains 

analyzed were at optimal health, all reported screens include the final Hygromycin B 

selection.   
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Table 4-1 Genes surveyed through triple-deletion SGA 

Gene 1 Gene 2 Description 1 Description 2 

VHS1 SKS1 

Identified as a high-copy suppressor of the 

synthetic lethality of a sis2 sit4 double 

mutant, suggesting a role in G1/S phase 

progression 

Involved in the adaptation to low 

concentrations of glucose independent of 

the SNF3 regulated pathway 

ALK2 ALK1 
Protein kinase; phosphorylated in response 

to DNA damage; 

Belongs to the haspin family of kinases; 

contains a leucine zipper motif; may 

function in mitosis 

CNA1 CMP2 

Calcineurin A; one isoform (the other is 

CMP2) of the catalytic subunit of 

calcineurin, 

Calcineurin A; one isoform (the other is 

CNA1) of the catalytic subunit of 

calcineurin, 

HAA1 CUP2 

Transcriptional activator involved in the 

transcription of TPO2, HSP30 and other 

genes encoding membrane stress proteins; 

Activates transcription of the 

metallothionein genes CUP1-1 and CUP1-

2 in response to elevated copper 

concentrations 

KIN1 KIN2 
Serine/threonine protein kinase involved in 

regulation of exocytosis; 

Serine/threonine protein kinase involved in 

regulation of exocytosis; 

SUT1 SUT2 

Transcription factor of the Zn[II]2Cys6 

family involved in sterol uptake; involved 

in induction of hypoxic gene expression 

Putative transcription factor; multicopy 

suppressor of mutations that cause low 

activity of the cAMP/protein kinase A 

pathway; 

PSK1 PSK2 

Coordinately regulates protein synthesis 

and carbohydrate metabolism and storage 

in response to a unknown metabolite that 

reflects nutritional status 

Regulates sugar flux and translation in 

response to an unknown metabolite 

KIN82 FPK1 

Putative serine/threonine protein kinase, 

most similar to cyclic nucleotide-dependent 

protein kinase subfamily and the protein 

kinase C subfamily 

Putative protein kinase that, when 

overexpressed, interferes with pheromone-

induced growth arrest; 

NRG2 NRG1 

Transcriptional repressor that mediates 

glucose repression and negatively regulates 

filamentous growth; has similarity to 

Nrg1p 

mediates glucose repression and negatively 

regulates a variety of processes including 

filamentous growth and alkaline pH 

response 

 

 

Analysis of triple-deletion SGA focused primarily on non-epistatic WGD-resultant 

paralog pairs that are annotated as being involved in cell signaling (i.e. kinases and 

transcription factors).  One phosphatase pair was included for comparison, as were two 

control strains, which consisted of random pairings of genes from the same set. 
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Figure 4-4 Modifications in SGA protocol 

 

 

Initial screens were conducted to investigate the effects of adding Hygromycin B to both 

the diploid and final selection media. Analysis of scores indicate that Hygromycin B is 

required in diploid selection media, and that strains should be pinned to media that selects 

for Kanamycin (G418) and Nourseorthricin (NAT) resistance before selecting for 

Hygromycin B resistance. 
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Figure 4-5 Similarity in interactions over replicates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SGA scores resulting from two screens of an identical query strain either pinned directly 

to Hygromcyin B/Nourseothricin/Kanamycin selection media, or first pinned to 

nourseothricin/G418 selection.  Overall correlation of screens is r=0.65.  Red lines 

indicate the region that would achieve scoring as an aggravating genetic interaction if 

significant at p < 0.05. 
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4.3.3. Triple-deletion SGA results require increased stringency in identification 

At the standard $-value cutoff score for aggravating genetic interaction using SGA 

(-0.08; Costanzo et al; submitted for publication), comparison of double-deletion screens 

with those of constitutive single deletions revealed an overlap of between 15-20% in 

shared interactions.  While this number initially seems low, it is consistent with 

expectations based on the false-negative and false-positive rates associated with SGA 

(precision = 63%, recall=35%; Costanzo et al; submitted for publication).  Further, since 

true interactions (taken as those detected independently by both single-deletion screens) 

are more likely to be detected in the double-deletion screen as stringency increases 

(Figure 4-6), the triple-deletion SGA method appears to be detecting valid interactions, 

albeit with low overlap with constitutive single-deletion screen results.  Therefore I  

assumed that a high level of stringency would be required to confidently determine that a 

particular interaction was resulting from the triple-deletion and not any underlying 

pairwise gene combination.   

To determine the appropriate level of stringency necessary for confidently 

assessing trigenic interactions, a number of interactions were confirmed independently 

using tetrad dissection and results compared.  This comparison revealed that bona fide 

triple-gene interactions were increasingly represented in the SGA screen at higher 

magnitudes of $-value cutoff (see Figure 4-7; red line), hitting a plateau at 

approximately 60% accuracy at a cutoff of -0.2 and below.  As this accuracy level is 

similar to that for the published digenic interaction dataset (Costanzo et al; submitted for 

publication), I felt that interactions scoring above this cutoff could be confidently  
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Figure 4-6 Single-deletion hits found in double-mutant screen 

 

The number of ‘true’ interactions (i.e. those that are detected independently in single-

deletion screens) detected in double-deletion screens shown for all 10 surveys.  

Increasing the cutoff for interaction detection in the single-deletion screens (indicated on 

the x-axis) results in interactions that occur more frequently in the double-mutant screens.   
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Figure 4-7 Accuracy of triple-interaction detection 

 

The frequency of successfully detected trigenic interactions (as assessed through 

comparison with tetrad dissections) is indicated for varying $-cutoff values.  The 

‘stringency model’ (red line) simply depicts the increase in accuracy as the $-cutoff value 

increases, however the ‘Et model’ calculates $ by subtracting scores resulting from 

single-deletion screening from the double-deletion screen score.  Both models give 

comparable accuracy, however the ‘Et model’ inherently incorporates the contribution to 

fitness of all 3 genes involved in the interaction, and is therefore more biologically 

accurate.  Interactions from double-deletion screens having Et values less than -0.23 (at 

p<0.05) were taken to be valid.   
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reported.  However, as presented the current $ model does not incorporate all digenic 

fitness values and therefore may be subject to error.  For this reason a more appropriate 

score model was tested 

To exclude the possibility that reported interactions were due to pairwise gene 

combinations I fit triple-gene interactions according to the following model: 

$t = $ijk - $ik - $jk 

By this definition, the interaction score $t is defined for an interaction among a query 

containing an initial deletion of genes i and j with potential interactor k.  By definition of 

this model only those interactions with a relatively strong trigenic interaction score (as 

compared to constitutive digenic interactions) would meet a stringent $-value cutoff.  

This model produced results similar to the overall $ cutoff model (see Figure 4-7; green 

line), leading to an overall accuracy of approximately 60% at cutoff of 0.23.  All trigenic 

interactions subsequently presented have met this criterion and are thus of confidence 

comparable to existing SGA digenic data.  

 

4.3.4. Trigenic interactions reveal insight towards overlapping functions 

Using the criteria presented above all double-deletion interaction screens were 

found to have interactions not observable using either individual deletion screen, with 

degree ranging between 5 and 49 for the 10 surveyed pairs (see Table 4-2; also for full 

list of interactions see Appendix Table 2).  Notably, while NRG1/NRG2 had 49  
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Table 4-2 Degree of the surveyed paralog pairs 

 

Gene 1 Gene 2 Group # Ints 

NRG2 NRG1 Transcription Factors 49 

KIN82 FLK1 Kinases 32 

CNA1 CMP2 Phosphatases 25 

ALK2 ALK1 Kinases 19 

NRG2 ALK1 Control 13 

PSK1 PSK2 Kinases 10 

KIN1 KIN2 Kinases 7 

VHS1 SKS1 Transcription Factors 6 

SUT1 SUT2 Transcription Factors 5 

 

Surveyed double-mutant strains showed varying interactivity as SGA queries.  The 

control pairing of NRG2/ALK1 showed fewer interactions than the ALK1/ALK2 and 

markedly less than the NRG1/NRG2 screen.  The degree of interactions for a double-

mutant query could not be predicted based on individual interaction degree or similarity 

in SGA profile for the starting pair, however those pairs with high degree as double-

deletion queries were also generally more co-expressed.   
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interactions, a control screen that paired NRG1 with ALK2 had only 13, emphasizing the 

redundancy between the bona fide paralogs.  The full list of genes interacting with the 10 

double-deletion screens (162 total) span a large range of functional categories, but 

notably contain many (~20) genes of uncharacterized function.  This implies that such 

higher-order deletion screens may aid in further functionally categorizing the genes of S. 

cerevisiae.   

While the surveyed set is a small group from which to draw general conclusions, I 

next sought to determine if any functional properties of the paralog pairs might be  

predictive of their degree as double-deletion queries.  A moderate correlation was 

subsequently found between similarity in expression measured over multiple 

conditions
157

 and degree (r=0.61, p=0.052, n=8).  Further, dividing screened pairs into 

groups based on degree (low degree group having 10 interactions or less and a high 

degree group with more than 25) showed differences in expression similarity to be 

statistically significant (p<0.005).  There were no appreciable differences in conservation 

(as assessed through shared sequence similarity) for low and high degree paralog pairs.   

