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SUMMARY
Two half-spaces of dissimilar material properties are brought together and bonded

over a circular region of radius r = a to form an exterior axisymmetric interface
crack. Loads are applied at infinity such that the common boundary (i.e. the bond
and any contact region that develops) transmits tractions whose resultant is an axial
tension P. Interpenetration is predicted if the track is assumed to be completely
open; in fact an annular contact region {a<r^b) is developed around the bond,
while separation occurs in r > b. If the temperatures of the bodies are now changed,
the extent of this contact region changes.

A solution to this problem is obtained by representing the displacement in the
bodies in terms of harmonic potential functions and reducing the resulting mixed
boundary-value problem to an integral equation which is solved numerically.
Detailed results are given for the particular case in which both bodies are raised to
the same temperature. If the load P is zero, the crack either closes completely or
opens almost completely, depending on the sign of certain combinations of physical
constants.

Results are also given for the case where one body is a rigid perfect conductor and
the other is maintained at zero temperature.

1. Introduction

IF two half-spaces of dissimilar materials are bonded together along part of
their common interface and loads are applied tending to separate the bond,
the assumption that the unbonded region opens everywhere leads to a
solution involving oscillatory singularities and interpenetration near the
crack tips (1, 2). However, a physically correct solution can be obtained by
admitting the existence of a contact region between the separation and
bonded regions.

In this paper, we shall consider the problem of an axisymmetric external
interface crack in which stresses are developed due to variations in tempera-
ture as well as external loading. We restrict attention to the case in which
heat flows into the more distortive material to avoid the difficulties as-
sociated with the concept of imperfect contact (3). Detailed results are given
for the limiting case where both bodies are raised to the same temperature.
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404 J. R. BARBER AND MARIA COMNINOU

Statement of the problem

Two isotropic elastic half-spaces are bonded over the circular region
0 «£ T =s a at their common plane z = 0 and are free of stress when the
temperature is everywhere zero. The suffixes 1, 2 will be used to refer to the
bodies z > 0, z < 0 respectively.

Those regions of the two bodies distant from the bond are now raised to
different temperatures T7, T^, causing heat to flow through the bond and
through any other region of the interface at which mechanical contact
occurs. We assume that no heat flow occurs in regions of separation and that
there is no interfacial thermal resistance in the contact region. The bodies
are simultaneously pulled apart by a force P.

Experience with 'athermal' interface crack problems (2) suggests that the
force P will separate the bodies in most of the unbounded region of the
interface, but cause a small annulus of contact surrounding the bond. This
type of behaviour extends to the thermoelastic case. We denote the outer
radius of the contact annulus by b and assume the contact to be frictionless.

3. Mathematical formulation

It is mathematically convenient to regard the solution for each half-space
as the sum of a uniform temperature rise Tf, Tf, and a perturbation with
temperature tending to zero at infinity. The uniform temperature compo-
nent will produce a uniform dilatation but no thermal stress or heat flux.

For the perturbation in each half-space, we use a solution of the equations
of thermoelastic equilibrium in terms of three harmonic functions derived
from solutions A, B of Green and Zerna (4) and solution B of (5). The
displacement and temperature are

2/x dz 2/x dz dz

where

V2(<*>,a>,(/O = 0, (3)

* = ^ (4)

is the thermal distortivity and a, K are respectively the coefficients of thermal
expansion and thermal conductivity.
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INTERFACE CRACK WITH HEAT FLOW 405

The stresses at the plane 2 = 0 take the form

<rzz = ——2, on z = 0, (5)

oz

, on 2=0 , (6)
drdz

and hence we can satisfy the continuity conditions

o-zzi = ^zz2, on 2 = 0 , (7)

frnl=<7rz2» (8)

by denning

o)(r,z) = wl(r,z) = o>2(r,-z); (9)

*(r,z) = <h(r,z) = -<fe(r,-z). (10)

In other words, the functions <f>2, fc>2 in body 2 are respectively odd and even
continuations into 2 < 0 of <f>i, <ax. Note, however, that no conditions of
continuity are imposed at z = 0 on the functions 4> and a>.

