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Abstract

Skeletal muscles contain a large volume of water that is classified into intracellular (ICW) and extracellular (ECW) water fractions. Nuclear 
magnetic resonance-based biomarkers suggest that increased water T2 heterogeneities, as well as elevated water T2 relaxation in the quadriceps 
occurs in the elderly when compared with young adults. However, nuclear magnetic resonance is difficult to apply to a large-scale study or 
a clinical setting for sarcopenia and frailty screening. Segmental bioelectrical impedance spectroscopy is a unique tool used to assess the 
segmental ratio of ECW/ICW in the limbs. We evaluated 405 community-living people aged between 65 and 90 years. ECW and ICW in 
the upper legs were assessed by segmental bioelectrical impedance spectroscopy. Isometric knee extension strength, gait speed, and skeletal 
muscle mass were measured. Thigh ECW/ICW was negatively correlated with knee extension strength and gait speed (r = −.617 and −.431, 
respectively, p < .001) and increased with age (p < .001). Thigh ECW/ICW was a significant predictor of knee extension strength and gait speed 
independent of age, sex, body mass index, and skeletal muscle mass. Relative expansion of ECW against ICW in the thigh muscles is a factor 
in decreased muscle quality and a biomarker of muscle aging.

Keywords: Muscle strength—Muscle quality—Water fraction—Bioelectrical impedance spectroscopy

Skeletal muscle is the largest organ in the body and maintenance of 
its quality and mass is important for the prevention of age-related 
decline in metabolic function and physical frailty. It is well known 
that muscle strength or power decreases more rapidly with age when 
compared with skeletal muscle mass (SM), both cross-sectionally and 
longitudinally (1–4). This discrepancy is often referred as decreasing 
“muscle quality” and is calculated as the ratio of muscle strength to 
SM or as muscle strength adjusted by SM as a covariate (5–9). The 
qualitative change observed in skeletal muscle appears to be related 
to numerous morphological and/or neuromuscular aspects, such as 

fat infiltration of muscles (10–12), decreased lateral force transmis-
sion (13,14), change of pennate angle (15), fiber type change with 
increased co-expression of mixed myosin heavy chain characteristics 
(16,17), decreased sensitivity to calcium ions (18), and attenuated 
excitability of motoneurons (19,20).

Skeletal muscle holds a large volume of water, accounting for 
up to three-quarters of muscle mass (21). T2 relaxation measured 
by nuclear magnetic resonance is a biomarker of water in skeletal 
muscles, and Azzabou et  al. (10) recently indicated that water T2 
mean values and its heterogeneity indices, as well as fat fractions,  
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were significantly higher in the elderly when compared with young 
adults. That study, as well as previously conducted studies (22,23), 
have suggested that measurement of the water characteristics of 
skeletal muscle is important in order to clarify the effect of water 
distribution on muscle quality in skeletal muscle. However, nuclear 
magnetic resonance is difficult to apply in a large-scale study or 
indeed in a clinical setting for sarcopenia and frailty screening. Water 
in the skeletal muscle is distributed to both extra- and intracellular 
compartments (ECW and ICW, respectively) partitioned by muscle 
cell membranes (24). Segmental bioelectrical impedance spectros-
copy (S-BIS) is a unique tool used to noninvasively assess the seg-
mental ratio of ECW/ICW in the body (25). We previously reported 
that a relative expansion of ECW against ICW is observed in skeletal 
muscles with aging (24,26,27) The aim of the present study was to 
examine the relationship between ECW/ICW in the upper leg seg-
ments, as well as muscle strength or gait speed in the elderly.

Methods

Subjects
A total of 405 community-dwelling, healthy, elderly subjects 
(between 65 and 90 years of age) were enrolled in this study. These 
were the same subjects who were in our previous study (28), in which 
we examined the advantages of BIS over traditional single-frequency 
bioelectrical impedance analysis (BIA) for the assessment of appen-
dicular skeletal muscles, as detailed in that publication. Inclusion 
criteria were as follows: (a) reported ability to walk more than 10 m 
with or without a cane, (b) ability to provide informed consent with 
no indication of dementia, (c) no history of any joint arthroplasty 
or current use of an artificial pacemaker, (d) no current medication 
for edema or lymphedema, and (e) absence of any definitive kidney, 
digestive, or other acute diseases. Height and weight were measured 
with the subjects dressed in light clothing and without shoes. This 
study protocol was approved by the ethics committee of Kyoto 
Prefectural University of Medicine.

Bioelectrical Impedance Spectroscopy
Bioelectrical impedance was measured using a logarithmic dis-
tribution of 256 frequencies ranging from 4 to 1,000 kHz (SFB7, 
ImpediMed, Pinkenba, QLD, Australia) using disposable tab-type 
monitoring electrodes (2 cm × 2 cm, Red Dot, 3M, St. Paul, MN). 
Before the test, the system was checked against a series of preci-
sion resistors provided by the manufacturer. Impedance of the upper 
leg segments was measured by placing an injecting electrode on 
each side of the body on the dorsal surface of the feet, proximal 
to the second and third metatarsal-phalangeal joints, while a sens-
ing electrode was placed on each side of the body on the articu-
lar cleft between the femoral and tibial condyles. Segment length 
(L) was calculated as twice the length of the right upper leg when 
measured from the articular cleft between the femoral and tibial 
condyles to the greater trochanter of the femur. Resistance of zero 
(R0) and infinity (R∞) frequencies was determined by extrapolation 
after fitting the spectrum of bioimpedance data to the Cole–Cole 
model using specialized software (ImpediMed, Pinkenba, QLD, 
Australia). The analysis parameters included minimum frequency, 
5 kHz; maximum frequency, 500 kHz; and rejection limit, 0%. For 
S-BIS, the RICW was calculated using 1/[(1/R∞) − (1/R0)] (28). Thigh 
ECW was calculated as ECW = ρECW × L2/R0, where ρECW represents 
factors for extracellular resistivity (47 Ωcm). Thigh ICW was cal-
culated as ICW = ρICW × L2/RICW, where ρICW represents factors for 
intracellular resistivity (237.9 Ωcm) (29,30). Therefore, the ratio of 

ECW/ICW was calculated as ECW/ICW  =  [ρECW × L2/R0]/[ρICW × 
L2/RICW] = 0.197 × RICW/R0. The details of S-BIS have previously been 
described (25,29,31).

Knee Extension Strength and Gait Speed
Maximal knee extension strength (KES) at a knee angle of 90° was 
measured with the subject in a sitting position on a custom-made 
dynamometer chair, as previously described (28,32). The ankle 
was attached to a strain-gauge system (TKK5710e; Takei Scientific 
Instruments, Niigata, Japan). After familiarization with the test, sub-
jects were encouraged to exert maximal knee extension force. The 
test consisted of two maximal efforts, each separated by a 1-minute 
rest period, with the highest value recorded. The length from the 
articular cleft between the femoral and tibial condyles to the ankle 
attachment was measured. Knee extension torque (Nm) was calcu-
lated as the strength multiplied by the length, and the mean KES of 
right and left knee joints was additionally calculated.

Subjects were instructed to walk a distance of 10 m as quickly 
as possible in order to determine their maximal gait velocity. This 
walking time was measured using a digital stopwatch for a distance 
of 6 m, following an initial 2 m of acceleration and prior to a final  
2 m of deceleration. The speed was calculated as the distance divided 
by the walking time. Gait speed was measured twice, and the mean 
of the two trials was used (32).

Skeletal Muscle Mass
SM was calculated using the equation developed by Janssen et al. 
(33) where SM (kg) = [(height2/R50 × 0.401) + (sex × 3.825) + (age ×  
–0.071)] + 5.102. Height was measured in centimeters, R50 was meas-
ured in ohms between the right wrist and ankle in a supine position 
(men = 1 and women = 0), and age was measured in years. This BIA 
equation was developed against magnetic resonance imaging (MRI) 
measures of whole-body muscle volume in a sample of 269 men and 
women who varied widely in age (between 18 and 86 years) and 
adiposity (body mass index [BMI], 16–48 kg/m2). In that study, the 
correlation between BIA-predicted and MRI-measured muscle mass 
was 0.93 with a standard error estimated at 9%.

Statistical Analysis
Results are presented as the mean ± SD. Variables between men and 
women were compared using analysis of variance. Pearson’s correla-
tion coefficients were calculated for the comparison of ECW/ICW in 
the upper legs and KES, gait speed, and age. Multiple linear regres-
sion analysis was conducted using KES or gait speed as a dependent 
variable. In the linear model, age, sex, BMI, and SM were entered in 
model 1, and ECW/ICW in the upper legs was entered in model 2, in 
order to investigate the contribution of ECW/ICW in the upper legs 
to muscle strength and gait speed. All analyses were performed using 
SPSS software (Version 22.0 for Windows, IBM Corp. Armonk, NY).

