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Abstract
A focus on novel, confirmatory, and statistically significant results leads to substantial bias

in the scientific literature. One type of bias, known as “p-hacking,” occurs when researchers

collect or select data or statistical analyses until nonsignificant results become significant.

Here, we use text-mining to demonstrate that p-hacking is widespread throughout science.

We then illustrate how one can test for p-hacking when performing a meta-analysis and

show that, while p-hacking is probably common, its effect seems to be weak relative to the

real effect sizes being measured. This result suggests that p-hacking probably does not

drastically alter scientific consensuses drawn from meta-analyses.

Introduction
There is increasing concern that many published results are false positives [1,2] (but see [3]).
Many argue that current scientific practices create strong incentives to publish statistically
significant (i.e., “positive”) results, and there is good evidence that journals, especially presti-
gious ones with higher impact factors, disproportionately publish statistically significant results
[4–10]. Employers and funders often count papers and weigh them by the journal’s impact
factor to assess a researcher’s performance [11]. In combination, these factors create incentives
for researchers to selectively pursue and selectively attempt to publish statistically significant
research findings.

There are two widely recognized types of researcher-driven publication bias: selection
(also known as the “file drawer effect”, where studies with nonsignificant results have lower
publication rates [7]) and inflation [12]. Inflation bias, also known as “p-hacking” or “selective
reporting,” is the misreporting of true effect sizes in published studies (Box 1). It occurs when
researchers try out several statistical analyses and/or data eligibility specifications and then
selectively report those that produce significant results [12–15]. Common practices that lead to
p-hacking include: conducting analyses midway through experiments to decide whether to
continue collecting data [15,16]; recording many response variables and deciding which to re-
port postanalysis [16,17], deciding whether to include or drop outliers postanalyses [16], ex-
cluding, combining, or splitting treatment groups postanalysis [2], including or excluding
covariates postanalysis [14], and stopping data exploration if an analysis yields a significant
p-value [18,19].
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If published data are biased, data synthesis might lead to flawed conclusions. Meta-analysis
is a set of statistical methods that combine studies on the same question to estimate the true ef-
fect size [33]. Meta-analyses are now the “gold standard” for synthesizing the evidence for an
effect of a treatment or the existence of a relationship, and combining effect size estimates
across studies to give an overall estimate. Meta-analyses guide the application of medical treat-
ments and policy decisions, and influence future research directions [34]. However, meta-anal-
yses are compromised if the studies being synthesized do not reflect the true distribution of
effect sizes [5,35–37].

Quantifying p-hacking is important because publication of false positives hinders scientific
progress. When false positive results enter the literature they can be very persistent. In many
fields, there is little incentive to replicate research [38]. Even when research is replicated, early
positive studies often receive more attention than later negative ones. In addition, false posi-
tives can inspire investment in fruitless research programs, and even discredit entire fields
[14,16].

Box 1. The History of P
Fisher [20] introduced null hypothesis significance testing (NHST) to objectively sepa-
rate interesting findings from background noise [21]. NHST is the most widely used data
analysis method in most scientific disciplines [22,23]. The null hypothesis is typically a
statement of no relationship between variables or no effect of an experimental manipula-
tion. With NHST, one computes the probability (i.e., p) of finding an effect at least or
more extreme than the observed finding if the null hypothesis is true [24,25].

The NHST approach uses an arbitrary cutoff value (usually 0.05). Findings with
smaller p-values are described as “statistically significant” (“positive” findings), and the
remainder as “nonsignificant” (“negative” findings). This arbitrary cutoff has led to the
scientifically dubious practice of regarding “significant” findings as more valuable, reli-
able, and reproducible [24], thereby incentivizing various kinds of research bias.

Before computers, test statistics (e.g., t and F) were routinely calculated by hand and
the associated p-value was looked up in statistical tables. Here, p-values were given for a
limited set of values (e.g., 0.001, 0.01, 0.02, and 0.05) [26]. Researchers then reported p-
values as the lowest threshold consistent with the test statistic (e.g., p< 0.05 or p< 0.01).
With modern statistical software this practice is unnecessary, as precise p-values are now
provided, but it is still commonplace. Previous research has shown that strict adherence
to p-value thresholds can bias how research is reported, even within the region of signifi-
cance [27].

