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Abstract 36 
In autoimmune Type 1 diabetes (T1D), immune cells progressively infiltrate and destroy the islets 37 
of Langerhans – islands of endocrine tissue dispersed throughout the pancreas. However, it is 38 
unclear how this process, called ‘insulitis’, develops and progresses within this organ. Here, using 39 
highly multiplexed CO-Detection by indEXing (CODEX) tissue imaging and cadaveric pancreas 40 
samples from pre-T1D, T1D, and non-T1D donors, we examine pseudotemporal-spatial patterns 41 
of insulitis and exocrine inflammation within large pancreatic tissue sections. We identify four 42 
sub-states of insulitis characterized by CD8+T cells at different stages of activation. We further 43 
find that exocrine compartments of pancreatic lobules affected by insulitis have distinct 44 
cellularity, suggesting that extra-islet factors may make particular lobules permissive to disease. 45 
Finally, we identify “staging areas” - immature tertiary lymphoid structures away from islets 46 
where CD8+T cells appear to assemble before they navigate to islets. Together, these data 47 
implicate the extra-islet pancreas in autoimmune insulitis, greatly expanding the boundaries of 48 
T1D pathogenesis. 49 
 50 
 51 
 52 
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Main 55 

In Type 1 diabetes (T1D), autoimmune insulitis drives the progressive destruction of insulin-56 
producing β-cells, resulting in a critical requirement for exogenous insulin. T1D affects over 8 57 
million individuals world-wide with an estimated half-a-million new diagnoses each year (Gregory 58 
et al. 2022).  59 

Recently, the first immunotherapy for delaying T1D onset teplizumab (a human anti-CD3 60 
monoclonal antibody) was approved by the US Food and Drug Administration (FDA) (Hirsch 61 
2023). However, this treatment and other immunotherapies only benefit some patients for 62 
reasons that are unclear (Herold et al. 2013; Perdigoto et al. 2019; Herold et al. 2019; Pescovitz 63 
et al. 2009; Orban et al. 2011; 2014; Bluestone, Buckner, and Herold 2021). A better 64 
understanding of T1D pathogenesis is essential to building on this success. 65 

T1D pathogenesis encompasses immune infiltration of the islets, also known as ‘insulitis’, and 66 
inflammation of the non-islet pancreas. Insulitis has been extensively investigated and the major 67 
cell types associated with β-cell killing have been identified; however, any understanding of how 68 
the inflammation in non-islet pancreas contributes to insulitis is lacking.  69 

One of the challenges of studying human T1D pathology is the availability of suitable tissue 70 
samples. Obtaining pancreatic biopsies raises the risk of surgical complications and the 71 
progressive nature of T1D would necessitate serial, longitudinal studies over time, which is 72 
prohibitive (Krogvold et al. 2014). Fortunately, the Juvenile Diabetes Research Foundation (JDRF) 73 
Network for Pancreatic Organ Donors with Diabetes (nPOD) have provided human pancreatic 74 
tissues from cadaveric donors for this study (Campbell-Thompson et al. 2012; Pugliese et al. 75 
2014). nPOD has enabled substantial progress towards characterizing the cell types comprising 76 
insulitis and extra-islet inflammation (Wilcox et al. 2016; Arif et al. 2014; Leete et al. 2016; 77 
Martino et al. 2015). 78 

The development of highly multiplexed tissue imaging technologies has empowered these 79 
efforts. Recently, Imaging Mass Cytometry (IMC) was used to uncover changes in T1D islets, 80 
including alterations in β-cell phenotypes, immune composition, vascular density, and basement 81 
membrane (Damond et al. 2019; Wang et al. 2019).  82 

Despite these advances, our understanding of certain key features of human T1D pathology 83 
remains limited. In particular, insulitis is regulated by checkpoints that ultimately fail in T1D. 84 
However, a comprehensive and quantitative search for insulitis checkpoints has not been 85 
performed to date. Furthermore, islets in different regions of the pancreas are infiltrated at 86 
strikingly different rates for reasons that are unclear. Several lines of evidence suggest that the 87 
non-islet pancreatic tissue could be responsible by governing the targeting of islets: First, peri-88 
insulitis, which is the accumulation of immune cells outside the islet, is observed in tissues from 89 
patients with T1D (Korpos et al. 2013), indicating that not all T cells extravasate directly into islets 90 
(Savinov et al. 2003). Second, the composition and functionality of immune and epithelial cells 91 
outside islets differ in T1D patients compared to non-diabetic controls (Rodriguez-Calvo et al. 92 
2014; Bender et al. 2020; Campbell-Thompson et al. 2012; Campbell-Thompson, Rodriguez-93 
Calvo, and Battaglia 2015; Fasolino et al. 2022). Finally, tertiary lymphoid structures (TLS), which 94 
are dense aggregates of lymphoid cells indicative of local immune activation, are observed 95 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.15.23287145doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.15.23287145


 4 

outside islets in T1D patients (Korpos et al. 2021). To date, multiplexed imaging studies have only 96 
examined islets. A comprehensive, spatially resolved cellular analysis of whole pancreatic tissue 97 
in T1D is lacking. 98 

Here, we investigated both islet and non-islet pancreatic tissue in the progression of T1D. We 99 
applied the highly multiplexed tissue imaging platform CO-Detection by indexing (CODEX) with 100 
an antibody panel targeting 54 antigens to samples from a cohort of T1D patients with insulitis 101 
as well as non-T1D individuals with and without autoantibodies obtained through the JDRF nPOD 102 
program. We analyzed approximately 2000 islets and broad swaths of surrounding tissue to 103 
evaluate local and distal spatial architecture. We then used pseudotime analysis to characterize 104 
insulitis sub-states based on the activation states of islet-infiltrating CD8+T cells. We further 105 
investigated the cellular changes in niches and lobules beyond islets. Our results implicate both 106 
the local islet microenvironment and inflammation at distal sites within the pancreas in insulitis 107 
progression, greatly expanding the boundaries of pathologic inflammation in T1D. 108 

Cohort curation, image acquisition, and cell annotation 109 

The JDRF nPOD is a national registry of cadaveric pancreases donated by T1D patients that has 110 
transformed the ability to investigate the pathways underlying the development and progression 111 
of human T1D (Campbell-Thompson et al. 2012; Pugliese et al. 2014). At the time of our study, 112 
17 cases with insulitis were available from nPOD, from which we selected 10 that had visible 113 
insulitis in preliminary IHC analyses. The final cohort included two autoantibody-positive, pre-114 
T1D cases, eight T1D cases, and three non-diabetic controls. Cases were selected by surveying 115 
the nPOD online immunohistochemistry database which contains images of tissue sections triple-116 
stained for Insulin, Glucagon, and CD3. T1D and pre-T1D cases that had CD3+ staining in islet or 117 
peri-islet spaces and tissue still available were selected for our study. The cases varied in the time 118 
between diagnosis and death from 0 years (diagnosed at death) to 6 years (Figure 1.A, left). The 119 
causes of death were mostly unrelated to T1D complications (Methods). Therefore, the time 120 
since diagnosis is not a reflection of the severity or aggressiveness of the individual’s disease.  121 

Large regions averaging 55 mm2 were imaged with CODEX as previously described (Schürch et al. 122 
2020; Phillips, Matusiak, et al. 2021; Hickey et al. 2021). Regions were imaged to capture islets 123 
and the surrounding region simultaneously (Figure 1.A, center and right). The algorithm CellSeg 124 
was used to segment cell nuclei and quantify marker expression from CODEX images as 125 
previously described (Lee et al. 2022). Between 3.0x105 and 9.8x105 cells per donor were 126 
obtained resulting in 7.0x106 cells in total. Twenty-one cell types were identified with Leiden 127 
clustering and manual merging and visualized using Uniform Manifold Approximation and 128 
Projection (UMAP) (Figure 1.B). Endocrine cells were manually gated from UMAP embeddings 129 
derived from Proinsulin, Glucagon, and Somatostatin to identify β-cells, a-cells, and d-cells. 130 
Immune cells were sub-clustered with the Leiden algorithm using immune-specific markers 131 
(Figure 1.C,Supplemental Table 2). A heatmap of all cell types and their marker expression is 132 
displayed in Figure 1.D. Of note, we could not accurately identify macrophage subsets or 133 
distinguish dendritic cells from macrophages due to panel design, complex combinations of co-134 
expression, and the difficulty in segmenting and quantifying markers on myeloid populations. 135 
Therefore, dendritic cells are contained within the ‘macrophage’ group for all analyses. In 136 
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addition, we identified a cell population that could not be definitively annotated, expressing high 137 
levels of CD45, CD69, Granzyme-B, and CD44, intermediate levels of CD16, S100A6, Galectin-3, 138 
and Hyaluronan, but not expressing lineage markers CD3, CD20, CD56, CD57, CD15, or MPO. We 139 
confirmed from the raw images that CD3, CD4, and CD8 were not internalized, indicating 140 
activation, nor did these cells express other T cell activation markers CD45RA, CD45RO, PD-1, or 141 
LAG-3. This population could represent a type of innate lymphoid cell or mast cells (Dalmas et al. 142 
2017; Martino et al. 2015) and was labeled Granzyme-B+/CD3- (Figure 1.D).  143 

Islet- and non-islet regions are altered in T1D 144 

We first sought to identify cellular changes in T1D within islets specifically. Previous reports 145 
observed that insulin-containing islets are significantly more common in recent-onset T1D cases 146 
than cases with diabetes durations of greater than one year (In’t Veld 2011). Similarly, we found 147 
that samples from patients who had been diagnosed with T1D for 0-2 years had significantly 148 
reduced β-cell frequencies compared to non-diabetic controls. Lastly, samples from subjects with 149 
disease durations of 5-6 years had minimal remaining β-cell mass (Figure 1.E). Whereas one Pre-150 
T1D case had β-cell mass comparable to those of cases with disease duration of 0-2 years, the 151 
other Pre-T1D case was comparable to non-diabetic controls (Figure 1.E).  152 

Next, we investigated how the abundances of non-endocrine cell types inside islets differed 153 
across donors. We performed Principal Component Analysis (PCA) of the frequencies of non-154 
endocrine cell types located in islets in each donor. Donors were clearly separated into two 155 
groups by the first two principal components; one group included all T1D cases and one pre-T1D 156 
case and the second group included all non-diabetic cases and the other pre-T1D case (Figure 157 
1.F). In this analysis, we did not consider β-cells, ⍺-cells, and "-cells. Thus, donors were stratified 158 
by disease duration strictly according to the abundances of immune and other pancreatic, non-159 
endocrine cell types in the islets. 160 

We next considered only cells located outside islets. Again, donors were clearly separable by the 161 
first two principal components (Figure 1.G). The first principal component separated cases with 162 
times since diagnosis between 0-2 years from non-T1D, pre-T1D, and cases with diabetes 163 
durations of 5-6 years (Figure 1.G). The second principal component separated cases with 164 
diabetes durations of 5-6 years from the rest (Figure 1.G). Therefore, both the islet and non-islet 165 
spaces of T1D and non-T1D cases were distinct. 166 

Many cell types were increased in T1D cases with times since diagnosis of 0-2 years relative to 167 
non-diabetic controls. In T1D cases with times since diagnosis of 5-6 years, the abundance of 168 
different cell types either remained higher than healthy controls or returned to baseline 169 
(Supplemental Figure 1). This trend was present in both islet and non-islet regions. These data 170 
demonstrate that the immune activity between the islet and extra-islet compartments are 171 
coordinated but the cellular programs underlying this crosstalk are unclear. 172 
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Pseudotemporal reconstruction of islet pathogenesis 173 

identifies a conserved trajectory of insulitis 174 

In human T1D, β-cell destruction does not occur simultaneously in all pancreatic islets in an 175 
individual and even neighboring islets can be at different stages of destruction (In’t Veld 2011; 176 
Damond et al. 2019). We therefore used pseudotime analysis to infer the most likely progression 177 
of a single islet through disease space (Damond et al. 2019). To develop a pseudotemporal map 178 
of the islets in our study, we quantified the cellular composition of each islet, including cells 179 
within 20 µm of the islet’s boundary, and applied the pseudotime algorithm PArtition-based 180 
Graph Abstraction (PAGA) (Figure 2.A; Figure 2.B), (Wolf et al. 2019). PAGA was selected because 181 
it is a high-performing algorithm able to identify multiple trajectories, if they exist, while making 182 
minimal assumptions about the true structure (Saelens et al. 2019). 183 

Displayed in Figure 2.B is the PAGA force-directed layout where each point represents an islet. 184 
Each islet’s color corresponds to its pseudotemporal distance from the centroid of non-diabetic 185 
islets. As expected, the different donor groups (no T1D, pre-T1D, T1D) had different distributions 186 
of islets across the PAGA map (Figure 2.C ). In the PAGA map, a continuum is apparent from islets 187 
abundant in insulin-expressing β-cells on the left of the map to islets depleted in β-cells on the 188 
right of the map (Figure 2.D, Figure 2.E, Figure 2.F, top row). PAGA uses Leiden clustering 189 
internally, enabling the following regions of the pseudotime map to be labelled objectively 190 
(Supplemental Figure 2.A): 1) Islets with low pseudotime values on the left of the map were 191 
labelled ‘Healthy’ even if they originated from T1D donors. 2) Islets in the middle of the map were 192 
elevated in HLA-ABC (MHC Class I) expression, CD8+T cells, and macrophages (Figure 2.D, Figure 193 
2.E, Figure 2.F, rows 2-4) and were labelled ‘Inflamed’. 3) Islets with late pseudotime values on 194 
the right of the map were devoid of β-cells and were labelled ‘β-Cell Depleted’ (Figure 2.D, Figure 195 
2.E, Figure 2.F, top row). In addition, islets lacking β-cells occasionally contained CD8+T cells and 196 
were labelled ‘β-Cell Depleted + Immune Islets’ (Figure 2.D, Figure 2.E, Figure 2.F, rows 2-4). The 197 
presence of these islets suggests that the signals retaining CD8+T cells in the islets linger after β-198 
cell death.  199 

Islets from non-diabetic controls and one of the pre-T1D donors (6314) were primarily in the 200 
Healthy group to the left of the map (Figure 2.C ). Islets from subjects who had had T1D for of 5-201 
6 years (cases 6195 and 6323) were primarily in the β-Cell Depleted group to the right of the map 202 
(Figure 2.C ). All the remaining T1D donors and the other pre-T1D donor were distributed broadly 203 
throughout the map (Figure 2.C ).  204 

Together, these results illustrate a single, non-branching progression from Healthy Islets to β-cell 205 
depleted Islets via Inflamed Islets, consistent with previous pseudotime analyses (Damond et al. 206 
2019). 207 
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IDO expression on islet vasculature is linked to T cell 208 

infiltration and β-cell death during insulitis  209 

While inspecting images of islets, we occasionally observed islets with vasculature that stained 210 
positive for indoleamine 2, 3-dioxygenase 1 (IDO). In the tumor microenvironment, IDO is 211 
expressed by myeloid cells and suppresses CD8+T cell activity through multiple mechanisms 212 
including induction of FOXP3+ regulatory T cells and inhibition of CD8+T cell proliferation (Munn 213 
and Mellor 2016). In islets, IDO was expressed by CD31+ vasculature and not CD45+ immune cells 214 
adjacent to vasculature (Figure 2.G). IDO was not expressed by other cell types in islets or by 215 
vascular cells outside islets (Supplemental Figure 2.B). We manually quantified vascular 216 
expression of IDO on islets throughout pseudotime and found that all but two IDO+ islets were in 217 
the Inflamed group (Figure 2.H). Therefore, IDO expression by islet vasculature was tightly 218 
associated with inflammation. 219 

We hypothesized that IDO expression was induced by infiltrating immune cells during insulitis. A 220 
major inducer of IDO expression is interferon-#, a cytokine highly expressed by T cells and 221 
macrophages (Munn and Mellor 2016). We compared the frequency of CD8+T cells and 222 
macrophages in islets from the Inflamed group with and without IDO+ vasculature and found that 223 
CD8+T cells were significantly more abundant in islets with IDO+ vasculature than islets without 224 
IDO+ vasculature (Figure 2.I). The abundance of macrophages was not significantly different in 225 
the islets with and without IDO+ vasculature (Supplemental Figure 2.C). This implies that during 226 
CD8+T cell infiltration, IDO is induced on vasculature to subdue the inflammation. 227 

Due to IDO’s immunosuppressive role in the tumor microenvironment (Munn and Mellor 2016), 228 
IDO may protect β-cells from inflammation. If so, for β-cells to be eliminated, IDO-mediated 229 
suppression would need to be circumvented through its inhibition or a reduction in IDO’s 230 
expression. We observed that only 3.3% of islets in the β-Cell Depleted + Immune group had IDO+ 231 
vasculature, whereas 23.9% of islets in the Inflamed group had IDO+ vasculature (p = .017 chi-232 
square test) (Figure 2.H). This is consistent with the hypothesis that IDO expression is suppressed 233 
prior to β-cell loss.  234 

In summary, IDO expression by islet vasculature is associated with T cell infiltration and its loss 235 
during insulitis is associated with β-cell depletion. Together, these suggest that IDO+ vasculature 236 
is an immune regulatory checkpoint that fails in T1D. 237 

Insulitis has sub-states, defined by functional states of 238 

CD8+T cells 239 

Insulitis is regulated by checkpoints that fail to control inflammation in T1D. For example, the 240 
islet capsule restricts CD8+T cells from entering islets (Korpos et al. 2013) and PD-L1 on β-cells 241 
suppresses infiltrating CD8+T cells (Osum et al. 2018). By definition, a checkpoint prevents an islet 242 
from progressing and thus can halt islets in an insulitis ‘sub-state’. Cell differentiation studies 243 
have demonstrated the utility of using high-parameter data to infer checkpoints from their 244 
corresponding sub-states (Satpathy et al. 2019). We reasoned that we could identify 245 
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immunoregulatory checkpoints in T1D by identifying sub-states of insulitis. To identify insulitis 246 
sub-states, we began by characterizing the functional states of CD8+T cells in islets. Although, 247 
quantifying the expression of functional markers from tissue images can be challenging due to 248 
autofluorescence, non-specific antibody staining, and signal spillover between adjacent cells, we 249 
overcame these by training a neural network to detect marker expression of single cells from raw 250 
cell-images (Figure 3.A, Supplemental Figure 3.A). Using our neural network, we quantified the 251 
expression of T cell markers on islet CD8+T cells (Figure 3.B). 252 

Overall, markers of antigen experience (PD-1, TOX, CD45RO, CD69, CD44) were the most 253 
commonly expressed on islet-infiltrating CD8+T cells (Supplemental Figure 3.B). CD8+T cells 254 
expressing CD45RA (which are either naïve or terminally differentiated effector memory cells) 255 
were detectable in islets, as previously reported (Damond et al. 2019) (Figure 3.B). PD-1 and TOX 256 
were commonly co-expressed on CD45RO+ CD8+T cells detected in islets (Figure 3.B). We also 257 
observed expression of CD69 on CD45RO+ CD8+T cells, which are likely tissue-resident memory 258 
cells (Kuric et al. 2017). CD69 was co-expressed with CD45RA+ CD8+T cells indicating that naïve T 259 
cells are being activated in islets. In addition, we observed a rare population of CD45RO+ CD8+T 260 
cells that co-expressed multiple functional markers including CD69, CD44, LAG-3, Granzyme-B, 261 
and ICOS (Figure 3.B bottom clade). Lastly, a rare population of CD57+ CD8+T cells was present 262 
but these cells rarely co-expressed LAG-3, Granzyme-B, or ICOS (Figure 3.B top clade). These 263 
populations bear a resemblance to the two exhausted T cell populations identified in the 264 
peripheral blood of T1D patients that were associated with responsiveness to alefacept (Diggins 265 
et al. 2021). The heterogeneous functional states of CD8+T cells in islets demonstrate varying 266 
stages of activation, suggesting that they receive additional stimulation after reaching islets.  267 

We expected that insulitis sub-states would be characterized by specific combinations of CD8+T 268 
cell states found in islets together. To interrogate this, we performed UMAP only on Inflamed 269 
islets, using the frequencies of CD8+T cells expressing each functional marker. Leiden clustering 270 
identified four inflamed sub-clusters, I-IV, (Figure 3.C top). Here, the term “sub-cluster” is used 271 
to highlight that these groups were all contained within the previously defined “Inflamed” cluster 272 
and the roman numerals are expressly not intended to imply a temporal ordering. Inflamed–I 273 
contained only CD8+T cells that did not express any of the functional markers analyzed (Figure 274 
3.C bottom, top row). Inflamed–II was characterized by a high frequency of CD45RA+CD8+T cells 275 
(Figure 3.C bottom, second row from top and Figure 3.D top row). Inflamed–III was characterized 276 
by a low frequency of CD45RA+ cells and high frequency of CD45RO+ and PD-1+ cells that did not 277 
co-express any functional markers (Figure 3.C bottom, third row from top and Figure 3.D middle 278 
row). Inflamed–IV was characterized by an enrichment of CD8+T cells expressing CD57 or LAG-3, 279 
ICOS, and Granzyme-B in addition to PD-1 and CD45RO Inflamed–III (Figure 3.C bottom, bottom 280 
row and Figure 3.D bottom row). In summary, the diversity of CD8+T cells in any particular islet is 281 
much more restricted than the diversity of total islet CD8+T cell states. 282 

The fact that the inflamed sub-clusters are characterized by CD8+T cells at different stages of 283 
activation suggests that the inflamed sub-clusters represent different stages of a progression 284 
rather than distinct trajectories (either within or across patients). In support of this, each 285 
individual donor possessed islets that belonged to more than one inflamed islet sub-cluster 286 
(Figure 3.E). Therefore, Inflamed–I through Inflamed–IV do not represent patient subtypes but 287 
insulitis sub-states conserved among T1D patients.  288 
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Regulation of insulitis sub-states by the islet 289 

microenvironment 290 

To identify cellular or molecular factors that regulate the state of CD8+T cells in islets, we first 291 
asked if CD8+T cell states are enriched in islets or extend into the peri-islet and exocrine space. 292 
To this end, we computed the frequencies of each CD8+T cell state inside the islet and in separate 293 
swaths of 0-25µm, 25-50µm and 50-100µm away from the islets (Supplemental Figure 3.C). We 294 
found that for islets of Inflamed-II, -III, and -IV, functional markers characterizing the CD8+T cells 295 
were expressed more frequently inside islets than in the surrounding tissue areas. This 296 
demonstrated that differences in the compositions of CD8+T cell states in different islets were 297 
due to the islet microenvironment and not the surrounding exocrine spaces.  298 

Although macrophages are abundant in islets from the Inflamed group (Figure 2.E,Figure 2.F) and 299 
are capable of interacting with T cells through antigen presentation and cytokine secretion, 300 
neither the expression of markers of macrophage activity nor macrophage abundance was 301 
significantly associated with islets from inflamed sub-clusters (Supplemental Figure 3.D). 302 
Similarly, no other cell-type nor the vascular expression of IDO was linked to CD8+T cell programs 303 
in islets (Supplemental Figure 3.D). These negative data suggest that transitions between insulitis 304 
states are independent of changes in the abundance of any of the cell types identified in our 305 
tissues. Consistent with this, the four inflamed sub-clusters had identical distributions 306 
throughout the original PAGA force-directed layout (Figure 3.F). These data suggest that insulitis 307 
sub-states are transient over the course of insulitis and the CD8+T cell states are being regulated 308 
by highly dynamic processes. 309 

Lastly, β-cells are likely to influence the state of T cells within islets. We reasoned that islets 310 
lacking β-cells but containing immune cells could provide information regarding the role of β-311 
cells in regulating the CD8+T cell compartment. We therefore examined CD8+T cells in islets from 312 
the β-cell Depleted + Immune group relative to those in islets from the Inflamed group. We found 313 
that TOX was expressed by a higher frequency of CD8+T cells in β-Cell Depleted + Immune islets 314 
than CD8+T cells in Inflamed islets (Figure 3.G), indicating that TOX- CD45RO+ T cells are either 315 
short lived or exit upon loss of β-cells. In addition, CD45RA was enriched in CD8+T cells in β-cell 316 
Depleted + Immune islets and that CD45RO was depleted (Figure 3.G). This suggests that 317 
CD45RA+ CD8+T cells convert to CD45RO+ in islets and that β-cells are necessary for this process. 318 
If this model is correct, CD45RA+ CD8+T cells in Inflamed islets are specific for islet antigens and 319 
are not inert bystanders. Together, these data indicate that islet CD8+T cells are stimulated upon 320 
entering islets and the factors that regulate this process are highly dynamic (Figure 3.H).  321 

Vasculature, nerves, and Granzyme-B+/CD3- cells 322 

outside islets are associated with the lobular patterning 323 

of islet pathogenesis 324 

The destruction of islets in T1D is known to exhibit lobular patterning (Gepts 1965). Specifically, 325 
islets in the same lobule are likely to be in the same stage of disease. This architecture suggests 326 
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that the states of islets within the same lobule are coordinated but the cell types responsible are 327 
unknown. To systematically investigate lobular patterning in T1D, we used a neural network to 328 
segment lobules and assign each single cell to its lobule. We used the intra-class correlation 329 
coefficient (ICC) to quantify the variation in islet pseudotime within a lobule relative to variation 330 
in islet pseudotime donor wide. ICC ranges from 0 to 1 with cases closer to 1 having a stronger 331 
lobular effect on islet pseudotime (Figure 4.A). Islets of non-T1D cases and 6314, 6195, and 6323 332 
did not have appreciable variability in their pseudotimes, so the ICC was not applicable, but in 333 
the remaining cases, the ICCs ranged from 0.17 to 0.74 (Figure 4.B). This highlights that the 334 
magnitude of lobular patterning ranges widely across T1D cases with insulitis and thus could be 335 
influenced by donor characteristics such as the time since diagnosis, etiology or genetics.  336 

To identify cell types that coordinate the behavior of islets within lobules, we employed 337 
hierarchical linear modeling (HLM), a statistical framework designed to identify relationships 338 
between different levels of multi-level data. HLMs are standard in many fields where multi-level 339 
data are common (Gelman et al. 2014.) and have been applied in biomedical settings (Jerby-340 
Arnon and Regev 2022; Yi et al. 2019). We were interested in cell-types if their abundance per 341 
lobule correlated with the average islet pseudotime per lobule. Importantly, we omitted cells 342 
located in islets from the calculation of a cell type’s lobular abundance so that information from 343 
the pseudotime analysis would not leak into this analysis. For each cell type, we estimated the 344 
effect of its total abundance in a lobule (the number of cells divided by the number of acinar cells 345 
to normalize for lobule area) on the pseudotimes of islets in that lobule. We performed this 346 
analysis in two-level HLMs for each donor and a three-level HLM considering all donors together.  347 

We then examined cell types that were significantly associated with lobules across multiple T1D 348 
tissue donors. The abundance of three cell types were associated with pseudotime in more than 349 
two cases. These were vasculature, Granzyme-B+/CD3- cells, and nerves, all of which were more 350 
abundant in lobules with islets late in pseudotime (Figure 4.C boxed rows, Figure 4.D). Samples 351 
from cases 6323 and 6195 which had very few insulin-containing islets, had increased 352 
abundances of vasculature, Granzyme-B/CD3- cells, and nerves (Supplemental Figure 1), 353 
indicating these changes persist at least until the entire tissue is afflicted. In addition, vasculature, 354 
Granzyme-B+/CD3- cells, and nerves were increased in Inflamed islets compared to Healthy islets 355 
indicating that they may serve a role in islets in addition to their role in the non-islet compartment 356 
(Supplemental Figure 4). It was noteworthy that the conventional pathogenic immune cells 357 
comprising insulitis were not associated with lobular patterning. For example, CD8+T cells and 358 
macrophages were only significant in one donor, and CD4+T cells and B cells were significant in 359 
only two donors (Figure 4.C). Therefore, they may depend on detecting signals from vasculature, 360 
Granzyme-B+/CD3- cells, and nerves in the extra-islet tissue to target a given lobule and the islets 361 
therein.   362 

Immature tertiary lymphoid structures far from islets 363 

are enriched in subjects with T1D   364 

We hypothesized that pancreatic niches may influence the extravasation, migration, or activation 365 
of T cells prior to them reaching islets. To characterize pancreatic niches that might influence 366 
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CD8+T cells, we identified Cellular Neighborhoods (CNs) in the pancreas (Schürch et al. 2020; 367 
Bhate et al. 2021). CNs are tissue regions that are homogeneous and have defined cell-type 368 
compositions. To identify CNs, briefly, single cells were clustered according to the cell-type 369 
composition of their twenty nearest spatial neighbors and automatically annotated with the 370 
names of enriched cell types (Figure 5.A, See Methods). This resulted in 75 CNs. 371 

Next, we identified CNs that were more abundant in T1D than non-T1D tissues (Figure 5.B). The 372 
top three CNs (fold change of abundance in T1D relative to abundance in non-T1D) were (CD8+T 373 
cells|B Cells), (Macrophage|Stromal Cells|B Cells), and (Vasculature|B Cells). All were rich with 374 
B cells (Figure 5.B, Figure 5.C). We asked whether these three CNs were commonly adjacent to 375 
each other this could indicate that they act as components of a larger structure playing a 376 
functional role in the tissue (Bhate et al. 2021). Measuring the adjacency of the three B cell CNs 377 
demonstrated that the (CD8+T cells|B Cells) CN is predominantly found adjacent to both the 378 
other CNs but that (Macrophage|Stroma|B Cells) and (Vasculature|B Cells) are less commonly 379 
adjacent to each other (Figure 5.D).  380 

We next asked whether these CN assemblies corresponded to either peri-vascular cuffs (Agrawal 381 
et al. 2013; Wekerle 2017) or tertiary lymphoid structures (TLSs) (Korpos et al. 2021; Rovituso et 382 
al. 2016; Agrawal et al. 2013), as these are two lymphoid-rich structures commonly present in 383 
autoimmune conditions. Although the (CD8+T cells|B Cells) CN was adjacent to vessels (Figure 384 
5.D, Figure 5.E), it was not in the fluid-filled perivascular space, as is the case with perivascular 385 
cuffs (Figure 5.E). In our samples, the (CD8+T cells|B Cells) CN did not have segregated T cell and 386 
B cell zones as seen in mature TLSs, but the size, abundance, and association with vasculature 387 
was comparable with those previously described of TLSs in human T1D (Korpos et al. 2021).  388 

In summary, the (CD8+T cells|B Cells) CN is more abundant in T1D tissues that are undergoing 389 
active inflammation than in non-T1D tissues as well as in tissues of patients who had T1D for 390 
more than 4 years. Finally, this CN shares many architectural features of immature TLSs.  391 

Immature tertiary lymphoid structures are potential 392 

staging areas for islet-destined CD8+T cells 393 

We next asked whether the (CD8+T cells|B Cells) CN had high endothelial venules (HEV), 394 
specialized blood vessels that enable naïve lymphocytes to extravasate into peripheral tissues, 395 
which are commonly found in TLSs. We observed expression of peripheral lymph node addressin 396 
(PNAd), an HEV marker, in the vessels associated with the (CD8+T cells|B Cells) CN (Figure 5.E left 397 
image) but not in other vessels (data not shown). Although we could not assess the presence of 398 
other TLS traits such as follicular dendritic cells, fibroblastic reticular cells, or follicular helper T 399 
cells, the cellular composition and presence of HEVs indicate that instances of the (CD8+T cells|B 400 
Cells) CN represent immature TLSs. 401 

Next, we asked if immature TLSs were supporting the entry of naïve CD8+T cells into the pancreas. 402 
We observed CD8+T cells co-expressing CD45RA and CD62L (the ligand for PNAd) near PNAd+ 403 
vasculature (Figure 5.E, middle and right image respectively). Thus, naïve CD8+T cells in the 404 
pancreas can adhere to HEV receptors. Furthermore, CD45RA+ was enriched three-fold on CD8+T 405 
cells in the (CD8+T cells|B Cells) CN relative to CD8+T cells in the tissue as a whole (Figure 5.F), 406 
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providing additional evidence that naïve T cells enter the pancreas through HEVs in the (CD8+T 407 
cells|B Cells) CN.  408 

To determine if immature TLSs delivered naïve lymphocytes directly to islets or acted as 409 
“staging areas” by depositing them far from islets, we quantified the frequency of TLSs adjacent 410 
to islets. We found that instances of the (CD8+T cells|B Cells) CN both adjacent (Figure 5.G.1) or 411 
not adjacent (Figure 5.G.2) to islets. Quantifying this adjacency frequency revealed that fewer 412 
than half were adjacent to islets (Figure 5.H). We reasoned that even if TLSs were far from 413 
islets, extravasating cells may migrate to islets from TLSs. Accordingly, islet-adjacent CD45RA+ 414 
CD8+T cells (that were not in islet-adjacent TLSs) co-expressed CD62L, suggesting that they 415 
originated from the (CD8+T cells|B Cell) CN (Figure 5.I). Consistent with this, in one notable 416 
tissue donor, regions of the pancreas with β-cell depleted islets were enriched in the (CD8+T 417 
cells|B Cell) CN relative to regions of the pancreas with β-cell containing islets (Figure 5.J). This 418 
spatial correlation between the (CD8+T cells|B Cells) CN and the destruction of islets implicates 419 
the CN directly with islet pathology even when it is not adjacent to islets (Figure 5.J). Therefore, 420 
our data indicate that immature TLSs act as staging areas by enabling naïve CD8+T cells to enter 421 
the pancreas far from islets where they then traffic to islets. 422 

Discussion 423 

We have performed a comprehensive, pseudotemporal analysis of whole pancreatic tissue in T1D 424 
using CODEX imaging of cadaveric pancreatic tissues from T1D subjects and computational 425 
approaches. Our data support several conclusions. 426 

First, a conserved trajectory of insulitis is present across individual donors and stages of T1D 427 
progression. This trajectory is comprised of four sub-states of insulitis each characterized by 428 
CD8+T cells at different stages of activation. Moreover, they indicate that T cells receive additional 429 
stimulation after entering islets. Multiple inflamed sub-clusters were represented in all T1D 430 
donors, indicating that the sub-clusters reflect sub-states capable of inter-converting rather than 431 
distinct trajectories of insulitis that stratify patients. 432 

In addition, we observed that IDO+ vasculature was present in inflamed islets with higher 433 
frequencies of CD8+T cells but rare in islets that have lost insulin and contain immune cells, 434 
suggesting that IDO is a tolerogenic checkpoint that is lost prior to β-cell death. Leveraging this 435 
checkpoint to protect transplanted β-cells from rejection has shown promise (Alexander et al. 436 
2002) and could be combined with similar approaches using programmed death-ligand 1 437 
(Yoshihara et al. 2020; Castro-Gutierrez et al. 2021). 438 

These data support a model wherein all islets in all T1D cases pass through a series of insulitis 439 
substages – perhaps corresponding to immunoregulatory checkpoints - before β-cells are 440 
destroyed. This model extends the one previously suggested by Damond et al, who proposed a 441 
single trajectory for insulitis (Damond et al. 2019). 442 

Second, pancreatic lobules affected by insulitis are characterized by distinct tissue markers. We 443 
discovered that lobules enriched in β-cell-depleted islets were also enriched in nerves, 444 
vasculature, and Granzyme-B+/CD3- cells, suggesting these factors may make particular lobules 445 
permissive to disease. This could be through recruiting immune cells selectively into islets of 446 
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particular lobules. Alternatively, the infiltration of a small number of islets in an otherwise 447 
unaffected lobule could be a rate-limiting step after which the exocrine space promotes fast 448 
dissemination of pathogenic immune cells within the lobule. The role of islet enervation in T1D 449 
has been studied but such work has focused on nerves in the islet rather than nerves throughout 450 
the lobule (Christoffersson, Ratliff, and von Herrath 2020). It is noteworthy that the cell types 451 
linked with direct islet invasion were distinct from those linked to lobule targeting even though 452 
both sets of cell types were found across islet and non-islet regions. Therefore, for insulitis to 453 
consume every islet, crosstalk may be required between the cell types of both compartments. 454 
Conversely, inhibiting this interaction might contain pathology to isolated lesions. 455 

Finally, we identify “staging areas” - immature tertiary lymphoid structures away from islets 456 
where CD8+T cells assemble, most likely before they navigate to islets Our pseudotime analysis 457 
data suggest naïve CD8+T cells can enter the pancreas within these “staging areas” before 458 
migrating to islets. Similar structures were observed in mice where blocking immune egress from 459 
lymph nodes led to a contraction in the size of TLSs and halted diabetes (Penaranda et al. 2010). 460 
Thus, therapeutic targeting of immune cell trafficking to TLS could mitigate sustained 461 
autoimmunity against β-cells in human T1D. 462 

Together, these data implicate both the local islet microenvironment and inflammation at distal 463 
sites within the pancreas in insulitis progression. Our findings expand both the anatomical and 464 
cellular scope of autoimmunity in T1D.  465 

A major limitation for the study is the cohort size. Cases with documented insulitis are very rare, 466 
significantly limiting the feasibility of curating large cohorts. While we did examine over 2,000 467 
individual islets and included both non-diabetic and pre-diabetic controls, larger studies with 468 
more diverse patient donor cohorts are needed. 469 

Another limitation is our limited perspective on myeloid cell populations. Although antibodies in 470 
our panel detect numerous myeloid markers, we failed to identify any heterogeneity in myeloid 471 
populations during insulitis. This was likely due in part to the difficulty of segmenting myeloid 472 
cells and quantifying marker expression due to their morphology. Combining spatial or non-473 
spatial transcriptomics could be used in future studies to better define the myeloid populations 474 
and extend the CODEX panel. 475 

Lastly, our samples are 2-dimensional sections which could affect some of the adjacency 476 
relations. 477 

In conclusion, using a data-driven approach, we mapped conserved sub-states of insulitis to infer 478 
regulatory checkpoints that fail in T1D and integrated the spatial pathology of islet and non-islet 479 
regions into a single model of T1D pathogenesis. The tools and computational pipelines 480 
developed here will enable further investigation of immune pathology at the tissue scale that 481 
may lead to development of therapies for T1D. 482 
  483 
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Methods 484 

Human tissues 485 
Cadaveric pancreatic FFPE tissue sections were obtained through the nPOD program, sponsored 486 
by the Juvenile Diabetes Research Fund. Case numbers cited herein are assigned by nPOD and 487 
comparable across nPOD-supported projects. 17 cases in the nPOD biorepository had been 488 
previously documented to possess insulitis. For each of these 17 cases, we examined the triple 489 
stained IHC images (CD3, Insulin, and Glucagon) using nPOD’s online pathology database to select 490 
blocks in which insulitis was present. To ensure that the tissue regions still contained insulitis 491 
(and had not been sectioned extensively since their images were uploaded to the nPOD 492 
pathology database), we re-sectioned and visualized CD3, Insulin, and Glucagon. We then 493 
selected 2 cases at different stages of disease (as defined by time since diabetes diagnosis). 3 494 
non-diabetic age matched cases were selected as negative controls. The use of cadaveric human 495 
tissue samples is approved by Stanford University’s Institutional Review Board. 496 
 497 

CODEX data collection 498 
CODEX Antibody Generation and Validation. Oligonucleotides were conjugated to purified, 499 
carrier-free, commercially available antibodies as previously described (Schürch et al. 2020; 500 
Kennedy-Darling et al. 2021). For validation experiments, human tonsil and pancreas tissues were 501 
co-embedded in a new FFPE blocks so both tissues could be stained and imaged simultaneously. 502 
Each antibody in the CODEX panel was validated by co-staining with previously established 503 
antibodies targeting positive and negative control cell-types. Once validated, the concentration 504 
and imaging exposure time of each antibody were optimized. The tissue staining patterning was 505 
compared to the online database, The Human Protein Atlas, and the published literature. The 506 
specificity, sensitivity, and reproducibility of CODEX staining has been previously validated 507 
(Schürch et al. 2020; Kennedy-Darling et al. 2021; Black et al. 2021; Phillips, Schürch, et al. 2021; 508 
Phillips, Matusiak, et al. 2021) 509 
 510 
CODEX Staining. Staining and imaging was conducted as previously described (Schürch et al. 511 
2020; Kennedy-Darling et al. 2021; Phillips, Schürch, et al. 2021; Black et al. 2021). Briefly, FFPE 512 
tissues were deparaffinized and rehydrated. Heat-induced epitope retrieval (HIER) antigen 513 
retrieval was conducted in Tris/EDTA buffer at pH9 (Dako) at 97°C for 10 minutes. Tissues were 514 
blocked for 1 hour with rat and mouse Ig, salmon-sperm DNA, and a mixture of the non-515 
fluorescent DNA oligo sequences used as CODEX barcodes. Tissues were stained with the 516 
antibody cocktail in a sealed humidity chamber overnight at 4°C with shaking. The next day, 517 
tissues were washed, fixed with 1.6% paraformaldehyde, 100% methanol, and BS3 (Thermo 518 
Fisher Scientific), and mounted to a custom-made acrylic plate attached to the microscope. 519 
 520 
CODEX Imaging. Imaging was conducted using the Keyence BZ-X710 fluorescence microscope 521 
with a CFI Plan Apo λ 20x/0.75 objective (Nikon). “High resolution” mode was selected in Keyence 522 
Navigator software, resulting in a final resolution of .37744 µm/pixel. The exposure times are 523 
listed in Supplemental Table 3. Regions for imaging were selected by rendering HLA-ABC, 524 
Proinsulin, and CD8 and selecting multiple bounding boxes to maximize the amount of tissue 525 
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imaged and minimize imaging of empty coverslip. Depending on the tissue shape and islet 526 
distribution, each donor was imaged across 2-7 regions ranging from 5x5 to 10x 3mm per region. 527 
The full antibody panel and cycle-ordering is detailed in (Supplemental Tables 3 and 4). 528 
Biotinylated hyaluronan-binding protein was rendered by adding streptavidin-PE at 1:500 529 
concentration to the 96 well plate containing fluorescent oligos in the last cycle and running the 530 
CODEX program normally. DRAQ5 was added to the last cycle because we found it stained nuclei 531 
more evenly than HOECHST which slightly improved segmentation. Tissues took between 3 and 532 
7 days to image depending on the tissue area. 533 
 534 
Image Pre-processing. Drift compensation, deconvolution, z-plane selection was performed using 535 
the CODEX Toolkit uploader (github.com/nolanlab/CODEX, Goltsev et al. 2018). Cell 536 
segmentation using the DRAQ5 nuclear channel and lateral bleed compensation was performed 537 
with CellSeg (Lee et al. 2022).  538 
 539 