Results

The physical characteristics of study subjects are presented in 
Table  1. Age and BMI did not differ significantly between sexes. 
Height, weight, SM, KES, and gait speed were significantly higher 
in men when compared with women. ECW/ICW in the upper legs 
was significantly lower in men when compared with women. The 
relationships between KES or gait speed and the ECW/ICW in 
the upper legs are presented in Figure  1. ECW/ICW in the upper 
legs was significantly and negatively correlated with KES and gait 
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speed (r = −.617 and −0.431, respectively; p < .001) and ECW/ICW 
increased with age (r = .395, p < .001).

When ECW/ICW in the upper legs was not taken into account, 
age and sex contributed towards explaining the variance of KES 
independent of SM (Table 2). The ECW/ICW in the upper legs sig-
nificantly explained the variance of KES independent of age, sex, 
BMI, and SM. In model 2, age, sex, and BMI did not significantly 
contribute towards KES variance; SM and the ECW/ICW in the 
upper legs only were selected as significant variables.

The results of multivariate analysis for gait speed are presented 
in Table 3. Age, BMI, and SM were selected as significant variables 
to explain the variance in gait speed observed in model 1. The ECW/
ICW in the upper legs was selected as a significant variable in addi-
tion to those variables, and the standardized coefficient of ECW/
ICW in the upper legs was higher than that of other variables for 
gait speed.

Discussion

In the present study, the ratio of ECW/ICW in the upper legs was 
assessed by S-BIS and was found to be significantly associated with 
both KES and gait speed, independent of age, sex, BMI, and SM. 
Our most novel finding is that the ECW against ICW in skeletal 
muscle is correlated with gait speed independently from age, sex, 
BMI, and SM.

Traditionally, BIA (including single- and multi-frequency) and 
BIS have been used to estimate body composition including total 

body water, fat and fat-free mass, as well as SM (34,35). These 
studies have established or validated estimated SM by BIA using 
computed tomography, MRI, or dual-energy X-ray absorptiometry 
as a criterion method for SM. Normal imaging methods such as 
T1-weighted spin-echo MRI, computed tomography, or dual-energy 
X-ray absorptiometry, are regarded as a criteria for the assessment 
of SM in terms of the present consensus for sarcopenia (36–39). 
However, SM estimated by these simple imaging methods cannot 
differentiate ECW from other skeletal muscle components within the 
muscle tissue. ECW within skeletal muscle tissue is not a component 
of muscle cell mass (MCM) and is therefore not related to muscle 
strength, that is, the relative expansion of ECW against SM may 
have an adverse effect on muscle quality.

S-BIS is a unique tool for differentiating ECW from intracellu-
lar components. Skeletal muscle cell components are isolated by cell 
membranes that are organized by phospholipid bilayers. The cell 
membrane works as a capacitor in alternating the circuit current 
(40,41). Low-frequency currents cannot penetrate the cell mem-
brane; however, these membranes are permeable to high-frequency 
currents. S-BIS operates using a series of frequency currents on the 
principle of the Cole–Cole model, which characterizes the measure-
ment segment with parallel circuits for ECW and ICW and further 
accounts for the capacitive effect introduced by the nonconducting 
membrane separating the ICW from the ECW. A plot of reactance 
versus resistance at different frequencies results in a semicircular 
arc. To fit the measured impedance data to this model, resistance at 
infinity (R∞) and zero (R0) frequencies are obtained by extrapolation. 
In S-BIS, the reciprocal of R0 reflects the ECW component and the 
reciprocal of RICW (the reciprocal of R∞ subtracting by the reciprocal 
of R0) reflects the ICW component in a given segment. Intriguingly, 
the index of ECW/ICW can be obtained simply as a proportion of 
RICW/R0 (see the Methods section in detail).

Mingtone et al. (21) established a model of skeletal muscle com-
position at the cellular level. In that model, muscle mass contains not 
only MCM but also ECW and intramuscular adipose tissue. The the-
oretical ratio of ICW/MCM is likely to be approximately 0.72 and 
is relatively constant between subjects, although hydration of total 
skeletal muscle tissues varies as a result of variance in lipid contents. 
Thus, ECW/ICW in a given segment is proportional to ECW/MCM 
in the skeletal muscle tissue and could be a biomarker of muscle 
quality. Indeed, ECW/ICW in the upper legs was a significant vari-
able for clarifying the inter-individual variance of muscle strength 
and gait speed, independent of age, sex, BMI, and SM.

