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Abstract. We prove that the extreme points of the set of s-concave probability measures
satisfying a linear constraint are some Dirac measures and some s-affine probabilities
supported by a segment. From this we deduce that the constrained maximization of a
convex functional on the s-concave probability measures is reduced to this small set of
extreme points. This gives a new approach to a localization theorem due to Kannan, Lovász
and Simonovits which happens to be very useful in geometry to obtain inequalities for
integrals like concentration and isoperimetric inequalities. Roughly speaking, the study of
such inequalities is reduced to these extreme points.

1. Introduction

The localization lemma of Lovász and Simonovits [7] indicates that if one wants to prove
an inequality for all 1/n-concave measures on Rn , it is enough to test this inequality
over all 1/n-affine measures supported by a segment. This may reduce the problem
considerably. The precise statement is as follows:

Theorem [7]. Let f and g be two lower semi-continuous Lebesgue integrable functions
on Rn such that ∫

Rn

f (x) dx > 0 and
∫
Rn

g(x) dx > 0.

Then there exists a, b ∈ Rn and an affine function �: [0, 1]→ R
+ such that

∫ 1

0
f ((1− t)a + tb)�(t)n−1 dt > 0 and

∫ 1

0
g((1− t)a + tb)�(t)n−1 dt > 0.
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The proof given in [7] consists in using infinitely many times the “bisection method”
in an algorithmic procedure to perform the construction of a sequence of measures
which converges to a 1/n-affine measure supported by a segment satisfying the same
inequalities. In [6] Kannan et al. deduce from this result a theorem in terms of products
of integrals over convex sets (see Corollary 1 below) that they can extend to the case of
log-concave measures.

In this paper we generalize the localization lemma of Lovász and Simonovits [7]
to the s-concave measures on Rn for −∞ ≤ s ≤ 1

2 . The case s = 0 corresponds to
the log-concave measures. The definitions and well-known results about such measures
are recalled in Section 2 of the paper. Our method consists in replacing the algorithmic
procedure by the use of the Krein–Milman theorem. More precisely, in Theorem 1 we
describe the extreme points of the convex hull of the set of all s-concave probabilities
µ supported in a compact subset of Rn satisfying the constraint

∫
f dµ ≥ 0, where f

is a fixed upper semi-continuous function. Here again, the “bisection method” is at the
heart of the proof to decide which probabilities are extreme in this set. Then a standard
use of the Krein–Milman theorem shows that the supremum over this set of any convex
functional is attained at these extreme points, i.e. either at Dirac measures or at some
s-affine probabilities supported by a segment, this is our Theorem 2. An easy example
is to consider the functional µ 	→ ∫

g dµ for an upper semi-continuous function g and
we recover the conclusion of Lovász and Simonovits for two integrals.

The main results of this paper explained above are contained in Section 3, while the
proof of the main theorem is postponed to Section 4. In Section 5 of the paper we prove
a generalization to the case of several constraints. Such a generalization is announced
to be true by Kannan et al. in [6]. In this part we use Borsuk’s theorem to find an affine
subspace which simultaneously bisects several integrals.

This localization principle is very powerful to obtain dimension-free inequalities.
Under different constraints, it is the main tool to prove concentration inequalities [7],
[5], general isoperimetric inequalities [6] and also to study distributional inequalities for
polynomials over convex bodies in Rn [1], [4], [8].

2. Preliminaries on s-Concave Measures on Rn

Given subsets A and B of the Euclidean n-space Rn and λ > 0, we set A + B =
{x + y; x ∈ A, y ∈ B} and λA = {λx; x ∈ A}. For a convex set C , we denote by
Ext(C) the set of extreme points of C . For all s ∈ [−∞,+∞], we say in this paper that
a measure µ in Rn is s-concave if the inequality

µ(λA + (1− λ)B) ≥ [λµs(A)+ (1− λ)µs(B)]1/s (∗)

holds for all compact subsets A, B ⊂ Rn such that µ(A)µ(B) > 0 and all λ ∈ [0, 1].
The limit cases are interpreted by continuity. Thus the right-hand side of this inequal-
ity is equal to µλ(A) µ1−λ(B) for s = 0, to min(µ(A), µ(B)) for s = −∞, and to
max(µ(A), µ(B)) for s = +∞. Notice that an s-concave measure is t-concave for all
t ≤ s. We denote by P(K ) the set of probabilities in Rn supported in a convex compact
K . For a probability µ, supp(µ) denotes its support.
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For γ ∈ [−∞,+∞], a function f : Rn → R
+ is γ -concave if the inequality