The p-value is easily misinterpreted. For example, it is often equated with the strength
of a relationship, but a tiny effect size can have very low p-values with a large enough
sample size. Similarly, a low p-value does not mean that a finding is of major clinical or
biological interest [28]. Many researchers have advocated abolishing NHST (e.g.,
[29,30]). However, others note that many of the problems with publication bias reoccur
with other approaches, such as reporting effect sizes and their confidence intervals [31]
or Bayesian credible intervals [32]. Publication biases are not a problem with p-values
per se. They simply reflect the incentives to report strong (i.e., significant) effects.
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Despite the potential importance of p-hacking, the consequences for formal and informal
data synthesis are unknown. Here, we address both issues using p-curves (see Box 2). First,
we used text-mining to obtain reported p-values in papers drawn from a broad range of sci-
entific disciplines. We then looked for evidence of p-hacking based on the shape of the p-
curves. Second, we produced p-curves from primary data used in published meta-analyses.
This allowed us to test the evidence for p-hacking when looking at specific hypotheses which
researchers have clearly identified as being of general interest (i.e., that warrant a meta-
analysis).

Box 2. The P-Curve: What Can It Tell Us?
A p-curve is the distribution of p-values for a set of studies. P-curves can be a helpful tool
to assess the reliability of published research. Here, we outline how they have been used
to assess the literature.

Evidential value. One can examine whether a set of findings contains evidential
value by examining the distribution of p-values, particularly those between 0 and 0.05.
“Evidential value” refers to whether or not the published evidence for a specific hypothe-
sis suggests that the effect size is nonzero.

When the effect size for a studied phenomenon is zero, every p-value is equally likely
to be observed. The expected distribution of p-values under the null hypothesis is uni-
form (Black line, Fig. 1A and Fig. 2A), such that p<0.05 will occur 5% of the time,
p<0.04 will occur 4% of the time, and so on. On the other hand, when the true effect size
is nonzero, the expected distribution of p-values is exponential with a right skew [39–42]
(Black line, Fig. 1B and Fig. 2B). When the true effect is strong, researchers are more like-
ly to obtain very low p-values (e.g., p<0.001) than moderately low p-values (e.g., 0.01),
and less likely still to obtain nonsignificant p-values (p> 0.05) [41]. So, as the true effect
size increases the p-curve is more right skewed [41].

Publication bias. Several studies have plotted the distribution of p-values or related
test statistics (i.e., Z or t) around the main significance threshold of p = 0.05 (often in the
range of 0.01 to 0.1). A notable drop in p-values above 0.05 (or for Z values, 1.96) (Red
line, Fig. 1A and Fig. 1B) is interpreted as evidence for publication bias (e.g., [40,43–45]).
While a discontinuity in the distribution of p-values around 0.05 is indicative of publica-
tion bias, it does not distinguish between selective publication bias and p-hacking (see
Box 1).

P-hacking. The p-curve can, however, be used to identify p-hacking, by only consid-
ering significant findings [14]. If researchers p-hack and turn a truly nonsignificant result
into a significant one, then the p-curve’s shape will be altered close to the perceived sig-
nificance threshold (typically p = 0.05). Consequently, a p-hacked p-curve will have an
overabundance of p-values just below 0.05 [12,40,41]. If researchers p-hack when there is
no true effect, the p-curve will shift from being flat to left skewed (Fig. 2A). If, however,
researchers p-hack when there is a true effect, the p-curve will be exponential with right
skew but there will be an overrepresentation of p-values in the tail of the distribution just
below 0.05 (Fig. 2B). Both p-hacking and selective publication bias predict a discontinu-
ity in the p-curve around 0.05, but only p-hacking predicts an overabundance of p-values
just below 0.05 [12]. The exact shape of the p-curve will, however, depend on both the
true effect (i.e., the p-curve before p-hacking) and the intensity of p-hacking [41].
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Assessing p-curves for p-hacking and evidential value. Similar to previous studies
(e.g., [14,43]) we employ binomial tests to look for evidence of evidential value and p-
hacking in both our text-mined and meta-analyses datasets. We tested for evidential
value using a two-tailed sign test, in which we compared the number of p-values falling
in the bin 0� p< 0.025 to the number in the bin 0.025� p< 0.05. Under the null hy-
pothesis of no evidential value, the expected number of p-values in each of these bins is
equal. Significantly more p-values in the lower bin is consistent with evidential value (i.e.,
right skewed p-curve), and significantly more p-values in the upper bin is consistent with
severe p-hacking. This test is a slightly modified version of a test proposed by Simohnson
et al. [41], who suggest using two separate one-tailed sign tests for the same purpose.

The two-tailed sign test with a p = 0.025 threshold (above) and the tests proposed by
Simonsohn et al. [41] can detect severe p-hacking, but are insensitive to more modest
(and arguably more realistic) levels of p-hacking. This is true especially if the average
true effect size is strong, as the right skew introduced to the p-curve will mask the left
skew caused by p-hacking. A more sensitive approach to detect p-hacking is to look for
an increase in the relative frequency of p-values just below 0.05, where we expect the sig-
nal of p-hacking to be strongest. Under the null hypothesis of no p-hacking, we expect ei-
ther that the distribution of p-values is uniform close to 0.05 (if the true effect sizes are
zero), or right skewed (i.e., if at least some effect sizes are nonzero). However, p-hacking
introduces additional p-values close to 0.05, producing a left skew. Thus, a simple, and
conservative, test for p-hacking involves testing the null hypothesis that the p-values just
below 0.05 are either uniformly distributed or right skewed. We used a one-tailed sign
test to ask whether the number of p-values in the bin that abuts 0.05 is greater than that
in the adjacent lower bin. This test becomes more likely to detect p-hacking if one uses
smaller bins, since p-values are right skewed when the average effect size is positive
(masking p-hacking), but in practice, using smaller bins will reduce the sample size (and
thus power) of the test. We selected a bin width of 0.005, with the lower bin specified as
0.04< p< 0.045 and the upper bin as 0.045< p< 0.05. We chose p< 0.05 as the cutoff
for our upper bin (following [3]), rather than p = 0.05 (see [46]) because we suspect that
many authors do not regard p = 0.05 as significant. As a measure of the strength of p-
hacking, we present the proportion of p-values in the upper bin and the associated 95%
confidence intervals (calculated following Clopper and Pearson [47] using the binom.test
function in R).

We ran the above analyses separately for each discipline and meta-analysis dataset. In
addition, we tested for overall evidential value (two-tailed test) and signs of p-hacking
(one-tailed test) in the two main datasets (Text-mining of p-values and the meta-analysis
data sets respectively). To do this, we used the proportion of p-values occurring in the
upper bin for each discipline or meta-analysis (depending on the dataset being analysed)
and ran a binomial generalised linear model to test whether the observed intercept dif-
fered from 0.5 (i.e., equal number of cases in the two bins). This approach is equivalent
to a meta-analysis testing for a significant trend when combining the individual disci-
plines or questions because each is weighted by its sample size. The R code we used is de-
posited in Dryad [48].

PLOS Biology | DOI:10.1371/journal.pbio.1002106 March 13, 2015 4 / 15



Assessing the Extent of P-Hacking in the Scientific Literature Using
Text-Mining
We used text-mining to search for p-values in all Open Access papers available in the PubMed
database (see S1 Text). To quantify “evidential value” (i.e., if there is evidence that the true ef-
fect size is nonzero) and p-hacking, we constructed p-curves from the p-values we obtained
(see Box 2). We present separate tests of evidential value and p-hacking for p-values extracted
from the Results section, and for p-values extracted from the Abstracts. Researchers have iden-
tified weaknesses in the use of text-mined data to look for publication bias (e.g., [46]). Here, we
adopted several measures to counter these weaknesses (see S1 Text).

Fig 1. The effect of publication bias on the distribution of p-values around the significance threshold
of 0.05. A) Black line shows distribution of p-values when there is no evidential value and the red line shows
how publication bias influences this distribution. B) Black line shows distribution of p-values when there is
evidential value and red line shows how publication bias influences this distribution. Tests for publication bias
due to a file-drawer effect often compare the number of p-values in each of the bins either side of 0.05.

doi:10.1371/journal.pbio.1002106.g001
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Pooling p-values across all disciplines, there was strong evidence for “evidential value”; that
is, researchers appear to be predominantly studying phenomena with nonzero effect sizes, as
shown by the strong right skew of the p-curve for p-values found in both the Results (binomial
glm: estimated proportion of p-values in the upper bin (0.025� p< 0.05) (lower CI, upper CI)
= 0.257 (0.254, 0.259), p< 0.001, n = 14 disciplines) and the Abstracts (binomial glm: estimat-
ed proportion of p-values in the upper bin (0.025� p< 0.05) (lower CI, upper CI) = 0.262
(0.257, 0.267), p< 0.001, n = 10 disciplines). We found significant evidential value in every
discipline represented in our text-mining data, irrespective of whether we tested the p-values
from the Results or Abstracts (Table 1; Table 2). Based on the net trend across all disciplines,
however, there was also strong evidence for p-hacking in both the Results (binomial glm: esti-
mated proportion of p-values in the upper bin (0.045< p< 0.05) (lower CI) = 0.546 (0.536),
p< 0.001, n = 14 disciplines) and the Abstracts (binomial glm: estimated proportion of p-

Fig 2. The effect of p-hacking on the distribution of p-values in the range of significance. A) Black line
shows distribution of p-values when there is no evidential value and the red line shows how p-hacking
influences this distribution. B) Black line shows distribution of p-values when there is evidential value and the
red line shows how p-hacking influences this distribution. Tests for p-hacking often compare the number of p-
values in two adjacent bins just below 0.05.

doi:10.1371/journal.pbio.1002106.g002
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Table 1. Tests for evidential value and p-hacking across disciplines, using p-values obtained from the Results section.

Discipline Number of p-
values between 0
and 0.025

Number of p-
values between
0.025 and 0.05

Binomial test for
evidential value

Number of p-
values between
0.04 and 0.045

Number of p-
values between
0.045 and 0.05

Binomial test
forp-hacking

Agricultural and
veterinary sciences

375 125 <0.001 10 16 0.163

Biological sciences 11,074 3,562 <0.001 350 423 0.005

Chemical sciences 380 110 <0.001 14 17 0.360

Earth sciences 76 25 <0.001 0 4 0.063

Education 280 101 <0.001 9 8 0.685

Engineering 471 183 <0.001 16 12 0.828

Environmental
sciences

657 190 <0.001 10 19 0.068

Information and
computing sciences

790 266 <0.001 20 30 0.101

Mathematical
sciences

72 22 <0.001 3 0 1.000

Medical and health
sciences

45,460 16,537 <0.001 1,477 1,785 <0.001

Multidisciplinary 21,209 6,793 <0.001 638 750 0.001

Psychology and
cognitive sciences

1,355 487 <0.001 29 50 0.012

Studies in human
society

139 45 <0.001 8 3 0.967

Technology 94 37 <0.001 3 3 0.656

Number of p-values in each bin is the mean number based on 1,000 bootstraps of one p-value per Results section, rounded to the nearest whole number.

Disciplines (n = 8) for which we found fewer than 50 p-values below 0.05 in the Results section were excluded.

doi:10.1371/journal.pbio.1002106.t001

Table 2. Tests for evidential value and p-hacking across disciplines, using p-values obtained from the Abstract.

Discipline Number of p-
values between 0
and 0.025

Number of p-
values between
0.025 and 0.05

Binomial test for
evidential value

Number of p-
values between
0.04 and 0.045

Number of p-
values between
0.045 and 0.05

Binomial test
for p-hacking

Agricultural and
veterinary sciences

96 35 <0.001 3 2 0.813

Biological sciences 1,787 632 <0.001 54 66 0.158

Chemical sciences 76 31 <0.001 3 4 0.500

Education 88 22 <0.001 2 0 1.000

Engineering 121 52 <0.001 2 1 0.875

Environmental
sciences

42 15 <0.001 2 2 0.688

Information and
computing sciences

251 105 <0.001 5 15 0.021

Medical and health
sciences

18,428 6,692 <0.001 633 692 0.056

Multidisciplinary 5,056 1,621 <0.001 123 174 0.002

Psychology and
cognitive sciences

98 37 <0.001 1 5 0.109

Number of p-values in each bin is the mean number based on 1,000 bootstraps of one p-value per Abstract, rounded to the nearest whole number.

Disciplines (n = 12) for which we found fewer than 50 p-values below 0.05 in the Abstract were excluded.

doi:10.1371/journal.pbio.1002106.t002
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values in the upper bin (0.045< p< 0.05) (lower CI) = 0.537 (0.518), p< 0.001, n = 10 disci-
plines). In most disciplines, there were more p-values in the upper than the lower bin; and
when we look at the p-values text-mined from Results sections in every discipline where we
had good statistical power (i.e., Health and medical Sciences, Biological Sciences, and Multidis-
ciplinary), this difference was statistically significant (Table 1, Fig. 3A). When looking at p-
values text-mined from Abstracts, despite the significant general trend, only the multidisciplin-
ary and Information and Computer Science categories were significant (Table 2, Fig. 3B).

Our text-mining suggests that p-hacking is widespread. Other studies that have inspected p-
curves for far smaller sets of journals have also found evidence of p-hacking [12,40,45]. By con-
trast, Jager and Leek [3] found no evidence of p-hacking in a text-mining study of five medical
journals. However, they were criticized for using p-values from Abstracts [46], because report-
ing p-values in Abstracts is optional, so they are more likely to contain only the strongest re-
sults (i.e., smallest p-values). Such a bias would exaggerate evidential value in our analysis, and
make it harder to detect p-hacking (e.g., if researchers censor results with p = 0.049 from the
Abstract, but not p = 0.041). Even though Abstracts are more likely to contain p-values that re-
late to primary hypotheses, which are expected to be more strongly p-hacked than p-values
from less interesting, ancillary tests [41], lower power and reporting bias may impede detection
of p-hacking using p-values obtained from Abstracts. The fact that we find evidence for p-
hacking when using p-values from either the Abstracts or the Results sections across all scien-
tific disciplines for which data are available (our overall analysis) supports the conclusion that
p-hacking is rife.

Fig 3. Evidence for p-hacking across scientific disciplines. A) Evidence for p-hacking from p-values obtained from Results sections. B) Evidence for p-
hacking from p-values obtained from Abstracts. The strength of p-hacking is presented as the proportion of p-values in the upper bin (0.045< p< 0.05) with
one-tailed 95% confidence intervals (calculated following Clopper and Pearson [47] using the binom.test function in R). Only disciplines where text-mining of
the Results sections returned more than 25 p-values between 0.04 and 0.05 are presented. Marker colour is shaded according to the sample size: with white
indicating low samples sizes and red indicating larger sample sizes.

doi:10.1371/journal.pbio.1002106.g003
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Although we present evidence that p-hacking is widespread, there was still a strong right
skew in all the p-curves we examined. This is consistent with researchers investigating predic-
tions that lead to refutation of the null hypothesis, implying that the average true effect size
studied by life scientists is nonzero. Given recent concerns about the lack of reproducibility of
findings (e.g., [49] but see [50]) and the possibility that many published results are false [2],
our results are reassuring. It is, of course, important to note that when using text-mining, we
are combining many different types of questions to generate our p-curves. Consequently, it re-
mains unclear whether there are some research fields or questions subsumed within the disci-
plines we considered for which the average effect size of published results is zero (i.e., the p-
curve is flat). To examine this, it is important to also look at p-curves for well-defined research
questions [41].

The Consequences of P-Hacking for Meta-analyses
Meta-analysis is an excellent method for systematically synthesizing the literature and quanti-
fying an effect or relationship by averaging effect sizes from multiple studies after weighting
each one by its reliability [33,51]. However, meta-analyses are only as good as the data they
use, and a recent study estimated that up to 37% of meta-analyses of clinical trials reporting a
significant mean effect size represent false positives [34].

Tests for evidential value and p-hacking can readily be used to detect biases in datasets used
in meta-analyses. We encourage researchers conducting meta-analyses to report p-values asso-
ciated with each effect size (which is not currently standard practice) and then to test for evi-
dential value and p-hacking. For a recent example of this practice, see [52]. To demonstrate
this procedure, we obtained p-values from studies subject to meta-analyses by evolutionary bi-
ologists studying sexual selection [53–61] (see S1 Text).

When conducting our own meta-analysis of all the data used in these meta-analyses, there
was clear evidence that researchers have strong evidential value for claims that effect sizes are
nonzero (binomial glm: estimated proportion of p-values in the upper bin (0.025� p< 0.05)
(lower CI, upper CI) = 0.202 (0.179, 0.228), p<0.001, n = 12 datasets). We then examined each
dataset separately and found statistically significant evidential value for 9 of the 12 p-curves
(Table 3). The three p-curves that did not show evidential value had the three lowest sample
sizes, so low statistical power to detect evidential value may explain the lack of significance.
Again, it is worth noting that evidential value for well-studied phenomena is not a given (see a
real-world example in [62]).

When considering evidence for p-hacking, we found that when we included misreported
p-values (those given as p< 0.05 which were actually larger; a total of 16 cases—see S1 Text)
there were more p-values in the upper than the lower bin for 7 of 12 p-curves (Table 3). This
bias was significant in one dataset (Fig. 4), which was also the one with the largest sample size.
However, the evidence for p-hacking disappeared when we excluded misreported p-values
from our analyses (Table 3). One could argue that including misreported p-values in the upper
bin of our binomial test biases our results toward detecting p-hacking, but reporting nonsignifi-
cant results as “p<0.05” is a component of p-hacking that should not be ignored. Indeed,
Leggett et al. [45] also found considerable misreporting of p-values around the 0.05 threshold.
They noted that p-values were more likely to be misreported as significant when they were not,
rather than the reverse, and that this “error” has become more common in recent years.

More importantly, when misreported p-values were included in our analysis we found sig-
nificant p-hacking from a meta-analysis of the p-curves of the 12 meta-analyses (binomial glm:
estimated proportion of p-values in the upper bin (0.045< p< 0.05) (lower CI) = 0.615
(0.513), p = 0.033; excluding misreported p-values: 0.489 (0.375), p = 0.443). Although
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questions subjected to meta-analysis might not be a representative sample of all research ques-
tions asked by scientists, our results indicate that studies on questions identified by researchers
as important enough to warrant a meta-analysis tend to be p-hacked. Whether this influences
the general conclusions of a meta-analysis depends on both the extent of p-hacking and the

Table 3. Tests for evidential value and p-hacking for publishedmeta-analyses.

Meta-analysis Number of p-
values between 0
and 0.025

Number of p-values
between 0.025 and
0.05

Binomial test for
evidential value

Number of p-values
between 0.04 and
0.045

Number of p-values
between 0.045 and
0.05

Binomial test
for p-hacking

Ackay &
Roughgraden 2007
(1)

26 9 0.006 0 (0) 1 (1) 0.500 (0.500)

Cleasby &
Nakagawa 2012

12 4 0.077 0 (0) 2 (1) 0.250 (0.500)

de Jong et al. 2012 22 1 <0.001 0 (0) 0 (0) NA

Jiang et a.l 2013 318 82 <0.001 7 (7) 17 (11) 0.032 (0.240)

Kelly 2008 (1) 83 23 <0.001 3 (3) 5 (3) 0.363 (0.656)

Kelly 2008 (2) 91 18 <0.001 2 (2) 4 (2) 0.344 (0.688)

Kelly 2008 (3) 72 18 <0.001 3 (3) 6 (1) 0.254 (0.938)

Kraaijeveld et al.
2011

10 4 0.180 0 (0) 1 (1) 0.500 (0.500)

Prokop et al. 2012 79 15 <0.001 2 (2) 2 (2) 0.688 (0.688)

Santos et al. 2011 40 23 0.043 8 (8) 2 (2) 0.989 (0.989)

Weir et al. 2011 (1) 15 2 0.002 0 (0) 0 (0) NA

Weir et al. 2011 (4) 9 2 0.065 0 (0) 0 (0) NA

Meta-analyses with ten or fewer significant p-values are not shown. Numbers in the lower and upper bins of the p-hacking test are those including

misreported p-values followed by those excluding misreported p-values in brackets.

doi:10.1371/journal.pbio.1002106.t003

Fig 4. The distribution of p-values associated with the meta-analysis conducted by Jiang et al. (2013).
The p-curve shows evidence for evidential value (strong right skew) and p-hacking (rise in p-values just
below 0.05).

doi:10.1371/journal.pbio.1002106.g004
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strength of the true effect. For instance, we found a statistically significant indication of p-hack-
ing in only one of the 12 questions examined in published meta-analyses (Fig. 4). However,
this study [56] also showed strong evidential value and p-values in the 0.045–0.05 bin were
only a small proportion of published significant p-values. It is therefore unlikely that p-hacking
would change the qualitative conclusions made in this meta-analysis, although p-hacking
might have inflated the estimated mean effect size. In general, meta-analyses might be robust
to inflated effects sizes that results from p-hacking, because: 1) all else being equal, studies that
are most susceptible to p-hacking are those with small sample sizes (i.e., because low statistical
power means less chance of a significant result), and these are given less weighting in a meta-
analysis, 2) at least in some fields (e.g., ecology and evolution), meta-analyses often use data
that is not directly related to the primary focus of the original paper. The p-values associated
with secondary questions are less likely to be p-hacked. One way to check how sensitive esti-
mates of effects sizes are to p-hacking would be to randomly remove the appropriate number
of studies that contribute to a hump in the p-curve just below 0.05. Alternatively, meta-analysts
could estimate effect sizes using p-curves (i.e., using only the significant p-values they find), a
method which has been proposed to account for publication biases and to offer a conservative
estimate of the true effect when there is p-hacking [62,63]. Development of p-curve methods is
ongoing and we look forward to further tests of their ability to correct for the file-drawer effect,
p-hacking, and other forms of publication bias given that real world data are likely to violate
some of the assumptions in the available simulations of their effectiveness.

Summary and Conclusions
Our study provides two lines of empirical evidence that p-hacking is widespread in the scientif-
ic literature. Our text-mining approach is based on a very large dataset that consists of p-values
from different disciplines and questions, while our meta-analysis approach consists of p-values
concerning a few specific hypotheses. Both approaches yielded similar results: evidential value
for claims that the mean effect sizes for key study questions are nonzero—the conclusions re-
searchers are making based on significant study findings—but that estimated mean effect size
has probably been inflated by p-hacking.

Eliminating p-hacking entirely is unlikely when career advancement is assessed by publica-
tion output, and publication decisions are affected by the p-value or other measures of statisti-
cal support for relationships. Even so, there are a number of steps that the research community
and scientific publishers can take to decrease the occurrence of p-hacking (see Box 3).

Box 3. Recommendations
The key to decreasing p-hacking is better education of researchers. Many practices that
lead to p-hacking are still deemed acceptable. John et al. [16] measured the prevalence of
questionable research practices in psychology. They asked survey participants if they had
ever engaged in a set of questionable research practices and, if so, whether they thought
their actions were defensible on a scale of 0–2 (0 = no, 1 = possibly, 2 = yes). Over 50% of
participants admitted to “failing to report all of a study’s dependent measures” and “de-
ciding whether to collect more data after looking to see whether the results were signifi-
cant,” and these practices received a mean defensibility rating greater than 1.5. This
indicates that many researchers p-hack but do not appreciate the extent to which this is a
form of scientific misconduct. Amazingly, some animal ethics boards even encourage or
mandate the termination of research if a significant result is obtained during the study,
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which is a particularly egregious form of p-hacking (Anonymous reviewer, personal
communication).

What can researchers do?

• Clearly label research as prespecified (i.e., designed to answer a specific question,
where detail of methods and analyses can be fully reported prior to data collection) or
exploratory (i.e., involves exploration of data that looks intriguing, where methods and
analyses used are often post hoc [13]), so that readers can treat results with appropriate
caution. Results from prespecified studies offer far more convincing evidence than
those from exploratory research [2].

• Adhere to common analysis standards [2]; measuring only response variables that are
known (or predicted) to be important; and using sufficient sample sizes.

• Perform data analysis blind wherever possible. This approach makes it difficult to p-
hack for specific results.

• Place greater emphasis on the quality of research methods and data collection rather
than the significance or novelty of the subsequent findings when reviewing or assessing
research. Ideally, methods should be assessed independently of results [13,44].

What can journals do?

• Provide clear and detailed guidelines for the full reporting of data analyses and results.
For instance, stating that it is necessary to report effect sizes whether small or large, to
report all p-values to three decimal places [27,64], to report samples sizes, and, most
importantly, to be explicit about the entire analysis process (not just the final tests used
to generate reported p-values). This will reduce p-hacking and aid the collection of
data for meta-analyses and text-mining studies.

• Encourage and/or provide platforms for method prespecification [13,65]. Although
methods and results in publications do not always match their prespecified protocols
[5,66], prespecification allows readers to assess the risk of p-hacking and adjust their
confidence in the reported outcomes accordingly.

• Encourage and/or provide platforms for open access to raw data. While access to raw
data does not prevent p-hacking, it does make researchers more accountable for mar-
ginal results and allows readers to reanalyze data to check the robustness of results.
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