Most recently, Azzabou et  al. (10) examined the differences in 
nuclear magnetic resonance T2 imaging between younger and older 
adults and found that, aside from fat fraction, elevated water T2 
and increased T2 heterogeneities in quadriceps were observed in the 
elderly. An age-related increase in T2 in the calf muscles was fur-
ther reported by Hatakenaka et al. (22) and Schwenzer et al. (23) 
and in the tibialis anterior muscles in humans and mice by Esposito 
et al. (42). Hatakenaka et al. (22) stated that the T2 relaxation time 
of fast-twitch muscle increases with aging and that this is mainly 
attributable to increased extracellular space, reflecting age-related 
type II fiber atrophy. Recent studies reported that the metabolic pro-
files assessed by liquid chromatography-tandem mass spectrometry 
and muscle bioenergetics assessed by 31P-MRS are related to muscle 
quality or gait speed (43,44), it is interesting to examine the relation-
ship between the heterogeneities of skeletal muscle composition and 
those factors using S-BIS.

Lexell et al. (17) examined the cross-sections of autopsied whole 
vastus lateralis muscle from 43 previously physically healthy men 

Table 1. Physical Characteristics of Subjects (240 Women and 165 
Men)

Women Men

Age (y) 73.8 ± 4.9 74.7 ± 5.2
Height (cm) 151.1 ± 5.4 163.9 ± 6.2*
Weight (kg) 51.7 ± 8.1 61.5 ± 8.9*
BMI (kg/m2) 22.7 ± 3.4 22.8 ± 2.8
SM (kg) 17.1 ± 2.3 27.0 ± 3.2*
Knee extension strength (N m) 88.3 ± 24.1 145.2 ± 37.6*
Gait Speed (m/s) 1.8 ± 0.3 2.0 ± 0.4*
ECW/ICW in the upper legs 0.514 ± 0.091 0.442 ± 0.088*

Notes: BMI = body mass index; ECW = extracellular water; ICW, intracel-
lular water; SM = skeletal muscle mass.

Data are expressed as mean ± SD.
*Significantly different between women and men (p < .001).

Figure  1. The relationships between the ratio of extra- and intracellular 
water (ECW/ICW) in the upper legs as assessed by segmental bioelectrical 
impedance spectroscopy (S-BIS) and isometric knee extension strength (A) 
and maximal gait speed (B). ○ women and ● men.
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between 15 and 83 years of age. According to our calculation using 
Table 1 in that article (17), whole muscle cross-sectional area (CSA) 
of vastus lateralis was ~26% lower in subjects in their 70’s when 
compared with those in their 20’s. This value is consistent with a 
previous study by Janssen et al. (45) that measured SM in 468 men 
and women aged between 18 and 88 years using MRI and found 
a ~26% difference in lower body SM when comparing men in the 
same age brackets as Lexell et al. However, Lexell et al. (17) also 
examined the total number of fibers, proportions of type I  fibers, 
and the mean fiber size of types I and II in vastus lateralis. The total 
number of fibers was ~41% lower in subjects in their 70’s compared 
with those in their 20’s. The mean fiber size of type I did not differ 
between the two age groups (0% difference), however, that of type 
II was ~25% lower in subjects in their 70’s compared with those in 
their 20’s. We are furthermore able to calculate the so-called “total 
muscle cell CSA” using the total number of fibers, proportion of type 
I fibers, and mean fiber size of types I and II. Total muscle cell CSA 
was ~48% lower in subjects in their 70’s, despite the fact that a dif-
ference of just ~26% was observed in whole muscle CSA between 
the two age groups. These results support the notion that extracel-
lular space in skeletal muscle tissue increases with age.

An important finding of the present study was that age, sex, and 
BMI were not significant factors while considering inter-individual 
variance in muscle strength after inclusion of ECW/ICW in the 
upper legs. Previous studies show that muscle quality, calculated as 
the ratio of muscle strength to SM or muscle strength adjusted by 
SM, as a covariate, decreases with age, even in cohorts comprised 
solely of an older adult population (5–9,46). Multivariate analysis 
without taking into account ECW/ICW in the upper legs (Table 2, 
model 1) supports this previous finding. In contrast, after including 

ECW/ICW in the upper legs as an independent variable, age was no 
longer significantly associated with muscle strength. This result sug-
gests that the decreased muscle quality observed with aging can be 
explained at least partly by the relative expansion of ECW against 
MCM in skeletal muscle tissue.