Cell Type Clustering and Annotation 540 
Marker expression was z-normalized within each donor and subsequently clustered in two steps. 541 
First, cells were projected into 2 dimensions using the ‘Tissue markers’ indicated in Supplemental 542 
Table 2 and Parametric Uniform Manifold Approximation and Projection (pUMAP)(Sainburg, 543 
McInnes, and Gentner 2021) was applied on a downsampled dataset. The fit model was used to 544 
transform the remaining cells. Cell types were gated using Leiden clustering and manual merging. 545 
The cluster containing immune cells was sub-clustered using the ‘Immune Markers’ detailed in 546 
Supplemental Table 2. Acinar cells contaminating the Immune cluster were gated out and merged 547 
with the Acinar cluster from the previous step. The Endocrine class was sub-clustered into ⍺-, β-548 
, and "-Cells using Glucagon, Proinsulin, and Somatostatin respectively. Clusters were annotated 549 
according the heatmap marker expression.  550 
 551 
Islet Segmentation and Pseudotime 552 
Preprocessing. Windows consisting of the twenty nearest spatial neighbors surrounding each 553 
single cell were clustered according to their cell-type composition using Mini Batch K Means with 554 
k=200. For this analysis, ⍺-, β-, and "-Cells were combined into one ‘Endocrine’ cell type. One 555 
cluster was highly enriched in Endocrine cells and accurately defined the islet area. Individual 556 
islets were identified using the connected components algorithm and filtering out islets that had 557 
fewer than ten total cells. For each islet, the number of each cell type inside the islet and between 558 
the islet edge and 20µm beyond were extracted. To adjust for variation due to the islet size, the 559 
cell type counts were divided by the number of endocrine cells inside the islet. Data were then 560 
log-transformed. 561 
 562 
PAGA Analysis. The PAGA embedding was computed using the default parameters except for the 563 
following: The neighborhood search was performed using cosine distance and 15 nearest 564 
neighbors; Leiden clustering used a resolution of 1. For computing the pseudotime values (used 565 
in the colormap in Figure 2B, the x-axis in Figure 2F, and Figure 4), the path through the inflamed 566 
islet was isolated by temporarily omitting 25 islets positioned in the middle of the map between 567 
Healthy and β-cell depleted islets. Only 9 of these were from T1D or pre-T1D donors. 568 
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 569 

Quantification and Validation of Functional Marker Gating 570 
Annotation of Ground-Truth Dataset. 3963 CD8+T cells were labelled for fifteen markers by an 571 
immunologist familiar with the staining patterns of each marker using VGG Image annotator 572 
(Abhishek Dutta and Andrew Zisserman 2019).  573 
 574 
Automated Thresholding. For each functional marker of interest, the lateral-bleed-compensated 575 
mean fluorescence (Lee et al. 2022) of background cells were used to calculate a background 576 
distribution. Background cells were cells except those assigned to cell types that were known to 577 
express the markers of interest or autofluorescence. Marker-positive cells were defined as those 578 
whose expression was greater than the 99th percentile of the background distribution.  579 
 580 
Gating with Neural Network: Cell images were split into training, validation, and test splits (60/ 581 
15/25). The ResNet50 architecture and initial weights were imported from the Keras library pre 582 
trained on ImageNet. Image augmentation consisted of random flips, rotations, zooms, contrast, 583 
and translation (+/- ten pixels only). All weights were unfrozen, and the model was trained for 584 
100 epochs (see attached source code for training details). 585 
 586 

Sub-clustering of Inflamed Islets with Cell-Type specific Functional 587 
Markers 588 
For each Inflamed Islet (n=351), the frequency of each marker expressed by CD8+T cells was 589 
computed. Single cells inside the islet and within 20µm from the islet’s edge were combined 590 
before the frequency was measured. The subsequent matrix underwent z-normalization 591 
followed by UMAP and clustering using Bokeh. β-Cell Depleted + Immune Islets were defined as 592 
islets without β-cells with greater than two CD8+T cells and greater than seven macrophages. 593 
These thresholds correspond to the 95th percentiles of CD8+T cells and macrophages in Healthy 594 
islets.  595 
 596 
Identification of Cellular Neighborhoods 597 
Previously, CNs (Schürch et al. 2020) were identified by, for each single cell, defining its ‘window’ 598 
as the 20 spatial nearest neighbors. Cells were clustered according to the number of each cell 599 
type in their windows using Mini Batch K-Means. The output clusters corresponded to CNs. To 600 
ensure our method was sensitive to rare neighborhoods, we adapted this algorithm by 601 
intentionally over-clustering, using k=200 in the K- Means step rather than using a k ranging from 602 
10-20 as used elsewhere (Bhate et al. 2021; Phillips, Matusiak, et al. 2021; Shekarian et al. 2022). 603 
Next, to determine which cell types were characteristic of each cluster, we identified, for each 604 
cluster, the set of cell-types that were present in more than 80% of the windows allocated to that 605 
cluster. We named the clusters according to this set of cell-types and merged all clusters with the 606 
same name, resulting in seventy-five CNs. Acinar cells and epithelial cells were used in the kNN 607 
graph and in the clustering but were not considered when merging clusters. Note that this 608 
method does not differentiate neighborhoods that have the same combination of cell types but 609 
different stoichiometries.  610 
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Lobule Segmentation 611 
A training dataset was generated by manually tracing the edges of lobules in ImageJ using the 612 
ROI function. The ROI were then floodfilled in Python and used as masks for training. For each 613 
tile, the blank cycle was selected to distinguish tissue from background coverslip. A U-Net 614 
model was trained for 10 epochs (see attached source code for training details). After stitching 615 
together all masks, the resulting images required slight refinement where lobules were not 616 
completely separated, and this was done manually in ImageJ. The connected components in the 617 
stitched image defined the lobule instances. Cells were assigned to a lobule by indexing the 618 
lobule mask with their X and Y coordinates. Cells in the inter-lobular space were assigned to 619 
one “edge” lobule. This resulted in 464 lobules. 620 
 621 
Formulation of Hierarchical Linear Models 622 
For each lobule, the number of each cell type in non-islet cells was divided by the number of 623 
acinar cells in the lobule. For all HLMs, the lme4 package for R was used (Bates et al. 2015) and 624 
statistical significance was computed using the lmerTest package for R (Kuznetsova, Brockhoff, 625 
and Christensen 2017). Lobular cell-type abundance was z-normalized within each donor and 626 
the pseudotime was z-normalized across the entire dataset prior to fitting. For each cell type, a 627 
two-level, random intercept HLM within each donor was constructed with the following 628 
formulation (in R formula syntax): pseudotimeislet ~ celltypelobule + (1|lobuleID) and a three-level 629 
random intercept, random slope HLM including islets from all donors was formulated: 630 
pseudotimeislet ~celltypelobule +(1+celltypelobule|donorID)+(1|lobuleID). Here, pseudotimeislet 631 
equals the pseudotime of each islet, celltypelobule equals the number of the given cell type in a 632 
particular lobule divided by the number of acinar cells in that lobule, z-normalized within each 633 
donor, and lobuleID  and donorID are categorical variables specifying the lobule and donor that 634 
the given islet belongs to.  635 
 636 

