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Abstract We prove that the extremal process of branching Brownian motion, in
the limit of large times, converges weakly to a cluster point process. The limiting
process is a (randomly shifted) Poisson cluster process, where the positions of the
clusters is a Poisson process with intensity measure with exponential density. The law
of the individual clusters is characterized as branching Brownian motions conditioned
to perform “unusually large displacements”, and its existence is proved. The proof
combines three main ingredients. First, the results of Bramson on the convergence
of solutions of the Kolmogorov–Petrovsky–Piscounov equation with general initial
conditions to standing waves. Second, the integral representations of such waves as
first obtained by Lalley and Sellke in the case of Heaviside initial conditions. Third,
a proper identification of the tail of the extremal process with an auxiliary process
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(based on the work of Chauvin and Rouault), which fully captures the large time
asymptotics of the extremal process. The analysis through the auxiliary process is a
rigorous formulation of the cavity method developed in the study of mean field spin
glasses.

Keywords Branching Brownian motion · Extreme value theory ·
Extremal process · Traveling waves

Mathematics Subject Classification (2000) 60J80 · 60G70 · 82B44

1 Introduction

Branching Brownian motion (BBM) is a continuous-time Markov branching process
which plays an important role in the theory of partial differential equations [9,10,
32,37], in the theory of disordered systems [13,15,26], and in biology [29]. It is
constructed as follows.

Start with a single particle which performs standard Brownian motion x(t) with
x(0) = 0, which it continues for an exponential holding time T independent of x , with
P [T > t] = e−t . At time T , the particle splits independently of x and T into k offspring
with probability pk , where

∑∞
k=1 pk = 1,

∑∞
k=1 kpk = 2, and K ≡ ∑

k k(k −1)pk <

∞. These particles continue along independent Brownian paths starting at x(T ), and
are subject to the same splitting rule, with the effect that the resulting tree X contains,
after an elapsed time t > 0, n(t) particles located at x1(t), . . . , xn(t)(t), with n(t) being
the random number of particles generated up to that time. It holds that En(t) = et .

The link between BBM and partial differential equations is provided by the follow-
ing observation due to McKean [37]: if one denotes by

v(t, x) ≡ P

[

max
1≤k≤n(t)

xk(t) ≤ x

]

(1.1)

the law of the maximal displacement, a renewal argument shows that v(t, x) solves
the Kolmogorov–Petrovsky–Piscounov or Fisher [F-KPP] equation,

vt = 1

2
vxx +

∞∑

k=1

pkv
k − v, (1.2)

with Heaviside initial condition

v(0, x) =
{

1, if x ≥ 0,

0, if x < 0.
(1.3)

The F-KPP equation admits traveling waves: there exists a unique solution satisfying

v
(
t,m(t)+ x

) → ω(x) uniformly in x as t → ∞, (1.4)
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The extremal process of BBM 537

with the centering term given by

m(t) = √
2t − 3

2
√

2
log t, (1.5)

and ω(x) the distribution function which solves the o.d.e.

1

2
ω′′ + √

2ω′ +
∞∑

k=1

pkω
k − ω = 0. (1.6)

If one excludes the trivial cases, solutions to (1.6) are unique up to translations: this
will play a crucial role in our considerations.

Lalley and Sellke [33] provided a characterization of the limiting law of the maximal
displacement in terms of a random shift of the Gumbel distribution. More precisely,
denoting by

Z(t) ≡
n(t)∑

k=1

(
√

2t − xk(t)) exp(−√
2(

√
2t − xk(t))), (1.7)

the so-called derivative martingale, Lalley and Sellke proved that Z(t) converges
almost surely to a strictly positive random variable Z , and established the integral
representation

ω(x) = E[exp(−C Ze−√
2x )], (1.8)

for some C > 0.
It is also known (see e.g. Bramson [16] and Harris [30]) that

lim
x→∞

1 − ω(x)

xe−√
2x

= C. (1.9)

Despite the precise information on the maximal displacement of BBM, an understand-
ing of the full statistics of the particles close to the maximal one has been lacking.
The statistics of such particles are fully encoded in the extremal process, namely the
random measure

Et ≡
∑

k≤n(t)

δxk (t)−m(t). (1.10)

The main result of this paper is an explicit construction of the extremal process in the
limit of large times.

2 Main result

The description of the limiting extremal process has two parts: the cluster-extrema,
and the clusters.
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The cluster-extrema. Let Z be the limiting derivative martingale. Conditionally on
Z , we consider the Poisson point process (PPP) on R of intensity C Z

√
2e−√

2x dx :

PZ ≡
∑

i∈N

δpi

law= PPP
(

C Z
√

2e−√
2x dx

)
, (2.1)

with C as in (1.8).
The clusters. Consider the extremal process shifted by

√
2t instead of m(t):

E t =
∑

k≤n(t)

δxk(t)−
√

2t . (2.2)

Obviously, the limit of such a process must be trivial, since in view of (1.5), the
probability that the maximum of BBM shifted by −√

2t does not drift to −∞ is
vanishing in the large time limit. It however turns out, see Theorem 3.4 below, that
conditionally on the event {maxk xk(t)−

√
2t ≥ 0}, the process E t does converge

to a well defined point process E = ∑
j δξ j in the limit of large times. We may

then define the point process of the gaps

D =
∑

j

δ� j , � j ≡ ξ j − max
i
ξi . (2.3)

Note that D is a point process on (∞, 0] with an atom at 0.

Theorem 2.1 (Main Theorem) Let PZ be as in (2.1) and let
{D(i), i ∈ N

}
be

a family of independent copies of the gap-process (2.3). Then the point process
Et = ∑

k≤n(t) δxk (t)−m(t) converges in law as t → ∞ to a Poisson cluster point
process E given by

E ≡ lim
t→∞ Et

law=
∑

i, j

δ
pi +�(i)j

. (2.4)

A graphical depiction is given in Fig. 1 below.
Given the inherent self-similarity of BBM, it can hardly come as a surprise that

the extremal process of BBM in the limit of large times is fractal-like. As such, it
has a number of interesting properties (e.g. the invariance under superpositions, see
Corollary 3.3, or the representation of the clusters in terms of BBM with drift, see
Remark 3.5).

Understanding the extremal process of BBM in the limit t → ∞ has been a long-
standing problem of fundamental interest. Most classical results for extremal processes
of correlated random variables concern criteria to prove that the behavior is the same
as for i.i.d. variables [34]. Bramson’s result shows that this cannot be the case for
BBM. A class of models where a more complex structure of Poisson cascades was
shown to emerge are the generalized random energy models of Derrida [13,14,25].
These models, however, have a rather simple hierarchical structure involving only
a finite number of hierarchies which greatly simplifies the analysis, which cannot be
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The extremal process of BBM 539

Fig. 1 Onset of the extremal process

carried over to models with infinite levels of branching such as BBM or the continuous
random energy models studied in [15]. BBM is a case right at the borderline where
correlations just start to effect the extremes and the structure of the extremal process.
Results on the extremes of BBM allow one to peek into the world beyond the simple
Poisson structures and hopefully open the gate towards the rigorous understanding of
complex extremal structures.

Mathematically, BBM offers a spectacular interplay between probability and non-
linear p.d.e’s, as was noted already by McKean [37]. On one hand, the proof of Theorem
2.1 will rely on this dual aspect, in particular on precise estimates of the solutions of the
F-KPP equations based on those of Bramson [16,17] and of Chauvin and Rouault [21],
see Sect. 3.1. This aspect of the paper is in the spirit of Derrida and Spohn [26] who
studied the free energy of the model by relying on results on the F-KPP equation. On the
other hand, we propose a new method to study the extremal statistics of BBM based on
the introduction of an auxiliary point process, whose correlation structure is much sim-
pler than the one of BBM. As explained in Sect. 3.2, this approach finds its origins in the
cavity method in spin glasses [41] and in the study of competing particle systems [3,39].

We believe this heuristic is a potentially powerful tool to understand other problems
in extreme value statistics of correlated variables.

Finally, we remark that a structure similar to the one depicted in Theorem 2.1 is
expected to emerge in all the models which are conjectured to fall into the universality
class of branching Brownian motion, such as the 2-dim Gaussian Free Field (2DGFF)
[11,12,18], or the cover time for the simple random walk on the two dimensional
discrete torus [23,24]. These are models whose correlations decay logarithmically
with the distance. In particular, for log-correlated Gaussian field like the 2DGFF, we
conjecture that the extremal process properly re-centered exists and is exactly of the
form (2.4). Namely, the statistics of well-separated high points should be Poissonian
with intensity measure with exponential density. In particular, the law of the maximum
should be a mixture of a Gumbel as in (1.8) (after this paper has been submitted, partial
progress towards this conjecture has been achieved in [27], and [28]). Finally, the law
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of the clusters should be the one of a 2DGFF conditioned to be unusually high (that
is, with maximal displacement of the order of c log N , for the appropriate constant c,
without a log log N correction, where N is the number of variables).

2.1 Relation to recent works

Many results have appeared in the past few years that shed light on the distribution of
the particles of BBM close to the maximum in the limit of large times.

On the physics literature side, we mention the contributions of Brunet and Derrida
[19,20], who reduce the problem of the statistical properties of particles at the edge of
BBM to that of identifying the finer properties of the delay of travelling waves (here
and below, “edge” stands for the set of particles which are at distances of order one
from the maximum).

On the mathematics side, properties of the large time limit of the extremal process
have been established in two papers of ours [5,6]. In the first paper we obtained a precise
description of the paths of extremal particles which in turn imply a somewhat surprising
restriction of the correlations of particles at the edge of BBM. These results were
instrumental in the second paper where it is proved that a certain process obtained by
a correlation-dependent thinning of the extremal particles converges to a random shift
of a Poisson Point Process (PPP) with intensity measure with exponential density. The
approach differs from the one used here to prove the Poissonian statistics of the cluster-
extrema. There, the proof relied heavily on the description of the paths of extremal
particles developed in [5], and did not prove that clusters are identically distributed, and
describing their law. The approach based on the auxiliary point process fills this gap.

