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[1] The extratropical upper troposphere and lower strato-
sphere (Ex‐UTLS) is a transition region between the strato-
sphere and the troposphere. The Ex‐UTLS includes the
tropopause, a strong static stability gradient and dynamic
barrier to transport. The barrier is reflected in tracer profiles.
This region exhibits complex dynamical, radiative, and
chemical characteristics that place stringent spatial and tem-
poral requirements on observing and modeling systems. The
Ex‐UTLS couples the stratosphere to the troposphere
through chemical constituent transport (of, e.g., ozone), by
dynamically linking the stratospheric circulation with tropo-
spheric wave patterns, and via radiative processes tied to
optically thick clouds and clear‐sky gradients of radiatively

active gases. A comprehensive picture of the Ex‐UTLS is
presented that brings together different definitions of the tro-
popause, focusing on observed dynamical and chemical
structure and their coupling. This integral view recognizes
that thermal gradients and dynamic barriers are necessarily
linked, that these barriers inhibit mixing and give rise to spe-
cific trace gas distributions, and that there are radiative feed-
backs that help maintain this structure. The impacts of 21st
century anthropogenic changes to the atmosphere due to
ozone recovery and climate change will be felt in the Ex‐
UTLS, and recent simulations of these effects are summa-
rized and placed in context.
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1. INTRODUCTION

[2] The upper troposphere and lower stratosphere (UTLS)

is a coupling layer in the atmosphere. It can be broadly

defined as the region ±5 km around the tropopause, the tra-

ditional boundary between the troposphere (from the Greek

tr��pw or “to turn over”) and the stratosphere (from the Latin

stratus, “to spread out”). The UTLS is a consequence of

the transition between the troposphere and stratosphere,

and processes in the region may alter both the troposphere

and stratosphere. Stratosphere‐troposphere exchange (STE)

across the tropopause is an important bidirectional process for

influencing the chemistry of the upper troposphere and lower

stratosphere [Holton et al., 1995]. STE is important for

understanding tropospheric ozone (O3) concentrations that

affect air quality. But the UTLS is important for more than

just STE. Because of relative minimum temperatures in this

region, the UTLS has a key influence on radiation escaping

the troposphere to space and hence affecting surface climate

and climate feedbacks. The dynamics of the UTLS may also

influence stratospheric annular modes and their effects on the

troposphere. In this way the UTLS is important for influ-

encing the persistence of tropospheric weather regimes in

middle and high latitudes, potentially allowing improved

predictability. The tropical quasi‐biennial oscillation (QBO)

can also influence the troposphere bymodulation of planetary

waves in the UTLS [Garfinkel and Hartmann, 2010]. The

dynamical, chemical, and radiative aspects of the UTLS are

coupled and may evolve because of anthropogenic radiative

and chemical forcing of the climate system. Thus changes to

the UTLS may cause significant changes to tropospheric

chemistry and climate.

[3] Here we focus on the extratropical UTLS (Ex‐UTLS),

defined broadly as the region poleward of the subtropical jet

between ∼8–20 km (Figure 1, dark and light shaded region).

The altitude range spans the free troposphere to the lower

stratosphere. The fundamental difference between the tro-

pics and extratropics is based on the dominant physical

processes in each region: radiative‐convective balance in the

tropics versus baroclinic wave dynamics in the extratropics

[Held, 1982]. This distinction is echoed in the distinct tro-

popause altitudes for each region (∼17 km in the tropics

versus ∼10 km in the extratropics). A further fundamental
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distinction is that the global stratospheric overturning cir-

culation is upward in the tropics and downward in the

extratropics, which fundamentally influences background

reservoirs for STE. In recent years it has been recognized

that the tropical boundary between the troposphere and

the stratosphere is more appropriately viewed as a layer

extending over several kilometers [Atticks and Robinson,

1983; Highwood and Hoskins, 1998; Fueglistaler et al.,

2009].

[4] The Ex‐UTLS region is marked by transitions in

chemical constituents that result from transport and mixing

and interact with radiation. Gradients in ozone (O3) and

water vapor (H2O) across the region are strong and opposite

(ozone concentrations are low in the troposphere, and water

vapor concentrations are low in the stratosphere). STE mass

exchange is a two‐way process that in the net mixes ozone

down‐gradient from the stratosphere into the upper tropo-

sphere, where it has an impact on the ozone budget of the

troposphere [e.g., Roelofs and Lelieveld, 1996].

[5] Because the Ex‐UTLS encompasses a local tempera-

ture minimum and is the uppermost region where clouds may

form, radiatively active trace species, aerosols and clouds

(especially cirrus) in the Ex‐UTLS have strong potential

radiative forcing [Tuck et al., 1997]. While radiative time

scales in the Ex‐UTLS are relatively long, there can be sub-

stantial impact on tropospheric climate and surface temper-

ature from Ex‐UTLS ozone [Forster and Tourpali, 2001] and

water vapor [Forster and Shine, 2002; Solomon et al., 2010].

Perturbations to the local radiative balance can in turn couple

to the dynamical structure by altering the temperature profile,

winds (through the thermal wind relation), and the static

stability of the region.

[6] The Ex‐UTLS is also linked to dynamical coupling of

the troposphere and stratosphere. The stratospheric circula-

tion is primarily driven by the upward propagation and

dissipation of large‐ and small‐scale waves originating in

the troposphere, and the details of propagation/dissipation

are tied to UTLS static stability and wind profiles [Chen and

Robinson, 1992; Shindell et al., 1999]. The stratosphere has

also been shown to provide long‐range forecast predict-

ability for the troposphere [Baldwin and Dunkerton, 2001]

through wave dynamics coupled with so‐called annular

modes [e.g., Shepherd, 2007].

[7] Finally, significant decadal‐scale trends have been

observed in the Ex‐UTLS region, likely associated with

anthropogenic radiative forcing of climate [Santer et al., 2003;

Seidel and Randel, 2006]. By the end of the 21st century,

climate change is predicted to substantially change UTLS

ozone distributions through changes in stratospheric trans-

port, with a potentially strong feedback on radiative forcing

and STE [Hegglin and Shepherd, 2009]. Mitigation of anthro-

pogenic radiative forcing through “planetary radiation manage-

ment” (or “geoengineering”) [Crutzen, 2006] could potentially

be implemented through enhancement of the stratospheric

aerosol layer [Tilmes et al., 2009]. Thus it is critical to under-

stand the processes governing the Ex‐UTLS and how they

might change.

[8] In this review we first describe the basic structure of the

Ex‐UTLS and the surrounding region (section 2). We then

describe recent work on the analysis of the tropopause

Figure 1. Schematic snapshot of the extratropical UTLS using data from a Northern Hemisphere section
along 60°W longitude on 15 February 2006. Wind contours (solid black lines 10 ms−1 interval), potential
temperature surfaces (dashed black lines), thermal tropopause (red dots), and potential vorticity surface
(2 PVU: light blue solid line). Illustrated schematically are the Ex‐UTLS (dark and light blue shading),
ExTL (dark blue shading), clouds and fronts (gray shading), static stability contours in the TIL (green
shading), quasi‐isentropic exchange (red wavy arrows), cross‐isentropic exchange (orange wavy arrows),
and the Brewer‐Dobson Circulation (deep, red solid outline; shallow, dotted solid outline).
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structure from different perspectives (section 3) and acqui-

sition and analysis of chemical measurements in the Ex‐UTLS

from aircraft, balloons, and satellite data (section 4), toge-

ther with observations, modeling, and theoretical studies of

transport and mixing (section 5) to understand the obser-

vations. We also describe how the Ex‐UTLS region is

changing and projected to evolve in response to anthropo-

genic forcing of climate and chemistry (section 6). This

review aims at an integral perspective (section 7) of

dynamical, chemical, and radiative processes that govern the

Ex‐UTLS. Acronyms are defined in the glossary, after the

main text.

2. STRUCTURE OF THE EX‐UTLS

[9] The Ex‐UTLS contains the lowermost stratosphere

poleward of the subtropical jet and is bounded in the vertical

by the stratospheric overworld (440 K isentrope) and the

upper troposphere (∼5 km below the mean tropopause). Air

in the Ex‐UTLS has complex dynamical and chemical

characteristics, influenced by both the troposphere and the

stratosphere. The Ex‐UTLS is illustrated in a schematic

snapshot in Figure 1, and the climatological wind and static

stability structure is illustrated in Figure 2. We define the

lower boundary of the Ex‐UTLS ∼5 km below the mean

tropopause (about the lowest altitude of a highly perturbed

tropopause). The upper boundary of the Ex‐UTLS is best

defined by an isentropic surface around 400–440 K potential

temperature (also defining the top of the Tropical Tropopause

Layer (TTL) in the tropics), a level at the base of the region

where the tropical stratosphere is isolated from the extra-

tropics (the “tropical pipe” of Plumb [1996]). This level

indicates approximately the region up to which tropical

tropospheric influence is evident in extratropical air masses

[Tuck et al., 1997; Rosenlof et al., 1997], and shows a distinct

dependency on season [Hegglin and Shepherd, 2007]. The

Ex‐UTLS is not primarily defined in terms of rigid bound-

aries, but rather in terms of processes: it is the region of the

extratropics that is influenced by the stratosphere from above

as well as the troposphere from below, and also from the deep

tropics via quasi‐horizontal transport.

2.1. Stratospheric Overworld

[10] The upper boundary of the Ex‐UTLS extends into the

lower part of the stratospheric overworld [Hoskins, 1991;

Holton et al., 1995]. The overworld (defined by isentropes

that do not intersect with the tropopause at any latitude,

above ∼380 K) primarily influences the Ex‐UTLS by

downward transport (red vertical arrows in Figure 1), as

part of the global‐scale stratospheric overturning mass cir-

culation, termed the Brewer‐Dobson circulation [Brewer,

1949; Dobson et al., 1946]. The Brewer‐Dobson circula-

tion is driven by seasonal variations in momentum deposi-

tion associated with vertically propagating waves originating

in the troposphere [Garcia, 1987; Plumb, 2007; Shepherd,

2007], and is linked with mean upward flow in the tropics

and poleward and downward motion in the extratropics.

Transport toward the extratropics within the Brewer‐Dobson

circulation occurs through a relatively deep (or “slow”)

stratospheric circulation (that provides downward transport

into the Ex‐UTLS). There is also “fast” component of the

Brewer‐Dobson circulation that more directly links the

tropics and subtropics [Plumb, 2002; Birner and Bönisch,

2011], illustrated by the dotted red arrow in Figure 1.

The definition of the “lowermost stratosphere” (LMS) in

Figure 2. Seasonal climatology of zonal mean Northern Hemisphere static stability (defined as dT/dz) in
the Ex‐UTLS in altitude coordinates. (a) December‐January‐February and (b) June–July–August. Color
shading is dT/dz with contours at −3, −2, and −1 (blue) and 1 to 6 (orange‐red) K km−1 from CHAMP
GPS data for the period 2002–2008. The thick black lines represent the −2 K km−1 contour of dT/dz: the
thermal tropopause. Dotted lines are isentropes. Black contours are zonal mean zonal winds with contours
every 10 ms−1 (from European Center Re‐Analysis (ERA), interim for 2002–2008). Dashed lines are
±2 and 6 PVU isolines, also from ERA‐interim.
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the Ex‐UTLS was sketched by Holton et al. [1995] on the

basis of terms from Hoskins [1991].

[11] The air in the upper Ex‐UTLS region above 380 K

potential temperature surface has a range of transport times

from the troposphere, often characterized by a spectrum of

transit times (or age spectrum) [Hall and Plumb, 1997; Tuck

et al., 2008]. These transit times span the range from months

to years, corresponding to different transport pathways.

These transit times lead to mean ages (the first moment of

the age spectrum) above a year in the extratropical strato-

sphere around 20 km [Waugh and Hall, 2002]. There is also

evidence for rapid horizontal transport from the tropics

above the subtropical jet, linked to synoptic‐ and planetary‐

scale waves (discussed further in section 2.2). The strength

of the vertical transport from the stratospheric overworld

varies with latitude and season, maximizing during winter‐

spring, and is governed by the stratospheric residual circu-

lation [Appenzeller et al., 1996b; Rosenlof et al., 1997].