Neighborhood Adjacency 637 
The adjacency between neighborhoods was computed as in (Bhate et al. 2021).  The only 638 
modification was that neighborhood instances were identified using connected components of 639 
the k-NN graph with k=5 rather than from the thresholded images. 640 
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 641 

Figure 1 Profiling of T1D pancreata with CODEX high-parameter imaging reveals 642 
alterations in islet and non-islet regions. 643 
Figure 1.A Left: Schematic of the workflow for selection of nPOD cases. Blues, greens, and reds 644 
indicate non-diabetic, pre-T1D, or T1D status, respectively. Center: Schematic for acquisition and 645 
processing of CODEX highly multiplexed imaging dataset. Right: Schematic of islet and non-islet 646 
pancreatic regions. 647 

Figure 1.B UMAP and Leiden clustering of major cell types. Colors match those in heatmap shown 648 
in Figure 1D, except for the immune cluster, which is shown in red. 649 

Figure 1.C UMAP of immune cluster further clustered from the immune population identified in 650 
Figure 1B. Colors match those in heatmap shown in Figure 1D. 651 
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Figure 1.D Heatmap of mean z-normalized marker expression in each cell-type cluster (color-652 
coded on the left). Only a subset of the markers used for the UMAP are included in the heatmap 653 
to facilitate visualization. A full description of the markers used for the clustering stages is 654 
available in Supplemental Table 2. 655 

Figure 1.E Frequency of β-Cells per donor determined by dividing the number of β-cells by the 656 
total number of β-cells, ⍺-cells, and "-Cells. Blues, greens, and reds indicate non-diabetic, pre-657 
T1D, or T1D status, respectively. Significance was determined using the t-test (* p<0.05, ** 658 
p<0.01, *** p<0.001) 659 

Figure 1.F Principal component analysis of islet compartment. The number of cells of each cell 660 
type (omitting ⍺-, β-, and "-cells) were divided by the number of endocrine cells to adjust for 661 
different islet areas. Blues, greens, and reds indicate non-diabetic, pre-T1D, or T1D status, 662 
respectively.  663 

Figure 1.G Principal component analysis of non-islet compartment. The number of cells of each 664 
cell type (omitting ⍺-, β-, and "-cells) were divided by the number of acinar cells to adjust for 665 
different areas imaged. Blues, greens, and reds indicate non-diabetic, pre-T1D, or T1D status, 666 
respectively. 667 

668 
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 669 
 670 

Figure 2 Pseudotemporal reconstruction of insulitis identifies IDO on islet vasculature as a 671 
regulatory checkpoint. 672 
Figure 2.A Schematic of islet segmentation and quantification of islet cellular composition. 673 

Figure 2.B PAGA-force directed layout of islets colored by pseudotime. The start point of 674 
pseudotime was calculated as the centroid of the non-diabetic islets. Representative islets from 675 
different stages of pseudotime are indicated with black points and their raw images are depicted 676 
in Figure 2.D Healthy, Inflamed, and β-Cell Depleted were identified by examining the cell 677 
composition of the clusters obtained internally by the PAGA algorithm (Supplemental Figure 2.A).  678 

Figure 2.C Islet distribution across pseudotime for each donor. The titles indicate nPOD case IDs 679 
as in Supplemental Table 1.  680 
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Figure 2.D Images of Proinsulin, HLA-ABC, CD163, and CD8 staining in islets representative of 681 
different points along pseudotime as indicated in B. Scale bars (lower left of each column) 682 
indicate 100µm. 683 

Figure 2.E Quantification of selected features across pseudotime overlaid onto the PAGA force-684 
directed layout. For β-cells, macrophages, and CD8+T cells, the values correspond to log(# cells/# 685 
endocrine cells). For HLA-ABC, the mean HLA-ABC expression for each cell in the islet was 686 
computed and log transformed. 687 

Figure 2.F Quantification of selected features across pseudotime. For β-cells, macrophages, and 688 
CD8+T cells, the values correspond to log(# cells/# endocrine cells). For HLA-ABC, the mean HLA-689 
ABC expression for each cell in the islet was computed and log transformed. Color legend:  690 
Healthy islets: pink; Inflamed islets: brown; β-Cell Depleted islets: purple. Black points demarcate 691 
LOWESS regression.  692 

Figure 2.G Representative image of an islet from the Inflamed group stained with IDO and, from 693 
left to right, Synaptophysin, CD31, and CD45. Arrows indicate IDO+/CD31+ vasculature. Right 694 
shows that IDO+ cells are negative for CD45and therefore, are not myeloid cells associated with 695 
vasculature. Scale bar (bottom left image) indicates 50 µm. 696 

Figure 2.H Distribution of IDO expression on islet vasculature across pseudotime.  697 

Figure 2.I Association of IDO+ islet vasculature with islet CD8+T cell density. The y-axis corresponds 698 
to the number of CD8+T cells per endocrine cell per islet. CD8+T cell counts were normalized to 699 
adjust for islet size. The x-axis indicates islets whether islets contain IDO+ vasculature. Each color 700 
corresponds to a donor. All donors with detectable IDO+ Islet vasculature are displayed which 701 
consisted of 6480, 6267, 6520, 6228, and 6362. Colors are same as in Figure 2.C. IDO+ vasculature 702 
was manually quantified. For combined donors, significance was determined with a mixed-effect 703 
linear model, p = 1.5 x 10-12 (Satterthwaites’s method lmerTest R package). 704 

  705 
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 706 

Figure 3 Insulitis has sub-states, characterized by CD8+T cell functionality 707 
Figure 3.A Schematic of marker-quantification with a ResNet50 neural network. Raw images are 708 
input, and the neural network outputs a number between 0 and 1 indicative of the level of 709 
confidence that the cell expresses that marker with 1 indicating the highest confidence. 710 

Figure 3.B Heatmap of all 2,855 Inflamed Islet CD8+T cells, hierarchically clustered according to 711 
marker expression predicted by the neural network.  712 

Figure 3.C Top) UMAP of Inflamed Islets based on frequencies of markers on CD8+T cells in islets. 713 
Bottom) Mean frequencies of each marker on CD8+T cells in islets of each inflamed sub-cluster. 714 

Figure 3.D Representative images of islets from each subcluster with associated immune markers. 715 
Scale bars indicate 50 µm. 716 

Figure 3.E Frequencies of islets from each subcluster per donor in pre-T1D and T1D samples. Color 717 
indicates subcluster as in panel C. 718 

Figure 3.F Distribution of the islets of Inflamed-I through -IV on the PAGA force-directed layout 719 
shown in Figure 2.B 720 

Figure 3.G Differences in marker expression frequencies between CD8+T cells in islets from the 721 
Inflamed group and from the β-Cell Depleted + Immune group. T cells from all islets of the 722 
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specified groups were pooled within each donor to compute the frequencies of marker 723 
expression. Significance was determined using the Wilcoxon signed-rank test (* p<0.05, ** 724 
p<0.01, *** p<0.001) and was not corrected for multiple hypothesis testing. 725 

Figure 3.H Proposed model of coordinated T cell states in islets due to stimulation and re-726 
stimulation of CD8+T cells in islets. 727 

 728 

Figure 4 Vasculature, nerves, and Granzyme-B+/CD3- cells outside islets are associated with 729 
the lobular patterning of islet pathogenesis 730 
Figure 4.A A schematic of the method for quantifying lobular patterning of insulitis. Lobules were 731 
segmented and individual islets were mapped back to the lobules where they were found. Top: 732 
An example region with a strong lobular grouping effect and an ICC closer to 1. Bottom: An 733 
example region with a weak lobular grouping effect and an ICC closer to 0.  734 

Figure 4.B Islet pseudotimes in each nPOD donor with pre-T1D or T1D grouped by lobule. Each 735 
point represents an islet. The x-axis represents the islet pseudotime. The y-axis represents each 736 
lobule ranked by the mean pseudotime of islets in that lobule. Violin plots per lobule are overlaid. 737 
Abbreviations: ICC: Intraclass correlation coefficient. 738 
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Figure 4.C Cell types associated with lobular patterning. Top: Schematic of the hierarchical linear 739 
model. Cells in islets were omitted when computing the lobular abundance of each cell-type. 740 
Bottom: Coefficients of two-level models trained on each donor separately (columns labeled by 741 
donor) and a three-level model (right column). Color corresponds to the coefficient and features 742 
with p>0.05 are white. Significance was determined using Satterthwaites’s method in the 743 
lmerTest R package. No adjustment for multiple hypothesis testing was applied. 744 