A description of the extremal process in terms of a Poisson cluster process has also
been obtained independently by Aïdekon et al. [2] shortly after the first version of this
paper appeared on arXiv. Their approach is based in part on a precise control of the
localization of the paths of extremal particles that are essentially the ones of [5], cf.
Proposition 2.5 in [2] and Theorems 2.2, 2.3 and 2.5 in [5]. It was pointed out in [5]
that cluster-extrema perform an evolution which “resembles” that of a Bessel bridge.
Aïdekon et al. put this on rigorous ground, using a spine decomposition developed
in [1], showing that the law of such paths is in fact that of a Brownian motion in
a potential, see [2, Theorem 2.4]. The clusters are then constructed by “attaching“
(according to a certain random mechanism) to each such path independent BBMs,
and then passing to the limit t → ∞. Theorem 2.3 of [2] describes the resulting
superposition of i.i.d. BBM’s. Although the method of proof is different from ours (in
particular, [2] does not rely on the convergence results established by Bramson [17]),
the ensuing description of the extremal process is compatible with our main theorem.
An additional bridge between the two descriptions goes through the work of Chauvin
and Rouault [21,22] where a link between the spine decomposition and conditioned
BBM is established, see Remark 3.5 below.

Very recently the ergodic properties at the edge of BBM have also been addressed.
In [7], we proved a long-standing conjecture by Lalley and Sellke stating that the
empirical (time-averaged) distribution function of the maximum of BBM converges
almost surely to a double exponential, or Gumbel, distribution with a random shift.
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The extremal process of BBM 541

The method of proof relies again on the localization of the paths established in [5].
Furthermore, combining the methods developed in the present paper and those from
[7], we obtained in [8] a similar type of ergodic theorem for the whole extremal process.

Despite the steady progress over the last years, a number of interesting questions
concerning the properties of the extremal process of BBM are still left open. In par-
ticular, a more quantitative understanding of the law of the clusters and its self-similar
structure would be desirable. As an example, the average density of particles of the
extremal process has been conjectured by Brunet and Derrida to behave asymptoti-
cally as (−x)e−√

2x for x → −∞ [20]. This is the density of the intensity measure of
the auxiliary process we introduce in this work, but the issues, although related, are
not completely equivalent. As a matter of fact, none of the available descriptions of
the extremal process and of the law of the clusters implies directly this result, though
progress in this direction has been announced in [2].

Finally, we mention that Madaule [35] has recovered results on the extremal process
of BBM for the discrete case of branching random walks.

3 The road to the Main Theorem

We first recall from [31] the standard setting for the study of point processes. Let
M be the space of Radon measures on R. Elements of M are in correspondence
with the positive linear functionals on Cc(R), the space of continuous functions on
R with compact support. In particular, any element of M is locally finite. The space
M is endowed with the vague topology, that is, μn → μ in M if and only if for any
φ ∈ Cc(R),

∫
φdμn → ∫

φdμ. The law of a random element � of M, or random
measure, is determined by the collection of real random variables

∫
φd�, φ ∈ Cc(R).

A sequence (�n) of random elements of M is said to converge to � if and only if for
each φ ∈ Cc(R), the random variables

∫
φd�n converges in the weak sense to

∫
φd�.

A point process is a random measure that is integer-valued almost surely. It is a standard
fact that point processes are closed in the set of random elements of M, and that a
sufficient condition for their convergence is the convergence of Laplace functionals.

3.1 The Laplace transform of the extremal process of BBM

Our first step towards Theorem 2.1 consists in showing that the extremal process Et is
well defined in the limit of large times.

Theorem 3.1 (Existence of the limit) The point process Et = ∑
k≤n(t) δxk (t)−m(t)

converges in law to a point process E .

Brunet and Derrida [20] have obtained a similar existence result for the extremal
process Et . To achieve this goal, they use the generating function that counts the
number of the points to the right of fixed levels. Our method of proof is different, and
relies on the convergence of Laplace functionals

�t (φ) ≡ E

[

exp

(

−
∫

φ(y)Et (dy)

)]

, (3.1)
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for φ ∈ Cc(R) non-negative. It is easy to see that the Laplace functional is a solution
of the F-KPP equation following the observation of McKean, see Lemma 4.1 below.
However, convergence is more subtle. It will follow from the convergence theorem
of Bramson, see Theorem 4.2 below, but only after an appropriate truncation of the
functional needed to satisfy the hypotheses of the theorem. The proof recovers a
representation of the form (1.8) and, more importantly, it provides an expression for
the constant C as a function of the initial condition. This observation is inspired by the
work of Chauvin and Rouault [21]. It will be at the heart of the representation theorem
of the extremal process as a cluster process.

Proposition 3.2 Let Et be the process (1.10). For φ ∈ Cc(R) non-negative and any
x ∈ R,

lim
t→∞ E

[

exp

(

−
∫

φ(y + x)Et (dy)

)]

= E

[
exp

(
−C(φ)Ze−√

2x
)]

(3.2)

where, for v(t, y) solution of F-KPP (1.2) with initial condition v(0, y) = e−φ(y),

C(φ) = lim
t→∞

√
2

π

∞∫

0

(
1 − v(t, y + √

2t)
)

ye
√

2ydy (3.3)

is a strictly positive constant depending on φ only, and Z is the derivative martingale.

A straightforward consequence of Proposition 3.2 is the Invariance under super-
positions of the random measure E , conjectured by Brunet and Derrida [19,20].

Corollary 3.3 (Invariance under superposition) The law of the extremal process of
the superposition of n independent BBM started at x1, . . . , xn ∈ R coincides in the
limit of large time with that of a single BBM, up to a random shift.

It is not hard to verify that a point process� that is constructed from a Poisson point
process with exponential density to which, at each atom, is attached an i.i.d. point
process has the same law, up to a shift, as a superposition of n i.i.d. copies of �
for any n ∈ N. Brunet and Derrida conjectured that any point process whose law is
invariant, up to shift, under a superposition of i.i.d. copies of itself must in fact be of
this form. Maillard has proved this conjecture [36], but this general theorem provides
no information on the law of the clusters.

Theorem 3.4 (The law of the clusters) Let x ≡ a
√

t + b for some a < 0, b ∈ R. The
point process

∑

k≤n(t)

δx+xk (t)−
√

2t conditioned on the event

{

x + max
k

xk(t)− √
2t > 0

}

(3.4)

converges in law as t → ∞ to a well-defined point process E . The limit does not
depend on a and b, and the maximum of E has the law of an exponential random
variable.
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The extremal process of BBM 543

The limiting process therefore inherits a “loss of memory” property from the large
jump. This is the crucial point for the proof that the clusters are identically distributed.

Remark 3.5 BBMs conditioned on the atypical event {maxk xk(t)− √
2t > 0} in the

limit of large times, such as the ones appearing in Theorem 3.4, have been studied by
Chauvin and Rouault [21]. They show that the impact of the conditioning is twofold:
first, on one path of the tree (and only one), the spine, the associated Brownian motion
has a drift; second, the conditioning leads to an increase of both birth rate, and intensity.
We refer the reader to [21, Theorem 3] for the precise statements.

3.2 An auxiliary point process

In this section, the method of proof of Theorem 2.1 using an auxiliary point process is
explained. To make the distinction between the law of standard BBM, denoted by P,
and the auxiliary construction, we introduce for convenience a new probability space.
Let (
′,F ′, P) be a probability space, and Z : 
′ → R+ with distribution as that of
the limiting derivative martingale (1.7). Expectation with respect to P will be denoted
by E . On (
′,F ′, P), let (ηi ; i ∈ N) be the atoms of a Poisson point process η on
(−∞, 0) with intensity measure

√
2

π
(−x)e−√

2x dx . (3.5)

For each i ∈ N, consider independent BBMs on (
′,F ′, P) with drift −√
2, i.e.

{x (i)k (t)− √
2t; k ≤ n(i)(t)}, n(i)(t) is the number of particles of the BBM i at time t .

Remark that, by 1.4 and 1.5, for each i ∈ N,

max
k≤n(i)(t)

x (i)k (t)− √
2t → −∞, P-a.s. (3.6)

The auxiliary point process of interest is the superposition of the i.i.d. BBM’s with
drift and shifted by ηi + 1√

2
log Z :

�t ≡
∑

i,k

δ 1√
2

log Z+ηi +x (i)k (t)−√
2t

(3.7)

The existence and non-triviality of the process in the limit t → ∞ is not straightfor-
ward, especially in view of (3.6). It will be proved by recasting the problem into the
frame of convergence of solutions of the F-KPP equations to travelling waves, as in
the proof of Theorem 3.1.

It turns out that the density of the Poisson process points growing faster than expo-
nentially as x → −∞ compensates for the fact that BBM’s with drift wander off to
−∞.

The connection between the extremal process of BBM and the auxiliary process is
the following result:
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Theorem 3.6 (The auxiliary point process) Let Et be the extremal process (1.10) of
BBM. Then

lim
t→∞ Et

law= lim
t→∞�t . (3.8)

The above will follow from the fact that the Laplace functionals of limt→∞�t

admits a representation of the form (3.2), and that the constants C(φ) in fact corre-
spond. An elementary consequence of the above identification is that the extremal
process E shifted back by 1√

2
log Z is an infinitely divisible point process. The reader

is referred to [31] for definitions and properties of such processes.
We conjectured Theorem (3.6) in a recent paper [6], where it is pointed out that

such a representation is a natural consequence of the results on the genealogies and
the paths of the extremal particles in [5]. The proof of Theorem 3.6 provided here
does not rely on such techniques. It is based on the analysis of Bramson [17] and
the subsequent works of Chauvin and Rouault [21,22], and Lalley and Sellke [33].
However, the results on the genealogies of [5] provides a complementary intuition.

The approach to the problem in terms of the auxiliary point process is very close in
spirit to the study of competing particle systems (CPS). These systems were introduced
in the study of spin glasses [3,4,39], but are a good laboratory in general to study
problems of extremal value statistics. The CPS approach can be seen as an attempt to
formalize to so-called cavity method developed by Parisi and co-authors [38] for the
study of spin glasses. The connection with Theorem 3.6 is as follows.

Let E = ∑
i∈N

δei be the limiting extremal process of a BBM starting at zero. It is
clear since m(t) = m(t − s) + √

2s + o(1) that the law of E satisfies the following
invariance property: for any s ≥ 0,

E law=
∑

i,k

δ
ei +x (i)k (s)−√

2s
(3.9)

where {x (i)k (s); k ≤ n(i)(s)}i∈N are i.i.d. BBM’s. On the other hand, by Theorem 3.6,

E law= lim
s→∞

∑

i,k

δ
ηi +x (i)k (s)−√

2s
, (3.10)

where now (ηi ; i ∈ N) are the atoms of a PPP(
√

2
π
(−x)e−√

2x dx) on (−∞, 0] shifted

by 1√
2

log Z .
The main idea of the CPS-approach is to characterize extremal processes as invari-

ant measures under suitable, model-dependent stochastic mappings. In the case of
BBM, the mapping consists of adding to each ancestor ei independent BBMs with
drift −√

2. This procedure randomly picks of the original ancestors only those
with offspring in the lead at some future time. But the random thinning is per-
formed through independent random variables: this suggests that one may indeed
replace the process of ancestors {ei } by a Poisson process with suitable intensity
measure.
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The extremal process of BBM 545

Behind the random thinning, a crucial phenomenon of “energy vs. entropy” is
at work. Under the light of (3.6), the probability that any such BBM with drift
−√

2 attached to the process of ancestors does not wander off to −∞ vanishes in
the limit of large times. On the other hand, the higher the position of the ances-
tors, the fewer one finds. A delicate balance must therefore be met, and only
ancestors lying on a precise level below the lead can survive the random thin-
ning. This is the content of Proposition 3.8 below, and a fundamental ingredi-
ent in the CPS-heuristics: particles at the edge come from a precise location of
the tail in the past. A key step in identifying the equilibrium measure is thus to
identify the tail, or at least a good approximation of it. In the example of BBM,
we are able to show, perhaps indirectly, that a good approximation of the tail
is a Poisson process with intensity measure (−x)e−√

2x dx (up to constant) on
(−∞, 0).

We now list some of the properties of the auxiliary process in the limit of large
times, which by Theorem 3.6 coincide with those of the extremal process of BBM.

Proposition 3.7 (Poissonian statistics of the cluster-extrema) Consider�ext
t the point

process obtained by retaining from �t the maximal particles of the BBM’s,

�ext
t ≡

∑

i

δ 1√
2

log Z+ηi +maxk {x (i)k (t)−√
2t}. (3.11)

Then limt→∞�ext
t

law= PPP(Z
√

2Ce−√
2x dx) as a point process on R, where C is the

same constant appearing in (1.8). In particular, the maximum of limt→∞�ext
t has the

same law as the limit law of the maximum of BBM.

The fact that the laws of the maximum of the cluster-extrema and of BBM cor-
respond is a consequence of (1.8) and the formula for the maximum of a Poisson
process. The presence of Poissonian statistics in the extremes of BBM was proved in
[6] using the results on the genealogies in [5]. The proof given here is conceptually
very different and based on the auxiliary process. The last ingredient for the proof of
Theorem 2.1 is a very precise control on the location of the atoms η for which the
particles of the associated BBM may reach the leading edge. The proposition is central
to the proof of Theorem 3.4.

Proposition 3.8 Let y ∈ R and ε > 0 be given. There exist 0 < A1 < A2 < ∞ and
t0 depending only on y and ε, such that

sup
t≥t0

P[∃i,k : ηi + x (i)k (t)− √
2t ≥ y, ηi /∈ [−A1

√
t,−A2

√
t]] < ε. (3.12)

4 Proofs

In what follows, { xk(t), k ≤ n(t)} will denote a branching Brownian motion on the
interval of time [0, t] with one particle at 0 at time 0. The law of BBM will be denoted
by P and its expectation by E. We recall that we will use P and E for the probability
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and the expectation of the auxiliary process to distinguish with the original process. We
will consider the F-KPP equation (1.2) with general initial condition v(0, x) = f (x)
for some function f that will depend on context. Initial condition (1.3) corresponds to
f (x) = 1{−x≤0}. It will be often convenient to consider u(t, x) ≡ 1 − v(t, x) instead
of v(t, x). Note that u(t, x) is solution of the equation

ut = 1

2
uxx + (1 − u)−

∞∑

k=1

pk(1 − u)k, (4.1)

with initial condition u(0, x) = 1 − f (x). We will refer to this equation as the F-KPP
Eq. (4.1).

4.1 Estimates of solutions of the F-KPP equation

We start by stating two fundamental results that will be used extensively. First,
McKean’s insightful observation:

Lemma 4.1 ([37]) Let f : R → [0, 1] and {xk(t) : k ≤ n(t)} a branching Brownian
motion starting at 0. The function

v(t, x) = E

⎡

⎣
n(t)∏

k=1

f (x + xk(t))

⎤

⎦ (4.2)

is solution of the F-KPP Eq. (1.2) with initial condition v(0, x) = f (x).

The second fundamental result is the one of Bramson on the convergence of solu-
tions of the F-KPP equation to travelling waves:

Theorem 4.2 (Theorem A, Theorem B and Example 2 in [17]) Let u be a solution of
the F-KPP Eq. (4.1) with 0 ≤ u(0, x) ≤ 1. Then

u(t, x + m(t)) → 1 − ω(x), uniformly in x as t → ∞, (4.3)

where ω is the unique solution (up to translation) of

1

2
ω′′ + √

2ω′ +
∞∑

k=1

pkω
k − ω = 0, (4.4)

if and only if

1. for some h > 0, lim supt→∞ 1
t log

∫ t (1+h)
t u(0, y)dy ≤ −√

2;

2. and for some ν > 0, M > 0, N > 0,
∫ x+N

x u(0, y)dy > ν for all x ≤ −M.

Moreover, if limx→∞ ebx u(0, x) = 0 for some b >
√

2, then one may choose

m(t) = √
2t − 3

2
√

2
log t. (4.5)
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It is to be noted that the necessary and sufficient conditions hold for uniform con-
vergence in x . Pointwise convergence could hold when, for example, condition 2 is
not satisfied. This is the case in the proof of Theorem 3.1. The following Proposition
provides sharp approximations to the solutions of the F-KPP equation.

Proposition 4.3 Let u be a solution to the F-KPP equation (4.1) with initial data
satisfying the assumptions of Theorem 4.2 and

∞∫

0

ye
√

2yu(0, y)dy < ∞. (4.6)

Define

ψ(r, t, X + √
2t) ≡ e−√

2X

√
2π(t − r)

∞∫

0

u(r, y′ + √
2r)ey′√2e− (y′−X)2

2(t−r)

(

1 − e−2y′ (X+ 3
2
√

2
log t)

t−r

)

dy′. (4.7)

Then for r large enough, t ≥ 8r , and X ≥ 8r − 3
2
√

2
log t ,

γ−1(r)ψ(r, t, X + √
2t) ≤ u(t, X + √

2t) ≤ γ (r)ψ(r, t, X + √
2t), (4.8)

for some γ (r) ↓ 1 as r → ∞.

The function ψ thus fully captures the large space-time behavior of the solution to
the F-KPP equations. We will make extensive use of (4.8), mostly when both X and
t are large in the positive, in which case the dependence on X becomes particularly
easy to handle.

Proof of Proposition 4.3 For T > 0 and 0 < α < β < ∞, let {zT
α,β(s), 0 ≤ s ≤ T }

denote a Brownian bridge of length T starting at α and ending at β.
It has been proved by Bramson (see [17, Proposition 8.3]) that for u satisfying the

assumptions in the Proposition 4.3, the following holds:

(1) for r large enough, t ≥ 8r and x ≥ m(t)+ 8r

u(t, x) ≥ K1(r)e
t−r

∞∫

−∞
u(r, y)

e− (x−y)2

2(t−r)√
2π(t − r)

P [zt−r
x,y (s) > Mx

r,t (t − s),

s ∈ [0, t − r ]]d. y
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and

u(t, x) ≤ K2(r)e
t−r

∞∫

−∞
u(r, y)

e− (x−y)2

2(t−r)√
2π(t − r)

P[zt−r
x,y (s) > M′

r,t (t − s),

s ∈ [0, t − r ]]dy

where the functions Mx
r,t (t − s), M′

r,t (t − s) satisfy

M′
r,t (t − s) ≤ nr,t (t − s) ≤ Mx

r,t (t − s),

for s �→ nr,t (s) being the linear interpolation between
√

2r at time r and m(t) at
time t . Moreover, K1(r) ↑ 1, K2(r) ↓ 1 as r → ∞.

(2) If ψ1(r, t, x) and ψ2(r, t, x) denote respectively the lower and upper bound to
u(t, x), we have

1 ≤ ψ2(r, t, x)

ψ1(r, t, x)
≤ γ (r)

where γ (r) ↓ 1 as r → ∞.