2.2. Polar Vortex and Subtropical Jet

[12] The Ex‐UTLS is bounded by the subtropical jet on its

tropical flank and in polar regions is situated below the polar

vortex during winter‐spring (this region is sometimes

termed the subvortex). The snapshot in Figure 1 indicates

that there are often conditions of more than one jet in the

Ex‐UTLS. Double jets do exist in the climatology in certain

seasons and regions, although they are not present in a zonal

mean climatology (Figure 2). The core of the subtropical jet

is associated with strong gradients in isentropic potential

vorticity (PV) [Chen, 1995; Haynes and Shuckburgh, 2000]

and chemical tracers [Pan et al., 1997; Richard et al., 2003;

Ray et al., 2004]. Local mixing is enhanced because of

turbulence in the region of strong wind shear [Lelieveld et al.,

1997], leading to larger mass fluxes in winter, but confined to

a narrower layer around the tropopause than during summer,

when winds are weaker. Transport on shorter time scales into

the stratosphere mainly occurs in summer (Figure 2 andChen

[1995]), at the top and bottom edges of the jet [Haynes and

Shuckburgh, 2000; Berthet et al., 2007], and in longitudi-

nally localized regions where wind speed and horizontal

shear are weaker [Waugh and Funatsu, 2003]. Thus while the

core of the subtropical jet forms a strong barrier of horizontal

transport and creates the separation of stratosphere and tro-

posphere in the middle world, the region around jet is pre-

ferred by baroclinic instability and wave breaking, which are

dynamical mechanisms of mixing and tracer exchange

between stratosphere and troposphere.

[13] In polar regions, the bottom of the stratospheric

polar vortex can reach down into the Ex‐UTLS [Manney

et al., 2009]. This is illustrated in the DJF panel of Figure 2

where the 20 ms−1 wind contour descends to 20 km at 60°N

(and schematically in Figure 1). Dynamics of the polar vortex

are also relevant for understanding dynamical coupling to the

troposphere [Baldwin and Dunkerton, 2001]. Waves propa-

gate into the stratosphere and affect the stratospheric flow,

and that in turn affects the persistence of tropospheric wave

modes [Polvani and Kushner, 2002]. The Ex‐UTLS region

can modulate the interaction and coupling between the

stratosphere and troposphere through mixing of chemical

species and radiative processes that alter wave propagation.

2.3. The Troposphere

[14] The tropospheric general circulation in middle lati-

tudes is governed by synoptic‐scale baroclinic wave

dynamics, whose effects reach into the lower stratosphere.

The background for both large‐ and small‐scale processes

within the Ex‐UTLS is set by the dynamics of these waves.

Tropospheric dynamics strongly influence the tropopause

[de Bort, 1902; Dobson et al., 1929] and the structure of the

Ex‐UTLS. The presence of cyclones and anticyclones will

affect the Ex‐UTLS because of different synoptic dynamics

[Wirth, 2003] that impact the strength of the tropopause

“transport barrier” [Ambaum, 1997; Haynes et al., 2001].

Key large‐scale aspects of baroclinic waves influencing the

Ex‐UTLS include frontal circulations, so‐ called warm

conveyor belts linked with cyclonic cold fronts, tropopause

folds, and cutoff lows [Stohl et al., 2003]. Synoptic‐scale

tropopause folding events [Danielsen, 1964, 1968] are

especially important for transport [Reed and Danielsen,

1959; Danielsen and Mohnen, 1977] and are efficient at

mixing [Shapiro, 1980; Pan et al., 2007a]. The mixing

creates a region of strong gradients on its edge that can

sharpen dynamic and tracer gradients. An additional key

tropospheric process involves transport in deep convection

which occurs within synoptic‐scale circulations and also

within isolated or mesoscale convective systems. These are

not evident in the climatology (Figure 2), but clouds are

shown schematically in Figure 1.

[15] Clouds are a ubiquitous feature below the tropopause

in the relatively humid [Kelly et al., 1991; Gettelman et al.,

2006] upper troposphere. Deep convective clouds occa-

sionally penetrate above the extratropical tropopause [Wang,

2003]. Convective circulations transport and mix tropo-

spheric air masses (with high CO, NOx, and water vapor and

low ozone) up to cloud top and occasionally into the low-

ermost stratosphere [Hegglin et al., 2004; Mullendore et al.,

2005]. Radiative heating from clouds and from the species

they transport (especially water vapor) creates important

radiative gradients in the Ex‐UTLS. Aerosols and particu-

lates in the upper troposphere (UT) are mostly processed

through clouds (with removal of soluble species) to reach

the UT. Some aerosols reach the lower stratosphere (LS)

through direct injection by volcanic plumes or aircraft. The

most common aerosols affecting ice clouds in the UT appear

to be sulfate solutions for homogeneous freezing of solution

drops and mineral dust for heterogeneous freezing nuclei

[DeMott et al., 2003], but the balance between them is

uncertain and complex.

3. TROPOPAUSE DEFINITIONS

[16] The tropopause, a physical boundary separating

the UT and LS, was discovered in the early 20th century

by de Bort [1902] and Assman [1902]. The terms “strato-

sphere” and “troposphere” were coined by Teisserenc De

Bort, and the tropopause was named shortly thereafter (the

term appears in the work of the U.K. Meteorological Office
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[1918]). Hoinka [1997] presents a comprehensive review

of the early balloon experiments leading to the discovery of

the tropopause.

[17] The discovery of the tropopause is a cautionary

tale. It occurred after nearly 10 years of throwing out or

“correcting” temperature measurements near the top of

balloon profiles, because these temperatures were constant

or increased with height. Only after some 200 profiles did

de Bort [1902] accept that a nearly isothermal layer in the

extratropical upper atmosphere above 10 km might be real.

The extratropical tropopause was noted as a region or layer

[Beyers, 1944; Flohn and Penndorf, 1950]. It was recognized

early on that the isothermal temperature region would mean a

region of enhanced static stability. Schmauss [1909] observed

and described multiple tropopauses in a profile. Defant and

Taba [1957] noted the complex nature of the tropopause

around the subtropical jet and its relation to the jet, as did

Bjerknes and Palmén [1937]. Thus while this review may

focus on recent work, much of the ground we review began

with early speculations by the primary researchers, even if

their focus was different. We should never forget that we

“stand on the shoulders of giants” (Note: the quote is attrib-

uted to a letter by Sir Isaac Newton (1676), but ironically is

itself a metaphor first recorded in the 12th century [McGarry,

1971]).

[18] The definition of the tropopause and the evolution of

the tropopause concept have been largely driven by the

technology and scale of the observations. Vertical temper-

ature soundings of the late 19th and early 20th centuries

provided the basis for the lapse‐rate‐based thermal defini-

tion. The much more extensive network of observations in

the mid‐20th century facilitated the synoptic‐scale weather

analyses and led to the recognition of the tropopause break

and more complex behavior near the jet streams, which

further motivated the PV‐based dynamical tropopause def-

inition. Extensive ozone soundings and aircraft missions

since the late 20th century promote the concept of the

chemical tropopause and tracer‐correlation‐based chemical

transition layer. Finally, when the global satellite observa-

tions and in situ high‐resolution observations are examined

together, an integral view of the multifaceted nature of the

tropopause is revealed by the multiple definitions.

3.1. Thermal Tropopause

[19] The thermal tropopause is typically defined using

the temperature lapse rate G = −@T
@z

following World

Meteorological Organization [1957], who codified the

original definition of Dines [1919]. (Italicized terms are

defined in the glossary, after the main text.) This World

Meteorological Organization (WMO) definition states the

tropopause is the lowest altitude where G < 2 K km−1, pro-

vided that the average lapse rate from this level to any point

within 2 km above also has G < 2 K km−1. The definition

permits multiple tropopauses to be defined, if a tropospheric

lapse rate of G > 3 K km−1 for 1 km occurs above the first

tropopause and the first criteria is met again. Derived from

vertical temperature soundings, the thermal tropopause is

defined to mark the vertical discontinuity in the atmospheric

static stability. At a few locations, these vertical soundings

have a long history, and these soundings have been used to

estimate long‐term trends (see section 6).

[20] Figure 3 highlights the variability that occurs around

the tropopause in collocated temperature, static stability,

ozone, and water vapor, using 45 profiles at a midlatitude

site (Boulder, Colorado, 40°N, 105°W) over several years

using data described by Vömel et al. [2007]. Following

Logan et al. [1999], Birner et al. [2002], and Pan et al.

[2004], the soundings are displayed in altitude relative to

the thermal tropopause to remove the variability associated

with the variation of the tropopause height.

[21] In this representation, the thermal tropopause clearly

marks the change in temperature lapse rate from ∼−6 K km−1

to a nearly isothermal lower stratosphere, while static sta-

bility (represented by the square of the Brunt‐Väisälä fre-

quency, N 2) increases sharply at this level (Figure 3b). The

buoyancy frequency (N2) is defined as

N 2 ¼
g

�

@�

@z
¼

g

T
Gd � Gð Þ ð1Þ

where Gd = g/cp is the dry adiabatic lapse rate.

[22] The peak in N2 just above the tropopause, evident

in Figure 3b, reflects the Tropopause Inversion Layer (TIL)

(see section 3.2). The steep increase in static stability at the

tropopause level is echoed in the distribution of trace species

across the tropopause. For contrast, we show O3 (Figure 3c),

which has main sources in the stratosphere, and H2O

(Figure 3d), which is abundant in the troposphere. There is a

strong vertical gradient in both tracers across the tropopause

(Figures 3c and 3d; note both are shown on a log scale).

The ozone mixing ratio begins to depart from its near

constant tropospheric value and increase sharply across the

tropopause, while H2O decreases across the tropopause and

reaches its near constant stratospheric value 1–2 km above

the tropopause. This extratropical transition layer (ExTL) is

discussed in section 4.

[23] The thermal tropopause as defined by the WMO

definition is often multivalued, exhibits breaks near jet

streams, and does not form a continuous three‐dimensional

surface globally. Even in the climatology, the vertical tem-

perature gradient can be multivalued, especially in winter

(Figure 2, DJF). The presence of multiple tropopauses has

been known since shortly after the advent of balloon

soundings [Schmauss, 1909; Bjerknes and Palmén, 1937],

and multiple tropopauses are often observed around the jet

stream, associated with fronts, storms, and stratospheric

intrusions into the troposphere [Shapiro, 1980]. It was

unclear from these studies whether the thermal tropopause

“break” was physical and whether multiple tropopauses near

the jet streams reflected the deficiency of the definition [e.g.,

Danielsen, 1964]. On the other hand, data indicated that the

observed ozone lamina in the high‐latitude lower strato-

sphere are associated with multiple tropopause structures

[Dobson, 1973].

[24] More recent observational studies using radiosondes

and high‐resolution Global Positioning System (GPS) data
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have highlighted that multiple tropopauses occur frequently

over midlatitudes, especially during the winter season (when

the frequency of occurrence is typically 70%) [Seidel and

Randel, 2006; Schmidt et al., 2006; Randel et al., 2007a].

On the basis of theWMO tropopause definition, this situation

occurs when tropospheric‐like static stability occurs above

the first tropopause, and this is often associated with poleward

intrusions of tropical air above the subtropical jet [Randel et

al., 2007a]. This behavior (termed a tropospheric intrusion)

has also been identified using high‐vertical‐resolution satel-

lite ozone observations [Olsen et al., 2008; Pan et al., 2009].

[25] An example of the behavior of the Ex‐UTLS asso-

ciated with a tropospheric intrusion following a ridge over

North America in spring is shown in Figure 4, illustrating

the ozone structure observed by the HIRDLS instrument on

Aura (along a satellite orbit track from the subtropics to the

polar region), plus the thermal/dynamical structure derived

from colocated meteorological analyses [Pan et al., 2009].

Earlier studies found similar structures, in one‐dimensional

measurements such as balloon soundings [e.g., Murgatroyd,

1965;Foot, 1984;Reid et al., 2000]. The cross section reveals

a double tropopause structure from 35–60°N, associated with

a layer of low static stability above the subtropical jet,

extending from the tropics into middle latitudes. The ozone

observations show a corresponding layer of low ozone,

characteristic of the tropical upper troposphere. The intru-

sion is also evident in the local PV structure in Figure 4

(orange contours), although less pronounced compared to

static stability due to the background increase with height of

PV. Trajectory calculations demonstrate that this intrusion

originated in the tropical upper troposphere. Tropospheric

intrusions and associated double tropopause structures are

often related to Rossby wave breaking processes and asso-

ciated transport [Pan et al., 2009; Homeyer et al., 2010].

3.2. Tropopause Inversion Layer

[26] One of the key features of the extratropical UTLS seen

in the climatology (Figure 2), profiles (Figure 3b), and cross

sections (Figure 4b) is the narrow layer of enhanced static

stability just above the tropopause. This enhancement in static

stability is directly related to an inversion in the vertical

temperature gradient (see definition of N2, equation (1)) and

is therefore commonly referred to as the Tropopause Inver-

sion Layer (TIL). It provides a barrier to vertical motion

(convection). Birner et al. [2002] noted the climatological

existence of this elevated static stability layer on the basis

of radiosonde data in tropopause relative coordinates (e.g.,

Figure 3). The enhanced static stability occurs just above the

tropopause and is more pronounced using tropopause relative

coordinates (Figure 5) compared to altitude coordinate

averages (Figure 2). Similar static stability enhancements are

found in analysis systems [Birner et al., 2006], models

[Birner et al., 2006; Hegglin et al., 2010], and satellite tem-

perature profiles [Randel et al., 2007a; Grise et al., 2010].