I next examined specific paralog pairs to determine if results from the double-

deletion screens re-capitulated what was known about their function.  As mentioned 

briefly above, NRG1 and NRG2 are transcriptional repressors that negatively regulate 

filamentous growth and are involved in alkaline pH response
188

.  In keeping with their 

known cellular role, double-mutant hits were significantly enriched for genes annotated 

as being involved in ‘cell differentiation’ and ‘response to pH’ (neither single-mutant 

screen produced hits with the same functional enrichment).  Also, the double-mutant 

uniquely showed interactions with the Rim complex, members of which are known to 
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repress NRG1 during alkaline stress
189

 (interactions with Rim101, Rim20 and Rim9 

confirmed via tetrad dissection). Further, SNF1, a known antagonist of NRG1 and 

NRG2
190

 shows a strong anti-correlation in SGA profile with the NRG1/NRG2 double-

deletion screen (r=-0.2).  Taken together these results re-iterate that NRG1/NRG2 act in 

concert to respond to changes in pH, and that this may have been the function of the 

single ancestral gene.   

Another paralog pair, KIN1/KIN2 are serine/threonine protein kinases involved in 

regulation of exocytosis
191

.  While neither individual gene shows a noticeable phenotype 

upon deletion, deletion of the single ortholog of these two genes in S. pombe causes a 

distinct lack of cell polarity
192

.  Two hits resulting from the KIN1/KIN2 double-deletion 

screen also have known involvement in cell polarity (BEM4, SLA1), suggesting a 

redundant function for KIN1/KIN2 in this regard.  However, fluorescent actin staining 

revealed that there is no noticeable polarity defect in the double-deletion mutant (see 

Figure 4-8), suggesting that other genes may buffer the activity of KIN1 and KIN2. 

Lastly, the paralogs CNA1 and CMP2 (calcineurin) have well described functions 

related to their de-phosphorylation activity, participating in several biological processes.  

Appropriately the individual SGA screens for CNA1 and CMP2 correlate with a group of 

genes spanning multiple functions.  Alternatively however, the double-deletion screen 

correlated mainly with genes that are enriched for nuclear transport.  This provides (albeit 

speculative) evidence that ablation of this combination of catalytic subunits disrupts the 

nuclear-related function of calcineurin (the main target of calcineurin is a transcription  
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Figure 4-8 KIN1/KIN2 double deletion does not effect polarity 

 

 

Images displayed are of haploid deletion mutants following phalloidin staining of actin.  

KIN1, KIN2 and combined KIN1/KIN2 deletion mutants show normal cell polarity 

(strands of actin spanning larger cells, localized patches in budded cells).  In contrast, the 

BNI1 deletion mutant strain has known polarity defects and shows only localized 

globules of actin. 
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factor that is targeted to the nucleus upon de-phosphorylation and modulates ion 

homeostasis
193,194

).  As this relationship had been initially masked in single-deletion 

screens, it may represent the shared, ancestral function of these two genes. 

 

4.4. Discussion 

Although requiring an extra degree of rigor, these results indicate that inclusion of 

Hygromycin B as an additional marker is a viable avenue to pursue SGA screening of 

double-deletion query strains, and that trigenic interactions can subsequently be 

confidently identified.  I submit that this protocol may have efficacy beyond the study of 

paralog pairs, for example in the determination of the function of heterodimers, isozymes, 

or any other genes with demonstratable functional redundancy. 

Of the 10 pairs assayed through triple-deletion SGA, some paralog pairs proved 

particularly amenable to the process, notably NRG1/NRG2 (which had nearly 50 unique 

interactions) and CNA1/CMP2 (which showed functionally insightful correlations with 

previously conducted single-deletion screens).  Although speculative, there appears to be 

very little regarding the properties of paralog that suggests a priori whether they may be 

more amenable to triple-deletion SGA.  Notably however, results were generally less 

informative for some kinase paralog pairs, suggesting that they may be better surveyed 

for redundancy using alternate methods.  Specifically, the kinase pair ALK1/ALK2 had a 

degree that was only slightly greater than expected based on the ALK1/NRG2 control 

pairing (19 versus 13), and while the paralog pair KIN82/FLK1 had many interactions, it 

was hard to discern a unified redundant function.  However, the demonstration that a 

small group of pairs with generally low sequence conservation and minimal overlap in 
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SGA profile as single deletion queries could demonstrate robust, unique interactions as 

triple mutants suggests that elements of redundancy may be pervasive and re-iterates the 

notion that functional redundancy among paralog pairs can not simply be predicted based 

on conservation.  Further, the correlation between expression similarity in alternate 

conditions and degree as double-mutant queries for paralog pairs suggests that this 

method is useful in detecting condition-specific relationships, and I believe, would be 

useful in further investigating condition-specific epistasis among the remaining non-

epistatic paralogs (see Future Directions). 

My previous work had ultimately suggested that observation of epistasis may be 

incomplete in the limited conditions typically used for functional assay, and further that 

some functional categories of genes may be artificially under-represented for genetic 

interaction
123

.  As all surveyed pairs had no existing evidence of epistasis, these results 

ultimately demonstrate the possibility that lack of similarity among some paralog pairs in 

SGA screening may be due to masked interaction, and further that detecting phenotypic 

manifestations of redundancy can require novel approaches.   
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Chapter 5  

 

Thesis summary and future directions 
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5.1. Thesis summary 

WGD events facilitate the acquisition of novel function by providing a 

tremendous and unique source of genomic material that is ultimately used to bypass 

normal evolutionary constraints.  Since evidence does not tend to indicate that exact 

functional redundancy can be maintained between duplicates over long spans of 

evolutionary time, several models have been presented to describe the stable fixation of 

paralogous genes following their initial duplication.  The two most popular models 

basically prescribe either the procurement of novel function through random mutation, or 

the partitioning of ancestral function, typically through alterations in patterns of 

expression.  While these models use sporadic examples to illustrate their claims, 

systematic surveys of the overlapping function of paralogs have been lacking.  Further, 

while the advantages of increased dosage may facilitate initial redundancy among WGD-

resultant duplicates
195

, logically some additional mechanism should facilitate the long-

term preservation of functional overlap.  To this end, recent observation of 

‘transcriptional back-up’ mechanisms suggests that some element of retained redundancy 

is advantageous, contributing to the robustness of the genome towards mutation and 

potentially facilitating adaptation to alternate environmental states.  With this work I 

sought to gain insight into the nature and extent of functional overlap among a large body 

of extant duplicates with the ultimate goal of discerning if functional redundancy is 

pervasive enough to suggest a selectable advantage.   

Using two large physical interaction datasets (and subsequently several other 

datasets of comparable accuracy but generated using different experimental means) I 

demonstrated that the 457 WGD-resultant paralogs described by Kellis et al
17

 had 
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substantially retained shared interactions.  However, considering the nature of the result I 

am hesitant to state which model of functional divergence is supported.  While the neo-

functionalization model can be interpreted as suggesting complete functional dispersal, 

many clear instances of neo-functionalized paralogs still retain enough similarity as to 

potentially share physical associations.  For example, mammalian Retinoic Acid 

Receptors (RARs) have clear evidence of neo-functionalization in both their targeting 

and binding sequences, however all still share interactions with a common substrate, 

suggesting retained functionality
196

.  Similarly, while the sub-functionalization model 

dictates functional partitioning as opposed to dispersal, it is still entirely possible under 

the DDC model that even highly similar paralogous genes would not share interactions or 

complex membership (i.e. if they are expressed only under alternate circumstances).   

Therefore while my results regarding shared interactions do appear superficially 

to support limited divergence in function for WGD paralogs, either model (or 

combination therein) may have been initially active.  Ultimately data regarding the 

ancestral function is needed to truly resolve the issue of the dominant mode of retention, 

and at best we have only species variants separated by over 100 million years of 

evolution for comparison (see Future Directions below).  However, regardless of 

whether or not they have divided the ancestral function, the extent of shared physical 

associations does suggest that some element of redundancy can be maintained over long 

spans of evolutionary time.  Furthermore, variances in expression among co-complexed 

gene products lend support to the existence of transcriptional back-up circuitry as a 

means to maintain functional overlap. 
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Conceptually, maintaining variances in expression level could be a useful 

mechanism to compensate for ablation of a duplicate, however this introduces the 

question of why every other essential gene does not have a similar mechanism.  An 

alternate explanation for the decreased expression of one paralog is that the low-

abundance gene is not required for growth in surveyed condition, but reserves expression 

to help accommodate growth in alternate states.  As the various post-WGD species would 

have encountered different environmental and selective forces following speciation, this 

could potentially explain why these species have retained alternate sets of duplicates.  To 

test both these hypothesis I examined the extent of aggravating genetic interactions 

between surveyable WGD-resultant paralogs in both standard and stress conditions. 