Hence, if we denote by

ψ̂(r, t, x) = et−r

∞∫

−∞
u(r, y)

e− (x−y)2

2(t−r)√
2π(t − r)

P(zt−r
x,y (s) > nr,t (t − s),

s ∈ [0, t − r ])dy , (4.9)

we have by domination ψ1 ≤ ψ̂ ≤ ψ2. Therefore, for r, t and x large enough

u(t, x)

ψ̂(r, t, x)
≤ ψ2(r, t, x)

ψ̂(r, t, x)
≤ ψ2(r, t, x)

ψ1(r, t, x)
≤ γ (r), (4.10)

and

u(t, x)

ψ̂(r, t, x)
≥ 1

γ (r)
. (4.11)

Combining (4.10) and (4.11) we thus get

γ−1(r)ψ̂(r, t, x) ≤ u(t, x) ≤ γ (r)ψ̂(r, t, x). (4.12)

We now consider X ≥ 8r − 3
2
√

2
log t , and obtain from (4.12) that

γ−1(r)ψ̂(r, t, X + √
2t) ≤ u(t, X + √

2t) ≤ γ (r)ψ̂(r, t, X + √
2t). (4.13)
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The probability involving the Brownian bridge in the definition of ψ̂ can be explicitly
computed. The probability of a Brownian bridge of length t to remain below the
interpolation of A > 0 at time 0 and B > 0 at time t is 1 − e−2AB/t , see e.g. [40].
In the above setting the length is t − r , A = x − m(t) = x − √

2t + 3
2
√

2
log t > 0

for t large enough and B = y − √
2r = y′. Using this, together with the fact that

P(zt−r
x,y (s) > nr,t (t − s), s ∈ [0, t − r ]) is 0 for B = y′ < 0, and by change of variable

y′ = y + √
2t in the integral appearing in the definition of ψ̂ , we get

ψ̂(r, t, X + √
2t) = e−√

2X

√
2π(t − r)

∞∫

0

u(r, y′ + √
2r)ey′√2e− (y′−X)2

2(t−r)

×
(

1 − e−2y′ (X+ 3
2
√

2
log t)

t−r

)

dy′

= ψ(r, t, X + √
2t). (4.14)

This, together with (4.12), concludes the proof of the proposition. ��
The bounds in (4.8) have been used by Chauvin and Rouault to compute the prob-

ability of deviations of the maximum of BBM, see Lemma 2 [21]. Their reasoning
applies to solutions of the F-KPP equation with other initial conditions than those
corresponding to the maximum. We give the statement below, and reproduce Chauvin
and Rouault’s proof in a general setting for completeness.

Proposition 4.4 Let u be a solution to the F-KPP equation (4.1) with initial data
satisfying the assumptions of Theorem 4.2 and

y0 ≡ sup{y : u(0, y) > 0} < ∞. (4.15)

Then,

lim
t→∞ ex

√
2 t3/2

3
2
√

2
log t

ψ(r, t, x + √
2t) =

√
2

π

∞∫

0

u(r, y + √
2r)yey

√
2dy. (4.16)

Moreover, the limit of the right-hand side exists as r → ∞, and it is positive and finite.

The Proposition will often be used with the initial condition u(0, x) = 1{−x>δ},
δ ∈ R.

Proof Note that the condition (4.15) implies (4.6). The first claim is straightforward
from Proposition 4.3 if the limit t → ∞ can be taken inside the integral in the
definition of ψ . This is justified by dominated convergence. For t large enough, since
e−x ≥ 1 − x for x > 0, it is easy to check that ψ times ex

√
2 t3/2

log t is smaller than

4√
π

y′ey′√2u(r, y′ + √
2r). (4.17)
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It remains to show that (4.17) is integrable in y′ ≥ 0. To see this, let u(2)(t, x) be the
solution to ∂t u(2) = 1

2 u(2)xx − u(2) (the linearised F-KPP-Equation (4.1) with initial
conditions u(2)(0, x) = u(0, x). By the maximum principle for nonlinear, parabolic
p.d.e.’s, see e.g. [17, Corollary 1, p. 29],

u(t, x) ≤ u(2)(t, x) (4.18)

Moreover, by the Feynman–Kac representation and the definition of y0,

u(2)(t, x) ≤ et

y0
∫

−∞

1√
2π t

e− (y−x)2

2t dy, (4.19)

and for any x > 0 we thus have the bound

u(2)(t, x) ≤ et e− x2
2t e

y0x
t . (4.20)

Hence,

u(r, y + √
2r) ≤ e− y2

2r e
y0 y

r e−√
2ye

√
2y0 . (4.21)

The upper bound is integrable over the desired measure since

∞∫

0

ye
√

2ye− y2

2r e
y0 y

r e−√
2ydy =

∞∫

0

ye− y2

2r e
y0 y

r dy < ∞. (4.22)

Therefore dominated convergence can be applied and the first part of the proposition
follows.

It remains to show that

lim
r→∞

∞∫

0

u(r, y + √
2r)

√
2

π
yey

√
2dy exists and is finite. (4.23)

Write C(r) for the integral. By Proposition 4.3, for r large enough,

lim sup
t→∞

ex
√

2 t3/2

3
2
√

2
log t

u(t, x + √
2t)

≤ γ (r) lim
t→∞ ex

√
2 t3/2

3
2
√

2
log t

ψ(r, t, x + √
2t) = C(r)γ (r),
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and

lim inf
t→∞ ex

√
2 t3/2

3
2
√

2
log t

u(t, x + √
2t)

≥ γ (r)−1 lim
t→∞ ex

√
2 t3/2

3
2
√

2
log t

ψ(r, t, x + √
2t) = C(r)γ (r)−1 ,

Therefore since γ (r) → 1

lim sup
t→∞

ex
√

2 t3/2

3
2
√

2
log t

u(t, x + √
2t) ≤ lim inf

r→∞ C(r)

and

lim inf
t→∞ ex

√
2 t3/2

3
2
√

2
log t

u(t, x + √
2t) ≥ lim sup

r→∞
C(r).

It follows that limr→∞ C(r) ≡ C exists and so does limt→∞ ex
√

2 t3/2

3
2
√

2
log t

u(t, x +
√

2t). Moreover C > 0 otherwise

lim
t→∞ ex

√
2 t3/2

3
2
√

2
log t

u(t, x + √
2t) = 0

which is impossible since

lim
t→∞ ex

√
2 t3/2

3
2
√

2
log t

u(t, x + √
2t) ≥ C(r)/γ (r)

for r large enough but finite. (γ (r) and C(r) are finite for r finite.) Moreover C < ∞,
otherwise

lim
t→∞ ex

√
2 t3/2

3
2
√

2
log t

u(t, x + √
2t) = ∞,

which is impossible since limt→∞ ex
√

2 t3/2

3
2
√

2
log t

u(t, x +√
2t) ≤ C(r)γ (r) for r large

enough, but finite. ��
For the proof of Theorem 3.4, the following refinement of Proposition 4.4 is needed.

Lemma 4.5 Let u be a solution to the F-KPP equation (4.1) with initial data satisfying
the assumptions of Theorem 4.2 and

y0 ≡ sup{y : u(0, y) > 0} < ∞. (4.24)
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Then, for x = a
√

t , a > 0, and Y ∈ R,

lim
t→∞

e
√

2x t3/2

x
ψ(r, t, x + Y + √

2t) = C(r)e−√
2Y e−a2/2 (4.25)

where

C(r) =
√

2

π

∞∫

0

u(r, y′ + √
2r)y′ey′√2dy′. (4.26)

Moreover, the convergence is uniform for a in a compact set.

Proof The proof is a simple computation:

lim
t→∞

e
√

2x

x
t3/2ψ(r, t,Y + x + √

2t)

4.7= e−√
2Y lim

t→∞
t3/2

x
√

2π(t − r)

∞∫

0

u(r, y′ + √
2r)

ey′√2e− (y′−x−Y )2

2(t−r)

(

1 − e−2y′ (x+Y+ 3
2
√

2
log t)

t−r

)

dy′

= e−√
2Y

∞∫

0

u(r, y′ + √
2r)ey′√2 lim

t→∞
t3/2

x
√

2π(t − r)

[

e− (y′−x−Y )2

2(t−r)

(

1 − e−2y′ (x+Y+ 3
2
√

2
log t)

t−r

)]

dy′, (4.27)

the last step by dominated convergence (cfr. (4.18)–(4.22). Using that x = a
√

t ,

lim
t→∞

t3/2

x
√

2π(t − r)

[

e− (y′−x−Y )2

2(t−r)

(

1 − e−2y′ (x+Y+ 3
2
√

2
log t)

t−r

)]

=
√

2

π
y′e−a2/2,

hence

lim
t→∞

e
√

2x

x
t3/2ψ(r, t,Y + x + √

2t) = C(r)e−√
2Y e−a2/2. (4.28)

��
The contribution to C = limr→∞

√
2
π

∫∞
0 u(r, y +√

2r) yey
√

2dy comes from the

y’s of the order of
√

r . This result will be used in the proof of Proposition 3.8.
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Lemma 4.6 Let u be a solution to the F-KPP equation (4.1) with initial data satisfying
the assumptions of Theorem 4.2 and

y0 ≡ sup{y : u(0, y) > 0} < ∞. (4.29)

Then for any x ∈ R

lim
A1↓0

lim sup
r→∞

A1
√

r∫

0

u(r, x + y + √
2r) yey

√
2dy = 0

lim
A2↑∞ lim sup

r→∞

∞∫

A2
√

r

u(r, x + y + √
2r) yey

√
2dy = 0.

(4.30)

For the proof of the lemma, we use an estimate of the law of the maximum similar
to the one of Proposition 4.3 that was used in [6].

Lemma 4.7 [6, Corollary 10] For X > 1, and t ≥ to (for to a numerical constant),

P

[

max
k≤n(t)

xk(t)−m(t) ≥ X

]

≤ ρ · X · exp
(
−√

2X − X2

2t + 3
2
√

2
X log t

t

)
. (4.31)

for some constant ρ > 0.