In addition, ECW/ICW in the upper legs was significantly associ-
ated with gait speed independent of age, sex, BMI, and SM. No stud-
ies have previously examined the relationship between gait speed 
and the segmental ratio of ECW/ICW. ECW and ICW can be meas-
ured using bromide and stable isotope dilution at a whole body level, 
and Ritz et al. (47) found that elderly patients had a lower ICW and 
a higher ECW at this level when compared with both young and 
elderly healthy adults. Wang et al. (48) measured ECW/ICW, body 
cell mass by total body potassium count, and fat-free mass by dual-
energy X-ray absorptiometry and reported a significant increase in 
ECW/ICW, as well as decreased body cell mass /fat-free mass during 
aging. The results of the present study are in line with these findings. 
Bromide and stable isotope dilution techniques are a reliable method 
for assessing water distribution at a whole body level; however, it 
cannot be used for the assessment of segmental measurements. While 
Pietrobelli et al. (49) have demonstrated the usefulness of forearm 
potassium counting by 40K, this is a large, expensive, and inconven-
ient instrument that is furthermore not widely available. S-BIS is a 
portable, noninvasive, and rapid tool for the assessment of segmen-
tal water distribution and may be used on a daily basis within the 
clinical setting.

The equations of segmental ECW = ρECW × L2/R0 (ρECW = 47 Ωcm) 
and ICW = ρICW × L2/RICW (ρICW = 237.9 Ωcm) were used in the pre-
sent study. The specific resistivity are determined empirically. The 
ρECW and ρICW is determined by Kaysen et al. (29) with a reference of  

Table 2. Multivariate Analysis: Linear Model With Knee Extension Strength as a Dependent Variable

Model 1 Model 2

Unstandardized Standardized Unstandardized Standardized

Factors Included B (95% CI) β p-value B (95% CI) β p-value

Constant 132.1 (83.6, 180.6) <.001 130.4 (86.0, 174.8) <.001
Age (y) −1.5 (−2.0, −0.9) −0.182 <.001 −0.4 (−0.9, 0.2) −0.046 .191
Sex (male =1, female = 0) 17.2 (4.3, 30.2) 0.206 .009 6.4 (−5.7, 18.5) 0.076 .297
BMI (kg/m2) −0.2 (−1.1, 0.8) −0.014 .698 −0.7 (−1.6, 0.2) −0.052 .131
SM (kg) 4.1 (2.9, 5.3) 0.559 <.001 4.1 (3.1, 5.2) 0.561 <.001
ECW/ICW in the upper legs −135.5 (−165.6, −105.4) −0.316 <.001

Note: BMI = body mass index; CI = confidence interval; ECW = extracellular water; ICW = intracellular water; SM = skeletal muscle mass.

Table 3. Multivariate Analysis: Linear Model With Gait Speed as a Dependent Variable

Model 1 Model 2

Unstandardized Standardized Unstandardized Standardized

Factors Included B (95% CI) β p-value B (95% CI) β p-value

Constant 3.8 (3.24, 4.35) <.001 3.785 (3.258, 4.312) <.001
Age (y) −0.023 (−0.03, −0.017) −0.348 <.001 −0.014 (−0.021, −0.008) −0.213 <.001
Sex (male =1, female = 0) 0.018 (−0.128, 0.165) 0.027 .807 −0.07 (−0.214, 0.073) −0.102 .335
BMI (kg/m2) −0.023 (−0.034, −0.012) −0.216 <.001 −0.027 (−0.038, −0.017) −0.253 <.001
SM (kg) 0.015 (0.002, 0.029) 0.251 .025 0.015 (0.003, 0.028) 0.254 .019
ECW/ICW in the upper legs −1.108 (−1.466, −0.751) −0.315 <.001

Note: BMI = body mass index; CI = confidence interval; ECW = extracellular water; ICW = intracellular water; SM = skeletal muscle mass.
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Zhu et al. (30). Zhu et al. (50) reported that segment specific resistivity 
improves the body fluid measurement for whole leg (ρECW = 99 Ωcm 
and ρICW = 281 Ωcm) in hemodialysis patients. We, however, assessed 
only thigh segments in the current study, and the specific resistivity 
may be differ from it. The correlation coefficients and standardized 
regression coefficients between ECW/ICW and muscle strength or 
gait speed is independent of the specific resistivity. The conclusion 
will not be influenced, although the further studies are needed to 
determine the specific resistivity of the segments.

Conclusion

The ratio of ECW/ICW in the upper legs assessed by S-BIS is signifi-
cantly associated with muscle strength and gait speed in the elderly. 
The index of ECW/ICW can be easily obtained as a proportion of 
RICW/R0 without the need for any undisclosed equation dependent 
on a manufacturer. As S-BIS is a portable, noninvasive, and rapid 
methodology that can be used daily in the clinical setting, assess-
ment of water distribution in limb segments is an attractive tool 
for the assessment of both muscle quality and quantity. Increased 
extracellular water in skeletal muscle tissue is an important con-
tributor towards decreased muscle quality during aging.
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