Analysis systems tend to reduce the magnitude of the

enhancement and smear it out [Birner et al., 2006]. Global

Figure 3. The 45 Profiles from individual balloon soundings over Boulder, Colorado (40°N, 105°W)
during all months. Profile altitudes are referenced to the thermal tropopause. Individual measurements
are shown as gray dots, and mean is shown as a black line. (a) Temperature, (b) static stability (N2),
(c) ozone, and (d) water vapor. Data and instrumentation are described by Vömel et al. [2007].
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models tend to have a broader and higher altitude enhancement

in static stability because of their coarse vertical resolution,

but behave similarly to degraded high‐vertical resolution

observations [Hegglin et al., 2010].

[27] The TIL has a seasonal cycle, illustrated in Figure 5.

In winter (DJF in the Northern Hemisphere) the vertical

extent of the extratropical TIL is larger than in summer (JJA

in the Northern Hemisphere), but in summer the enhance-

ment in static stability (dT/dz in Figure 5; N2 in the work of

Birner [2006]) is larger. Processes that form and maintain

the TIL are presently not fully understood. Wirth [2003,

2004] suggested that the asymmetry between upper level

cyclones and anticyclones and their effects on the local

stratification around the tropopause is responsible for the

existence of a TIL in the climatological mean. Wirth and

Szabo [2007] and Erler and Wirth [2011] tested this idea

in idealized baroclinic life cycle experiments and found a

TIL forms above anticyclones and remains in the mean

because of nonlinear effects of wave breaking. Randel et al.

[2007b] pointed out that the structure of water vapor and

ozone in the UTLS has a radiative feedback that enhances

stratification just above the tropopause to create a TIL. The

radiative feedback was further discussed by Kunz et al.

[2009] who highlighted the importance of radiative cool-

ing from water vapor. This radiative mechanism inherently

includes transport and mixing effects that ultimately lead to

the observed water vapor and ozone distributions in the

lowermost stratosphere (related to the ExTL; see section 4).

However, the radiative mechanism might not be the only

mechanism at work to form a TIL. Son and Polvani [2007]

Figure 4. Cross section along a HIRDLS satellite track on 11 May 2007. The layer structure of an intru-
sion is shown in (a) the ozone cross section measured by HIRDLS and (b) the potential temperature lapse
rate cross section from GFS analyses. Also shown from GFS analyses are thermal tropopause (black dots),
zonal wind (black contours), 350 and 400 K isentropes, and PV contours (2, 4, 6, and 8 PVU, orange lines).
Reprinted from the work of Pan et al. [2009, Figure 1].
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found a TIL in a simplified model without radiation, and

Birner [2010a] showed that the strong vertical gradient of

the downwelling branch of the residual (Brewer‐Dobson)

circulation just above the tropopause creates a TIL in the

winter midlatitudes, confirming speculations by Birner et al.

[2002].

[28] Current observational and modeling evidence of TIL

characteristics suggests that, even though the TIL appears to

exist nearly everywhere on the globe, different processes

may be important in different regions and seasons [Miyazaki

et al., 2010a]. Polar latitudes show the largest seasonal cycle

with the strongest TIL during summer and a much weaker

(or nonexistent) TIL during winter and spring (Figure 5).

The polar summer TIL seems to be predominantly caused by

the strong local radiative water vapor cooling at the tropo-

pause [Randel and Wu, 2010], whereas the polar winter TIL,

if existent [see Tomikawa et al., 2009], appears to be

modulated by stratospheric dynamics [Grise et al., 2010]. In

midlatitudes, the seasonal cycle in TIL strength is weaker

with a maximum in spring and a minimum in late summer

(i.e., with an almost opposite phase compared to polar

latitudes in Figure 5), and may be partly due to strato-

spheric dynamics [Birner, 2010a].

3.3. Dynamical Tropopause

[29] Analyses of synoptic‐scale weather maps on isen-

tropic surfaces and the desire for a material surface that

separates stratospheric and tropospheric air masses during a

tropopause fold motivated the PV‐based dynamical tropo-

pause definition [Reed, 1955; Danielsen, 1964; Shapiro,

1980]. The existence of a large PV gradient across the tro-

popause motivated the convention of choosing a particular

PV contour in the PV gradient region to represent the tro-

popause. The values selected were often subjectively chosen

[Hoerling et al., 1991; Holton et al., 1995].

[30] The dynamical tropopause requires three‐dimensional

temperature and wind data and is therefore especially

effective in identifying the boundary between the strato-

sphere and troposphere in global models and analysis

systems. While the lapse‐rate‐based thermal tropopause

only identifies the vertical change in the static stability, the

PV‐based dynamical tropopause includes both changes in

static stability and vorticity (i.e., horizontal and vertical

wind shear), sometimes viewed as the dynamic stability

[Danielsen, 1964]. The definition of PV can be multiplied

by any function of potential temperature [Lait, 2004], allow-

ing for almost arbitrary vertical structure. PV here refers to

the definition (and function of potential temperature) as intro-

duced by Rossby [1940] and Ertel [1942] and is conveniently

calculated using isentropic coordinates. Using the hydro-

static approximation:

PV ¼
�� þ f

�
ð2Þ

where z� is the relative vorticity evaluated on isentropic

surfaces, f is the Coriolis parameter, and s is isentropic

density, given by

� ¼ �
@�

@z

� ��1

¼ � g
@�

@p

� ��1

ð3Þ

[31] The second expression uses the hydrostatic relation to

convert ∂/∂z = −gr∂/∂p. Note that s is directly related to

static stability (cf., equation (1)): s = gr/(�N2), allowing PV

to be expressed directly in terms of N 2:

PV ¼ N2
�

�g
�� þ fð Þ ð4Þ

PV is often defined in PV units (PVU, where 1 PVU =

1 × 10−6 K m2 kg−1 s−1).

[32] Equation (4) makes clear that PV is proportional to

N 2 (static stability), and given the jump in static stability at

the tropopause (Figure 3b), there is a corresponding jump in

PV. This can be seen, for example, in Figure 4, where the

Figure 5. Seasonal climatology of static stability (defined as dT/dz) in the Ex‐UTLS in tropopause rel-
ative coordinates for (a) DJF and (b) JJA. Other lines as in Figure 2.
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tropopause lies near 2 PVU. Equation (4) also shows that

horizontal gradients of PV are related to horizontal gradients

in static stability, which in turn are linked to the vertical

curvature of the wind through thermal wind balance (see,

e.g., discussion by Birner [2006]).

[33] A second key feature is that the PV tropopause def-

inition has a component dependent on the relative vorticity

(z), the vertical component of the curl of the horizontal

wind. Gradients in PV are produced by gradients in wind

speed as well as variations in stratification. This is clearly

seen in Figure 4. In regions of low vorticity, the stratifica-

tion dominates, and PV contours are nearly parallel to the

isentropes (static stability gradient). In regions of high

vorticity, such as on the flanks of the subtropical jet, PV

contours follow the vorticity (wind gradient), responding

with weaker stratification (static stability).

[34] PV is conserved for adiabatic and inviscid flow,

making the dynamical tropopause a quasi‐material surface.

These conservation properties of PV allow for a quasi‐two‐

dimensional description of large‐scale dynamics in the

Ex‐UTLS by studying the evolution of PV on isentropic

surfaces [Hoskins et al., 1985]. The conservation properties

also make PV a quasi‐passive tracer with the crucial dis-

tinction from chemical tracers that PV is not just simply

advected by the flow but induces the flow at the same time

(the so‐called invertibility principle [see Hoskins et al.,

1985]). On a given isentrope, the tropopause is marked by

regions of strongly enhanced isentropic gradients of PV, with

distinct tropospheric and stratospheric values on either

side. These enhanced PV gradients act as a waveguide for

Rossby waves [Schwiertz et al., 2004; Martius et al., 2010],

and these waves frequently obtain finite amplitudes and break

along the tropopause, leading to STE (see section 5.2). An

alternative viewpoint arises from studying the flow evolu-

tion in terms of potential temperature along the dynamical

tropopause (i.e., along a PV isosurface) [Hoskins, 1991]. In

this context the tropopause can be thought of as the depth to

which baroclinic instability is capable of mixing PV [Haynes

et al., 2001].

[35] A PV isosurface at tropopause levels is usually not

the smooth zonal mean seen in dotted lines in Figure 2.

Instantaneous PV distributions can be convoluted and

complex in the vertical (Figure 4) and on an isentropic

surface (Figure 6). The vertical structures were first inves-

tigated as tropopause “folds” [Reed and Danielsen, 1959;

Danielsen, 1968; Shapiro, 1980] that brought stratospheric

air into the troposphere. These PV structures can evolve

to small scales based simply on shear and strain in the

flow [Wernli and Sprenger, 2007; Bowman et al., 2007].

Baroclinic disturbances mix PV causing stretching of PV

structures to progressively finer scales until local turbulent

mixing erodes them [Appenzeller et al., 1996a; Haynes and

Anglade, 1997]. Vertical and isentropic mixing processes

act differently on the PV evolution and may act differently

on tracers (i.e., H2O) than PV [Wirth et al., 1997], since PV

is not conserved in the same way a nonreactive molecular

tracer is. Miyazaki et al. [2010b] found that vertical mixing

sharpens the vertical PV gradient slightly below the tropo-

pause, whereas variations of isentropic mixing tend to

sharpen gradients above the tropopause. Complex PV

structures often occur at the tropopause, associated with jets

and associated instabilities where the PV forcing terms

become larger [Bithell et al., 1999]. Folded structures are

both simulated in idealized models [Hoskins et al., 1985]

and found in analysis systems and in observations as large‐

scale filaments [Appenzeller et al., 1996a; Sprenger et al.,

2007]; for example, in the 2 PVU contour in Figure 6.

[36] Although the gradient of PV was initially recog-

nized as the region of the tropopause, the PV value best

representing the tropopause in principle depends on loca-

tion and season (e.g., Figure 4). There has been significant

discussion of what particular value of PV should charac-

terize the tropopause, but the arguments are often based on

which value has the closest agreement with the thermal

tropopause; Hoerling et al. [1991] find this value to be

∼3.5 PVU. Holton et al. [1995] and many subsequent

researchers have chosen 2 PVU for the dynamical tropopause.

The use of different PV values will lead to quantitative dif-

ferences in calculated flux of STE [Bourqui, 2006]. In order

to compare thermal and dynamical tropopause levels quan-

titatively it is useful to consider the planetary approximation

of PV, which neglects the relative vorticity contribution:

PVp ¼
f

�
¼

f

�

@�

@z
¼

f

g�
�N 2: ð5Þ

Figure 6. Northern Hemisphere isentropic PV distribution
for 340 K surface on 27 April 2003. The 2 PVU contour
(black) and gradient‐based dynamical tropopause (4.15 PVU,
yellow) are shown. Locations of the jet stream are repre-
sented by the 40 ms−1 wind field contour (red). Based on
ECMWF analyses and the work of Kunz et al. [2011].
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[37] Under this approximation the vertical structure of PV

near the tropopause arises solely from its static stability

contribution. At the thermal tropopause we have by defini-

tion Gt = 2 K km−1 and therefore Nt
2
≈ 3.6 · 10−4 s−2 (using a

typical tropopause temperature at midlatitudes of ∼220 K).

Further using typical midlatitude tropopause values for

rt ≈ 0.35 kg m−3, �t ≈ 320 K, and f ≈ 10−4 s−1 gives

PVp,t ≈ 3.5 PVU. That is, the thermal tropopause roughly

corresponds to the 3.5 PVU isoline in the extratropics

[Hoerling et al., 1991; Hoinka, 1998]. Likewise, the above

values give a typical lapse rate of 5 K km−1 at the 2 PVU

dynamical tropopause.

[38] For sufficiently strong cyclonic perturbations (in the

Northern Hemisphere) the planetary approximation will

provide an underestimate of the full PV, and the dynamical

tropopause will therefore be located significantly lower than

the thermal tropopause, and vice versa for anticyclonic per-

turbations. In geometrical terms this manifests itself in deep

cyclonic perturbations leading to large differences between

the thermal and dynamical tropopauses, whereas differences

are generally small for shallow (anticyclonic) perturbations

[Wirth, 2000]. Interestingly, there exists an asymmetry in that

cyclonic perturbations have a greater potential to lead to

large differences than anticyclonic anomalies [Wirth, 2001].

Idealized model studies of baroclinic life cycles indicate that

exchange across a PV tropopause is larger in cyclonic than

anticyclonic cases, likely because of sharper tropopause gra-

dients in anticyclonic flows [Polvani and Esler, 2007; Wirth

and Szabo, 2007]. The main point is that a particular value

of PV for the tropopause may not be appropriate, especially

when gradients are weak.

[39] Using a method similar to that used in the strato-

sphere in identifying the edge of the polar vortex, Kunz et al.