f (λx + (1− λ)y) ≥ [λ f γ (x)+ (1− λ) f γ (y)]1/γ

holds for all x and y such that f (x) f (y) > 0 and all λ ∈ [0, 1], where the limit cases are
also interpreted by continuity. For example, the −∞-concave functions are the quasi-
concave ones (i.e. the functions f such that { f ≥ t} is convex for all t ∈ R). The link
between the s-concave probabilities and the γ -concave functions is described in the work
of Borell [3]. Notice that for s > 0, his definition differs a little from ours because the
inequality (∗)was not restricted to the compact sets A and B such thatµ(A)µ(B) > 0. In
particular, with our definition, for all s ≤ 1/d, there exists s-concave measures supported
in an affine subspace of dimension d and, for example, Dirac measures are s-concave
for any s ∈ [−∞,+∞].

Theorem [3]. Letµbe a measure inRn, let G be the least affine subspace which contains
the support of µ, set d = dim G and let m be the Lebesgue measure on G. Then for
−∞ ≤ s ≤ 1/d ,µ is s-concave if and only if dµ = ψ dm, where 0 ≤ ψ ∈ L1

loc(R
n, dm)

and ψ is γ -concave with γ = s/(1 − sd) ∈ [−1/d,+∞]. Moreover, if s > 1/d, then
µ is s-concave if and only if µ is a Dirac measure.

According to this theorem, we say that a measureµ is s-affine when its densityψ satisfies
that ψγ (or logψ if s = γ = 0) is affine on its convex support with γ = s/(1− sd).
We will also need the following simple lemma.

Lemma 1. Let K be a convex set in Rn , γ ∈ [−∞, 1]. If C : K → R
+ is γ -concave

and V : K → R
+ is γ -affine, then (C − V )+: K → R

+ is γ -concave.

Proof. Let γ ∈ (−∞, 1]\{0} and let x and y in K be such that C(x) ≥ V (x) and
C(y) ≥ V (y). By Minkowski’s inequality for ‖ · ‖γ we know that for all λ ∈ [0, 1],

(λCγ (x)+ (1− λ)Cγ (y))1/γ − (λV γ (x)+ (1− λ)V γ (y))1/γ

≥ (λ(C − V )γ (x)+ (1− λ)(C − V )γ (y))1/γ

and as C is γ -concave and V is γ -affine, we get for all x and y in the support of (C−V )+,

(C − V )(λx + (1− λ)y) ≥ (λ(C − V )γ (x)+ (1− λ)(C − V )γ (y))1/γ .

By sending γ to 0 in Minkowski’s inequality, we obtain the arithmetico-geometric in-
equality which gives the same conclusion for log-concave functions. The case γ = −∞
is obvious.

3. Results

Our main result is the following theorem.
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Theorem 1. Let n be a positive integer, let K be a compact convex set in Rn, let
s ∈ [−∞, 1

2 ] and let f : K → R be an upper semi-continuous function. We denote by
Pf the set of s-concave probabilities supported in K satisfying

∫
f dµ ≥ 0. The set of

extreme points of convPf is exactly:

(1) the Dirac measures at points x such that f (x) ≥ 0,
(2) the probabilities ν which are s-affine, supported by a segment [a, b] ⊂ K , such

that
∫

f dν = 0 and
∫ x

a f dν > 0 on (a, b) or
∫ b

x f dν > 0 on (a, b).

Before proving Theorem 1, we show that it immediately extends the localization lemma
of Lovász and Simonovits [7] and we prefer to see it as a constrained optimization
problem on s-concave probabilities in Rn .

Theorem 2. Under the same assumptions as in Theorem 1, if 
: P(K ) → R is
a convex upper semi-continuous function, then sup{
(µ);µ ∈ Pf } is achieved at a
probability ν such that ν = δx with f (x) ≥ 0 or ν is s-affine on a segment [a, b],∫

f dν = 0 and
∫ x

a f dν > 0 on (a, b) or
∫ b

x f dν > 0 on (a, b).

Proof of Theorem 2. By Theorem 2.2 of [2], we know that the set of s-concave prob-
abilities supported in K is w∗-compact. Since f is upper semi-continuous, the con-
dition

∫
f dµ ≥ 0 is w∗-closed, therefore the set Pf is w∗-compact. By applica-

tion of the Krein–Milman theorem, sup{
(µ) ; µ ∈ Pf } is achieved at a probability
ν ∈ Ext(convw

∗
Pf ) ⊂ Ext(convPf ). The result follows by the description of the ex-

treme points of convPf given in Theorem 1.

As a direct application, we deduce the following generalization of the geometric KLS
localization theorem in its more popular form:

Corollary 1. Let f1, f2 be two upper semi-continuous non-negative functions on Rn

and let f3, f4 be two lower semi-continuous non-negative functions on Rn. