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The Extent of Dilation of Sets of Probabilities 

and the Asyrnptotics of Robust Bayesian Inference1 


Timothy Herron, Teddy Seidenfeld, and Larry Wasserman 

Carnegie-Mellon University 

1. Overview 

We discuss two general issues concerning diverging sets of Bayesian (conditional) 
probabilities-divergence of "posteriors"- that can result with increasing evidence. 
Consider a set P of probabilities typically, but not always, based on a set of Bayesian 
"priors." Incorporating sets of probabilities, rather than relying on a single probabili- 
ty, is a useful way to provide a rigorous mathematical framework for studying sensi- 
tivity and robustness in Classical and Bayesian inference. See: Berger (1984, 1985, 
1990); Lavine (1991); Huber and Strassen (1973); Walley (1991); and Wassennan and 
Kadane (1990). Also, sets of probabilities arise in group decision problems. See: 
Levi (1982); and Seidenfeld, Kadane, and Schervish (1989). Third, sets of probabili- 
ties are one consequence of weakening traditional axioms for uncertainty. See: Good 
(1952); Smith (1961); Kyburg (1961); Levi (1974); Fishburn (1986); Seidenfeld, 
Schervish, and Kadane (1990); and Walley (1991). 

Fix E, an event of interest, and X, a random variable to be observed. With respect 
to a set P, when the set of conditional probabilities for E, given X ,strictly contains 
the set of unconditional probabilities for E, for each possible outcome X = x ,call this 
phenomenon dilation of the set of probabilities (Seidenfeld and Wasserman 1993). 
Thus, dilation contrasts with the asymptotic merging of posterior probabilities report- 
ed by Savage (1954) and by Blackwell and Dubins (1962), which we discuss briefly 
in section $2. 

For a wide variety of models for Robust Bayesian inference the extent to which X 
dilates E is related to a model specific index of how far key elements of P are from a 
distribution that makes X and E independent. Some sets P use a class of priors gener- 
ated by a "neighborhood" of a focal distribution P. These include: the E-contamina- 
tion class of priors, the Total Variation class of priors, and symmetric neighborhoods 
of a prior. The extent to which X dilates E in these sets is related to a model specific 
index of how far P is from a distribution that makes X and E independent. In other 
sets P, e.g., in the Frechet class, and models given by lower and upper probabilities 
for atoms, the extent of dilation may be indexed by departures from independence of 
the probabilities that are extreme points of (the convex closure of) P rather than by re- 
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femng to some obvious focal member of P. In section 93, we discuss this connec- 
tion between independence and indices for the extent of dilation. 

In section 94, we consider phenomena related to asymptotic dilation. -At a fixed* 
confidence level, (I-a),  Classical interval estimates (based on an m.l.e., 0 ), A, = [ 0 
- a, , 0 + a,], have length O(n-ll2) (for a sample of size n). Of course, 
the confidence level correctly reports the (prior) probability that 0 6 A, for each 
P E P ,  P(A,) = 1-a, independent of the prior for 0. However, as shown by Pericchi 
and Walley (1991), if an &-contamination class is used for the prior on the parameter, 
there is asymptotic (posterior) dilation for the A,, given the data (xl,  ...,x,). That is, 
the asymptotic lower posterior probability P* (= infkp) for A, is 0, 

limn,, P*(A, I XI, ..., x,) = 0. (as.) 

By contrast, if the intervals A', are chosen with length o(-), then there is no 
asymptotic dilation. This is explained by using H.Jeffreys' (1967, $5) theory of 
Bayesian hypothesis testing. In section $4, we discuss how the class of priors and the 
asymptotic rate of dilation for Bayesian (posterior) and Classical interval estimates 
are related. First, however,we summarize two familiar results about the merging of 
conditional probabilities since these are in sharp contrast with the effects of dilation. 

2. The merging of conditional probabilities with increasing shared evidence 

As a backdrop to the discussion of dilation, we begin by pointing to two well 
known results about the asymptotic merging of Bayesian posterior probabilities. 

2.1 Savage (1954, $3.6) provides an (almost everywhere) approach simultaneously to 
consensus and to certainty among a few Bayesian investigators, provided: 

(1)they investigate finitely many statistical hypotheses O = {01,..., €Ik] 
(2) they use Bayes' rule to update probabilities about O given a growing sequence 

shared data {x l ,  ...I. These data are identically, independently distributed 
(i.i.d.) given 0 (where the Bayesians agree on the statistical model 
parametrized by O). 

(3) they have prior agreement about null events. Specifically (given condition 2), 
there is agreement about which parameter values have positive prior probability. 

By a simple application of the strong law of large numbers, Savage concludes that, al- 
most surely, the agents' posterior probabilities will converge to l for the true value of 
O. Asymptotically, with probability I ,  they achieve consensus and certainty about O. 

2.2 Blackwell and Dubins (1962) give an impressive generalization about consensus 
without using either "i" of Savage's i.i.d. condition (2). Theirs is a standard martin- 
gale convergence result which we summarize next. 

Consider a denumerable sequence of sets Xi (i = I ,...) with associated o-fields Bi. 
Form the infinite Cartesian product X = XI 63 ... of sequences (xl, x2, ...) = x E X, 
where xi E Xi. That is, each xi is an atom of its algebra Bi. Let the measurable sets in 
X (the events) be the elements of of the o-algebra B generated by the set of measurable 
rectangles. Define the spaces of histories (H,, H,) and futures (F,l, IF,) where H, = 
XI@...@ X,, H n = B 1@... @B,, and whereF,= X,,+l @... and Fn=h,+l@... . 



Blackwell and Dubins' argument requires that P is apredictive, o-additive probabil- 
ity on the measure space (X, 8).(That P is predictive means that there exist conditional 
probability distributions of events given past events, Po(* IN,).) Consider a probabili- 
ty Q which is in agreement with P about events of measure 0 in 8: V E c 8 ,  P(E) = 0 iff 
Q(E) = 0. That is, P and Q are mutually absolutely continuous [m.a.c.]. Then Q, too, is 
o-additive and predictive if P is, with conditional distributions Qn(F, I H,). 

Blackwell & Dubins (1962) prove there is almost certain asymptotic consensus be- 
tween the conditional probabilities Pn and Qn. 

Theorem 1. For each Pn there is (a version of) Qn so that, almost surely, the distance 
between them vanishes with increasing histories:lim,, p(Pn, Qn) = 0 [a.e. P or Q], 
where p is the uniform distance (total variation) metric between distributions. (That 
is, with p and v defined on the same measure space (M, TZ), p(p,v) is the least upper 
bound over events E E TZ of 1 p(E) - v(E) 1. ) 

Thus, the powerful assumption that P and Q are mutually absolutely continuous 
(Savage's condition 3) is what drives the merging of the two families of conditional 
probabilities Pn and Qn. 

3. Dilation and short run divergence of posterior probabilities. 

Throughout this section, let P be a (convex) set of probabilities on a (finite) alge- 
bra A. For a useful contrast with Savage-styled, or Blackwell-Dubins-styled asymp- 
totic consensus, the following discussion focuses on the short run dynamics of upper 
and lower conditional probabilities in Robust Bayesian models. 

For an event E, denote by P*(E) the "lower" probability of E: infp {P(E))and de- 
note by P*(E) the "upper" probability of E: supp {P(E)). Let (bl, ..., b,) be a (finite) 
partition generated by an observable B. 

Definition. The set of conditional probabilities {P(E I bi)] dilate if 
P*(E I bi) < P*(E) 5 P*(E) < P*(E l bi) (i = 1 ,  ..., n). 

That is, dilation occurs provided that, for each event bi in a partition B, the conditional 
probabilities for an event E, given bi, properly include the unconditional probabilities 
for E. 

Here is an illustration of dilation. 

Heuristic Example. Suppose A is a highly "uncertain" event with respect to the set P. 
That is, P*(A) - P+(A)= 1. Let {H,T) indicate the flip of a fair coin whose outcomes 
are independent of A. That is, P(A,H) = P(A)/2 for each P E P. Define event E by, 
E = 1 ,(AC,T)1. 

It follows, simply, that P(E) = .5 for each P E P. (E is pivotal for A.) But then, 
0 = P*(E I H) < P*(E) = P*(E) < P*(E I H) = 1 

and 0 = P*(E I T) < P*(E) = P*(E) < P*(E I T) = I .  

Thus, regardless of how the coin lands, conditional probability for event E dilates to a 
large interval, from a determinate unconditional probability of .5. Also, this example 
mimics Ellsberg's (1961) "paradox," where the mixture of two uncertain events has a 
determinate probability. 



3.1 Dilation and Independence. 

The next two theorems on existence of dilation serve to motivate using indices of 
departures from independence to gauge the extent of dilation. They appear in 
(Seidenfeld and Wasserman 1993). 
Independence is suficient for dilation. 

Let Q be a convex set of probabilities on algebra A and suppose we have access to 
a "fair" coin which may be flipped repeatedly: algebra C. Assume the coin flips are 
independent and, with respect to Q, also independent of events in A. Let P be the re- 
sulting convex set of probabilities on x C. (This condition is similar to, e.g., 
DeGroot's assumption of an extraneous continuous random variable, and is similar to 
the "fineness" assumptions in the theories of Savage, Ramsey, Jeffrey, etc.) 

Theorem 2: If Q is not a singleton, there is a 2 x 2 table of the form @,E" X (H,T) 
where both: 

P*(E I H) < P*(E) = .5= P*(E) < P*@ I H) 
P*(E I T) < P*(E) = .5 = PY@) < P*(E IT). 

That is, then dilation occurs. 

Independence is necessary for dilation. 

Let P be a convex set of probabilities on algebra A.The next result is formulated for 
subalgebras of 4 atoms: (pl, p2, ps, p4) 

The case of 2 x 2 tables. 

Define the quantity Sp(Al,bl) = P(Al,bl) / P(A1)P(bl) =p1/(p1+p2)(plfp3), and we 
stipulate that Sp(A1,bl) = I if P(A1)P(bl) =0. Thus, SP(A1,bl) = 1 iff A and B are 
independent under P and "Sp" is an index of dependence between events. 

Lemma 1: If P displays dilation in this sub-algebra, then 

infp{Sp(Al,bl)1 < 1 < supp{Sp(Al,bl)}. 

Theorem 3: If P displays dilation in this sub-algebra, then there exists P# E P such 



Thus, independence is also necessary for dilation 

3.2 The extent of dilation 

We begin by reviewing some results that obtain for the &contaminatedmodel 
(Seidenfeld and Wasserman 1993). Given probability P and 1 >& >0, define the con-
vex set P,(P) = ((1-&)P+ EQ: Q an arbitrary probability]. This model is popular in 
studies of Bayesian Robustness. (See Huber 1973 and 1981; Berger 1984.) 

Lemma 2. In the &-contaminatedmodel, dilation occurs in algebra a iff it occurs in 
some 2x2 subalgebra of A. 

So without loss of generality, the next result is formulated for 2x2 tables using the no-
tation of Lemma 1. 

Theorem 4: P,(P) experiences dilation if and only if 
case 1: SP(Al,bl) > 1 

E > [Sp(Al,bl) - 11 m u (  P(AI)/P(A~); P(bl)/P(b2) 1 
case 2: SP(Al,bl) < 1 

E > [I - Sp(A~,bl)l m u (  1 ; P ( A I ) P ( ~ ~ ) / P ( A ~ ) P ( ~ ~ )I 
and case 3: SP(A1,bl)= 1 

P is internal to the simplex of all distributions. 

Thus, dilation occurs in the &contaminatedrnodel if and only if the focal distribution, P, 
is close enough (in the tetrahedron of distributions on four atoms) to the saddle-shaped 
surface of distributions which make A and B independent. Here, Sp provides one rele-
vant index of the proximity of the focal distribution P to the surface of independence. 