Assaying for aggravating genetic interactions between the 399 surveyed paralog 

pairs produced two significant findings.  First, the frequency of genetic interactions was 

found to be higher than that previously noted for genes with identical functional 

annotation
120

, implying that duplicated genes have a propensity for epistasis beyond that 

which could be explained by their shared function. Furthermore, the observation of some 

instances of epistasis solely in the assayed stress conditions suggested that epistatic 

relationships may be uniquely observable using additional stressors (approximately one-

quarter of non-epistatic paralog pairs are of unknown function and thus may only have 

noticeable activity in an alternate state).  These observations lend anecdotal support to the 

presence of transcriptional back-up mechanisms, although there is no direct evidence of 

their existence (more in Future Directions below) and confirm that instances of 

redundancy may be specifically preserved to accommodate growth in non-ideal cellular 

conditions.  It is also worth mentioning that the function of those genes deemed epistatic 
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in alternate conditions were inherently related to the tested condition (e.g. epistasis 

among sodium transporters in high salt).  Given the inherent relationship between 

observation of epistasis, experimental condition, and gene function, I am therefore 

hesitant to speculate at the extensibility of these findings to duplicates of other origin 

(specifically SSD-resultant duplicates which are known to be functionally distinct from 

those arising via WGD).  I ultimately submit that SSD-resultant duplicates deserve 

independent consideration, and should be analyzed separately in future determinations of 

paralog evolution. 

The second notable observation stemming from this line of experimentation was 

that epistatic paralog pairs could not generally be shown to have more shared functional 

overlap (as gauged by physical interactions) than comparable non-epistatic paralogs.  

Recently Ihmels et al showed that yeast paralog pairs have low overlap in genetic 

interaction profiles, suggesting that they may be capable of functional compensation 

without any obvious redundancy
154

.  However, an alternate explanation is that not all 

epistatic relationships between paralogs have been revealed.  To test this assertion I 

performed SGA screening of double-deletion queries, comparing results to the 

constitutive single-deletion strains.  I focused experimentation on a small subset of 

paralogs that had low similarity in SGA profile in order to directly test the hypothesis that 

low overlap in SGA profile did not necessarily correspond to lack of redundancy.  

Notably, not all surveyed paralog pairs displayed a high degree of trigenic interactions, 

implying either that redundancy is ultimately not pervasive among extant duplicates, or 

that the triple-deletion SGA method was not appropriate to screen certain pairs.  Potential 

alternate screening methods are discussed below (see Future Directions).  However, 
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those paralog pairs with the most trigenic interactions (and thus arguably with the most 

redundant function) also displayed a notable correlation in expression across multiple 

conditions, seemingly supporting my assertion that redundancy may be retained to 

facilitate compensation in alternate environmental states.   

The central theme of this thesis has been to analyze the nature of functional 

overlap among duplicated genes, and ultimately to determine whether retained 

redundancy among duplicates is pervasive enough to suggest a selectable advantage.  

Ultimately I present three findings that I believe to be substantial: (i) functional overlap is 

prevalent among WGD-resultant paralog pairs, (ii) compensatory mechanisms are also 

widespread among this same group of paralogs, even more so than would be predicted 

based on their strong functional associations, and (iii) functional compensation can not 

necessarily be predicted based on the conservation of duplicated pairs; direct assay of 

function is required.  While results do strongly imply adaptation to alternate 

environmental conditions as a mechanism for the retention of functional overlap among 

gene duplicates, additional experiments would be required to prove this directly.  Future 

experimental approaches that may be useful not only in answering this question but also 

in further characterizing the extent of functional overlap among gene duplicates are 

described below.  
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5.2. Future directions 

5.2.1. Using further large-scale screening to identify functional overlap 

5.2.1.1. Increased breadth of triple-deletion SGA screening 

Increasing the number of WGD-resultant paralog pairs assayed through triple-

deletion SGA would be useful on several fronts.  First, the larger body of experimental 

data would provide a greater means with which to identify batch effects and other 

artifacts that arise not only from the addition of Hygromycin B, but also that may be 

generally associated with multiple gene deletions.  Further, screening an additional bevy 

of control strains (meaning randomly paired genes) would allow better characterization of 

the range of interactions expected from non-redundant pairs, and therefore form a more 

appropriate reference against which I could identify true functional overlap.  Systematic 

SGA screening would also allow more concrete identification of alleviating interactions, 

which may be specifically useful in determining the overlapping function of paralogs 

within pathways or complexes. Lastly, as the surveyed genes were selected based on 

annotation as kinases and transcription factors it would be worthwhile to use the triple-

deletion SGA method to explore interactions among both the varying functional 

categories and pairs of unknown function.  Of the 450 paralog pairs described by Kellis et 

al
17

, approximately half have shown a notable growth defect either through my work or 

by DeLuna et al
124

, or Dean et al
173

.  The remaining paralog pairs should be thoroughly 

investigated using triple-deletion SGA.  Condition space could also be further increased 

through chemogenomics
197

. 

In addition to screening for functional overlap among paralogous genes, triple-

deletion SGA may be useful in understanding differences in epistasis across multiple 
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species.  Evidence recently collected suggests that the majority of gene pairs found to be 

epistatic in S. cerevisiae (~70%) show no interaction in the distantly-related species 

Schizosaccharomyces pombe (S. pombe)
198

.  Assay of orthologs representing pairs 

epistatic in the S. pombe strain but not in S. cerevisiae as double-deletion queries will 

determine if their combined loss of function effect was buffered by additional genes 

(possibly by genes retained uniquely in S. cerevisiae following the WGD event).  

 

5.2.1.2. Determining functional overlap using other SGA-based techniques 

While the synthetic lethal interactions screened via SGA identified many useful 

relationships between duplicated genes, ultimately there may exist alternate experimental 

means that may be helpful in characterizing functional overlap of yeast paralogs.  

Specifically, as these experiments have shown that genes functioning in growth-related 

processes have the most noticeable growth defects, perhaps assay of additional 

phenotypes would reveal functional relationships for those genes involved in cell 

signaling that were notably deficient for aggravating genetic interactions.  Furthermore, 

experimentation performed focused on loss-of-function interactions, while contribution to 

phenotypes resulting from gain-of-function interactions went unexplored.  For these 

reasons there are several large-scale assays that I feel would be particularly insightful in 

establishing redundant function for the remaining non-epistatic duplicated genes.  Each of 

these methods adapts the SGA process and therefore would require very little in terms of 

query strain modifications. 

Growth of microbial strains is often taken to be indicative of the health of an 

organism, however the possibility exists even for normally growing strains that there is 
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some other manifested phenotype that could otherwise alter fitness. The use of 

fluorescence microscopy to create and process morphological cell images on a large scale 

(often referred to as High Content Screening, or HCS
199

) can be applied to quantifiably 

characterize strain to strain variations in size/shape, cytoskeletal formation, and nuclear 

morphology
200

.  Further, analysis indicates that functionally-related genes cause similar 

morphological differences upon deletion, and recent work suggests that high-throughput 

microscopy can be combined with the SGA pinning procedure to quantify such 

phenotypes on a genome-wide scale
201

.  Therefore just as defects in growth had been 

used to derive an expectation for double-deletion fitness and subsequently assess epistasis 

based on a multiplicative growth model, any quantifiable phenotype could be used in the 

same way.  HCS data suggest that approximately half of all deletion mutants have a 

corresponding quantifiable phenotypic defect
200

, how these phenotypes may be buffered 

by duplicates remains to be explored. 

Similar to the systematic gene deletion studies determining that approximately 

20% of yeast genes are essential for cell viability
52

 (i.e. have lethal phenotypes), over-

expression surveys have found reduced growth among 15% of genes when transcript 

abundance is increased (gain of function phenotypes)
117

.  Notably, many of the genes 

with gain of function phenotypes are involved in cellular signaling, suggesting a potential 

to be informative for the group of paralogs not found to be epistatic through RSA or GCA 

screening (see Chapter 3).  Exploitation of the SGA platform has allowed systematic 

introduction of deletion mutants into strains systematically over-expressing yeast ORFs 

to facilitate large-scale analysis of interactions occurring upon over-expression of one 

gene and decreased expression of another (synthetic dosage lethality; SDL) and has been 
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particularly informative in mapping kinase-substrate interactions
202

.  Analysis of the 

profiles corresponding to queries of paralogous kinases may indicate shared substrates 

and by extension overlapping function.  Further, utilizing mutants containing double-

deletions of paralogous kinase pairs and comparing to related single over-expression 

profiles (as in Chapter 4) may indicate to what extent paralogous kinases share substrate 

specificity, thus identifying potential redundancies among this large body of paralogs. 

Lastly, two-color receptor screening developed by the Andrews lab at the 

University of Toronto utilizes the SGA deletion collection to assay responsiveness of 

genes to a promoter sequence of interest
203

.  Basically, a query strain containing a target 

promoter sequence driving GFP expression as well as a reference, constitutively active 

promoter driving another fluorescent marker is mated to the deletion array.  Following 

appropriate selection, the ratio of GFP to RFP fluorescence is used to determine the 

interactions between the various deleted genes and the promoter sequence.  Investigation 

of the promoter sequences of paralogs could indicate the potential for duplicates to be co-

expressed, as shared activation by transcription factors may indicate potential co-

expression in alternate conditions.   

 

5.2.2. Assaying for the presence of transcriptional back-up mechanisms 

As mentioned above the high frequency of epistasis among WGD-resultant 

paralogs implies that presence of a duplicate largely buffers phenotypic effects associated 

with their deletion.  The proposed mechanism for this occurrence involves modification 

of transcription, increasing the expression of a paralog upon deletion or inhibition of its 

sister gene.  Naively, one might think this could be tested simply by monitoring the 
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expression of a given gene in a strain harboring a deletion of the corresponding paralog, 

however these changes are rarely observed in practice
204

, potentially due to a diluted 

effect at time of assay (presumably because strains will have grown for generations with 

this deletion and the initial effect may be transient).  A more direct means to test for the 

existence of transcriptional back-up mechanisms would be to replace the promoter 

sequence of a given paralog (i.e. give the paralog consistent expression), then 

subsequently delete the ORF of the sister gene.  If the ORF deletion does not produce a 

phenotype with abnormal growth, then it is unlikely that the additional paralog is 

compensating through altered transcriptional activity.   

Similarly, a simple switch of promoter sequences for epistatic paralogs may 

indicate if they have evolved according to the DDC model.  If two genes are highly 

similar (i.e. varying only in their expression) switching their promoter sequences should 

switch their expression patterns, thus determining if one each gene is still capable of 

performing the other’s function (i.e. that they have partitioned the ancestral function 

through altered expression).  Assay of interactions should indicate whether the duplicates 

have substituted for one another. 

 

5.2.3. Determining the properties of paralogs in other species 

5.2.3.1. Examining the ancestral copies of epistatic paralogs 

While experimental data can be used to speculate as to the nature of functional 

dispersal following duplication, ultimately these assertions cannot be proven without 

knowledge of the function of the ancestral gene.  Hypothetically, obtaining the ancestral 

species would facilitate determination of function (i.e. through physical associations, and 
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co-expression, etc) and subsequent comparison with extant species could indicate what 

aspects have been retained by the corresponding paralogs.  Also, knowledge of ancestral 

gene function could answer the question of whether essential genes in the ancestral 

species initially encoded paralogous gene pairs displaying an aggravating genetic 

interaction, and subsequently whether duplication is truly reserved for genes of limited 

functional importance (as suggested by He and Zhang
95

). 

While no pre-WGD strain exists today, Kellis et al
17

 established that K. waltii 

diverged from the Saccharomyces lineage soon before the WGD event making it one of 

the closest available proxies to the ancestral pre-WGD species.  Obviously using K. waltii 

as the ancestral proxy poses some limitations as both K. waltii and S. cerevisiae have 

evolved for many millions of years since their respective speciation events, however 

these strains represent our closest available experimental approximations.  Unfortunately 

there are also some potential technical difficulties, notably it is unknown how efficiently 

homologous recombination would occur in K. waltii, making creation of mutant strains 

difficult.  Luckily, K. waltii has a characterized plasmid (analogous to the S. cerevisiae 

2µ plasmid) which can be used to introduce foreign DNA sequences
205

.  Further, K. lactis 

and S. Kluyveri (pre-WGD species having approximately the same divergence time from 

S. cerevisiae as K. waltii) also have available knockout protocols.  Therefore analysis of 

both ancestral over-expression and deletion phenotypes would be possible, and could be 

combined with SDL (mentioned above) or SGA data to indicate what morphological 

defects may have been inherited from the ancestral gene, and which are buffered through 

duplication.   
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5.2.3.2. Conservation of epistatic relationships among post-WGD yeast species 

While retention of duplicates in multiple post-WGD yeast species has been 

examined
36

, it is less clear whether epistatic relationships among duplicates are 

maintained across species.  Therefore, determining whether the same duplicate pair that 

contributes jointly to a phenotype in S. cerevisiae, does so in other species would indicate 

for the first time the extensibility of findings regarding the functional overlap of 

duplicated genes toward other species.  Also, akin to determination of gene essentiality 

across species, investigation of epistasis may indicate how the various post-WGD species 

have modified their genetic network to accommodate adaptation to their unique 

environments.   

Of the 5 post-WGD yeast species described in the YGOB (S. cerevisiae, S. 

bayanus, C. glabrata, S. castelli and K. polysporus) 2 have been shown to be amenable to 

gene deletion (S. bayanus
36

 and C. glabrata
206

).  Also, the recent discovery of inhibitory 

RNA (RNAi) in budding yeast (notably S. castelli
207

) introduces the possibility for gene 

knockdown assay not only in this species, but in other yeast not typically assayable 

through gene deletion assay (RNAi is a term generally used to describe a system in which 

short RNA sequences silence transcripts through complementary binding
208,209

).  In 

addition to analysis of the conservation of epistasis across species, it would be 

worthwhile to determine whether genes existing in single-copy post-WGD in other 

species share a deletion phenotype consistent with double-deletions of paralogs in S. 

cerevisiae. 
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5.2.3.3. The impact of WGD on robustness of the human genome 

 At the time of my comparison of the protein complex membership of extant 

duplicates in S. cerevisiae (Chapter 2) there were scant interaction data in other species 

(notably human), and that which did exist focused on particular genes or processes and 

was therefore potentially biased.  Further, there was limited, contested evidence of the 

presence of WGD-resultant paralogs in the human genome, so a confident list of 

duplicates could not be determined.  Today interaction data are far more common for 

mammalian species (as of this writing the Human Protein Reference Database contains 

38,806 human physical interactions; http://www.hprd.org), potentially facilitating re-

visitation of functional overlap analysis using human duplicates.  Further, copious 

amounts of expression data collected both in healthy tissues and in disease states (for 

example as found in the Gene Expression Omnibus; http://www.ncbi.nlm.nih.gov/geo/) 

would allow comparisons of the varying expression patterns of human duplicates, and 

subsequently determination of whether the noted disparity in expression for co-

complexed yeast duplicates holds true in human.  Also, sequencing of additional genomes 

has facilitated the determination of a set of human WGD-resultant paralogs
22,41

, which 

could ultimately be used for such a comparison.   

In addition to surveying function through analysis of expression and physical 

interactions, recent advances in the field of human gene inhibition have made the study of 

human genetic interactions more feasible than ever.  Analysis of the genetic interactions 

of human duplicates would allow determination of the contribution of duplicates towards 

genomic robustness in human, which may in turn help elucidate susceptibility toward 

diseases with a genetic component.   
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While ablation of gene function via deletion is still not nearly as practical in 

cultured human cells as in yeast, the recent emergence of RNAi represents a stable, 

reproducible knockdown procedure.  Creation of RNAi-containing vector libraries has 

facilitated the studying of cancer processes through large-scale gene disruption
210,211

, and 

has spurred an initiative to construct a genome-wide library containing RNAi in lentiviral 

vectors capable of transfecting non-dividing cells
212

. While analysis in the nematode C. 

elegans indicates that genetic interactions are observable through the use of RNAi
213

, and 

while analysis in mammalian cells demonstrates that both large-scale knockdown 

analysis through pooled RNAi libraries
212

 and combinatorial addition of RNAi in human 

cancer cell lines is possible
214,215

, systematic studies of double-gene knockdown are 

lacking.  Paralogs could be selected for assay based on expression in a given cell type, 

and analyzed for interaction via addition of appropriate combinations of RNAi.   
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* With permission from Chemical Research, Copyright 2007 



 

 

140 

Generation of experimental data 

The goal of any proteome-scale association assay is high-quality interaction data.  

The S. cerevisiae (budding yeast) proteome (which is relatively small in comparison to 

mammalian systems) has been investigated experimentally for over thirty years using 

low-throughput means
216,217

.  Appropriately, the long-beheld gold-standard in protein 

complexes in yeast was generally regarded to be the curated set stored in the Munich 

Information center for Protein Sequences (MIPS)
104

 database, which contains  

experimentally well-characterized protein complexes generated through low-throughput 

assay.  However, increasingly comprehensive lists of protein interactions were only 

recently generated with the application of high-throughput assays such as Tandem 

Affinity Purification (TAP)
218

 and Yeast-2-Hybrid (Y2H)
125

 screening.  Indeed, two 

recent global studies of yeast protein complexes published in 2006 by Gavin et al
48

 and 

Krogan et al
49 

each predicted the existence of over 350 alternate groupings of proteins 

based on clustering of the physical interaction data. Yet while high-resolution interaction 

detection methods may avoid some of the problems, such as the often high false-positive 

and false-negative rates, associated with their high-throughput counterparts
138,219

, these 

low throughput interaction methods are not practical for proteome-scale studies.   

 

Yeast-2-Hybrid 

Y2H was first developed in the late 1980’s
125

 as a generalizable and highly 

sensitive method to screen for interactions among binary pairs of proteins, and is still 

frequently used both as a first pass screening tool and for genome-scale exploratory 

studies today
220-222

.  Despite several design variations since its inception which have 
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resulted in improved assay efficiency
223-225

, the basic principle of the Y2H assay remains 

the same.  That being that Y2H takes advantage of the fact that the process of 

transcriptional activation (and thus expression of a suitable reporter gene) depends on the 

tethering of two distinct protein domains to a target promoter: first, a DNA-binding 

domain (BD), that binds to the upstream DNA element and, second, an activation domain 

(AD) that interacts with the general RNA polymerase machinery.  In order to determine if 

an interaction occurs between two proteins, such as x and y (where x represents the bait 

protein, and y the possible interactor, or prey), protein x is expressed as a fusion to the 

DNA-binding domain, while the activation domain is likewise fused to protein y.  If the 

re-engineered proteins are co-expressed and subsequently interact in the yeast nucleus, 

the jointly linked BD and AD will reconstitute an activator, leading to expression of a 

selectable reporter gene
125

.  The presence or absence of a binary interaction can then be 

monitored on a large-scale by screening thousands of strains for the activated expression 

of selectable markers and by following the growth properties of viable yeast colonies.  

High throughput adaptability can be further enhanced by mating ordered arrays of yeast 

strains encoding distinct bait and prey in a 96-spot format
226

.   

 The first adaptation of the Y2H method to genome interaction mapping was 

reported for the T7 E.coli bacteriophage, in which 25 interactions were identified among 

~50 proteins
227

.  The implications of this pioneering study were that the Y2H method 

could be applied to study interactions among the components encoded by a complex 

biological system or even an entire genome.  In rapid succession, the interaction networks 

of even more complex organisms were surveyed over the course of the next few years 

using the Y2H method.  In 2001, two separate initiatives compiled Y2H-based global 
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interaction maps in yeast
102,228

, noting a combined set of 4000 putative PPIs.  In 2004, an 

initial first-pass proteome-wide map was reported for the nematode Caenorhabditis 

elegans
229

, the first study of its kind for a multi-cellular organism.  Y2H screens have 

also been conducted in even more complex systems such as Drosophila melanogaster 

(fruit fly)
230,231

, and most recently (although the data can be considered still preliminary), 

for human cells
232,233

.   

A major advantage of Y2H is that reformation of the transcription factor complex 

used to detect interactions can occur when assayed proteins only transiently interact
234

, 

whereas comparable affinity-based purification methods (discussed below) have 

difficulty detecting transient interactions
235

.  A major disadvantage of Y2H, however, is 

related to the often-elevated error rates.  Analysis of large-scale datasets generated 

through Y2H tends to reveal low experimental overlap
138,228,236

.  The most likely 

explanation for the lack of correlation between these two studies is a combination of both 

a high false-positive rate (estimated to be anywhere from 50%
138

 to as to high as 

90%
228,236

) and false-negative rate, wherein most biologically relevant interactions are 

presumed to be missed. These artifacts stem in part from the over-expression and forced 

co-localization of the candidate proteins in the yeast nucleus, leading to non-

physiological context
223

.  Consequently, while Y2H results are seen as a positive 

indication of a genuine protein interaction, the predictions benefit from additional 

supporting evidence.   

Further limiting the applicability of Y2H in non-model organisms is its inability 

to survey interactions for gene products with incompletely defined coding sequences, as 

an appropriate vector must be created for each query protein containing the associated 
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gene and marker.  This aspect limits implementation of comprehensive screens for 

mammalian systems where alternative splicing and incomplete knowledge of exons is 

common. Moreover, as Y2H is based on a binary interaction assay, it neglects 

interactions that involve 3 or more proteins
236

, which is precisely the hallmark of many, if 

not most, cellular protein complexes.   

Due to the fact that interacting proteins must co-localize to the nucleus, Y2H has 

also traditionally not been useful for surveying interactions among integral membrane 

proteins.  However, a specialized variant of Y2H, the so-called split-ubiquitin assay
237

, 

has been developed to tackle this missed opportunity and has shown increasing promise 

in recent years
238

.  Briefly, one trans-membrane (TM)-domain containing protein is fused 

to the N-terminal half of ubiquitin, while the second TM protein is fused to the C-

terminal half of ubiquitin and an adjoined transcription factor.  Interaction of these 

proteins causes recognition of the complex by ubiquitin-recognizing proteases, thus 

releasing the transcription factor from its membrane anchor and thereby allowing 

subsequent activation of a reporter gene.  Application of this method resulted in the 

identification of nearly 2000 total interactions involving 536 TM-bearing proteins in 

yeast (131 of the 2000 interactions were deemed to be high-quality based on a series of 

stringent criteria
238

). 

Like most other Y2H-derived methods, this assay involves constitutively over-

expressing the bait protein, often resulting in elevated (non-native) protein 

concentrations.  Hence, the interactions captured by this approach may not occur at 

physiologic protein conditions, contributing to a high false-positive rate. Yet recent 

optimizations, such as integrating the tags into the target genome to achieve near-native 
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expressions, may further the applicability of this assay for investigating the physical 

makeup of otherwise scantly-characterized membrane-associated biochemical pathways.   

 Due to their ease of execution and scalability, Y2H-based binary assays remain 

prevalent in large-scale PPI surveys for many organisms despite their often-high 

associated error rates.  As computational methods for data evaluation improve, biologists 

are becoming more adroit at reducing the number of false-positives, thereby increasing 

the practical utility of such methods in establishing probable protein-protein interactions.  

However, the true pitfall when using Y2H data alone when trying to deduce the subunit 

composition of protein complexes is the generally high false-negative rate, which results 

in sparse representation of the overall biological networks of interactions, and 

consequently, poor assessment of discrete biological modules.  Several of the large-scale 

Y2H screens have been shown to result in a network topology thought to be inconsistent 

with true biological systems
101

 (more about biological interaction networks and graph 

theory methods commonly applied to analyze them below).   

 

Affinity purification 

In an effort to study protein complexes specifically, and to circumvent the 

inherent false-negative and false-positive rate of Y2H, affinity purification was 

developed for large-scale interaction surveys.  The underlying concept behind affinity 

purification is a consequence of what had been observed in biochemical and co-

immunoprecipitation studies for decades
239

: by selectively retrieving a protein of interest 

from a cell extract through the use of a specific ligand or antibody, proteins stably bound 

to the query protein can usually be concomitantly retrieved.  In affinity purification 
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studies, a universal epitope tag
240

 is often systemically attached to the query proteins of 

interest which allows for routine bait capture along with any associated interactors via a 

single, well-defined and often commercially available tag-specific antibody.  Proteins 

bound to the query protein are then usually identified through mass spectrometry, using 

either traditional gel-based methods or gel-free tandem mass spectrometry procedures 

(the former offers qualitative information regarding subunit stoichiometry, while the 

latter provides superior sensitivity).  

Affinity purification offers three distinct advantages over Y2H methods.  First, 

only the query proteins require tagging, allowing novel interactions to be discovered 

between the baits and one or more poorly characterized proteins.  Second, entire protein 

complexes can be captured during a single purification, as opposed to the binary 

interaction format employed by Y2H.  Third, while the purification procedure can be 

tedious to scale-up, the need to tag only one or two proteins in order to define a given 

complex reduces the number of experiments that need to be performed to achieve good 

proteomic coverage, compared to the multiple pair-wise permutations (n % n experiments) 

required in a Y2H screen. 

Using a systematic method of affinity purification coupled with mass 

spectrometry, the first interaction map for yeast was published in 2002
241

.  Reflecting a 

substantive increase in proteome coverage, the group released an interaction map of 

higher density than previous comparable-scale studies, consisting of 3617 putative 

protein-protein interactions for 493 tagged bait proteins.  Importantly, the authors 

reported approximately 3-fold more interactions per protein which were curated in 

protein complex databases, suggesting a decreased false-negative rate
241

.  However, 
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while seemingly more accurate, the results of affinity purification studies have the 

unfortunate disadvantage of being biased against detection of low abundance proteins, 

with results dominated by higher-abundance bait proteins and often many spurious 

interactions resulting from common ‘housekeeping’ contaminants.   

 

Tandem affinity purification 

In an effort to increase the sensitivity of affinity-purification to low-concentration 

proteins, the affinity purification process was further refined as Tandem-Affinity-

Purification
218

. The principle behind the TAP procedure is to retrieve proteins bound to 

epitope-tagged proteins of interest through two successive steps of affinity 

chromatography: first, generally via binding of the tagged protein to IgG beads, second 

via attachment to calmodulin (or an alternative affinity-resin) beads
218

.  Following the 

second elution, the proteins (bait and interacting partners) are typically identified by mass 

spectrometry.  The TAP interaction survey method is now recognized as having the best 

coverage and accuracy of experimental high-throughput interaction detection methods
138

, 

and has the substantive advantage of detecting interactions among proteins assembled 

into protein complexes under near-native physiological conditions. 

 The first adaptation of the TAP method to large-scale protein complex 

characterization was performed in yeast and reported in 2001
242

.  By tagging 

approximately 1700 proteins, the authors were able to obtain data supporting 232 distinct 

functional interaction modules, and provide hints as to the possible biological roles of 

344 uncharacterized proteins based on physical association with proteins of known 

function.  
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In the following 4 years, hundreds of studies were published identifying specific 

protein interactions and complexes not only in yeast, but also in E. coli
243

, plant
244

, 

drosophila
245

, and human
246,247

 (over 100 low-throughput studies as of 2004
248

).  In 2006, 

two independent studies simultaneously published definitive, virtually comprehensive 

global surveys of stable soluble protein complexes for yeast
48,49

.  Stringent data 

processing procedures were applied to the enormous raw datasets, seemingly eliminating 

false-positives. Yet, despite the rigor and sheer scale of the two studies, with ~50% 

overlap in the total number of proteins detected (1304 in common out of the 1993 

reported in Gavin et al
48

 study and the 2388 found in Krogan et al
9 

), initial cross-

comparisons revealed a surprisingly modest overlap in the respective interactions 

(<25%).  Aside from minor differences in the respective screening procedures, the most 

likely cause for this seeming shortfall stems from  differences in the computational 

algorithms used to ascertain the most likely protein interactions and interaction 

clusters
145

, thus illustrating the impact of the increasingly sophisticated analytical 

methods used to interpret genome-scale interaction data.  It should however be noted that 

although TAP is specifically designed for complex resolution, final determination of 

complexes has depended on algorithmic interpretation of determined confidence scores 

between pairs of interactors; thus the potential exists to misrepresent experimentally 

determined complexes.  One other caveat to TAP screening is the functional interference 

potentially caused by introduction of the epitope tag or selection marker, which may 

perturb protein folding/function and mRNA stability/regulation, respectively.  Despite 

being relatively innocuous, initial reports suggested that a tag may impair function in as 

much as 18% of all targeted proteins
242

.  It is worth noting however, that one third
48

 to 
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nearly one half
49

 of interacting proteins were identified as untagged preys for other 

tagged proteins, and thus could still be surveyed. 

 

Text mining 

As individual researchers typically gather information for proteins of interest 

through examining publications, text mining remains among the most established method 

of gathering PPI data.  However, since the number of publications available today is 

expanding explosively for virtually every sub-specialty of the biological sciences, 

comprehensive text interpretation has become too demanding.  To accommodate this data 

overload, computer programs have been developed to systematically process and parse 

out interaction data from large bodies of published literature in an automated manner. 

Algorithms that scan the literature for PPI have two tasks: first, to recognize 

conclusively instances of mentioned proteins (which is challenging because proteins 

often have multiple names and abbreviations), and, second, to define the biophysical 

context in which these proteins are being discussed
249

.  Due to the complexity of the 

English language, and of the varied nature of protein interactions themselves, defining 

context is no trivial task. More importantly, the algorithm must be able to accurately 

distinguish a genuine interaction from a coincidental occurrence, which may present with 

nearly the same lexical syntax.  Effective algorithms must be trained to recognize 

appropriate English sentence features (including verbal form, presence/absence of a 

noun), and scored against manual curation to evaluate performance, before finally being 

used to parse large bodies of literature
250

. To improve accuracy, recent computational 

approaches have integrated information from sentences both preceding and following the 



 

 

149 

mention of protein/gene names to improve the accuracy of the general approach
251,252

 (for 

more in-depth review, see Jensen et al
249

 and Hirschman et al
253

). Today there are several 

publicly available software packages for performing automated literature-mining of 

protein interactions (MEDSYNDIKATE
254

, CONAN
255

).   

Text mining can be an effective data collection method for several reasons.  First, 

the data collected is often from multiple experimental sources, resulting in a collective set 

of interactions less subject to any specific experimental bias.  Second, as the data 

retrieved by text mining algorithms is vastly beyond what is published in any single (even 

high-throughput) experiment, there is increased potential for cross-validation.  For 

example, there are over 80,000 yeast-specific protein interactions in the last release of the 

BioGRID
256

 database.  If one filters and reduces this set to only the most accurate 1% of 

interactions, an even larger subset of putative interactions is generated than obtained for 

either the Krogan et al
49

 or Gavin et al
48

 published datasets.  For these reasons, text 

mining, in combination with manual curation, has been used to populate public databases 

such as preBIND
257

 and BioGRID
256

, which are invaluable for computational biologists, 

as they tend to represent the largest sources of PPI data for every species.  The accuracy 

of interactions housed within these databases significantly increases, however, when 

literature retrieval algorithms are coupled with manual curation
257

, so experts can comb 

through and remove as many spurious interactions as possible. Interaction networks 

created from literature-mined protein interactions also exhibit topology similar to 

networks generated by high-throughput screening alone, although with better coverage
139

. 

As far as the study of mammalian protein interactions, a potential disadvantage of 

text mining is the prevalence of literature for commonly studied proteins, such as those 
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associated with cancer or other widely studied processes or diseases. The increased 

representation skews the resulting interaction map. Consequently, the accuracy of text 

mining algorithms also improves as more experimental data (and hence publications) is 

generated for a given organism. 

 

Clustering of interaction data 

After obtaining interaction data (either experimentally or computationally), the 

next challenge then becomes that of assigning proteins into individual complexes.  

Computational partitioning of interaction networks into highly connected clusters has 

been used to impressive effect in large-scale yeast
48,49,258

 and human
259,260

 studies.   

Although varied, clustering algorithms usually define sub-groups of proteins that 

exhibit higher similarity amongst themselves than with other sub-groups
261

.  In defining 

interaction clusters, which are posited to represent protein complexes, there are several 

algorithms that can be used, the selection of which will depend on the nature of the 

desired outcome.   Some algorithms produce in individual (exclusive) clusters with non-

shared members; others will allow shared members between clusters.  Non-exclusivity 

(i.e. clusters can have shared members) can be viewed as being more biologically 

accurate, as many proteins show promiscuity in terms of complex membership.  However 

complexes with non-shared members ease post-analysis of results and facilitate 

functional categorizations.  Additionally, some algorithms are capable of incorporating 

biological or functional data. 

The lack of overlap
145

 in corresponding yeast protein interactions reported by Krogan 

et al
49

 and Gavin et al
48

 points to the importance of selecting a standardized 
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computational assessment procedure.  Recent follow-up studies
262

 (also S. Pu & S. 

Wodak; personal communication) demonstrate that the application of a unified clustering 

method results in similar clusters for both datasets.  Moreover, an additional caveat is that 

while disparate algorithms can decipher alternate interconnected groups of proteins, the 

results serve only as an approximation of the actual physical complexes present within 

the cell.  Many of the algorithms described operate based on properties of graph theory 

(see below). 

 

Clustering algorithms 

K-means is one of the simplest clustering algorithms in application today.  For a 

set of X clusters, X centroid values will be determined equally covering the range of the 

inputted set.  Data points are then individually assigned to the centroid that they are 

closest in value to.  Unfortunately, in order to use k-means clustering, the number of 

clusters must be anticipated in advance.  This represents a major disadvantage when 

studying novel interactomes, as the number of complexes present is impossible to pre-

determine.  

Commonly depicted using a dendrogram, hierarchical clustering is famously used 

in biology to classify species based on phenotypic or phylogenetic properties.  More 

recently, hierarchical clustering has been applied to PPI data, finding proteins with highly 

similar expression patterns
263

.  There are several variations of hierarchical clustering; 

however, all commonly applied in interaction cluster analysis consist of the same steps.  

Each node in the set being analyzed begins the process as its own cluster.  From there, 

similarity between any two nodes in terms of properties such as minimal path length
264

, is 
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computed using one of many different measures (i.e. Spearman’s Rank).  The two nodes 

that are the most similar are moved into the same cluster, and distances to all other nodes 

are re-computed.  This is continued until the entire tree structure has been established.  

Examining proteins grouped together at one level of the hierarchy allows one to draw 

finite protein clusters.   

In a purely computational study, Krause et al
265

 applied three variations of 

hierarchical clustering to a yeast affinity-purification dataset, ultimately concluding that 

more interaction data is required for an accurate complexosome description.  Several 

years later, Gavin et al
48

 built on Krause’s results and used a similar approach to draw 

their PPI clusters based on experimental data in the yeast proteome.  This method also 

integrated functional data when deriving clusters, and was able to group proteins into 

either stable protein ‘modules’ comprising the functional core of unified protein 

complexes, and extended promiscuous associators; designations the established authors 

felt to be truly indicative of the state of the complexosome. 

One method that is gaining increased attention for PPI clustering is the Markov 

clustering algorithm (MCL)
144

.  Once a network graph of proteins has been generated, 

random ‘walks’ are created in silico (wherein nodes are picked at random and a pre-

determined number of PPI “edges” is traversed).  Through an iterative process of many 

such walks, the algorithm splits the proteins into exclusive groups based on the relative 

flow across highly traversed regions (high connectivity indicates clusters).  In a recent 

comparison of biologically applied clustering algorithms
266

, MCL was shown to be 

remarkably resilient to spurious graph perturbations.  Appropriately, MCL was used to 
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describe many novel protein complexes within the yeast proteome based on large-scale 

TAP experimental data
49

.    

Another algorithm, known as MCODE
267

, used for detecting protein complexes 

among PPI networks similarly divides interaction data into clusters based on regions of 

high connectivity.  This algorithm is freely available as a plug-in for the Cytoscape
187

 

software package, which allows for ready viewing of the agglomerative results.   

 

Introduction to graph theory 

Graphs with proteins or genes depicted as nodes and interactions as the edges 

between them are frequently used to represent both protein and genetic interaction 

networks.  Using graphs of this type to depict interaction networks allows analysis by a 

certain set of mathematical formulae, those pertaining to graph theory. 

Many naturally occurring graphs exhibit a topology in which the majority of 

constituent nodes have only a few associations, and just a few nodes have many 

associations (i.e. the number of associations per protein follows a power-law distribution, 

with corresponding graphs referred to as being scale-free).  Scale-free graphs exhibit 

‘small-world’ characteristics, as most nodes can be linked to one another by following a 

short path.  Models of this type are generally noted in real-world networks, in fact the so-

called ‘small-world’ problem
268

 was originally described when Stanley Milgram noticed 

shorter than expected path lengths among social networks (later the basis for the famous 

‘six degrees of separation’ hypothesis).  It is tempting to believe that scale-free topology 

exists in biological networks as well, as it would offer greater protection against random 

deletions than other types of associative graph structures. 
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Whether the PPI network truly follows a scale-free pattern remains controversial, 

with compelling evidence presented both supporting
148,269

 and negating
270,271

 the claim.  

Regardless, proteins with higher connectivity in the network (often called ‘hubs’) tend to 

be more essential to cell function
147,148

.  Similarly, graph properties such as betweenness 

and closeness (literally measuring the relative proximities of two nodes on a network 

graph) are often used to describe how functionally related two proteins or genes are
272,273

.  