[2011] implemented an algorithm to compute the isentropic‐

gradient‐based global dynamical tropopause and examined

the PV distribution at the gradient‐based dynamical tropo-

pause. Figure 6 shows an example of the relationship of the

jet streams (Figure 6, red), 2 PVU contour (Figure 6, black),

and the gradient‐based dynamical tropopause on the 340 K

potential temperature surface (Figure 6, yellow). In this

case, the PV gradient tropopause is 4.15 PVU. It is evident

from this example that for locations where strong PV gra-

dients occur, the 2 PVU and 4.15 PVU tropopause largely

coincide with each other. Where the isentropic PV gradient

is weak, the two show significant separation. The most

physical “tropopause” can also be examined using chemical

tracers.

3.4. Chemical Tropopause

[40] It has long been recognized that the stratosphere and

troposphere are chemically distinct, and the sharp change of

chemical concentrations provides physical evidence of a

minimum in mixing at the extratropical tropopause. The

strong tropopause gradient in static stability (Figures 3 and 5)

associated with a nearly isothermal stratosphere creates a

natural barrier to vertical motion, which in dynamical

terms implies that diabatic processes or isentropic wave

breaking (mixing) are necessary to cross PV isosurfaces.

This “dynamical” view implies constraints on horizontal

and vertical mixing, and hence generates strong chemical

gradients, also seen in Figure 3 for both tropospheric

(H2O) and stratospheric (O3) tracers.

[41] Given long‐term records from ozonesondes, ozone

has most often been used to identify a tropopause defined by

a chemical gradient [Browell et al., 1996; Bethan et al.,

1996]. In particular, Bethan et al. [1996] proposed a set of

criteria to define an ozone gradient tropopause using both

the ozone values and the vertical gradient. The ozone gra-

dient tropopause defined in this way was found on average

some 800 m below the thermal tropopause, for an ensemble

of measurements over Europe. This is similar to the change

in ozone gradient below the tropopause in Figure 3c and can

be understood as the lower edge of the extratropical “tro-

popause transition layer” or ExTL (see section 4).

[42] The chemical change at the tropopause is further iden-

tified using tracer‐tracer correlations. Zahn and Brenninkmeijer

[2003] used ozone andCO correlations to identify the location

of the characteristic change in O3‐CO correlation and suggest

that it can be considered as the location of a “chemical tro-

popause”. The relationship of the tracer‐correlation‐based

chemical tropopause and the thermal tropopause was later

examined statistically [Pan et al., 2004]. In the next section,

we discuss how tracers are used to illustrate the depth of the

mixing and the transition layer between the troposphere and

stratosphere implied by Figures 3 and 4.

4. EXTRATROPICAL TRANSITION LAYER

[43] The concept of the extratropical transition layer

(ExTL) was motivated by observations of air masses with

mixed stratospheric and tropospheric characteristics. These

features are ubiquitous in tracer‐tracer relationships derived

from high‐resolution aircraft measurements near the tropo-

pause. The term “ExTL” first appeared in the work of the

World Meteorological Organization [2003] to describe the

extratropical layer around the tropopause, in parallel to

the TTL in the tropics. In the last decade, an increasing

number of tracer observations near the tropopause and anal-

yses have allowed extensive characterization of the ExTL

layer. Most frequently, the ExTL is described by O3, CO, and

H2O observations, because these species exhibit sharp gra-

dients across the tropopause and have relatively abundant

observations. The gradients of these species reflect the strong

contrasts of their stratospheric versus tropospheric sources

and sinks and their relatively long lifetimes compared to the

transport time scale in the extratropical tropopause region.

4.1. ExTL in Tracer Profiles

[44] In chemical tracer profile observations, the ExTL can

be viewed as the region of steep gradients. A global picture

of the chemical structure of the Ex‐UTLS is illustrated in

Figure 7 from the Atmospheric Chemistry Experiment Fourier

Transform Spectrometer (ACE‐FTS) instrument [Bernath

et al., 2005]. Figure 7 shows the zonal mean ozone and car-

bon monoxide (CO) distribution in tropopause coordinates,
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scaled with the seasonal mean tropopause height. The dis-

tributions reveal strong horizontal and vertical tracer gradients

across the tropopause in both species. Ozone increases away

from the tropopause in the lower stratosphere, and is low (and

well‐mixed) in the troposphere. The opposite behavior is seen

for CO (high in the troposphere, low in the stratosphere), with

higher CO concentrations in the Northern Hemisphere con-

sistent with stronger anthropogenic sources and a ∼2 month

tropospheric lifetime. The mean upper tropospheric value is

about 60–80 ppbv, with a monotonic decrease across the tro-

popause.ACE‐FTS sampling in the tropics is infrequent, so the

irregular separation of ozone and the thermal tropopause in the

tropics may be a sampling issue in the data.

[45] To view ExTL structure from a tracer profile per-

spective, Figure 8 illustrates observations of CO from air-

craft during the START08 campaign [Pan et al., 2010]. Data

are sorted by three different vertical coordinates relative to

the tropopause: (1) potential temperature or (2) geometric

altitude relative to a dynamic tropopause (2 PVU here) and

(3) geometric altitude relative to the thermal tropopause.

Similar structures are seen in many aircraft [Hoor et al.,

2002, 2004; Pan et al., 2010; Tilmes et al., 2010] and sat-

ellite [Hegglin et al., 2009] observations.

[46] Data below the 2 PVU tropopause look “tropo-

spheric” (CO ≥ 100 ppbv) in Figures 8a and 8b. There is a

transition region that exhibits strong gradients and extends

approximately 30 K in potential temperature above the

dynamical tropopause (Figure 8a), noted by Hoor et al.

[2004], that can be distinguished from part of the profile

where the gradients are smaller in both the troposphere and

Figure 8. CO profiles from the START08 experiment [Pan et al., 2010] as a function of (a) potential
temperature relative to the dynamical tropopause (2 PVU), (b) geometrical altitude relative to the
dynamical tropopause, and (c) geometrical altitude relative to the thermal tropopause. Black line is the
mean of all observations at a particular vertical coordinate.

Figure 7. Zonal mean December–February (a) O3 and (b) CO distribution from ACE‐FTS satellite from
2004–2008 in tropopause coordinates scaled by the seasonal mean tropopause height. The thermal tropo-
pause is the thick black line. The dashed black line in Figure 7a indicates the 100 ppbv ozone contour.
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the stratosphere. Away from the subtropical jet, observed

profiles can have a sharper change in gradient above a

dynamic tropopause [Hoor et al., 2004; Tilmes et al., 2010].

The largest CO gradient is centered on the thermal tropo-

pause and extends about ±1 km around it (Figure 8c). This

is consistent with other aircraft data, particularly away from

the subtropical jet [Hoor et al., 2002, 2004; Pan et al., 2004;

Tilmes et al., 2010] and shown on a global scale in satellite

observations [Hegglin et al., 2009] (see Figure 9).

[47] The three profiles show a consistent picture of the

structure in various coordinate systems. In these data the

2 PVU surface approximately separates the troposphere

from the stratosphere with an ExTL (“transition layer”) in

the first 30 K or 2 km above it [Hoor et al., 2004]. The

ExTL is centered on the thermal tropopause. The (mean)

∼1 km difference between the 2 PVU surface and thermal

tropopause accounts for these complementary views (the

difference in tropopause height is discussed in section 3).

The different relative locations of the profiles are clearly

the result of different geometrical heights of the reference

surfaces (e.g., see Figure 4). In regions where the thermal

and dynamic tropopause differ significantly, such as during

tropopause folding events (see Figures 4 and 6), tracer‐

tropopause relationships are highly variable. Such events

are associated with active exchange and mixing between

stratospheric and tropospheric air masses.

[48] A similar picture of the ExTL can be seen in single‐

tracer analyses of near tropopause gradients. Figure 9 shows

the zonal mean seasonal mean vertical CO gradient (∂[CO]/∂z

in % km−1) from the ACE‐FTS satellite in tropopause relative

coordinates, here using the thermal tropopause as a reference.

The resulting gradients are shifted in altitude with respect to

the height of the seasonal mean tropopause of the respective

season, similar to the evaluation byHegglin et al. [2009]. The

gradients are normalized by the tropospheric CO value in

each latitude bin (i.e., the change is in percent) in order to

emphasize the existing CO gradients in the Southern Hemi-

sphere tropopause region as well. The evaluation reveals

that the strongest CO gradients are found centered near the

thermal tropopause [Hegglin et al., 2009], consistent with

aircraft data in Figure 8. Similar results are obtained from

MOZAIC aircraft data analyses [Schmidt et al., 2010].

4.2. ExTL in Tracer Correlations

[49] An empirical way of defining the ExTL that removes

dependence on the definition of the tropopause surface is to

use tracer correlations of a tropospheric and a stratospheric

tracer. A schematic of tracer‐tracer correlations and an

example from aircraft data is shown in Figure 10a. A

stratospheric tracer (O3 is most commonly used) is a tracer

with a large stratospheric source and much smaller con-

centration and variability in the troposphere, while a tro-

pospheric tracer (CO and H2O are most commonly used) has

large values and variability in the troposphere. The converse

is true in the stratosphere. With these conditions, a tropo-

spheric (green in Figure 10b) and a stratospheric branch (red

in Figure 10b) are established in the tracer‐tracer space

(Figure 10a). Increasing values of the stratospheric tracer in

the stratospheric branch can be used as a height coordinate.

Air masses that are not attributable to one or the other branch

then represent the ExTL (blue in Figure 10). Importantly, the

sloped region between the two branches is indicative of

irreversible tracer exchange and therefore indicates bidirec-

tional exchange across the tropopause. There is a clear region

of mixed air from two “end points” to form mixing lines

highlighted (yellow dashed lines) in Figure 10b.

[50] Tracer‐tracer scatter plots of CO and ozone were used

by Fischer et al. [2000], Hoor et al. [2002], and Zahn and

Brenninkmeijer [2003] to identify the irreversible compo-

nent of STE and diagnose a layer in the tropopause region

which showed chemical characteristics of both the tropo-

sphere and the stratosphere. Hoor et al. [2002] deduced a

seasonality of the layer depth using Q‐coordinates and

found the ExTL thicker in summer/autumn than winter. Pan

Figure 9. Zonal mean cross sections of CO vertical gradients normalized by the tropospheric CO value
(in percent per kilometer) from ACE‐FTS satellite measurements averaged over 2004–2008 for
(a) December–February and (b) June–August. The data are plotted in tropopause relative coordinates after
adding the zonal mean tropopause height of the respective season. The thermal tropopause is indicated by
the thick black line.
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et al. [2004] used the relationship between CO and O3 to

identify spatial structure of the mixing region and applied

pdf’s to quantify certain properties of the transition. Tracer‐

tracer correlations have been further used in the Ex‐UTLS

to estimate transport diagnostics and ExTL depth from

satellites [Park et al., 2004; Hegglin et al., 2009] and models

[Pan et al., 2007a; Strahan et al., 2007; Pan et al., 2009;

Hegglin et al., 2010].

4.3. Vertical Extent of the ExTL

[51] Tracer‐tracer correlations can be used to examine the

altitude or potential temperature range of the mixed parcels

[Hoor et al., 2002]. Pan et al. [2004, 2007b] examined the

distribution of mixed air mass in a tropopause‐relative

coordinate. Using H2O‐O3 correlations, the spatial structure

of the ExTL during a stratospheric intrusion process is

shown in Figure 11 from an aircraft flight track over North

America [Pan et al., 2007b]. Figure 11a shows a meridi-

onal cross section of the aircraft flight through a tropo-

pause fold, with both thermal (Figure 11a, dots) and dynamical

(Figure 11a, black lines) tropopauses shown, and the region of

high wind speed in the subtropical jet shaded. The tracer cor-

relation plot between O3 and H2O for this track is shown in

Figure 11b. Here H2O is used instead of CO as a tropospheric

tracer.

[52] The tracer relationship is used to define air masses

in different regions. Data in the stratosphere (Figure 11b,

red) are defined as all points within three standard devia-

tions (3s) of a linear fit to the data with H2O concentra-

tions (volume mixing ratio) of less than 12 ppmv (H2O <

12 ppmv). Tropospheric air (Figure 11b, green) is defined

similarly with 3s around a fit to data with O3 < 65 ppbv.

Data outside of these regions are the “mixed” region, or

ExTL (Figure 11b, blue). The measurement locations of

these mixed points are shown in Figure 11a: they are all

found near the tropopause. The altitude of the points relative

to the analyzed tropopause is shown as a probability density

function (pdf) in Figure 11d. The pdf can be used to define

the extent of the ExTL. The static stability (N2) is shown in

Figure 11c. Notice the ExTL is seen to have an asymmetric

structure, deeper on the cyclonic side (poleward) of the jet.

Many other tracers can be used to define these regions, and

tracers with different lifetimes can be used to elucidate

transport times. For example, recently, Sprung and Zahn

[2010] used acetone observations from commercial aircraft

and found an ExTL depth above the tropopause of ∼2 km.

[53] The pdf in Figure 11d from an individual flight can

be estimated with different flights and data sets to determine

the depth of the ExTL. Figure 12, adapted from Hegglin

et al. [2010], shows estimates of this mixing region in the

Northern Hemisphere based on O3 and H2O from both air-

craft (Figure 11d, thick brown solid line: the POLARIS

mission), the ACE‐FTS satellite (Figure 11d, thick gray

line) and a suite of coupled chemistry‐climate models

(Figure 11d, colored lines: multimodel mean in black). The

ExTL in aircraft data (Figure 11d, brown line) is centered

at the tropopause, and its width at half maximum is about

±1 km thick. A larger aircraft data set indicates depths of

±2 km [Tilmes et al., 2010]. As noted by Hegglin et al.

[2009], an ExTL depth diagnosed for different tracers may

be different because of different tracer sources and lifetimes.

[54] Satellite data (Figure 11d, thick gray line) and models

(multimodel mean; Figure 11d, black line) estimate a

thickness of ±2–3 km and a center 1 km above the tropo-

pause. Thus satellites and models overestimate the thickness

of the ExTL. While the difference is likely due to their

limited vertical resolution, the discrepancy in ExTL depth

will need further examination with representative sampling

and high vertical resolution. The ExTL depth is dependent

on season, latitude, and hemisphere. Tilmes et al. [2010]

found the width is larger in summer than winter. Hegglin

Figure 10. (a) Schematic of tracer‐tracer correlations between ozone (stratospheric tracer) and CO
(tropospheric tracer). Individual reservoirs are solid lines, and mixing lines are dashed and dotted.
(b) Observations from Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) profiles
near 65°N in 1995 (multiple months) as shown by Pan et al. [2004] showing stratospheric (red), tropo-
spheric (green), and mixed (blue) points. Points are defined on the basis of fits (solid lines) to stratospheric
(CO < 40 ppbv) and tropospheric (O3 < 65 ppbv) points, and the 3s region around the fits is shown as dotted
lines. O3 data are described by Proffitt and McLaughlin [1983], and CO data are described byHerman et al.
[1999].
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Figure 12. Illustration of ExTL layer depth using probability distribution functions (pdf’s). (a) Fraction
of air parcels within the ExTL plotted as function of the distance relative to the thermal tropopause for
models from year 2000, for aircraft observations from 1997 and 40°N–80°N between spring and fall
(brown solid line), and for ACE‐FTS satellite from 2004–2007 and 60°N–70°N (gray thick line). Black
line indicates the multimodel mean. Individual CCMVal‐2 models are thin colored lines (solid and
dashed). (b) Scatter plot between center and width of the ExTL. Brown square indicates aircraft observa-
tions, gray diamond indicates ACE‐FTS data, colored symbols indicate the different CCMVal‐2 models,
and black diamond indicates the multimodel mean. Adapted from Hegglin et al. [2010].

Figure 11. Example of using tracer‐tracer correlations to identify the ExTL. Data from a flight during
the START05 campaign on 1 December 2005. (a) Air mass identification of stratospheric (red), tropo-
spheric (green), and mixed (blue) air masses along the flight track (defined in Figure 11b). Black contours
are 2 and 6 PVU. Potential temperature surfaces in magenta, thermal tropopause as black dots, and the
zonal wind field (50 ms−1, gray shade) are shown. (b) Definition of air masses using tracer‐tracer correla-
tions with colors as in Figure 11a. Dotted lines show 3s distribution around the troposphere (green) and
stratosphere (red) fits. (c) Flight track (red) superimposed on the static stability (d�/dz), with isentropes
(black lines), thermal tropopause (black dots), 2 and 6 PVU surfaces (white solid), and wind speed
(30 and 60 ms−1, white dashed) shown. (d) Histograms showing the distribution of the mixed samples
(blue points) in altitude relative to the GFS analysis thermal tropopause. Adapted from Pan et al.
[2007b].
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et al. [2009] found ExTL depth in the Northern Hemisphere

polar regions is larger than in the Southern Hemisphere

because of weaker transport and mixing in the Southern

Hemisphere.

4.4. ExTL, Radiation, and the TIL

[55] Tracer distributions in the Ex‐UTLS (and ExTL in

particular) may have important radiative effects, and tem-

perature is especially sensitive to water vapor in this region.

Tropospheric clouds may also have an impact around the

tropopause [Hicke and Tuck, 1999]. A striking example is

provided by the pronounced temperature increase just above

the polar tropopause in summer (the climatologically

strongest TIL; see Figure 5), which is linked with water

vapor cooling of the tropopause in this region and season

[Randel and Wu, 2010]. Figure 13a shows water vapor

seasonal profiles in the Arctic, illustrating the ExTL mixing

layer extending several kilometers above the tropopause,

together with a strong seasonal variation near the tropopause

(maximum during summer). Figure 13b shows the temper-

ature response to these different profiles of water vapor

using a fixed dynamic heating calculation [Forster and

Shine, 1999], illustrating that the enhanced summertime

water vapor results in strong cooling near the tropopause,

and a pronounced inversion directly above (close to the

observed behavior shown by Randel and Wu [2010]). In

general, radiative relaxation time scales are very long in the

cold temperature and low trace species environment of the

tropopause, enhancing the radiative effects of trace gases.

[56] The sensitivity of top of atmosphere radiative fluxes

(F) to perturbations in water vapor and temperature (i.e.,

∂F/∂H2O or ∂F/∂T ) peaks in the upper troposphere around

the tropopause [Soden et al., 2008]. Lower stratospheric

water vapor changes are critically important for radiative

forcing as well, and Forster and Shine [2002] noted that

significant differences in estimates of stratospheric radia-

tive forcing changes from water vapor (on the order of

0.1 W m−2) were largely due to specifications in water

vapor within 20 hPa of the tropopause.

[57] Water vapor in the Ex‐UTLS is thus critical for cli-

mate [e.g., Solomon et al., 2010], as well as for the structure

of the Ex‐UTLS itself. Kunz et al. [2009] found that mixing

of water vapor above the tropopause into the ExTL was

radiatively important for the existence of a TIL, and that this

acted on seasonal time scales. Seasonal and meridional

structures in the TIL indeed resemble those found in water

vapor distributions, providing evidence that radiation likely

plays a role in maintaining the TIL and the seasonal dif-

ference in TIL strength [Hegglin et al., 2009]. Finally,

radiation contributes to decay of stratospheric filaments in

the troposphere thereby affecting mixing on the process

scale [Forster and Wirth, 2000].

5. BUDGETS AND TRANSPORT

[58] The chemical distribution described in section 4 is

the result of transport of chemical constituents through

different pathways in the ExTL region. Here we (1) describe

the transport times and tracer budgets for different pathways,

(2) discuss methods for examining the pattern of cross‐

tropopause transport (STE), and (3) discuss key regions and

processes for transport.

[59] There are three basic pathways for air transport in the

Ex‐UTLS [Dessler et al., 1995]. One is “overworld”

transport from the stratospheric overworld above (down-

ward arrows in Figure 1), second is “tropospheric” two‐way

exchange across the tropopause with net transport into the

troposphere (wavy orange arrows in Figure 1), and the third

is “subtropical” quasi‐isentropic exchange, often around the

subtropical jet where synoptic Rossby wave breaking is

frequent (wavy red arrows near the subtropical jet in

Figure 1) and depends on critical surfaces dictated by the

zonal wind structure [Randel and Held, 1991].

[60] Transport pathways affecting the Ex‐UTLS are

highlighted in Figure 1. Overworld transport consists of a

Figure 13. (a) Vertical profile of ACE‐FTS water vapor mixing ratio (ppmv) for seasonal averages
(DJF, etc.), calculated in tropopause coordinates and transformed to altitude using a mean tropopause alti-
tude of 9 km (noted with the heavy dashed line). (b) Fixed dynamical heating temperature response to the
seasonal water vapor variations shown in Figure 13a. Thick black curve shows the background reference
temperatures with DJF water vapor, and the other curves show the corresponding temperatures for
imposed water vapor from MAM, JJA, and SON. Adapted from Randel and Wu [2010].
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deep branch, which transports air through higher altitudes

poleward and then downward, and of a “shallow” branch,

which transports air more directly from the tropical tropo-

pause region to the extratropics and is shown as the dotted

red arrow in Figure 1. In addition, there is quasi‐isentropic

transport on top of the subtropical jet [Volk et al., 1996], but

beneath the subtropical “pipe” [Plumb, 1996]. This contri-

bution can be seen, for example, in reduced static stability

and low ozone above and even poleward of the subtropical

jet in Figures 4 and 5.

5.1. Budgets and Transport Times

[61] Budgets and transport times are intimately linked

when investigating the contribution from different pathways.

The relative contributions from these different transport

pathways determine the tracer budgets within the Ex‐UTLS.

[62] Hintsa et al. [1998] noted from aircraft observations

significant “subtropical” and “tropospheric” transport, the

latter for � < 362 K. Ray et al. [1999] concluded on the basis

of three balloon profiles of H2O, halons, and SF6 that the

lowermost stratosphere in late spring is strongly affected by

“overworld” transport, whereas during summer, larger tro-

pospheric influence is observed. This is consistent with

isentropic PV gradients being weaker in summer [Chen,

1995] and downward transport from the stratospheric cir-

culation peaking in winter and spring in the lowermost

stratosphere [Appenzeller et al., 1996b].

[63] The ExTL can be viewed in terms of transport.

Observations during the SPURT campaign [Engel et al.,

2006] showed that the local extratropical influence drops

below 25% within 30 K above the local 2 PVU surface

[Hoor et al., 2005] forming a layer which follows the local

tropopause. Berthet et al. [2007] showed that a significant

fraction of air that has seen the boundary layer can be

observed in a band around the tropopause, consistent with

CO observations [Hoor et al., 2004; Engel et al., 2006].

This layer is characterized by the rapid decrease of CO above

the dynamical tropopause (Figure 8) and the transition of

high tropospheric CO to lower stratospheric values between

the 2–6 PVU layers (Figure 14a). Hoor et al. [2010] used

trajectory calculations (Figure 14b) and found a belt of rapid

and frequent mixing following the local tropopause espe-

cially in winter. This belt is tightly confined to the region of

strong PV gradients, and transit times away from the ExTL

are long. This feature is also seen in models [Miyazaki et al.,

2010a]. All tracer distributions with finite chemical lifetimes

show this behavior of a tropopause following layer (or

ExTL). For example, the behavior has also been identified

in acetone [Sprung and Zahn, 2010].

[64] The Ex‐UTLS above the ExTL (with PV > 8 PVU) is

heavily affected by “subtropical” transport, but on longer

time scales. Associated transport times for this region above

the ExTL have been estimated on the basis of CO2 [Hoor

et al., 2004, 2010] and SF6 and CO2 [Bönisch et al.,

2009]. The choice of tracer will affect the calculation.

CO is more sensitive to short time scales, while SF6 and

CO2 reflect longer time scales. The Ex‐UTLS above the

ExTL is flushed from late spring to summer with tropo-

spheric air, as evidenced by a strong seasonal cycle of the

O3‐N2O correlation [Bregman et al., 2000; Proffitt et al.,

2003; Hegglin et al., 2006; Hegglin and Shepherd, 2007]

and CO2 [Sawa et al., 2008]. This seasonal change of the

fractional contribution of tropospheric air above the ExTL

is shown in Figure 15. Overworld contributions range from

∼60% in winter (Figure 15a, consistent with winter CO

gradients in Figure 14a) to ∼20% in summer and autumn

Figure 14. Distribution of (a) February CO and (b) transport time since tropopause crossing from
1 February (Troposphere‐to‐Stratosphere Transport (TST)). Black contours indicate the fraction of TST
trajectories in percent. Transport time is from trajectory calculations as a function of potential temperature
and equivalent latitude to remove reversible excursions of the tropopause. Adapted from Hoor et al.
[2004, 2010].
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(Figure 15b). The dots in Figure 15 show where 10 day

back‐trajectories mix air from the troposphere to strato-

sphere and are tightly clustered around the tropopause,

mostly below 4 PVU in winter (Figure 15a), but some

extend above 6 PVU in summer (Figure 15b). Berthet

et al. [2007] found a significant tropospheric influence

during summer above 370 K. The remnants of the summer

and autumn flushing are still visible in the following

winter and spring season, as seen by measurements of H2O

[Krebsbach et al., 2006; Bönisch et al., 2009]. The

flushing of the lowermost stratosphere during summer is

also suggested from the analysis of empirical bimodal age

spectra [Bönisch et al., 2009] on the basis of SF6 and CO2

observations.

[65] The seasonal cycle in tracer budgets is associated

with the seasonality of the diabatic downwelling in the Brewer‐

Dobson circulation, seen in analysis systems [Appenzeller

et al., 1996b]. Trajectory studies show largest STE fluxes

during winter [Sprenger and Wernli, 2003]. But the strong

isentropic PV gradient hinders rapid transport deeper into

the stratosphere during winter [Chen, 1995; Haynes and

Shuckburgh, 2000].

5.2. Spatial Patterns of STE

[66] Many analyses of the Ex‐UTLS have focused on the

exchange of mass between the stratosphere and the tropo-

sphere [Brewer, 1960; Shapiro, 1980]. It has been under-

stood that the exchange of mass is two‐way [Foot, 1984]: air

mixes into the stratosphere as well as into the troposphere

[Sprenger and Wernli, 2003] across the tropopause (this is

the “tropospheric” transport pathway). Analyses of STE are

performed in several ways, typically using mass budgets,

Eulerian, or Lagrangian methods. Simple mass budgets

looking at the lowermost stratosphere are effective at esti-

mating hemispheric‐scale fluxes [Appenzeller et al., 1996b;

Gettelman et al., 1997]. Tracer correlations [Murphy and

Fahey, 1994] have also been used to estimate bulk fluxes.

Another method is to estimate Eulerian fluxes across a

tropopause (usually PV tropopause) surface [Wei, 1987]

using analysis or reanalysis systems [Hoerling et al., 1993].

The Eulerian flux method has proven problematic because it

relies on cancellation of large terms and is difficult to apply

in models [Wirth and Egger, 1999] and analysis systems

with data assimilation [Gettelman and Sobel, 2000]. In

many cases with STE calculations the net is fairly stable, but

the gross fluxes in both directions strongly depend on the

analysis system. Another method to calculate STE is to use

ensembles of Lagrangian trajectories to estimate STE. Both

Eulerian and Lagrangian methods indicate similar spatial

patterns of STE and fairly stable net magnitudes. Trajecto-

ries have enabled examination of not just the locations of

STE but the residence time of parcels as they cross the

tropopause (e.g., dots in Figure 15).

[67] Locations of STE are found downstream of strong

jet regions, and the North Pacific and North Atlantic are

preferred regions in the Northern Hemisphere [Stohl et al.,

2003; Sprenger and Wernli, 2003] as illustrated in Figure 16.

Troposphere‐to‐Stratosphere transport (TST) (Figure 16b) is

mainly found above the climatological tropopause, while

stratosphere‐to‐troposphere transport (STT) (Figure 16a)

occurs mainly below, with deep STT affecting the tropo-

sphere down to below 700 hPa [Wernli and Bourqui, 2002]

or even the PBL [Cooper et al., 2005]. The net STE is con-

centrated in the jet exit regions (Figure 16c). Deep STT and

TST are consistent with exchange in regions of highly per-

turbed tropopauses or “folds” [Danielsen, 1968;Danielsen and

Mohnen, 1977]. Sprenger and Wernli [2003] also found large

bidirectional fluxes not contributing to a net mass transfer,

but potentially affecting the chemistry and tracer exchange on

short time scales.

[68] Trajectory calculations [Sprenger and Wernli, 2003;

Seo and Bowman, 2002] indicate a seasonal cycle of STE

Figure 15. Tropospheric contribution of air deduced from SF6 and CO2 observations during SPURT for
(a) April and (b) October. Dots represent position of 10 day back‐trajectories with exchange from the tro-
posphere. Adapted from Bönisch et al. [2009].
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across the tropopause being stronger in winter‐spring than

during summer. For TST a seasonality of the globally

averaged mass fluxes was found to be weak, but significant

changes in TST locations were shown. A “subtropical”

transport path at � = 360 K during summer is found in

Lagrangian studies, indicating a higher permeability at the

subtropical jet during summer compared to winter.

[69] Mixing regions in the Ex‐UTLS have also been

diagnosed with flow‐dependent quantities on isentropic

surfaces. Effective diffusivity [Haynes and Shuckburgh, 2000]

and a recent extension, Lyapunov diffusivity [d’Ovidio et al.,

2009] are effective at showing regions of maximum and

minimum shear‐induced mixing, including in the Ex‐UTLS

around the tropopause where Shuckburgh et al. [2009] illus-

trate the effect of different modes of variability on mixing

around the tropopause. The methods have not been made

quantitative for cross‐tropopause transport.

[70] The stratosphere‐troposphere exchange of ozone has

been a subject of much discussion [Gettelman et al., 1997;

Olsen et al., 2004; Hsu and Prather, 2009] because it

impacts the tropospheric ozone budget. Regions of ozone

STE follow those of STE mass in Figure 16. Maps of STE

ozone flux on monthly scales show the seasonality of strong

stratospheric influence on the troposphere, particularly in

winter and spring when photochemistry is not active [Hsu

et al., 2005; Logan et al., 1999]. Current chemical trans-

port models can reproduce key features of particular events

[Wild et al., 2003; Pan et al., 2009]. The net downward

flux of ozone into the troposphere is determined by the

strength of the stratospheric circulation in the extratropical

lower stratosphere [Gettelman et al., 1997]. The STE of

ozone is estimated at ∼500 Tg yr−1 [WMO, 2007], maxi-

mizing in Northern Hemisphere spring, and dominates the

seasonal variation in upper troposphere column ozone.

Figure 16. Geographical distribution of the Northern Hemisphere annual mean (a) downward Strato-
sphere to Troposphere Transport (STT), (b) upward Troposphere‐to‐Stratosphere Transport (TST),
(c) net (STT – TST), and (d) two‐way cross‐tropopause mass fluxes (the minimum of STT and
TST) based upon exchange trajectories with a threshold residence time of 96 h. Values are in
kg km−2 s−1. From Sprenger and Wernli [2003, Figure 1].
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5.3. Transport Processes and Mechanisms

[71] As shown in Figure 16, there are preferred regions for

STE. The Ex‐UTLS is dominated by quasi‐stationary jet

streams and regions of enhanced baroclinic instability

(storm tracks) that are a function of topography and ocean‐

land contrasts. This is particularly true in the Northern

Hemisphere, where seasonal variations in the strength of the

jet streams are strongly tied to preferred regions of cyclo-

genesis, baroclinic instability, and tropopause folding (as

seen in the climatological statistics in Figure 16). There

are also preferred regions for convective influence on the

Ex‐UTLS. Deep mesoscale convective systems over mid-

latitude continental regions may penetrate the tropopause

[Wang, 2003; Mullendore et al., 2005], and this can be

observed in tracer measurements [Hegglin et al., 2004; Ray

et al., 2004]. Stratospheric O3 can be brought down into

the UT as a result of these events [Poulida et al., 1996;

Hitchman et al., 2004]. Biomass burning plumes coupled

with deep convective events can be lofted into the lower

stratosphere in “pyrocumulus” clouds. While deep pyrocum-

ulus are infrequent, observations have shown episodic injection

of tropospheric species and biomass burning products into

the Ex‐UTLS above the tropopause [Waibel et al., 1999;

Fromm and Servranckx, 2003]. The effect of convective

uplifting near the tropopause may also lead to in situ particle

formation in the lower stratosphere [de Reus et al., 1999].

However, it is not clear these processes are important clima-

tologically or for maintaining the Ex‐UTLS.

[72] Another important feature of Ex‐UTLS transport is

the summer monsoon circulations, particularly those in the

Northern Hemisphere that reach deep into the subtropics

[Dunkerton, 1995; Dethof et al., 1999]. The Asian and

North American monsoons significantly impact tracer dis-

tributions in the Ex‐UTLS, as evidenced by satellite data

[Park et al., 2004; Randel et al., 2006; Fu et al., 2006; Park

et al., 2008] and aircraft measurements [Schuck et al.,

2010]. Monsoonal circulations are associated with upward

transport in persistent deep convection, together with large‐

scale anticyclonic circulations in the UTLS up to 70 hPa

[Dunkerton, 1995] linked to the convective latent heating.

The influence of the Asian summer monsoon is especially

important during Northern Hemisphere (NH) summer. An

example of the chemical and dynamical signature of the

Asian monsoon anticyclone is shown in Figure 17, high-

lighting elevated mixing ratios of CO at 100 hPa (from

Microwave Limb Sounder satellite observations) coupled

with the anticyclonic circulation at this level. Enhanced levels

of CO (and also other tropospheric tracers [Park et al., 2008;

Randel et al., 2010]) occur within the anticyclone, resulting

from the upward transport of surface pollution in deep con-

vection and isolation of air within the strong anticyclonic

circulation [Park et al., 2009]. The anticyclonic circulation is

also linked to persistent quasi‐horizontal transport between

the tropics and extratropics upstream and downstream of the

anticyclone [Gettelman et al., 2004; Konopka et al., 2009].

Ploeger et al. [2010] and Konopka et al. [2010] suggest a

significant fraction of the air in the TTL originates from

extratropics via this mechanism during NH summer. From

analysis of hydrogen cyanide (HCN) observations, there is

also evidence that vertical transport in the monsoon cir-

culation extends above the tropopause directly into the

LMS and is entrained into the tropical Brewer‐Dobson

circulation [Randel et al., 2010], so that the Asian mon-

soon can have direct chemical influence on the global

stratosphere.

[73] Thus transport in the Ex‐UTLS is associated with

several different pathways. Cross‐tropopause “tropospheric”

transport has preferred locations both into the troposphere

and into the stratosphere at the tropopause. Transport from

the “subtropics” is highly seasonally dependent, and larger

in summer and autumn. In summer the Asian monsoon

anticyclone plays an important role. There is also significant

“overworld” transport into the Ex‐UTLS with a strong

winter‐spring maximum following the stratospheric circu-

lation. This transport not only affects chemistry, but shar-

pens dynamical gradients in the Ex‐UTLS, particularly in

winter.

6. TRENDS

[74] Anthropogenic forcing of climate [Solomon et al.,

2007] and chemistry [WMO, 2007] has been significant

in recent decades, and these changes have influenced the

Ex‐UTLS region. In this section we discuss historical and

projected trends in the Ex‐UTLS, focusing on changes to the

tropopause, broadening of the tropical region, and trends in

ozone concentration. These changes are broadly consistent

with expected responses to increases in greenhouse gas radi-

ative forcing and in halogen‐induced decreases in stratospheric

ozone. Recently, coupled chemistry‐climate models have been

used to simulate these trends and to estimate the future evo-

lution of the Ex‐UTLS under various scenarios.

6.1. Historical Trends

[75] There is significant evidence that the extratropical

tropopause height has been rising in altitude over the last

30–50 years from analysis of radiosonde temperature

Figure 17. Horizontal map of 100 hPa July–August 2005
average Microwave Limb Sounder (MLS) CO (ppbv) and
NCEP horizontal wind fields (vectors). Adapted from
Park et al. [2007, Figure 5].
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soundings [Seidel and Randel, 2006]. This behavior has

been confirmed in model simulations [Santer et al., 2003;

Gettelman et al., 2009, 2010]. An increase in tropopause

height is expected from a combination of stratospheric

cooling and tropospheric warming induced by greenhouse

gas changes [Shepherd, 2002; Gettelman and Birner, 2007].

Attribution studies by Santer et al. [2003] indicate that

tropopause height changes are linked to greenhouse gas

forcing of climate, in addition to effects of stratospheric

ozone losses [Seidel and Randel, 2006; Son et al., 2009].

[76] In addition to these changes in the height of the tro-

popause, changes have been observed in the structure of the

tropopause. Castanheira et al. [2009] found increased UTLS

baroclinicity, likely associated with enhanced meridional

temperature gradients in the Ex‐UTLS. Changes have been

observed in the subtropical jet, where the jet and associated

tropopause structures appear to be moving poleward, thus

“broadening” the tropics [Rosenlof, 2002; Seidel et al., 2008].

Evidence for the broadening of the tropics comes from

changes in subtropical tropopause height [Seidel and Randel,

2007; Birner, 2010b] ozone [Hudson et al., 2006], tropo-

spheric circulation [Hu and Fu, 2007], temperatures [Fu

et al., 2006], and the separation between the subtropical

jets [Seidel et al., 2008]. Such poleward movement of

the tropics has important climatic implications, such as

extending the subtropical dry regions poleward. Lu et al.

[2009], using idealized General Circulation Model (GCM)

simulations, suggests the cause is due to greenhouse gas

and stratospheric ozone changes, although the fundamental

mechanisms remain to be identified.

[77] Held and Hou [1980] and Hu and Fu [2007] noted

that the distance between the subtropical jets is determined

by where baroclinic eddies occur, and this can be related to

the equator to pole temperature gradient and the depth of the

baroclinically unstable layer, (i.e., the tropopause height).