Proof of Lemma 4.6 We prove the first limit. The proof of the second is identical. By
assumption, u(0, y) ≤ 1{y<y0+1}. It follows from Lemma 4.1 that

u(r, x + y + √
2r) ≤ P

(
max xk(r)− √

2r > y0 + 1 + x + y
)
. (4.32)

It thus suffices to prove the result for the right side. Write for simplicity δ = x + y0 +1.
We have by the change of variable y → y + δ + 3

2
√

2
log r

A1
√

r∫

0

P

(
max xk(r)− √

2r > δ + y
)

yey
√

2dy

= e−√
2δr−3/2

A1
√

r+δ+ 3
2
√

2
log r

∫

δ+ 3
2
√

2
log r

P (max xk(r)− m(r) > y) yey
√

2dy

−
(

δ+ 3

2
√

2
log r

)

e−√
2δr−3/2

A1
√

r+δ+ 3
2
√

2
log r

∫

δ+ 3
2
√

2
log r

P (max xk(r)−m(r)> y) ey
√

2dy.

(4.33)
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By Lemma 4.7, the first term of (4.33) is smaller than

ρe−√
2δr−3/2

A1
√

r+δ+ 3
2
√

2
log r

∫

δ+ 3
2
√

2
log r

y2e− y2

2r e
3

2
√

2
y log r

r dy.

By the change of variable y → y√
r
, this becomes

ρe−√
2δ

A1+ δ√
r
+ 3

2
√

2
log r√

r∫

δ√
r
+ 3

2
√

2
log r√

r

y2e− y2

2 e
3

2
√

2
y log r√

r dy. (4.34)

As r → ∞, this integral is bounded by a Gaussian integral which goes to zero as
A1 ↓ 0. The second term in 4.33 is bounded similarly. The resulting integral is the
one of 4.34 with y/

√
r instead of y2 in the integrand. Therefore, it goes to zero as

r → ∞. This establishes (4.30). ��
The following lemma tells us how C = limr→∞

√
2
π

∫∞
0 u(r, y + √

2r) yey
√

2dy
behaves when u is shifted.

Lemma 4.8 Let u be a solution to the F-KPP equation (4.1) with initial data satisfying
the assumptions of Theorem 4.2 and

y0 ≡ sup{y : u(0, y) > 0} < ∞. (4.35)

Let

C ≡ lim
r→∞

√
2

π

∞∫

0

yey
√

2u(r, y + √
2r)dy , (4.36)

whose existence is ensured by Proposition 4.4. Then for any x ∈ R:

lim
r→∞

√
2

π

∞∫

0

yey
√

2u(r, x + y + √
2r)dy = Ce−√

2x . (4.37)

Proof The claim will follow by Proposition 4.4, if it is shown that

lim
r→∞

√
2

π

∞∫

0

yey
√

2u(r, x + y + √
2r)dy = lim

r→∞ lim
t→∞

2
√

2

3

t3/2

log t
ψ(r, t, x + √

2t).

(4.38)
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Note that the limit on the right-hand side exists by the proposition.
The definition of ψ in (4.7) and the change of variable y′ = y + x gives

ψ(r, t, x + √
2t) = 1√

2π(t − r)

∞∫

−x

u(r, x + y

+√
2r)ey

√
2e− y2

2(t−r)

(

1 − e−2(y+x)
(x+ 3

2
√

2
log t)

t−r

)

dy.

From this, a dominated convergence argument identical to the one in the proof of
Proposition 4.4 implies

lim
t→∞

2
√

2

3

t3/2

log t
ψ(r, t, x + √

2t) =
√

2

π

∞∫

−x

(y + x) u(r, x + y + √
2r)ey

√
2 dy.

(4.39)

In the limit r → ∞, the contribution for any finite interval is zero because u(r, x +
y +√

2r) → 0 as r → ∞. Therefore the integral can be replaced by
∫∞

0 . To establish
4.38, it remains to prove that

lim
r→∞

∞∫

0

u(r, x + y + √
2r)ey

√
2 dy = 0. (4.40)

This is done exactly as in Lemma 4.6. In (4.33), take A1 = ∞ and replace y2 by y.
Following the same estimate gives a Gaussian integral in (4.34) with y/

√
r instead of

y2. Hence, the integral goes to zero as r → ∞. ��

4.2 Existence of a limiting process

Proof of Theorem 3.1 It suffices to show that, for φ ∈ Cc(R) positive, the Laplace
transform�t (φ), defined in (3.1), of the extremal process of BBM converges. Remark
first that this limit cannot be 0, since in the case of BBM it can be checked as in [5]
that

lim
N→∞ lim

t→∞ P [Et (B) > N ] = 0, for any bounded measurable set B ⊂ R, (4.41)

hence the limiting point process must be locally finite.
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For convenience, we define max Et ≡ maxk≤n(t) xk(t) − m(t). By Theorem 4.2
applied to the function

v(t, δ + m(t)) = E

⎡

⎣
n(t)∏

k=1

1{xk (t)−m(t)≤δ}

⎤

⎦ = P[max Et ≤ δ] (4.42)

it holds that

lim
δ→∞ lim

t→∞ 1 − v(t, δ + m(t)) = lim
δ→∞ 1 − ω(δ) = 0. (4.43)

Now consider for δ > 0

E

[

exp

(

−
∫

φ dEt

)]

= E

[

exp

(

−
∫

φ dEt

)

1{max Et ≤δ}
]

+ E

[

exp

(

−
∫

φ dEt

)

1{max Et>δ}
]

(4.44)

Note that by (4.43), the second term on the r.h.s of 4.44 satisfies

lim sup
δ→∞

lim sup
t→∞

E

[

exp

(

−
∫

φdEt

)

1{max Et>δ}
]

≤ lim sup
δ→∞

lim sup
t→∞

P[max Et > δ]=0.

It remains to address the first term on the r.h.s of (4.44). Write for convenience

�δt (φ) ≡ E

[

exp

(

−
∫

φ dEt

)

1{max Et ≤δ}
]

. (4.45)

We claim that the limit

lim
δ→∞ lim

t→∞�
δ
t (φ) ≡ �(φ) (4.46)

exists, and is strictly smaller than one. To see this, set gδ(x) ≡ e−φ(x)1{x≤δ}, and

uδ(t, x) ≡ E

⎡

⎣
∏

k≤n(t)

gδ(−x + xk(t))

⎤

⎦ . (4.47)

By Lemma 4.1, uδ is then solution to the F-KPP equation 1.2 with uδ(0, x) = gδ(−x).
Moreover, gδ(−x) = 1 for x large enough in the positive, and gδ(−x) = 0 for x large
enough in the negative, so that conditions (1) and (2) of Theorem 4.2 are satisfied as
well as (4.5) on the form of m(t). Note that this would not be the case without the
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presence of the cutoff. Therefore

uδ(t, x + m(t)) = E

⎡

⎣
n(t)∏

k=1

gδ(−x + xk(t)− m(t))

⎤

⎦

converges as t → ∞ uniformly in x by Theorem 4.2. But

�δt (φ) = E

[

exp

(

−
∫

φ dEt

)

1{max Et ≤δ}
]

= E

⎡

⎣
∏

k≤n(t)

exp(−φ(xk(t)− m(t)))1{xk(t)−m(t)≤δ}

⎤

⎦

= E

⎡

⎣
∏

k≤n(t)

gδ(xk(t)− m(t))

⎤

⎦ = uδ(t, 0 + m(t)),

and therefore the limit limt→∞�δt (φ) ≡ �δ(φ) exists. But the function δ �→ �δ(φ)

is increasing and bounded by construction. Therefore, limδ→∞�δ(φ) = �(φ) exists.
Moreover, there is the obvious bound

E

[

exp

(

−
∫

φ dEt

)

1{max Et ≤δ}
]

≤ E
[
exp (−φ(max Et ))1{max Et ≤δ}

]

since the maximum is an atom of Et and φ is non-negative. The limit t → ∞ and
δ → ∞ of the right side exists and is strictly smaller than 1 by the convergence in law
of the re-centered maximum to ω(x) (note that the support of ω(x) is R). Therefore
�(φ) = limδ→∞ limt→∞�δt (φ) < 1 which proves (4.46). ��

4.3 The Laplace functional and the F-KPP equation

Proof of Proposition 3.2 The proof of the proposition will be broken into proving two
lemmas.

In the first lemma we establish an integral representation for the Laplace functionals
of the extremal process of BBM which are truncated by a certain cutoff; in the second
lemma we show that the results continues to hold when the cutoff is lifted. Throughout
this section, φ : R → [0,∞) is a non-negative continuous function with compact
support.

Lemma 4.9 Consider

uδ(t, x) ≡ 1 − E

⎡

⎣exp

⎛

⎝−
∑

k≤n(t)

φ(−x + xk(t))

⎞

⎠ 1{maxk≤n(t) −x+xk (t)≤δ}
⎤

⎦ . (4.48)
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Then uδ(t, x) is the solution of the F-KPP equation (4.1) with initial condition
uδ(0, x) = 1 − e−φ(−x)1(−x ≤ δ). Moreover, the following limit exists

C(φ, δ) ≡ lim
t→∞

√
2

π

∞∫

0

uδ(t, y + √
2t)ye

√
2ydy , (4.49)

and

lim
t→∞ uδ(t, x + m(t)) = 1 − E

[
exp −C(φ, δ)Ze−√

2x
]
. (4.50)

Proof The first part of the Lemma is proved in the proof of Theorem 3.1, whereas
(4.50) follows from Theorem 4.2 and the representation (1.8). It remains to prove
(4.49). The proof is a refinement of Proposition 4.4 that recovers the asymptotics
(1.9).

For uδ as above, letψ(r, t, x) be its approximation as in Proposition 4.3 and choose
x, r so that x ≥ m(t)+ 8r . By Proposition 4.3 we then have the bounds

1

γ (r)
ψ(r, t, x + m(t)) ≤ uδ(t, x + m(t)) ≤ γ (r)ψ(r, t, x + m(t)) (4.51)

where

ψ(r, t, x + m(t)) = t3/2e−√
2x

√
2π(t − r)

∞∫

0

uδ(r, y′

+√
2r)ey′√2e−

(y′−x+ 3
2
√

2 log t
)2

2(t−r)

(

1 − e−2 y′x
t−r

)

dy′.

Using dominated convergence as in Proposition 4.4, one gets

lim
t→∞ψ(r, t, x + m(t)) = 2xe−√

2x

√
2π

∞∫

0

uδ(r, y′ + √
2r)y′ey′√2dy′.

Putting this back in (4.51),

1

γ (r)
C(r) ≤ lim

t→∞
uδ(t, x + m(t))

xe−√
2x

≤ γ (r)C(r), (4.52)

for C(r) ≡
√

2
π

∫∞
0 uδ(r, y′ + √

2r)y′ey′√2dy′, and x > 8r . We know that
limr→∞ C(r) ≡ C > 0 exists by Proposition 4.4. Thus taking x = 9r , letting
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r → ∞ in (4.52), and using that γ (r) ↓ 1, one has

lim
x→∞ lim

t→∞
uδ(t, x + m(t))

xe−√
2x

= lim
r→∞

√
2

π

∞∫

0

uδ(r, y′ + √
2r)y′ey′√2dy′. (4.53)

On the other hand, the representation (1.8) and the asymptotics (1.9) yield

lim
x→∞ lim

t→∞
uδ(t, x + m(t))

xe−√
2x

= lim
x→∞

1 − E [exp (−C(φ, δ)Ze−√
2x )]

xe−√
2x

= C(φ, δ).

(4.54)

The claim follows from the last two equations. ��
The results of Lemma 4.9 also hold when the cutoff is removed. Essentially, one

needs to prove that the limit t → ∞ and δ → ∞ can be interchanged. The proof
shows (non-uniform) convergence of the solution of the F-KPP equation when one
condition of Theorem 4.2 is not fulfilled. With an appropriate continuity argument, a
Lalley-Sellke type representation is also recovered.

Lemma 4.10 Let u(t, x), uδ(t, x) be solutions of the F-KPP equation (4.1) with initial
condition u(0, x) = 1 − e−φ(−x) and uδ(0, x) = 1 − e−φ(−x)1{−x≤δ}, respectively.

Set C(δ, φ) ≡ limt→∞
√

2
π

∫∞
0 uδ(t, y+√

2t)ye
√

2ydy. Then limδ→∞ C(φ, δ) exists,
and

C(φ) ≡ lim
δ→∞ C(φ, δ) = lim

t→∞

√
2

π

∞∫

0

u(t, y + √
2t)ye

√
2ydy. (4.55)

Moreover

lim
t→∞ u(t, x + m(t)) = 1 − E [exp −C(φ)Ze−√

2x ]. (4.56)

Proof Since φ is non-negative, it is easy to see from Lemma 4.1 that

0 ≤ uδ(t, x)− u(t, x) ≤ P(max xk(t) > δ + x), (4.57)
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from which it follows that

∞∫

0

uδ(t, x + √
2t)xe

√
2x dx −

∞∫

0

P [max xk(t)− √
2t > δ + x]xe

√
2x dx

≤
∞∫

0

u(t, x + √
2t)xe

√
2x dx

≤
∞∫

0

uδ(t, x + √
2t)xe

√
2x dx . (4.58)

Define

F(t, δ) ≡
∞∫

0

uδ(t, x + √
2t)xe

√
2x dx, (4.59)

U (t) ≡
∞∫

0

u(t, x + √
2t)xe

√
2x dx, (4.60)

and

M(t, δ) ≡
∞∫

0

P [max xk(t)− √
2t > δ + x]xe

√
2x dx . (4.61)

The inequalities in (4.58) then read

F(t, δ)− M(t, δ) ≤ U (t) ≤ F(t, δ). (4.62)

By Lemma 4.8, it holds

lim
δ→∞ lim

t→∞ M(t, δ) = 0. (4.63)

Remark also that Proposition 4.4 implies that for each δ, limt→∞ F(t, δ) ≡ F(δ)
exists and is strictly positive. We thus deduce from (4.62) that

lim inf
δ→∞ F(δ) ≤ lim inf

t→∞ U (t) ≤ lim sup
t→∞

U (t) ≤ lim sup
δ→∞

F(δ). (4.64)

We claim that limδ→∞ F(δ) exists, is strictly positive and finite. To see this, we
first observe that the function δ → F(δ) is by construction decreasing, and positive,
therefore the limit limδ→∞ F(δ) exists. Strict positivity is proved in a somewhat
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indirect fashion: we proceed by contradiction, and rely on the convergence of the
process of cluster extrema. Assume that

lim
δ→∞ F(δ) = 0, (4.65)

and thus that

lim
t→∞ U (t) = 0. (4.66)

Using the form of the Laplace functional of a Poisson process, we have that

E

[

exp

(

−
∫

φ(x)�t (dx)

)]

= E

⎡

⎣exp

⎛

⎝−Z

√
2

π

0∫

−∞

⎛

⎝1 − E

⎡

⎣exp −
∑

k≤n(t)

φ(x + xk(t)− √
2t)

⎤

⎦

⎞

⎠

(−x)e−√
2x dx

⎞

⎠

⎤

⎦

x �→−x= E

⎡

⎣exp

⎛

⎝−Z

√
2

π

∞∫

0

⎛

⎝1 − E

⎡

⎣exp −
∑

k≤n(t)

φ(−x + xk(t)− √
2t)

⎤

⎦

⎞

⎠

xe
√

2x dx

⎞

⎠

⎤

⎦

= E

[

exp(−Z

√
2

π
U (t))

]

. (4.67)

Therefore, (4.66) would imply that

lim
t→∞ E

[

exp

(

−
∫

φ(x)�t (dx)

)]

= E

[

exp

(

−Z

√
2

π
lim

t→∞ U (t)

)]

= 1.

(4.68)

This cannot hold. In fact, for �ext
t the process of the cluster-extrema defined earlier,

one has the obvious bound

E

[

exp

(

−
∫

φ(x)�t (dx)

)]

≤ E

[

exp

(

−
∫

φ(x)�ext
t (dx)

)]

. (4.69)
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Since the process of cluster-extrema converges, by Proposition 3.7, to a PPP
(C Z

√
2e−√

2x dx),

lim
t→∞ E

[

exp

(

−
∫

φ(x)�t (dx)

)]

≤ E

[

exp

(

−C Z
∫ {

1 − e−φ(x)}

√
2e−√

2x dx

)]

< 1. (4.70)

This contradicts (4.68) and therefore also (4.66). ��
Proposition 3.2 now follows directly from Lemma 4.10. ��

Proof of Corollary 3.3 Consider n independent copies E (i), i = 1, . . . , n of E . By
independence and by Proposition 3.2, the Laplace functional for φ ∈ Cc(R) of the
superposition of these is

E

[

exp

(

−
n∑

i=1

∫

φ(y + x)E (i)t (dy)

)]

= E

[

exp

(

−C(φ)
n∑

i=1

Z (i)e−√
2x

)]

where Z (i), i = 1, . . . , n are i.i.d. copies of the derivative martingale. The log of the
variable

∑n
i=1 Z (i) acts simply as a random shift in x . Therefore

∑n
i=1 E (i)t has the

same law as E shifted by log of Z . ��

4.4 The auxiliary process

Recall from Sect. 3.2 that (
′,F ′, P) stands for the probability space on which the
auxiliary point process �t is defined. The expectation under P is denoted by E .

4.4.1 The process of cluster-extrema

In this section, we prove Proposition 3.7 on the convergence of the process of the
cluster-extrema to a PPP(C Z

√
2e−√

2x dx). We remark that the proof is independent
of Lemma 4.10 which uses the result.

A consequence of Lemma 4.8 is the following vague convergence of the maximum
when integrated over the appropriate density.

Lemma 4.11 Let b ∈ R and h(x) = 1[b,∞)(x). Then

lim
t→∞

0∫

−∞

⎧
⎨

⎩

∫

R

h(x) P(y+max
i

xi (t)− √
2t ∈ dx)

⎫
⎬

⎭

√
2

π
(−y)e−√

2ydy =Ce−√
2b.

(4.71)
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Moreover, the convergence also holds for a continuous function h(x) that is bounded
and is zero for x small enough:

lim
t→∞

0∫

−∞

⎧
⎨

⎩

∫

R

h(x) P(y + max
i

xi (t)− √
2t ∈ dx)

⎫
⎬

⎭

√
2

π
(−y)e−√

2ydy

=
∫

R

h(z)
√

2Ce−√
2zdz (4.72)

Proof The first assertion is direct from Lemma 4.8 with initial condition u(0, x) =
1{x<0}. For the second claim, note that the statement holds for any linear combina-
tion of functions of the form 1[b,∞)(x). Suppose for simplicity that |h(x)| ≤ 1. By
assumption, it is possible to find δ > 0 such that h(x) = 0 for x < −δ. Moreover,
for any ε > 0, δ can be taken large enough so that Ce−√

2δ < ε. On [−δ, δ], h can
be approximated uniformly by linear combinations of indicator functions of the form
1[b,∞)(x). Therefore, (4.72) holds for h restricted to this interval. On (δ,∞), the term

lim
t→∞

0∫

−∞

⎧
⎨

⎩

∞∫

δ

h(x) P(y + max
i

xi (t)− √
2t ∈ dx)

⎫
⎬

⎭

√
2

π
(−y)e−√

2ydy ≤ Ce−√
2δ

is smaller than ε by the choice of δ and the bound |h(x)| ≤ 1. Since ε is arbitrary, the
conclusion holds. ��

Proof of Proposition 3.7 Consider

E

[

exp

(

−
∑

i

φ(ηi + M (i)(t)− √
2t)

)]

(4.73)

where η = (ηi ) is a Poisson process on (−∞, 0) with intensity measure√
2
π
(−y)e−√

2ydy, and M (i)(t) ≡ maxk x (i)k (t). We show that

lim
t→∞ E

[

exp

(

−
∑

i

φ(ηi + M (i)(t)− √
2t)

)]

= exp

⎛

⎝−C
∫

R

(1 − e−φ(a))
√

2e−√
2ada

⎞

⎠ . (4.74)
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Since the underlying process is Poisson and the M (i)’s are i.i.d. ,

E

[

exp

(

−
∑

i

φ(ηi + M (i)(t)− √
2t)

)]

= exp

⎛

⎝−
0∫

−∞
E
[
1 − e−φ(y+M(t)−√

2t)
] √ 2

π
(−y)e−√

2ydy

⎞

⎠,

where M(t) has the same distribution as one copy of the variables M (i)(t). The result
then follows from Lemma 4.11 with h(x) = 1 − e−φ(x) after taking the limit. ��

4.4.2 Identification with the extremal process

Proposition 4.10 yields a short proof of Theorem 3.6.

Proof of Theorem 3.6 The Laplace functional of �t using the form of the Laplace
functional of a Poisson process reads

E

[

exp

(

−
∫

φ(x)�t (dx)

)]

= E

⎡

⎣exp

⎛

⎝−
0∫

−∞

⎧
⎨

⎩
1−E

⎡

⎣exp

⎛

⎝−
∑

k≤n(t)

φ(x+xk(t)− √
2t + 1√

2
log Z)

⎞

⎠

⎤

⎦

⎫
⎬

⎭

√
2

π
(−x)e−√

2x dx

⎞

⎠

⎤

⎦

= E

⎡

⎣exp

⎛

⎝−
√

2

π

∞∫

0

u(t, x + √
2t − 1√

2
log Z)xe

√
2x dx

⎞

⎠

⎤

⎦ , (4.75)

with

u(t, x) = 1 − E

⎡

⎣exp

⎛

⎝−
n(t)∑

k=1

φ(−x + xk(t))

⎞

⎠

⎤

⎦ .

By (4.37),

lim
t→∞

√
2

π

∞∫

0

u(t, x + √
2t − 1√

2
log Z)xe

√
2x dx

= Z

√
2

π
lim

t→∞

∞∫

0

u(t, x + √
2t)xe

√
2x dx,
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and the limit exists and is strictly positive by Lemma 4.10. This implies that the Laplace
functionals of limt→∞�t and of the extremal process of BBM are equal. ��

4.4.3 Properties of the clusters

In this section we prove Proposition 3.8 and Theorem 3.4.

Proof of Proposition 3.8 Throughout the proof, the probabilities are considered con-
ditional on Z . We show that for ε > 0 there exist A1, A2 such that

sup
t≥t0

P

[

∃i,k : ηi + 1√
2

log Z +x (i)k (t)− √
2t ≥ Y, but ηi /∈ [−A2

√
t,−A1

√
t]
]

≤ ε.

(4.76)

We claim that, for t large enough, there exists A1 > 0 small enough such that

P

[

∃i,k : ηi + 1√
2

log Z + x (i)k (t)− √
2t ≥ Y, but ηi ≥ −A1

√
t

]

≤ ε/2, (4.77)

and A2 > 0 large enough such that

P

[

∃i,k : ηi + 1√
2

log Z + x (i)k (t)− √
2t ≥ Y, but ηi ≤ −A2

√
t

]

≤ ε/2. (4.78)

By Markov’s inequality and the fact that
√

2
π
< 1, the left-hand side of (4.77) is less

than

0∫

−A1
√

t

P

[

max
k

xk(t) ≥ √
2t − x + Y − 1√

2
log Z

]

(−x)e−√
2x dx

=
A1

√
t∫

0

P

[

max
k

xk(t) ≥ √
2t + x + Y − 1√

2
log Z

]

xe
√

2x dx (4.79)

This can be smaller than ε/2 by Lemma 4.6 by taking A1 small enough. The same
reasoning can be applied to (4.78) thereby establishing the proposition. ��
Proof of Theorem 3.4 Let (xi (t), i ≤ n(t)) be a standard BBM of law P. Let a ∈ I , a
compact interval in (−∞, 0) and b ∈ R. Set x = a

√
t + b. Consider

E t ≡
∑

i

δxi (t)−
√

2t , (4.80)
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and max E t ≡ maxi xi (t) − √
2t . We first claim that x + max E t conditionally on

{x + max E t > 0} converges weakly to an exponential random variable,

lim
t→∞ P

[
x + max E t > X |x + max E t > 0

] = e−√
2X , (4.81)

for X > 0 and 0 otherwise. Remark, in particular, that the limit does not depend on x .
To see (4.81), we write the conditional probability as

P
[
x + max E t > X

]

P
[
x + max E t > 0

] . (4.82)

For t large enough (and hence −x large enough in the positive) we may apply the
uniform bounds from Proposition 4.3 in the form

P

[

max
k≤n(t)

xk(t) ≥ X − x + √
2t

]

≤ γ (r)ψ(r, t, X − x + √
2t) (4.83)

and

P

[

max
k≤n(t)

xk(t) ≥ −x + √
2t

]

≥ γ−1(r)ψ(r, t,−x + √
2t) (4.84)

where ψ is as in (4.7) and the u entering into its definition is solution to F-KPP with
Heaviside initial conditions, and r is large enough. Therefore,

γ−2(r)
ψ (r, t, X − x + √

2t)

ψ(r, t,−x + √
2t)

≤ P [x + max E t > X ]
P[x + max E t > 0]

≤ γ 2(r)
ψ (r, t, X − x + √

2t)

ψ(r, t,−x + √
2t)

. (4.85)

By Lemma 4.5,

lim
t→∞

ψ(r, t, X − x + √
2t)

ψ(r, t,−x + √
2t)

= e−√
2X . (4.86)

Taking the limit t → ∞ first, and then r → ∞ (and using that γ (r) ↓ 1) we thus see
that (4.85) implies (4.81).

Second, we show that for any function φ that is continuous with compact support,
the limit of

E

[

exp −
∫

φ(x + z)E t (dz)
∣
∣x + max E t > 0

]

(4.87)

exists and is independent of x . It follows from the first part of the proof that the
conditional process has a maximum almost surely. It is thus sufficient to consider the
truncated Laplace functional, that isfor δ > 0,
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E

[

exp

(

−
∫

φ(x + z)E t (dz)

)

1{x+max E t ≤δ}
∣
∣
∣x + max E t > 0

]

(4.88)

The above conditional expectation can be written as

=
E

[∏n(t)
k=1 exp

(
−φ(x + xk(t)− √

2t)
)
1{x+xk (t)−

√
2t≤δ}

]

P
[
x + max E t > 0

]

−
E

[∏n(t)
k=1 exp

(
− φ(x + xk(t)− √

2t)
)
1{x+xk (t)−

√
2t≤0}

]

P
[
x + max E t > 0

] . (4.89)

Define

u1(t, y) ≡ 1 − E

⎡

⎣
n(t)∏

k=1

e−φ(−y+xk (t))1{−y+xk (t)≤0}

⎤

⎦

u2(t, y) ≡ 1 − E

⎡

⎣
n(t)∏

k=1

e−φ(−y+xk (t))1{−y+xk (t)≤δ}

⎤

⎦

u3(t, y) ≡ P [−y + max
k

xk(t) ≤ 0]

(4.90)

so that

(4.89) = u2(t,−x + √
2t)

u3(t,−x + √
2t)

− u1(t,−x + √
2t)

u3(t,−x + √
2t)
. (4.91)

Remark that the functions u1, u2 and u3, all solve the F-KPP equation 4.1 with
initial conditions

u1(0, y) = 1 − e−φ(−y)1{−y≤0},
u2(0, y) = 1 − e−φ(−y)1{−y≤δ},
u3(0, y) = 1 − 1{−y≤0}.

(4.92)

They also satisfy the assumptions of Theorem 4.2 and Proposition 4.3.
Let ψi be as in (4.7) with u replaced by the appropriate ui , i = 1, 2, 3. By Propo-

sition 4.3,

lim
t→∞

u2(t,−x + √
2t)

u3(t,−x + √
2t)

− u1(t,−x + √
2t)

u3(t,−x + √
2t)

= lim
r→∞ lim

t→∞

{
ψ2(r, t,−x + √

2t)

ψ3(r, t,−x + √
2t)

}

− lim
r→∞ lim

t→∞

{
ψ1(r, t,−x + √

2t)

ψ3(r, t,−x + √
2t)

}

.

(4.93)
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By Lemma 4.5, the above limits exist and do not depend on x . This shows the existence
of (4.88). It remains to prove that this limit is non-zero for a non-trivial φ, thereby
showing the existence and local finiteness of the conditional point process. To see this,
note that, by Proposition 4.4, the limit of (4.88) equals

C2 − C1

C3

where Ci = limt→∞
∫ 0
−∞ ui (t, y′ + √

2t)(−y′)e−√
2y′

dy′ for ui as above. Note that
0 < C3 < ∞, since by the representation of Proposition 3.2

lim
t→∞ P

(

max
i≤n(t)

xi (t)− m(t) ≤ z

)

= E

[
exp −C3 Ze−√

2z
]
,

and this probability is non-trivial. Now suppose C1 = C2. Then by Theorem 3.1 again,
this would entail

lim
t→∞ E

[

exp

(

−
∫

φ(x)Et (dx)

)

1{max Et<δ}
]

= lim
t→∞ E

[

exp

(

−
∫

φ(x)Et (dx)

)

1{max Et<0}
]

,

where Et = ∑
i δxi (t)−m(t) and max Et = maxi xi (t)− m(t). Thus,

lim
t→∞ E

[

exp

(∫

φ(x)Et (dx)

)

1{0<max Et<δ}
]

= 0.