The continuity condition on heat flux

qn = <?z2 on 2=0 , (11)

is satisfied in the same way by defining

(Hr ,2)^ 1 ( r ,2 ) = -.fc(r,-z), (12)

since

from equation (2).
In each region of the interface there are three further boundary conditions

which define a boundary-value problem for the functions <o, <f>, i{/ in z > 0.
In the bonded region, we have continuity of temperature and of both

normal and radial displacement, so that

(14)

(15)

(16)

In the contact region, we have continuity of temperature and normal
displacements, and the shear stresses vanish for frictionless contact, so that

(17)

(18)

(19)
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406 J. R. BARBER AND MARIA COMNINOU

Finally, in the separation region, both normal and shear tractions are zero
and there is no heat flux, i.e.

(20)

(21)

(22)

4. Reduction to a problem for the half space
The condition of temperature continuity (equations (14, 17)) can be

written

^ ^ ( 2 3 )

since the temperature perturbations (equation (2)) are defined relative to the
temperatures at infinity (Tf, T%) in the two bodies.

If we now use (12) and rearrange, we have (on z = 0)

oZ

where

(25)

( 2 6 )

At the surface z = 0, the displacement has the components

{l-2v)d<t> (l-v)dco dip

= (l-v)d<t>[(l-2v)do> d*
K /x dr 2\L dr dr '

from (1). Hence, for continuity of normal displacement (equations (15, 18))
we have

( l 2 ) 3 f ( l ) 3 > i difri
z x dzdz /Xi dz x dz

(l-2v2)3<fe O-v^do , 3ifo
= x r —h62T—l-Ci, (28)

2/xj dz pi2 3z 3z
where C t is an arbitrary constant permitting a relative rigid-body displace-
ment along the axis. Using equations (9, 10, 12), (28) can be written in the
form

^df^f=Cl, (29)
z
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INTERFACE CRACK WITH HEAT FLOW 407

where

( 3 0 )

In developing a similar result for continuity of radial displacement (equa-
tion (16)) we note that the uniform temperature rises T7, T% in the two
bodies will produce radial displacements a^T^r, a2T%r which must be added
to the perturbation solution (27). Hence we have

, (l-2v1)3a>1 3 ^
1 Oi hoj i i r

2 3r dr
dr 2 f i t dr dr

(1 —2V2) d(o2- — 62 l-o^T^r, (32)

which reduces to

(33)

using equations (9, 10, 12).
We use these results to formulate a mixed boundary-value problem for <f>,

(o, ip in the half-space z > 0 through the following boundary conditions on
z=0:

(34)
oz

from (14, 17, 24),

j4=0, r>b, (35)

from (13, 20),

from (16, 33),

— = 0, r>a, (37)

from (6, 19, 22),

(38)
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408 J. R. BARBER AND MARIA COMNINOU

from (15, 18, 29), and

~0, r>b, (39)
oz

from (5, 22).
With reference to equation (37), we note that the condition an = 0 in

r>a, z = 0, strictly only demands cP<£/drdz = 0 and hence permits the
solution d<pldz = constant. However, the introduction of such a constant
proves to be equivalent to the addition of a further rigid-body displacement
Uj, which can be subsumed under C\ in equation (38), thereby preserving
the local nature of the solution for <j>.

5. Solution strategy

The conditions (34, 35) involve \\i only, permitting this function and hence
the temperature field to be fully determined. We then use the method of
Green (4) and Collins (6) to choose representations for <f>, w which identi-
cally satisfy equations (37, 39). The remaining equations (36, 38) then
furnish two simultaneous integral equations for these functions which are
reduced to a single Fredholm equation.

(i) Solution for ip
The conditions (34, 35) define a classical mixed boundary-value problem

for the function dfif/ldz2 whose solution is easily shown to be

dz IT

where the square root is interpreted in accordance with the conventions of
reference (4).

We also require values of dt/»/dr and dipldz on 2 = 0 for substitution into
equations (36, 38) and these are conveniently obtained by integration within
the plane. Thus, because i/» is harmonic we have

^ f ^ O^fr, 2=0, (41)
dr T dr dz

from which, by integration,

«__BStS* 0 < r < h ..o. (42)
dr 2

where an arbitrary constant has been set to zero to preserve continuity at
r = 0.

If we first differentiate (40) with respect to z, we can find dip/dz by a
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INTERFACE CRACK WITH HEAT FLOW 409

similar process, obtaining

^ = _ 2 K ( T 7 - T D [ ( b 2 _ r 2 ) ) _ M o g { ( 1 _ r 2 / b 2 ) i + 1 } ] + C2)

az -77

O=sr«b, z = 0 , (43)

where C^ is an integration constant.

(ii) Representation of <p, w

Following Green and Zerna (4) and Collins (6) we represent d<j>/dz, da>ldz
in the forms

" ^ t ) d t (44)

(45)

where gu g2 are real functions of t to be determined.
On z = 0, (45) reduces to

g2(0 dt^ J ' ^ (46)
oZ JQ \r ~ t Jr

[0, r>a, (47)

and hence (37) is satisfied identically. We also require the value of d<pldr
which is obtained as in section (i) above as

In the same way, it can be shown that (44) satisfies (39) identically and that
the other surface values are

We note that there are other forms related to (44, 45) which satisfy (37, 39).
The forms chosen are the least restrictive since they permit square-root
singularities in the stresses at r = a, b, while preserving continuity of displace-
ment for bounded functions gxtf), g2(0-
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410 J. R. BARBER AND MARIA COMNINOU

(iii) Integral equations for g, and g2

We now substitute these expressions into the two remaining boundary
conditions (36, 38) to obtain integral equations for g1 and g2.

From (36) we have

A T tg2(t)dt BC» B(btgl(t)dt ;

= (a2T2°-a17T)r, O^r^b, (53)

using (42, 49, 52), which we rearrange as an equation for g2 as

where
C3 = {i(5, + S2)K(7T-TD-(a27T-a1TT)}/A, (55)

and
p=B/A (56)

is Dundurs' constant (7).
The second equation follows from (38) using (43, 47, 48, 50) and is

Jo (r2 -*2 )*

+ Q - ^ T ( I T - TT)(8i - S2)l(b
2- r2)*- 6 log{(l - r2/fc2)* +1}],

TTA

Os£r=£b, (57)

where the integral on the right-hand side is to be interpreted as zero in
a^r^b, and C4 is a new arbitrary constant replacing Cx and C^.

(iv) Reduction to a single Fredholm equation

Equations (54, 57) can be solved as Abel integral equations for the
unknown functions g2, g!, respectively, regarding the right-hand sides as
known. From (54) we find

a, (58)

which can be reduced to

-f'*«*«£* (59)
TT Jo (X - S ) IT

by reversing the order of integration and performing certain integrals.
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INTERFACE CRACK WITH HEAT FLOW 411

A similar sequence of operations on (57) yields the result

IT A

—$(l + xlb)\og(l + x/b)}, O^xssb. (60)

The constant C4 can now be determined by imposing the requirement that
the contact traction is bounded at the smooth transition from contact to
separation at r = b. From equations (5, 50) we have

T, O^rssb, 2 = 0, (61)

and hence for <rZI to be bounded at r = b we require

gi(b) = O, (62)
from which

2 Q = 2£ fatg2(t)d f | AK ( T , ^ ^ ; ) ( 6 3 )

7T 7T JQ (b2— t2) 7 T 2 A

Finally we substitute for glt C4 from equations (59, 62) into (59) and use the
Poincare-Bertrand result to invert the order of integration, obtaining

+ 1 jitloel- | | , r , ->- 1 +

(64)
(x -s ) IT

6. Interface tractions

Equation (64) can be cast in a dimensionless form by denning

(65)

c = b/a (>1), (66)

y = x/a, (67)
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412 J. R. BARBER AND MARIA COMNINOU

in terms of which

IT
(68)

Jf{(l-s)log(l-s) + (l + s)log(l + s)-21og2}

ds 4C3Ay
X 7 ^ T^+——, O=sy«l.

(y2-c2s2) -n
When g(y) has been found from equation (68), the complete stress and

displacement field in the two half-spaces is defined through equations (1, 40,
44, 45, 60, 65). We only record here the expressions for normal and
tangential tractions at the crack plane. Writing p = r/a we have

from (6, 48), and

from (61, 54). In the range 1< p < c, we substitute for gt from (60) to obtain

X

where
Cx /1+vWv

— - (72)

(see (8)).
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INTERFACE CRACK WITH HEAT FLOW 413

We also require the total load transmitted across the interface which is

dr (74)

t, (75)

from (60) on reversing the order of integration.
Substituting for gt from (60) and using (65), we find

P = A
A f

IT A 1 1

7. Results for a uniform rise in temperature

We now consider in more detail the special case in which Tf = TT = To,
i.e. the two bodies are both heated to the same temperature To and there is
no heat flow. The constant C3 then takes the form