The depth of the baroclinically unstable region (i.e., the

troposphere) and hence tropopause height may increase as

the atmosphere warms, and if so, the tropopause height itself

changing through radiative means may be a cause of the

broadening. In addition, Shindell et al. [1999] noted that

the thermal structure in the Ex‐UTLS may affect the sub-

tropical jet and hence modulate wave propagation that af-

fects stratosphere‐troposphere dynamical coupling.

[78] Ozone decreases in the Ex‐UTLS over the last 30 years

have been observed from satellites and radiosondes [WMO,

2010]. The largest net changes since 1980 have occurred

in the lower stratosphere (near 20 km) and upper strato-

sphere (near 40 km), and the overall trends are consistent

with changes in halogen loading and with simulations

using coupled chemistry climate models [WMO, 2010]. In

the Ex‐UTLS region, the observational record is based

primarily on radiosondes and is more uncertain [Reid

et al., 2000]. Observations in the NH show relatively

small long‐term Ex‐UTLS ozone changes since 1980, with

decreases of ∼10% from 1980 to approximately 1995,

followed by increases from 1996 to 2009 [WMO, 2010].

Observations in the Southern Hemisphere Ex‐UTLS are

more limited, but show approximately constant ozone since

1987.

[79] These trends have impacts in the Ex‐UTLS. Hsu and

Prather [2009] found reductions of STE of 10% resulting

solely from stratospheric ozone decreases from 1979–2004

(not mass flux changes), although there is large uncertainty

around Antarctica because of limited observations. In addi-

tion, the hemispheric asymmetry of trends in tropopause

height [Seidel and Randel, 2006; Son et al., 2009] is con-

sistent with effects from the decline of Southern Hemisphere

ozone due to anthropogenic chlorine [Son et al., 2009].

6.2. Future Projections

[80] Confidence in future projections hinges on model

fidelity, assessed on a process level basis using observations

as well as simulated historical trends. Recently, Hegglin

et al. [2010] compiled a detailed assessment of coupled

Figure 18. Multimodel mean trends in (a) O3 (contour interval ±0.5% decade−1 with no zero line) and
(b) H2O (contour interval of 1% decade−1). Shading indicates the 95% significance level (light shading
for positive trends, and dark shading for negative trends). For H2O, the calculated trends are significant
at the 95% level. Dotted lines in each panel denote the tropopause with the lower line corresponding to
the reference period (1960–1980) and the upper line corresponding to the year 2100. Adapted from
Gettelman et al. [2010, Figure 18].
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chemistry climate model performance in the Ex‐UTLS, and

Gettelman et al. [2010] analyzed simulated trends. Confi-

dence in models to reproduce large‐scale (zonal mean)

trends is high. Models capture many of the features of the

Ex‐UTLS: including a ExTL chemical transition layer, and

a tropopause inversion layer in static stability [Hegglin et al.,

2010]. Models are able to simulate observed trends in tropical

and extratropical tropopause pressure. Extratropical tropo-

pause trends are −2 hPa decade−1 in both models [Gettelman

et al., 2010] and observations [Seidel and Randel, 2006] from

1980–2006. Models project continued trends of this magni-

tude in extratropical tropopause height in the 21st century.

[81] Figure 18 illustrates the implications for these trends

on Ex‐UTLS structure. The analysis uses an ensemble of

models forced with the same gas concentrations through the

21st century. Ozone is seen to increase in the Ex‐UTLS by

1% decade−1 in pressure coordinates. Since the tropopause

is rising, relative to the tropopause this implies a larger

increase (4% decade−1). The increase is not due to tropo-

spheric hydrocarbon (air pollution) chemistry, as models

with and without hydrocarbon chemistry have similar trends

[Gettelman et al., 2010]. Rather, the increase is likely due to

enhancements in the downward flux of ozone into the

Ex‐UTLS due to an enhanced Brewer‐Dobson circulation

(see below). Water vapor is simulated to significantly

increase everywhere in the Ex‐UTLS, with largest changes

in the tropical upper troposphere (in response to tropospheric

warming), combined with increases of ∼1 K in tropical cold

point tropopause temperature, allowing more humidity into

the Ex‐UTLS through tropospheric intrusions (Figure 4).

[82] Changes are also expected in the stratospheric cir-

culation. Model simulations suggest an increase in the

Brewer‐Dobson circulation under climate change scenarios

[Rind et al., 1990; Butchart et al., 2006] due to enhanced

wave drag linked to acceleration of the subtropical jets

[Garcia and Randel, 2008; McLandress and Shepherd,

2009; Butchart et al., 2010]. Because wave drag is heavily

parameterized in models, different models have different

reasons for the changes to wave drag. This increased Brewer‐

Dobson circulation implies an increase in ozone in the

extratropical LMS [Shepherd, 2008; Li et al., 2009;

Gettelman et al., 2010] and in the mass of STE [Sudo et al.,

2003; Hegglin et al., 2009].

[83] In summary, significant changes are expected in the

Ex‐UTLS due to continued anthropogenic radiative forcing

of climate. Hypothesized (simulated) changes include rising

tropopause height, enhanced stratospheric circulation, and

acceleration and poleward shift of the subtropical jets. The

changes also imply increases in ozone and water vapor.

There are radiative impacts of these changes, due to the

sensitivity of the atmosphere in these regions of cold tem-

peratures. What is not known is how the Ex‐UTLS region

itself may alter larger‐scale changes in the troposphere, such

as expansion of the Hadley cells and subtropical dry regions

poleward. Changes in ExTL tracer gradients may affect

tropopause height, and changes in tropopause height may

alter tropospheric circulations [Lorenz and DeWeaver,

2007]. Changes may also alter UTLS structure, through

changes to the jets and transport, chemical gradients, and

hence radiative effects.

7. SUMMARY AND CONCLUSIONS

7.1. Summary

[84] Recent observations from aircraft and satellites have

provided detailed descriptions of the UTLS chemical struc-

ture that complement measurements of thermal and dynam-

ical behavior. There are also ongoing improvements in model

simulations of the UTLS, incorporating meteorological

analysis with improved data assimilation techniques, high‐

resolution chemical transport models, Lagrangian calcula-

tions, and comprehensive coupled chemistry climate models.

The combination of new observations and models has pro-

vided improved understanding of the processes that maintain

observed Ex‐UTLS behavior.

[85] Different definitions of the tropopause provide com-

plementary measures of the dynamical stability gradient. The

thermal tropopause emphasizes the vertical stability jump at

the troposphere‐stratosphere interface, while the dynamical

tropopause defined by PV emphasizes horizontal structure of

the tropopause on isentropic surfaces. The relationship

between the thermal and a PV tropopause depends on the

local circulation (because of the influence of relative vor-

ticity); these levels are closely aligned in anticyclonic flow,

while the same PV level (e.g., 2 PVU) lies substantially

below the thermal tropopause (or equatorward on an isen-

tropic level) in strongly cyclonic flow [Wirth, 2003]. Con-

sequently, there is often little difference (<1 km) in the

thermal versus PV tropopause definition when PV gradients

are tight, whereas substantial differences occur in weak

gradients (Figure 6), and no single PV value is a good

definition. This argues against a single global value of PV

for the dynamical tropopause. A PV gradient tropopause

[Kunz et al., 2011] shows some promise. PV gradients

exist because of vorticity or static stability gradients, and

either may cause the thermal and dynamic tropopause

definitions to diverge. These differences in tropopause

definition are reflected in tracer structure and are particu-

larly evident when viewed in the respective tropopause

coordinates (e.g., Figure 8).

[86] Other aspects of Ex‐UTLS structure have been

defined primarily on the basis of thermal structure. The TIL

corresponds to a ubiquitous temperature inversion above the

thermal tropopause (Figure 2), associated with a thin layer

of enhanced static stability (Figure 5). The TIL is a persistent

feature of the extratropics, and its strength is modulated by

the local synoptic circulation (stronger for anticyclonic flow,

as expected because of balanced dynamics [Wirth and Szabo,

2007]). Radiative calculations suggest a role for water vapor

near the tropopause in enhancing cold temperatures and

hence the inversion layer there (Figure 13). Dynamical

mechanisms have also been found to contribute to forcing

TIL structure, and the overall balance of dynamical versus

radiative effects is a topic of ongoing research.
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[87] The thermal tropopause definition [WMO, 1957] also

allows for the identification of multiple tropopauses, asso-

ciated with the occurrence of tropospheric‐like static sta-

bility above the first tropopause. This situation occurs

frequently in the subtropics with a maximum during winter

(∼70% of radiosonde soundings) and is often associated

with the transport of tropical tropospheric air poleward in a

layer above the subtropical jet (Figure 4). Case studies and

trajectory calculations have shown that this transport is

related to breaking of planetary (Rossby) waves in the

subtropical upper troposphere [Pan et al., 2009]. While the

double tropopause occurrence frequency is high, it is yet to

be determined how deep and reversible such events are, and

how they contribute to systematic ventilation of the lower-

most stratosphere via the “subtropical” transport pathway.

[88] In terms of chemical structure, the Ex‐UTLS features

a transition or mixing layer (the ExTL) around the tropo-

pause, with chemical properties intermediate between the

troposphere and stratosphere (Figures 3, 8, and 9). The

ExTL is most clearly identified by tracer‐tracer correlations

(Figure 10) using a stratospheric constituent (often O3) and a

tropospheric tracer (typically CO or H2O in Figure 11). The

ExTL is centered near the thermal tropopause and is 1–2 km

thick on either side in aircraft observations (Figure 11),

slightly thicker and shifted in coarser resolution satellite

observations or models (Figure 12). Alternatively, it can

also be described as occurring on the stratospheric side of

the 2 PVU tropopause (which typically occurs below the

thermal tropopause). The transition width or ExTL depth

derived from various tracers can differ substantially, since

source and sink behavior are tracer‐specific and influence

tracer distributions in addition to the transport processes that

establish gradients [Hegglin et al., 2009; Hoor et al., 2010].

Current models are able to simulate a reasonable ExTL

(Figure 12), but typically not as narrow as in observations

(likely related to limited model resolution).

[89] There are several pathways for mixing and transport

of air in the Ex‐UTLS. Tracer budgets and time scales

indicate rapid mixing with the troposphere in the ExTL

(Figure 14). There are longer timescale transports of air from

the stratospheric overworld and from the subtropics that

contribute significantly to tracer distributions, particularly in

summer and fall (Figure 15). Observations highlight that

the ExTL exhibits significant spatial structure on synoptic

scales, reflecting transport and mixing linked to baroclinic

wave structure. In particular, strongest mixing occurs on the

cyclonic (poleward) side of jets, associated with the region

of stratospheric intrusions (Figure 11). The result of these

processes creates a complex subtropical region, where air

mixes between the tropics and extratropics, in addition to

between the troposphere and stratosphere. In terms of

transport time scales, the ExTL is manifest as a region of air

with relatively recent contact with the troposphere [Hoor

et al., 2010].

[90] The core of the subtropical jet acts as a strong barrier

to mixing across it. There are often several jet cores at any

one time (Figure 6) and preferred regions for them.

Exchange is often enhanced at the jet exit (Figure 16 from

Sprenger and Wernli [2003] and Shuckburgh et al. [2009]),

and STE is stronger in winter. However, because the jet

is much weaker in summer (in the NH), there is signif-

icantly more deep mixing between the tropics and extra-

tropics during this season [Chen, 1995; Bönisch et al., 2009,

Figure 15]. The NH summertime UTLS circulation is

dominated by the Asian monsoon anticyclone (Figure 17),

which involves the rapid transport of near‐surface air in

chronic deep convection, confinement within the strong anti-

cyclonic circulation, and transport to the stratosphere. The

circulation upstream and downstream of the anticyclone also

contributes to quasi‐horizontal transport between the tropics

and extratropics [Dunkerton, 1995; Konopka et al., 2010].

[91] Observations show increases in tropopause height and

poleward shifts in the subtropical jets (broadening of the

“tropics”) over the last several decades. Both are expected

given surface warming forced by anthropogenic greenhouse

gas emissions and stratospheric cooling linked to ozone

depletion. Tropopause height changes have been simulated

by global models [Lu et al., 2009; Gettelman et al., 2010].

Tropical broadening is consistent with the response of the

atmosphere to changes in the meridional temperature gradi-

ent and a broadening of the tropospheric Hadley circulation.

[92] Expected future changes in the Ex‐UTLS given

anthropogenic forcing of climate and ozone recovery include

continued decreases in tropopause pressure (height increase)

and an increase in lower stratospheric ozone (Figure 18).

Projected ozone increases are consistent with increases in the

stratospheric residual circulation bringing more ozone into

the Ex‐UTLS. The changes in the stratospheric circulation

are due to strengthening of the subtropical jets and associated

changes in wave propagation and dissipation. These future

trends are dependent on the magnitude of the greenhouse gas

radiative forcing and may have impacts for stratosphere‐

troposphere coupling.