There are several freely available software packages used in the analysis of PPI networks, 

the most common of which are Pajek
144

, and Cytoscape
187

 with Cytoscape having many 

useful plug-ins for biological analysis. 
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Appendix Table 1 Epistacy detected using RSA and GCA 

ORF 1 (KAN) Gene 1 ORF 2 (NAT) Gene 2 RSA GCA 

YAL023C PMT2 YOR321W PMT3 1 1 

YBL039C URA7 YJR103W URA8 1 1 

YBL085W BOI1 YER114C BOI2 1 1 

YBL087C RPL23A YER117W RPL23B 1 1 

YBR009C HHF1 YNL030W HHF2 1 1 

YBR048W RPS11B YDR025W RPS11A 1 1 

YBR082C UBC4 YDR059C UBC5 1 1 

YBR169C SSE2 YPL106C SSE1 1 1 

YBR189W RPS9B YPL081W RPS9A 1 1 

YBR191W RPL21A YPL079W RPL21B 1 1 

YCR031C RPS14A YJL191W RPS14B 1 1 

YDL061C RPS29B YLR388W RPS29A 1 1 

YDL134C PPH21 YDL188C PPH22 1 1 

YDL161W ENT1 YLR206W ENT2 1 1 

YDL175C AIR2 YIL079C AIR1 1 1 

YDR098C GRX3 YER174C GRX4 1 1 

YDR213W UPC2 YLR228C ECM22 1 1 

YDR253C MET32 YPL038W MET31 1 1 

YDR312W SSF2 YHR066W SSF1 1 1 

YDR358W GGA1 YHR108W GGA2 1 1 

YDR385W EFT2 YOR133W EFT1 1 1 

YDR447C RPS17B YML024W RPS17A 1 1 

YDR450W RPS18A YML026C RPS18B 1 1 

YDR502C SAM2 YLR180W SAM1 1 1 

YER031C YPT31 YGL210W YPT32 1 1 

YER062C HOR2 YIL053W RHR2 1 1 

YFR053C HXK1 YGL253W HXK2 1 1 

YGL076C RPL7A YPL198W RPL7B 1 1 

YGL135W RPL1B YPL220W RPL1A 1 1 

YGR010W NMA2 YLR328W NMA1 1 1 

YGR032W GSC2 YLR342W FKS1 1 1 

YGR038W ORM1 YLR350W ORM2 1 1 

YGR108W CLB1 YPR119W CLB2 1 1 

YGR209C TRX2 YLR043C TRX1 1 1 

YGR214W RPS0A YLR048W RPS0B 1 1 

YHR021C RPS27B YKL156W RPS27A 1 1 

YHR135C YCK1 YNL154C YCK2 1 1 

YHR203C RPS4B YJR145C RPS4A 1 1 

YIL095W PRK1 YNL020C ARK1 1 1 

YIL105C SLM1 YNL047C SLM2 1 1 

YIL133C RPL16A YNL069C RPL16B 1 1 

YIR033W MGA2 YKL020C SPT23 1 1 

YJL129C TRK1 YKR050W TRK2 1 1 

YJL138C TIF2 YKR059W TIF1 1 1 
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YKL043W PHD1 YMR016C SOK2 1 1 

YLR028C ADE16 YMR120C ADE17 1 1 

YLR441C RPS1A YML063W RPS1B 1 1 

YLR450W HMG2 YML075C HMG1 1 1 

YMR183C SSO2 YPL232W SSO1 1 1 

YNL096C RPS7B YOR096W RPS7A 1 1 

YNL098C RAS2 YOR101W RAS1 1 1 

YNL302C RPS19B YOL121C RPS19A 1 1 

YPR052C NHP6A YBR089C-A NHP6B 1 1 

YBR010W HHT1 YNL031C HHT2 1 0 

YBR118W TEF2 YPR080W TEF1 1 0 

YBR210W ERV15 YGL054C ERV14 1 0 

YDL022W GPD1 YOL059W GPD2 1 0 

YDL138W RGT2 YDL194W SNF3 1 0 

YDR436W PPZ2 YML016C PPZ1 1 0 

YER081W SER3 YIL074C SER33 1 0 

YGR124W ASN2 YPR145W ASN1 1 0 

YGR192C TDH3 YJR009C TDH2 1 0 

YGR254W ENO1 YHR174W ENO2 1 0 

YJL098W SAP185 YKR028W SAP190 1 0 

YJL133W MRS3 YKR052C MRS4 1 0 

YKL032C IXR1 YMR072W ABF2 1 0 

YKL129C MYO3 YMR109W MYO5 1 0 

YMR186W HSC82 YPL240C HSP82 1 0 

YOR226C ISU2 YPL135W ISU1 1 0 

YAL053W FLC2 YOR365C YOR365C 0 1 

YBL027W RPL19B YBR084C-A RPL19A 0 1 

YBL067C UBP13 YER098W UBP9 0 1 

YBL068W PRS4 YER099C PRS2 0 1 

YBL072C RPS8A YER102W RPS8B 0 1 

YBL079W NUP170 YER105C NUP157 0 1 

YBL089W AVT5 YER119C AVT6 0 1 

YBL106C SRO77 YPR032W SRO7 0 1 

YBR052C RFS1 YDR032C PST2 0 1 

YBR078W ECM33 YDR055W PST1 0 1 

YBR145W ADH5 YOL086C ADH1 0 1 

YBR161W CSH1 YPL057C SUR1 0 1 

YBR284W YBR284W YJL070C YJL070C 0 1 

YCL024W KCC4 YDR507C GIN4 0 1 

YDL021W GPM2 YOL056W GPM3 0 1 

YDL042C SIR2 YOL068C HST1 0 1 

YDL048C STP4 YLR375W STP3 0 1 

YDL075W RPL31A YLR406C RPL31B 0 1 

YDL088C ASM4 YMR153W NUP53 0 1 

YDL130W-A STF1 YDL181W INH1 0 1 

YDL224C WHI4 YNL197C WHI3 0 1 

YDR066C YDR066C YER139C YER139C 0 1 
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YDR069C DOA4 YER144C UBP5 0 1 

YDR099W BMH2 YER177W BMH1 0 1 

YDR251W PAM1 YPL032C SVL3 0 1 

YDR264C AKR1 YOR034C AKR2 0 1 

YDR300C PRO1 YHR033W YHR033W 0 1 

YDR348C YDR348C YHR097C YHR097C 0 1 

YDR351W SBE2 YHR103W SBE22 0 1 

YDR379W RGA2 YOR127W RGA1 0 1 

YDR389W SAC7 YOR134W BAG7 0 1 

YDR409W SIZ1 YOR156C NFI1 0 1 

YDR418W RPL12B YEL054C RPL12A 0 1 

YDR463W STP1 YHR006W STP2 0 1 

YDR480W DIG2 YPL049C DIG1 0 1 

YDR497C ITR1 YOL103W ITR2 0 1 

YDR505C PSP1 YLR177W YLR177W 0 1 

YEL041W YEF1 YJR049C UTR1 0 1 

YER037W PHM8 YGL224C SDT1 0 1 

YER059W PCL6 YIL050W PCL7 0 1 

YER131W RPS26B YGL189C RPS26A 0 1 

YFL004W VTC2 YPL019C VTC3 0 1 

YFR040W SAP155 YGL229C SAP4 0 1 

YGL031C RPL24A YGR148C RPL24B 0 1 

YGL049C TIF4632 YGR162W TIF4631 0 1 

YGL063W PUS2 YPL212C PUS1 0 1 

YGL084C GUP1 YPL189W GUP2 0 1 

YGL133W ITC1 YPL216W YPL216W 0 1 

YGR056W RSC1 YLR357W RSC2 0 1 

YGR070W ROM1 YLR371W ROM2 0 1 

YGR085C RPL11B YPR102C RPL11A 0 1 

YGR092W DBF2 YPR111W DBF20 0 1 

YGR109C CLB6 YPR120C CLB5 0 1 

YGR121C MEP1 YPR138C MEP3 0 1 

YGR188C BUB1 YJL013C MAD3 0 1 

YGR256W GND2 YHR183W GND1 0 1 

YGR279C SCW4 YMR305C SCW10 0 1 

YHL003C LAG1 YKL008C LAC1 0 1 

YHR030C SLT2 YKL161C YKL161C 0 1 

YHR115C DMA1 YNL116W DMA2 0 1 

YHR117W TOM71 YNL121C TOM70 0 1 

YHR123W EPT1 YNL130C CPT1 0 1 

YIL131C FKH1 YNL068C FKH2 0 1 

YIL135C VHS2 YNL074C MLF3 0 1 

YIL149C MLP2 YKR095W MLP1 0 1 

YJL082W IML2 YKR018C YKR018C 0 1 

YJL139C YUR1 YKR061W KTR2 0 1 

YJL164C TPK1 YKL166C TPK3 0 1 

YJL165C HAL5 YKL168C KKQ8 0 1 
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YJR148W BAT2 YHR208W BAT1 0 1 