Definition: For B cB (B not necessarily a binary outcome) define the extent of dilation 
by A(A, B) = minbEB[P*(Alb) - P*(A) + (P*(A) - P*(Alb))]. 

For the &-contamination model we have 

Theorem 5: A(A, B) = minbEB [&(I-&)P(bc)+ &+(I-&)P(b)] 

In this model, A(A, B) does not depend upon the event A. Moreover, the extent of 
dilation is maximized when E =dp(bA)+ (l+dp(bA)), where bAE B achieves the min-
imum for A(A, B). 

Similar findings obtain for total variation neighborhoods. Given a probability P 
and 1 > E >0, define the convex set U,(P) = (Q: p(P, Q) IE].  Thus U,(P) is the uni-
form distance (total variation) neighborhood of P, corresponding to the metric of 
Blackwell-Dubins' consensus. As before, consider dilation in 2x2 tables. Define a 
second index of association: dp(A,B) =P(AB) - P(A)P(B) 

(Informal version 00Theorem 6: U,(P) experiences dilation if and only if P is suf-
ficiently close to the surface of independence, as indexed by dp. 

The extent of dilation for the total variation model also may be expressed in terms 
of the dp- index, though there are annoying cases depending upon whether the set 
U,(P) is truncated by the simplex of all distributions. 



Whereas, in the previous two models, each of the sets P,(P) and U,(P) has a single 
distribution that serves as its natural focal point, some sets of probabilities are created 
through constraints on extreme points directly. For example, consider a model where 
P is defined by the lower and upper probabilities on the atoms of the algebra A. In 
section $2 of "Divisive Conditioning" (Herron, Seidenfeld, and Wasserman 1993 -
hereafter referred to as DC), these sets are called ALUP models. For convenience, 
take the algebra to be finite with atoms ai j  (i = 1,2; j = 1, ..., n) and where A = u,a l j  
and bj = {al  ., a2 .} For each atom ai ., denote the lower and upper probability bounds 
achieved widin be (closed set) P bYbij  and y. -,respectively. Likewise, for an event 
E let PE and YE, denote the values P*(E) and P*@). We discuss dilation of the event 
A given the outcome of random quantity B = (bl ,  ..., b,). 

Dilation conditions for an ALUP model are easy to express in terms of extreme 
values within P. 

Theorem 7. (i) P*(A) < P*(Albj) iff y l j  PAc - YA P2j > 0 

and (ii)P*(A)>P*(Albj) i# Y2,jPA - y ~ c P 1 , j>(I-

Next, given events E and F and a probability P, define the (covariance-) index 

6p(E,F) = P(EF)P(ECFC) - P(E~F)P(EFC). 

Within ALUP models, the extent of dilation for A given B = bj is provided by the 
Gp(A,bj) (covariance-) index. Given an event E, use the notation {P*(E)) and (P*(E)} 
for denoting, respectively, the set of probabilities within P that achieve the lower and 
upper probability bounds for event E. Specifically: let P l j  be a probability such that 
P l j  E {P*(A)) n {P*(al .)) n {P*(a2.)I,and let P2,j be a probability such that, P2; E 

{P*(A))n {P*(alj))n (k*(azj)). (d i s tence  of P l j  and Pzi are demonstrated in 62 
of DC.) Then a simple calculation shows: 

Theorem 8. A(A, B) = minj [ GPl j(A,bj)P2,j(bj) - 8P2,j(A,bj)Pl,j(bj)1. 

Thus, as with the €-contamination and total variation models, the extent of dilation in 
ALUP models also is a function of an index of probabilistic independence between 
the events in question. 

Observe that the €-contamination models are a special case of the ALUP models: 
they correspond to ALUP models obtained by specifying the lower probabilities for 
the atoms and letting the upper probabilities be as large as possible consistent with 
these constraints on lower probabilities. Then the extent of dilation for a set P,(P) of 
probabilities may be reported either by attending to the Sp-,index for the focal distribu- 
tion of the set (as in Theorem 3,or by attending to the Fp-index for the extreme 
points of the set (as in Theorem 8). 