Figure 4.D Visualization of vasculature (top), Granzyme-B/CD3- cells (middle), and nerves 745 
(bottom) in two lobules. The left lobule represents lobules with islets earlier in pseudotime and 746 
a lower abundance of the given cell type in the lobule. The right lobule represents lobules with 747 
islets late in pseudotime and a greater abundance of the given cell type in the lobule. 748 

 749 
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Figure 5 Immature tertiary lymphoid structures far from islets are potential staging areas for 750 
islet-destined CD8+T cells   751 
Figure 5.A Schematic of algorithm for identifying CNs. Red point indicates index cell for the CN. 752 
Orange points indicate the nearest neighbors of the index cell. Windows are collected for each 753 
cell in the dataset (indicated by orange arrows). 754 

Figure 5.B Cell-type compositions of the top CNs organized in decreasing order of the fold 755 
increase in abundance in T1D vs. non-T1D samples. Each column in the heatmap indicates the 756 
mean density of that cell type in the 20 nearest spatial neighbors of cells assigned to the CN 757 
designated for that row. Abundance was calculated as the number of cells assigned to the given 758 
CN divided by the number of acinar cells. Abbreviations: Vasc.: vasculature; Mac.: macrophages; 759 
Lym.: lymphatics. Neu.: neutrophils; CD8 T: CD8+T cells; CD4 T: CD4+T cells. Endocrine cell types 760 
were merged during CN annotation and are labeled “Islet”. 761 

Figure 5.C Mean abundances of the CD8+T cell and B cell CNs per donor. Abundance was 762 
calculated as the number of cells assigned to the given CN divided by the number of acinar cells. 763 
Significance was determined using the Mann-Whitney U test (* p<0.05,** p<0.01, *** p<0.001). 764 
No adjustment for multiple hypothesis testing was applied. 765 

Figure 5.D Top: Adjacency frequencies of (CD8+T cells| B Cell CN) with (Macrophage|Stroma|B 766 
Cells) and (Vasculature| B Cells) CNs. The adjacency frequency was calculated as the number of 767 
instances of the source CN adjacent to the destination CN divided by the total number of 768 
instances of the source CN. Bottom Left: Raw image of a representative assembly of the three 769 
CNs (CD8+T cells| B Cell CN), (Macrophage|Stroma|B Cells), and (Vasculature| B Cells) displaying 770 
CD8 and CD20 staining. Bottom Right: The same assembly as to the left colored by CN. Scale bar 771 
indicates 50µm). 772 

Figure 5.E Representative images of co-localization of PNAd+ endothelium and CD45RA+ CD62L+ 773 
CD8+T cells located in the (CD8+T cells|B Cells) CN. Scale bar indicates 50µm.  774 

Figure 5.F Enrichment of CD45RA expression on CD8+T cells located in (CD8+T cell | B cell) CN 775 
relative to CD8+T cells throughout the tissue. Significance was determined with a Wilcoxon 776 
signed-rank test (* p<0.05, ** p<0.01, *** p<0.001). 777 

Figure 5.G Representative images in case 6209 of (CD8+T cells|B Cells) instances adjacent to islets 778 
(G.1) and not adjacent to islets (G.2). Scale bars indicate 200µm. 779 

Figure 5.H Quantification of the adjacency frequencies between the (CD8+T cells|B Cells) CN and 780 
CNs rich in endocrine cells (i.e “Islet CNs”). Mean, std: mean and standard deviation adjacency 781 
frequency across T1D donors. Abbreviations: Vasc.: vasculature; Mac.: macrophage.  782 

Figure 5.I Representative images in case 6209 of islet-associated CD45RA+ CD62L+ CD8+T cells. 783 
Scale bar indicates 50 µm. 784 

Figure 5.J Image in case 6209 showing the spatial distribution of the (CD8+T cells|B cells) CN 785 
instances relative to islets and the enrichment of (CD8+T cells|B cells) CN instances in areas of 786 
the pancreas with islets lacking β-Cells.  787 
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Figure 5.K Proposed model of coordinated T cell stimulation in islets in T1D rejuvenated by naïve 788 
T cells that enter the pancreas at the (CD8+T cells|B Cells) CN outside islets. 789 

 790 
  791 

 792 
 793 

  794 
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Supplemental Information 1 
 2 

 3 

Supplemental Figure 1 Related to Figure 1.  4 
Supplemental Figure 1.A Changes in cellular abundance in Islet (top) and non-islet (bottom) 5 
regions. The Y-axis corresponds to the number of the given cell type / number of endocrine 6 
cells in the top row and the number of a given cell type / number of acinar cells in the bottom 7 
row in each donor. These frequencies were then z-normalized across donors. 8 

 9 

 10 

Supplemental Figure 2 Related to Figure 2.  11 
Supplemental Figure 2.A Leiden clustering computed by PAGA algorithm internally. Clusters 0 12 
and 5 were assigned to the ‘Healthy’ group. Clusters 6, 2, and 8 were assigned to the “Inflamed” 13 
group. Clusters 1,3,7, and 4 were assigned to the “β-Cell Depleted” group. 14 
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Supplemental Figure 2.B Frequency of IDO on vasculature at different distances from islets. 15 
Dashed line indicates the frequency in and around islets where IDO+ was detected in islet 16 
vasculature (n=84) as in Figure 2.H. Solid line indicates the frequency in and around Inflamed  17 
Islets in which IDO was absent (n=267). Error bars indicate 95% confidence intervals obtained 18 
by iteratively calculating the marker frequency in re-sampled islets with replacement (n=200) 19 

Supplemental Figure 2.C Macrophage abundance in IDO+ and IDO- islets. Same as Figure 2.I. 20 
Asterisks in figure indicate significance within each donor. For combined donors, significance 21 
was determined with a mixed-effect linear model, p = 0.72 (Satterthwaites’s method lmerTest R 22 
package). 23 

 24 

 25 

Supplemental Figure 3 Related to Figure 3 26 
Supplemental Figure 3.A Validation of neural network for detecting expression of weak 27 
antigens. Left: Recall and Precision for the automated gating scheme (see Methods). Right: 28 
Recall and Precision for the neural network. Both tables were computed using cells in the “Test” 29 
dataset unseen by the neural network. 30 

Supplemental Figure 3.B Frequency of functional markers on CD8+T cells inside islets. Colors 31 
correspond to donor. Only Pre-T1D and T1D donors are displayed. 32 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.15.23287145doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.15.23287145


Supplemental Figure 3.C Frequency of functional markers on CD8+T cells at different distances 33 
from islets. Error bars indicate 95% confidence intervals obtained by iteratively calculating the 34 
marker frequency in re-sampled islets with replacement (n=200). 35 

Supplemental Figure 3.D Association of islet features with Inflamed-I through -IV. For each 36 
feature (columns), a mixed-level model adjusting for donor was fit in a one-vs-all design and the 37 
p-value was determined using Satterthwaites’s method in lmerTest R package. Values in the 38 
heatmap were corrected for multiple hypotheses using the Benjamini, Hochberg method. 39 

 40 

Supplemental Figure 4 Related to Figure 4 41 
Supplemental Figure 4.A Changes in cell types identified by HLM in insulitis. Each point 42 
represents and islet. Islets are grouped according to the pseudotime analysis from Figure 2. The 43 
y-axis corresponds to the log-transformed values for the number of the given cell type / 44 
number of endocrine cells. Significance was determined using the t-test (* p<0.05,** p<0.01, 45 
*** p<0.001). No adjustment for multiple hypothesis testing was applied. 46 
 47 

 48 
Supplemental Table 1:  nPOD Case Information 49 

 50 
 51 
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 52 
Supplemental Table 2: Markers used for cell-type identification. Channels in the “Both” column 53 
were used for clustering all cells and specifying immune cells. Channels in the “All” column were 54 
only used for clustering all cells and the UMAP in Figure 1.B. Channels in “Immune” columns were 55 
only used for sub-clustering immune cells and the UMAP in Figure 1.C. Channels in “Endocrine” 56 
column were used for sub-clustering endocrine populations. Channels in “Un-used” column were 57 
not included in the clustering or UMAP step because they were either too weak to aid clustering 58 
or were expressed on multiple cell-populations and confounded cell-type identification. 59 

 60 

 61 

Supplemental Table 3: CODEX Experiment Details 62 
 63 
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 64 
Supplemental Table 4: Antibody Clone Details 65 
 66 
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