But this is impossible since the maximum has positive probability of occurrence in
[0, δ] for any δ and the process limt→∞ Et is locally finite. This concludes the proof
of the Proposition. ��

Define the gap process at time t

Dt ≡
∑

i

δxi (t)−max j x j (t). (4.94)

Let us write E for the point process obtained in Theorem 3.4 from the limit of the
conditional law of E t given max E t > 0. We denote by max E the maximum of E ,
and by D the process of the gaps of E , that is the process E shifted back by max E .
The following corollary is the fundamental result showing that D is the limit of the
conditioned process Dt , and, perhaps surprisingly, the process of the gaps in the limit
is independent of the location of the maximum.

Corollary 4.12 Let x = a
√

t , a < 0. In the limit t → ∞, the random variables Dt

and x + max E are conditionally independent on the event x + max E > b for any
b ∈ R. More precisely, for any bounded continuous function f, h and φ ∈ Cc(R),
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lim
t→∞ E

[

f

(∫

φ(z)Dt (dz)

)

h(x + max E t )

∣
∣
∣x + max E t > b

]

= E

[

f

(∫

φ(z)D(dz)

)] ∞∫

b

h(y)

√
2e−√

2ydy

e−√
2b

. (4.95)

Moreover, convergence is uniform in x = a
√

t for a in a compact set.

Proof By standard approximation, it suffices to establish the result for h(y) = 1{y>b′}
for b′ > b. By the property of conditioning and since b′ > b

E

[

f

(∫

φ(z)Dt (dz)

)

1{x+max Et>b′}
∣
∣
∣x + max E t > b

]

= E

[

f

(∫

φ(z)Dt (dz)

) ∣
∣
∣x − b′ + max E t > 0

]
P [x − b + max E t > b′ − b]

P [x − b + max E t > 0] .

The conclusion will follow from Theorem 3.4 by taking the limit t → ∞, once it
is shown that convergence of (E t , y + max E t ) under the conditional law implies
convergence of the gap process Dt . This is a general continuity result which is done
in the next lemma. ��
Lemma 4.13 Let (μt , Xt ) be a sequence of random variables on (M × R,P) that
converges to (μ, X) in the sense that for any bounded continuous function f, h on R

and any φ ∈ Cc(R)

E

[

f

(∫

φ(y)μt (dy)

)

h(Xt )

]

→ E

[

f

(∫

φ(y)μ(dy)

)

h(X)

]

. (4.96)

Then for any φ ∈ Cc(R) and g : R → R, bounded continuous,

E

[

g

(∫

φ(y + Xt )μt (dy)

)]

→ E

[

g

(∫

φ(y + X)μ(dy)

)]

. (4.97)

Proof Let ε > 0 and f : R → R be a bounded continuous function. Introduce the
notation

Txμ(φ) ≡
∫

φ(y + x)μ(dx). (4.98)

We need to show that for t large enough

∣
∣
∣E
[

f
(
TXtμt (φ)

)]− E [ f (TXμ(φ))]
∣
∣
∣ < ε. (4.99)

By standard approximations, it is enough to suppose f is Lipschitz, whose constant
we assume to be 1 for simplicity.
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Since the random variables (Xt ) are tight by assumption, there exists a compact
interval Kε of R such that for t large enough

(4.99) ≤
∣
∣
∣E
[

f
(
TXtμt (φ)

) ; Xt ∈ Kε
]− E [ f (TXμ(φ)) ; X ∈ Kε]

∣
∣
∣+ ε. (4.100)

Now divide Kε into N intervals I j of equal length. Write x̄ j for the midpoint of I j .
For each of these intervals, one has

E [ f (TXtμt (φ)); Xt ∈ I j ] = E [ f (Tx̄ jμt (φ)); Xt ∈ I j ] + R(t, j) (4.101)

for

R(t, j) ≤ E [| f (TXtμt (φ))− f (Tx̄ jμt (φ))|; Xt ∈ I j ]

Since f is Lipschitz, the right-hand side is smaller than

E[|TXtμt (φ)− Tx̄ jμt (φ)|; Xt ∈ I j ]. (4.102)

Moreover

|TXtμt (φ)− Tx̄ jμt (φ)| ≤
∫

|φ(y + Xt )− φ(y + x̄ j )|μt (dy).

Note that there exists a compact C , independently of t and j so that |φ(y + Xt ) −
φ(y + x̄ j )| = 0 for y /∈ C (it suffices to take C so that it contains all the translates
supp φ+k, k ∈ Kε). By taking N large enough, |y + Xt − (y + x̄ j )| = |x̄ j − Xt | < δφ
for the appropriate δφ making |φ(y + Xt ) − φ(y + x̄ j )| < ε, uniformly on y ∈ C .
Hence, 4.102 is smaller than

εE [μt (C); Xt ∈ I j ].

The summation over j is thus smaller than εE[μt (C)]. By the convergence of (μt ),
this can be made smaller for t large enough.

The same approximation scheme for (μ, X) yields

E [ f (TXμ(φ)); Xt ∈ I j ] = E [ f (Tx̄ jμ(φ)); X ∈ I j ] + R( j) (4.103)

where
∑

j R( j) ≤ εE[μ(C)]. Therefore (4.99) will hold provided that the difference
of the first terms of the right-hand side of (4.101) and of (4.103) is small for t large
enough and N fixed. But this is guaranteed by the hypotheses on the convergence of
(μt , Xt ). ��
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4.5 Characterisation of the extremal process

Proof of Theorem 2.1 It suffices to show that for φ : R → R+ continuous with
compact support, the Laplace functional �t (φ) of the extremal process Et of BBM
satisfies

lim
t→∞�t (φ) = E

⎡

⎣exp

⎛

⎝−C Z
∫

R

E[1 − e− ∫
φ(y+z)D(dz)]√2e−√

2ydy

⎞

⎠

⎤

⎦

(4.104)

for the point process D of Corollary 4.12.
Now, by Theorem 3.6,

lim
t→∞�t (φ) = lim

t→∞ E

⎡

⎣exp

⎛

⎝−
∑

i,k

φ(ηi + 1√
2

log Z + x (i)k (t)− √
2t)

⎞

⎠

⎤

⎦ .

(4.105)

Using the form for the Laplace transform of a Poisson process we have for the right
side

lim
t→∞ E

⎡

⎣exp

⎛

⎝−
∑

i,k

φ(ηi + 1√
2

log Z + x (i)k (t)− √
2t)

⎞

⎠

⎤

⎦

= E

⎡

⎣exp

⎛

⎝−Z lim
t→∞

0∫

−∞
E

[

1 − exp

(

−
∫

φ(x + y)E t (dx)

)]

√
2

π
(−y)e−√

2ydy

⎞

⎠

⎤

⎦ . (4.106)

Let Dt as in (4.94). The integral on the right-hand side above can be written as

lim
t→∞

0∫

−∞
E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

)]√
2

π
(−y)e−√

2ydy

for the bounded (on [0,∞)) continuous function f (x) = 1−e−x , and where Txφ(y) =
φ(y + x). Note that f (0) = 0. By Proposition 3.8, there exist A1 and A2 suchthat
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0∫

−∞
E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

)]√
2

π
(−y)e−√

2ydy

= 
t (A1, A2)+
−A1

√
t∫

−A2
√

t

E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

)]√
2

π
(−y)e−√

2ydy,

(4.107)

where the error term satisfies limA1↓0,A2↑∞ supt≥t0 
t (A1, A2) = 0. Let mφ be the
minimum of the support of φ. Note that

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

)

is zero when y +max E t < mφ , and that the event {y +max E t = mφ} has probability
zero. Therefore,

E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

)]

= E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

)

1{y+max E t>mφ}
]

= E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

) ∣
∣
∣y + max E t >mφ

]

P
[
y+max E t >mφ

]
.

(4.108)

By Corollary 4.12, the conditional law of the pair (Dt , y + max E t ) given {y +
max E t > mφ} exists in the limit. Moreover the convergence is uniform in y ∈
[−A1

√
t,−A2

√
t]. By Lemma 4.13, the convergence applies to the random variable

∫ {
Ty+max E t

φ(z)
}

Dt (dz). Therefore

lim
t→∞ E

[

f

(∫ {
Ty+max E t

φ(z)
}

Dt (dz)

) ∣
∣
∣y + max E t > mφ

]

=
∞∫

mφ

E

[

f

(∫

(Tyφ(z)D(dz)

)] √
2e−√

2ydy

e−√
2mφ

(4.109)

On the other hand,

−A1
√

t∫

−A2
√

t

P
[
y + max E t > mφ

]
√

2

π
(−y)e−√

2ydy = Ce−√
2mφ +
t (A1, A2)

(4.110)
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by Lemma 4.11 and by the same approximation as in (4.107).
Combining (4.110), (4.109) and (4.108) gives that (4.106) converges to

E

⎡

⎣exp

⎛

⎝−C Z
∫

R

E[1 − e− ∫
φ(y+z)D(dz)]√2e−√

2ydy

⎞

⎠

⎤

⎦ , (4.111)

which is by (4.105) also the limiting Laplace transform of the extremal process of
BBM: this shows (4.104) and thus concludes the proof of Theorem 2.1. ��
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