4. Asymptotic Dilation for Classical and Bayesian interval estimates 

In an interesting essay, L.Pericchi and P.Walley (1991, pp. 14-16), calculate the 
upper and lower probabilities of familiar Normal confidence interval estimates under 
an €-contaminated model for the "prior" of the unknown Normal mean. Specifically, 
they consider datax = (xl,...,x,) which are i.i.d. ~ ( 8 , o ~ )  for an unknown mean 8 and 
known variance 02.The "prior" class P,(Po) is an €-contaminated set {(l-€)P0 + 
EQ}, where Po is a conjugate Normal distribution, N(p,v2), and Q is arbitrary. Note 



that pairs of elements of P,(Po) are not all mutually absolutely continuous since Q 
ranges over one-point distributions that concentrate mass at different values of 8. 
Hence, Theorem 1 does not apply. 

For E = 0, IP,(Po) is the singleton Bayes' (conjugate) nor P Then the Bayes' pos- 
terior for 0, Po(8h), is? Normal N(p8,r2); where r2 = (v-y+ &$I, pt= r2[(p,'vz) + 
(n ?lo2)], and where x is the sam le average (of x). The standard 95% confidence in- 
terval for 8 is A, = [ x f 1.96o/$]. Under the Bayes' prior Po (for E =0), the Bayes' 
posterior of A,, PO(A, I x), depends upon the data, x. When n is large enough that 22 is 
approximately equal to 02/11, i.e., when oIvn.5 is sufficiently small, then PO(A, I x) is 
close to .95. Otherwise, PO(A, I x )  may fall to very low values. Thus, asymptotically, 
the Bayes' posterior for A, approximates the usual confidence level. However, under 
the &-contaminated model P,(Po) (for E > O), Pericchi and Walley show that, with in- 
creasing sample size n, P%(A,) + O while Pn*(A,) -+ I. That is, in terms of dilation, 
the sequence of standard confidence intervals estimates (each at the same fixed confi- 
dence level) dilate their unconditional probability or coverage level. 

What sequence of confidence levels avoids dilation? That is, if it is required that 
P%(A',) 2 .95, how should the intervals, A', ,grow as a function of n? Pericchi and 
Walley (1991, 16) report that the sequence of intervals A', = [ x f (,o/n.s] has a pos- 
terior probability which is bounded below, e.g., P%(A',) 2 .95, provided that (, in-
creases at the rate (log n).5. They call intervals whose lower posterior probability is 
bounded above some constant, "credible" intervals. 

A connection exists between this the rate of growth for 5, that makes A', credible, 
due to Walley and Pericchi, and an old but important result due to Sir Harold Jeffreys 
(1967, 248). The connection to Jeffreys' theory offers another interpretation for the 
lower posterior probabilities Pn*(A',) arising from the E-contaminated class. 

Adapt Jeffreys' Bayesian hypothesis testing, as follows. Consider a (simple) "null" 
hypothesis, Ho: 8 = 80, against the (composite) alternative HoC: 8# go. Let the prior 
ratio P(HO) / P(HOC) be specified as y:(l -y). (Jeffreys uses y = .5.) Given Ho, the xi are 
i.i.d. N(e0,o*). Given HOC, let the parameter 8 be distributed as N(p,~2) .  Then, when 
the data make I X-001 large relative to o/?.5 the posterior ratio P(Holx) / P(HoClx) is 
smaller than the prior ratio, and when 1 ~ - 8 ~ 1is small relative to oIn.5 the posterior odds 
favor the null hypothesis. But to maintain a constant posterior odds ratio with increas- 
ing sample size rather than being constant --as afixed sigtzijicance kvel would 
entail- the quaptity / (o/n.5) has to grow at the rate (log n).5 though, of course, I X - ~ ~ I  
the difference I X-801 approaches 0. 

In other words, Jeffreys' analysis reveals that, from a Bayesian point of view, the 
posterior odds for the usual two-sided hypothesis test of Hg versus the alternative bC 
depends upon both the observed type1 error (or significance level), a and the sample 
size, n. At a fixed significance level, e.g. at observed significance a = .05, larger 
samples yield ever higher (in fact, unbounded) posterior odds in favor of b.To keep 
posterior odds constant as sample size grows, the observed significance level must de- 
crease towards 0. 