[93] The key points discussed above can be summarized

as follows:

[94] 1. New observations (satellites and aircraft) provide a

detailed picture of the UTLS chemical structure to com-

plement measurements of the thermal structure. Modeling

approaches are providing improved tools for understanding

chemical observations. This includes analysis systems with

new data assimilation techniques, high‐resolution chemical

transport models and coupled chemistry‐climate models,

and Lagrangian models.

[95] 2. The thermal (tropopause and TIL) and dynamical

(PV) structure of the Ex‐UTLS are intimately related. Dif-

ferent measures of the tropopause itself are compatible, and

these complementary descriptions are consequences of the

dynamics of the Ex‐UTLS that features vertical stability

gradients and horizontal wind shear (vorticity) gradients.

[96] 3. The Ex‐UTLS features a “transition layer”, the

ExTL, 1–2 km thick around the thermal tropopause, most

clearly seen in correlations between tracers. Models are able

to simulate this structure.

[97] 4. Radiative effects of tracer gradients in the ExTL

help maintain the TIL, at least in some regions. Chemical
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tracer gradients feed back on dynamics through radiatively

active tracers (ozone and water vapor).

[98] 5. Transport time scales in the Ex‐UTLS feature

multiple transport pathways. Transport times are shorter in

summer. The Ex‐UTLS transport time scales govern the

potential chemical impact of tracers in the UTLS.

[99] 6. Models and observational estimates of trends in the

Ex‐UTLS broadly agree. Future simulated trends indicate

increases in ozone in the LMS, increases in tropopause

height, and poleward movement of the subtropical jets.

7.2. Outstanding Questions

[100] This review has aimed to clarify different approaches

to analyzing the tropopause and showing how different

definitions are complementary. We have also illustrated

how the observed chemical structure fits into this picture,

how transport affects the chemical structure, and how the

tropopause may change in the future. Even with this coher-

ent picture of the Ex‐UTLS and the links between chemistry

and dynamics, there are significant remaining questions

and uncertainties.

[101] The extratropical UTLS and transition layer (ExTL)

structure are well‐defined, but only broadly understood.

(1) What is the balance of processes that govern the chemical

composition of the ExTL, and how do they vary in space and

time? (2) What do different tracers tell us about the ExTL?

(3) What is the relative importance of different transport

pathways into the Ex‐UTLS?

[102] An empirical relationship between the TIL and trace

gas distribution is indicated by observations. (1) What is the

relative importance of dynamical versus radiative processes

for the TIL formation, and how are these related to con-

stituent exchange across the tropopause? (2) Radiative effects

of ExTL gradients seem to impact the TIL: Where and when

are these effects most important?

[103] Trends and feedbacks: (1) How does the observed

broadening of the tropical belt affect the subtropical jets and

Ex‐UTLS composition and transport? (2) How do Ex‐UTLS

composition and structure changes affect static stability

and alter conditions for wave propagation that may feed

back on tropospheric circulations? (3) What do different

metrics tell us about tropical broadening, and why is the

observed change over the past 3 decades much larger than

simulations?

7.3. Observing and Modeling Systems

[104] The questions posed above naturally lead to require-

ments for a suite of continued measurements and model

development. A great deal has been learned from detailed in

situ and satellite measurements, combined with evaluation of

new models that represent the coupling between processes in

the Ex‐UTLS. Continued observations with high vertical

resolution are necessary for understanding the ExTL and the

TIL and their interactions. High horizontal resolution is nec-

essary to understand gradients in the region of the subtropical

jet. Continued global observations and sampling are also

necessary to understand budgets, time scales, and the relative

importance of different transport pathways and episodic

events. Models can help put these observations in context and

be used to explore key processes. We now detail how

observations can be used to answer key questions.

7.3.1. In Situ Measurements
[105] This review has presented data from several recent in

situ aircraft campaigns in the Ex‐UTLS (SPURT, START05,

and START08; all acronyms are given in section 9). These

campaigns have used new strategies and platforms that have

gone beyond and built upon studies of deep convective

transport and tropopause folds in the UTLS region that have

been conducted for many years. Continuous progress will

require campaigns with aircraft that can reach well into the

UTLS, to ceilings of 15 km or higher (such as new G‐V

research aircraft like HALO or HIAPER). Understand-

ing budgets and time scales will require sampling differ-

ent regions and seasons. Data from commercial aircraft

(MOZAIC (now IAGOS), CONTRAIL, and CARIBIC) are

also critical to expand sampling capacity, yielding valu-

able data on the composition of the UTLS up to 12 km,

where knowledge of water vapor especially is still limited.

A major feature of recent campaigns has been repeated

measurements in which the same suite of sensors flies in

different seasons (SPURT, HIPPO). These campaigns add

statistical rigor to the data sets by sampling more variability

and diverse dynamical situations. Multiseason repetitive

campaigns should be continued to evaluate seasonally

varying behavior. Additional tracers of Ex‐UTLS transport

with shorter and varied photochemical lifetimes (and pho-

tochemically active species such as NOx) should also be

measured more frequently, to complement many of the long‐

lived tracers discussed here.

[106] Most campaigns so far have focused on midlatitude

and polar regions that are easy to access from aircraft base

locations, mostly in North America and Europe. There have

been few campaigns in the Southern Hemisphere UTLS

(HIPPO, INCA, and commercial aircraft are exceptions). An

effort should be made also to focus on critical regions in

the subtropics, including how the Asian monsoon interacts

with the Ex‐UTLS region. Also, new platforms, such as

unmanned atmospheric vehicles (UAVs) like the NASA

Global Hawk are now providing new sampling opportuni-

ties with extended ranges and durations that enable many

remote regions (oceans, subtropics, and polar regions) to be

sampled.

[107] Finally, the importance of balloon‐borne sampling

should not be ignored. The long records available from

balloons with O3 and H2O provide soundings for evaluating

long‐term variability and trends. Increasing miniaturization

and mass production of sensors are enabling more types of

soundings from inexpensive (and disposable) small balloon

platforms to supplement temperature, water vapor, and

ozone measurements. Balloon‐borne long‐term measure-

ments of stratospheric age tracers (e.g., CO2 and SF6) are

important for understanding stratospheric overworld circu-

lation changes that affect the Ex‐UTLS. A new global

reference network for upper air sounding (GRUAN) is

being developed, which will provide a vital monitoring and
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validation role for Ex‐UTLS water vapor and ozone, as well

as significant additional data that can define the Ex‐UTLS

and ExTL and their variability with high accuracy.

7.3.2. Satellites
[108] Over the last decade amazing strides have been

made with a new generation of satellite sensors (ACE, MLS,

and HIRDLS). Satellites are now routinely able to sense into

the UTLS region and observe many chemical constituents

such as water vapor, ozone, carbon monoxide, and even

more minor species (HCN). Satellites can make particular

progress in understanding questions relating to the relative

roles of different processes and elucidating time scales for

transport.

[109] Satellite measurements often involve a trade‐off

between vertical resolution and horizontal coverage. Nadir

viewing sensors have very good horizontal scanning, but

limited vertical resolution, particularly in the UTLS. Higher

vertical resolution is achieved from limb viewing sensors

(HIRDLS, Figure 4), at the expense of lower horizontal

resolution. This limitation may be overcome by proposed

sensors utilizing the infrared limb‐imaging technique [Riese

et al., 2005]. Infrared limb‐imaging can provide multiple

trace gas observations (e.g., water vapor, ozone, and tracers)

with high vertical resolution (1 km) and higher horizontal

resolution at the same time. In addition, microwave limb‐

sounding can be used, which is less sensitive to clouds and

allows deeper penetration into the upper troposphere.

[110] Future sensors need a balance between resolution

and coverage. Because of strong vertical and horizontal

gradients in the Ex‐UTLS and across the ExTL, there

remain large uncertainties in the spatial characteristics of

chemical and dynamical structures around the tropopause.

High vertical resolution is particularly desirable in the

UTLS, as Figure 4 from the HIRDLS instrument illustrates.

Good knowledge of horizontal gradients and structures is

also important, since STE events and other processes are

three‐dimensional. Future satellites should aim to measure

species with different source regions (in the stratosphere and

troposphere) and different lifetimes to enable understanding

of a range of transport and mixing times.

[111] Finally, satellites offer a comprehensive perspective,

but often only for a short amount of time (on the order of

1–8 years). It is desirable and necessary to plan future

satellite missions to overlap in time and yield a long‐term

consistent record to be able to compare and combine results

from different sensors. Such records will enable UTLS

trends, such as those predicted from chemistry‐climate

models, to be detected. Validation programs using in situ

observations from aircraft and balloons should be coor-

dinated in order to ensure satellite sensor performance

throughout their lifetimes.

7.3.3. Models and Measurements
[112] Models are critical for simulation and analysis.

Being able to simulate processes and reproduce observations

is a critical component of increasing understanding. Models

are the only tools that can be used to answer questions

related to future changes, but they are valuable only if they

can be validated. Models can also assist with intersatellite

comparisons.

[113] In order to answer critical questions about coupling

between chemistry and dynamics through transport and

radiation, coupled chemistry‐climate models need to be used.

To compare to in situ observations, it is useful to constrain

models to the atmospheric state using meteorological analy-

ses. Emerging efforts in chemical data assimilation can enable

long‐term, consistent chemical “analyses” of the Ex‐UTLS

region through the satellite period. Observing systems and

models should be developed together, so that the maximum

use can be put to the data for consistent analyses, and so that

models can be better validated and evaluated. This way val-

idated models of the Ex‐UTLS, both specified dynamics

models (chemical transport models) and coupled chemistry

climate models, can be used for process‐based comparisons

and sensitivity studies, as well as for future projections.

7.4. Final Thoughts

[114] Important strides have been made to develop an

integral view of the Ex‐UTLS region. The framework for

understanding exists, but many critical details need to be

filled in to understand critical processes in the Ex‐UTLS

that will impact chemistry, dynamics, and their coupling.

The continued analysis of current and future observations

and integration with models will lead us to the end goal of

an understanding of the role that the UTLS plays in chem-

istry and climate, and how this may evolve in the future.

GLOSSARY

Atmospheric Chemistry Experiment (ACE): Canadian

satellite platform [Bernath et al., 2005].

Brewer‐Dobson circulation: Mean meridional chemi-

cal transport circulation of the stratosphere. The diabatic and

residual circulation as expressed in tracers [see Shepherd,

2002].

Challenging Mini‐satellite Payload (CHAMP): Global

Positioning System radio occultation satellite [Wickert et al.,

2001].

Civil Aircraft for the Regular Investigation of the Atmo-
sphere Based on an Instrument Container (CARIBIC): See

Brenninkmeijer et al. [2007] and Zahn and Brenninkmeijer

[2003].

Comprehensive Observation Network for Trace
Gases by Airliner (CONTRAIL): Japanese project instru-

menting commercial aircraft [Matsueda et al., 2008].

Dynamic tropopause: Tropopause defined using

potential vorticity.

Global Climate Observing System (GCOS) Upper Air
Reference Network (GRUAN): See Seidel et al. [2009].

Global Forecast System (GFS): U.S. Weather Service

forecast system.

HIAPER Pole‐to‐Pole Observations Mission (HIPPO): See

Wofsy et al. [2011].

High Altitude and Long Range Research Aircraft
(HALO): High altitude and long range research German

G‐V aircraft.
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High Performance Instrumented Airborne Platform
for Environmental Research (HIAPER): U.S. G‐VAircraft.

High Re so l u t i on Dynamic s L imb Sounde r
(HIRDLS): Satellite instrument on NASA Aura platform

[Gille et al., 2008].

Integration of Routine Aircraft Measurements Into a
Global Observing System (IAGOS): Follow‐on project

from MOZAIC (see MOZAIC definition).

Interhemispheric Differences in Cirrus Properties
From Anthropogenic Emissions (INCA): Aircraft field

project in Scotland and Chile [Ovarlez et al., 2002].

Microwave Limb Sounder (MLS): Satellite instrument

on NASA Aura platform [Waters et al., 2006].

MOZAIC: Measurements of ozone, water vapor, carbon

monoxide and nitrogen oxides by in‐service Airbus aircraft

[Bortz et al., 2006].

Photochemistry of Ozone Loss in the Arctic Region in
Summer (POLARIS): Field experiment [Newman et al.,

1999].

Spurenstofftransport in der Tropopausenregion
(SPURT): Trace gas transport in the tropopause region.

Aircraft campaign over several seasons based in northern

Europe [Engel et al., 2006].

Stratosphere‐to‐Troposphere Transport (STT): Gross

exchange into the troposphere.

Stratosphere‐Troposphere Analyses of Regional
Transport (START): Two aircraft campaigns based over

North America in 2005 and 2008 [Pan et al., 2010].

Stratosphere‐Troposphere Exchange (STE): Net mass

exchange.

Thermal tropopause: Tropopause defined using a

lapse rate definition.

Troposphere‐to‐Stratosphere Transport (TST): Gross

exchange into the stratosphere.
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