YKL126W YPK1 YMR104C YPK2 0 1 

YKL127W PGM1 YMR105C PGM2 0 1 

YKR072C SIS2 YOR054C VHS3 0 1 

YKR077W YKR077W YOR066W YOR066W 0 1 

YKR089C TGL4 YOR081C TGL5 0 1 

YKR106W YKR106W YCL073C YCL073C 0 1 

YLL010C PSR1 YLR019W PSR2 0 1 

YML100W TSL1 YMR261C TPS3 0 1 

YML109W ZDS2 YMR273C ZDS1 0 1 

YMR194W RPL36A YPL249C-A RPL36B 0 1 

YMR198W CIK1 YPL253C VIK1 0 1 

YMR199W CLN1 YPL256C CLN2 0 1 

YMR233W TRI1 YOR295W UAF30 0 1 

YMR242C RPL20A YOR312C RPL20B 0 1 

YMR243C ZRC1 YOR316C COT1 0 1 

YNL087W TCB2 YOR086C TCB1 0 1 

YNL293W MSB3 YOL112W MSB4 0 1 

YNL298W CLA4 YOL113W SKM1 0 1 

YNL299W TRF5 YOL115W TRF4 0 1 

YOR233W KIN4 YPL141C YPL141C 0 1 

YPR159W KRE6 YGR143W SKN1 0 1 

 

Genes detected as epistatic using either Random Spore Analysis (RSA) or Growth Curve 

Analysis (GCA).  Epistasis using either technique is indicated with a ‘1’ in their 

respective columns.    Those genes with a genetic interaction detectible using both RSA 

and GCA were termed the ‘intersect group’ for subsequent analysis, and those detectible 

through either RSA or GCA the ‘union group’.  
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Appendix Table 2 Detected trigenic interactions 

Gene 1 Gene 2 Hit  Et 

ALK2 ALK1 CEM1 -0.473 

ALK2 ALK1 SNC2 -0.415 

ALK2 ALK1 NTG2 -0.393 

ALK2 ALK1 NCE102 -0.36 

ALK2 ALK1 YOL131W -0.342 

ALK2 ALK1 YVC1 -0.334 

ALK2 ALK1 MMS22 -0.322 

ALK2 ALK1 CRZ1 -0.307 

ALK2 ALK1 YLL058W -0.295 

ALK2 ALK1 PIN2 -0.294 

ALK2 ALK1 KES1 -0.275 

ALK2 ALK1 ASF1 -0.258 

ALK2 ALK1 HMO1 -0.258 

ALK2 ALK1 CKA1 -0.256 

ALK2 ALK1 CMK2 -0.256 

ALK2 ALK1 YPR096C -0.245 

CNA1 CMP2 RPS16B -0.46 

CNA1 CMP2 YUR1 -0.423 

CNA1 CMP2 SEC28 -0.422 

CNA1 CMP2 EAF1 -0.39 

CNA1 CMP2 SMI1 -0.366 

CNA1 CMP2 CSG2 -0.349 

CNA1 CMP2 KEX1 -0.342 

CNA1 CMP2 ALG3 -0.33 

CNA1 CMP2 YCR102C -0.326 

CNA1 CMP2 RPN4 -0.302 

CNA1 CMP2 BST1 -0.298 

CNA1 CMP2 MGA2 -0.297 

CNA1 CMP2 YPS7 -0.289 

CNA1 CMP2 ERV14 -0.288 

CNA1 CMP2 PTC1 -0.285 

CNA1 CMP2 YJL068C -0.273 

CNA1 CMP2 PEX10 -0.271 

CNA1 CMP2 YCR016W -0.268 

CNA1 CMP2 CWC15 -0.26 

CNA1 CMP2 VPS74 -0.252 

CNA1 CMP2 ROT2 -0.244 

CNA1 CMP2 ETR1 -0.243 

CNA1 CMP2 TRP4 -0.243 

KIN1 KIN2 OAR1 -0.39 
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KIN1 KIN2 VPS51 -0.323 

KIN1 KIN2 SLA1 -0.274 

KIN1 KIN2 FCY2 -0.272 

KIN1 KIN2 BEM4 -0.264 

KIN1 KIN2 FMC1 -0.254 

KIN1 KIN2 YDJ1 -0.244 

KIN82 FPK1 CHK1 -0.673 

KIN82 FPK1 GAS4 -0.598 

KIN82 FPK1 MAL12 -0.526 

KIN82 FPK1 INO4 -0.504 

KIN82 FPK1 MSN1 -0.502 

KIN82 FPK1 EAF1 -0.501 

KIN82 FPK1 ADY4 -0.482 

KIN82 FPK1 DUG2 -0.419 

KIN82 FPK1 GYP1 -0.416 

KIN82 FPK1 ARL3 -0.376 

KIN82 FPK1 YOR304C-A -0.358 

KIN82 FPK1 YPR022C -0.358 

KIN82 FPK1 UBC11 -0.338 

KIN82 FPK1 YGR122W -0.332 

KIN82 FPK1 PMP3 -0.327 

KIN82 FPK1 CAM1 -0.32 

KIN82 FPK1 YCL049C -0.305 

KIN82 FPK1 YPR097W -0.29 

KIN82 FPK1 NKP2 -0.276 

KIN82 FPK1 OYE3 -0.271 

KIN82 FPK1 YPL260W -0.268 

KIN82 FPK1 MRH1 -0.263 

KIN82 FPK1 PTC2 -0.263 

KIN82 FPK1 FMP46 -0.262 

KIN82 FPK1 AXL1 -0.257 

KIN82 FPK1 PEX13 -0.254 

KIN82 FPK1 DSD1 -0.253 

KIN82 FPK1 YDR179W-A -0.249 

KIN82 FPK1 RPL43A -0.242 

NRG2 ALK1 UBC7 -0.407 

NRG2 ALK1 MDM12 -0.322 

NRG2 ALK1 SAC1 -0.307 

NRG2 ALK1 HMO1 -0.269 

NRG2 ALK1 REC114 -0.269 

NRG2 ALK1 TRI1 -0.268 

NRG2 ALK1 RPS16A -0.264 

NRG2 ALK1 TMA108 -0.262 
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NRG2 ALK1 YML037C -0.255 

NRG2 ALK1 PMP3 -0.247 

NRG2 ALK1 VPS74 -0.246 

NRG2 ALK1 ERG3 -0.244 

NRG2 NRG1 ADY4 -0.773 

NRG2 NRG1 TRM44 -0.481 

NRG2 NRG1 RAD1 -0.4 

NRG2 NRG1 YKL061W -0.382 

NRG2 NRG1 RIM101 -0.378 

NRG2 NRG1 CHS5 -0.362 

NRG2 NRG1 RIM13 -0.358 

NRG2 NRG1 PEX30 -0.354 

NRG2 NRG1 RIM9 -0.348 

NRG2 NRG1 VRP1 -0.347 

NRG2 NRG1 IME2 -0.344 

NRG2 NRG1 GDH1 -0.34 

NRG2 NRG1 IZH2 -0.336 

NRG2 NRG1 CYB2 -0.332 

NRG2 NRG1 CNB1 -0.324 

NRG2 NRG1 YLR278C -0.324 

NRG2 NRG1 FRE1 -0.32 

NRG2 NRG1 SKG3 -0.32 

NRG2 NRG1 DSE1 -0.312 

NRG2 NRG1 IRC8 -0.307 

NRG2 NRG1 RIM20 -0.301 

NRG2 NRG1 DFG16 -0.3 

NRG2 NRG1 LSM1 -0.3 

NRG2 NRG1 YLR287C -0.295 

NRG2 NRG1 AIM43 -0.283 

NRG2 NRG1 ATF1 -0.282 

NRG2 NRG1 PXA2 -0.28 

NRG2 NRG1 YHR080C -0.28 

NRG2 NRG1 MCM22 -0.276 

NRG2 NRG1 HMX1 -0.272 

NRG2 NRG1 YCR102C -0.271 

NRG2 NRG1 YMR031C -0.269 

NRG2 NRG1 GCN1 -0.265 

NRG2 NRG1 CAF20 -0.262 

NRG2 NRG1 REV1 -0.26 

NRG2 NRG1 MSH2 -0.258 

NRG2 NRG1 PLB2 -0.254 

NRG2 NRG1 ACN9 -0.249 

NRG2 NRG1 PTP2 -0.249 
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NRG2 NRG1 PNG1 -0.248 

NRG2 NRG1 CLN2 -0.246 

NRG2 NRG1 RAV1 -0.246 

NRG2 NRG1 YGL159W -0.245 

NRG2 NRG1 YKL187C -0.242 

NRG2 NRG1 YFR045W -0.241 

PSK1 PSK2 MEP2 -0.416 

PSK1 PSK2 YNL144C -0.382 

PSK1 PSK2 PDR12 -0.313 

PSK1 PSK2 VPS41 -0.29 

PSK1 PSK2 SYH1 -0.253 

PSK1 PSK2 MKT1 -0.245 

PSK1 PSK2 RPL13A -0.242 

SUT1 SUT2 PRS5 -0.525 

SUT1 SUT2 GCY1 -0.317 

SUT1 SUT2 ARO1 -0.283 

SUT1 SUT2 SUR4 -0.265 

SUT1 SUT2 BUB3 -0.259 

VHS1 SKS1 SUL1 -0.414 

VHS1 SKS1 COQ10 -0.359 

VHS1 SKS1 TIR2 -0.324 

VHS1 SKS1 FYV12 -0.287 

VHS1 SKS1 IES4 -0.262 

Genetic interactions detected using double-deletion queries.  First two columns represent 

the deletions present in the initial query strain, and third column the corresponding hits.  

Et column shows the corresponding $ values, only statistically significant interactions are 

shown. 
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