It is well known that Classical confidence intervals can be obtained by inverting a 
family of hypothesis tests, generated by varying the "null" hypothesis. That is, the in- 
terval A, = [X k 1.96o/n.s], with confidence 95%, corresponds to the family of un- 
rejected null hypotheses: each value 8 belonging to the interval is a null hypothesis 
that is not rejected on a standard two-sided test at significance level a = .05. 



rejected null hypotheses: each value 8 belonging to the interval is a null hypothesis 
that is not rejected on a standard two-sided test at significance level a = .05. 
Consider a family of Jeffreys' hypothesis tests obtained by varying the "null" through 
the parameter space and, corresponding to each null hypothesis, varying the prior 
probability which puts mass yon  Ho. Say that a value of 8 , 8  = 80, is rejected when 
its posterior probability falls below a threshold, e.g., when P(Holx) < .05 for the 
Jeffreys' prior P(8 = 80) =y. The class of probabilities obtained by varying the null 
hypothesis forms an &-contaminated model: {(l-y)P(81HoC) + fl},with extreme 
points (for Q) corresponding to all the one-point "null" hypotheses. 

Define the interval B, of null hypotheses, with sample size n, where each survives 
rejection under Jefkeys' tests. The B, are the intervals A', = [ X  k L,o/n.5] of 
Pericchi and Walley's analysis, reported above. What Pericchi and Walley observe, 
expressed in terms of the required rate of growth of 5, for credible intervals (intervals 
that have a fixed lower posterior probability with respect to the class P,(PO)) is exact- 
ly the result Jeffreys reports about the shrinking a-levels in hypothesis tests in order 
that posterior probabilities for the "null" be constant, regardless of sample size. In 
short, credible intervals from the &-contaminated model P,(PO) are the result of in- 
verting on a family of Jeffreys' hypothesis tests that use a fixed lower bound on poste- 
rior odds to form the rejection region of the test. 

We conclude our discussion of asymptotic dilation by relating the length of an in- 
terval estimate of a parameter 8 to the shape of a (symmetic) class of priors for 8. 
Consider interval estimation of a normal mean, 0 < 8< 1. (This restriction to 8= (0,l) 
is for mathematical convenience.) We use a prior (symmetric) family S,of rearrange-
ments of the density pa(@) = (1 -a)8-a, for 0 < a < I. Let the interval estimate of 8 be 
A, = [ 0 - a,, 0 + a,]. For constants C >0 and d, write a, = {n-l(C+dlogn)}l12. 

Theorem 9. For the S ,  model, there is asymptotic dilation of A, if and only if d < a .  

(The proof is given in $7 of DC.) 

5 .  Summary 

In contrast with Savage's, and Blackwell and Dubins' well known results about the 
merging of Bayesian posterior probabilities given sufficient shared evidence, in this 
paper we reported two aspects of the contrary case, which we call dilation of sets of 
probabilities. Let P be a set of probabilities. The quantity X dilates the probabilities 
for an event E provided the set of conditional probabilities for E, given X = x, proper- 
ly contains the set of unconditional probabilities for E, for each possible outcome of 
X. Thus, when X dilates E and probabilities are updated by Bayes' rule, the revised 
opinions about E given X diverge for certain. 

In section $3 we indicated how, for several classes of probabilities used in Robust 
Bayesian inference, the extent of dilation may be gauged by an index of how far away 
key elements of P are from distributions that make X and E independent. In section 
$4 we discussed how ordinary Classical confidence intervals (at a fixed confidence 
level) experience asymptotic dilation as a function of sample size. Relative to the 
choice of the class of priors, we explain how to adjust the length of the intervals to 
avoid asymptotic dilation. 

This inquiry, we think, points out two new ways in which Classical and Robust 
Bayesian statistical inference may be related to each other. We hope to continue our 
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