C3 = -

and the third term in the integral equation (68) becomes zero.
The solution procedure is to regard the extent of the contact zone (c) as

an independent variable, solve (68) for g(y) and then compute the corres-
ponding load P from (76). The kernel of the integral equation is similar to
that found by Keer et al. (9) in their treatment of the penny-shaped crack
and the same numerical scheme was used here. Figure 1 shows results for
the load P as a function of c for 0 = 0-5. The results are plotted in terms of
the non-dimensional quantity

PA
P* ' ( 7 8 )

which may be regarded as a ratio between mechanical and thermal effects.
We also note that equation (68) for g(f) depends only on 02 when T7= 7T
and hence the results of Fig. 1 also hold for 0 = —0-5. The inverse ratio
1/P* passes through zero for c between the values 1009695 and 1009696,
corresponding to the purely mechanical problem of the external crack
loaded in tension at zero temperature.

If temperature is now changed at constant load, the contact radius
increases, decreases or remains constant if (a j -a^ToP is positive, negative
or zero respectively. Only the increasing portion of the curve can be
shown in Fig. 1 because the values of c corresponding to P*<0 are very
close to 1.
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414 J. R. BARBER AND MARIA COMNINOU

0
I I

0-2 0-4 06
\/c- alb

0-8

FIG. 1. Dependence of dimensionless applied load P* on inverse ratio of
contact radii (1/c = alb) for a uniform temperature rise To.

When P* is small (i.e. thermal effects dominate mechanical effects) the
contact radius becomes inverse with P* and there is a limiting solution in
which contact occurs over the entire unbounded region (c —> °o) and P* = 0.
This corresponds to the case where there is no applied load (P = 0) and
(ax — a^)Tof}>0. The solution can then be extracted analytically. For c —»°°
the kernel of the integral equation (68) degenerates to zero and

4C3Ay
0=s=y=£l.

Substituting into equations (69, 70, 71) gives

TTA(1-0 2 ) (a2-;-2)*'
«•„ =

i rAfl-p 2) r>a.

(79)

(80)

(81).

(82)
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0 ' ^ ^ ^ '

1
\

FIG. 2. Tractions at the interface for c = 1-5.

Thus, the normal traction is a constant tension in the bonded region and a
compressive traction singular as r—*a+ in r>a. The shear traction is also
singular as r-» a-.

We would anticipate a similar limiting solution for (al — a^)To^<0 with a
contact radius ratio very close to unity. However, the computational techni-
ques employed make it impossible to extract this limit. P* increases mono-
tonically through negative values in c < 1-009696, but at c = 10000001 we
still have P* = -9-5.

The distribution of tractions on 2 = 0 has been computed for other
values of c and the results for c = 1-5 are given by way of illustration in
Fig. 2.

8. Examples with heat flow

If the temperatures Tf, 77 are unequal, causing heat to flow between the
bodies, there is no dimensionless presentation which preserves generality.
We therefore restrict attention to the special case in which body 2 is a rigid
perfect conductor (jij, ^2-*°°» «2 = 0) at temperature To, whilst 77 is zero.
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416 J. R. BARBER AND MARIA COMNINOU

The free term in equation (68) then takes the form

if

. (83)

Figure 3 shows the variation of applied load P (tensile positive) with 1/c
(=ajb) for /3 =0-5, which here corresponds to vx = 0.

10-

8-

6-

4-

2-

0 , , , , f- 10
0-2 04 0-6 0-8/

1/c / --
-2-

- 4 -

- 6 -

- 8 -

-10-

-12-

FIG. 3. Applied load P as a function of contact radius ratio (1/c = ajb) with
one body a rigid perfect conductor.
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INTERFACE CRACK WITH HEAT FLOW 417

As in the previous example, the solution for the external crack with purely
mechanical loading is recovered when P —* +<». At the other extreme when
P is large and negative, a large contact region is developed. The bonded
region has then a relatively small effect on P and the latter approaches the
solution for the corresponding frictionless contact problem (10),

lW
)

which is shown dotted in Fig. 3.
If the bodies are subjected to a heat flux but no load (P = 0) we find

c = 1-0743.
A more extensive study of the effect of thermal and mechanical conditions

and material properties will be published elsewhere.
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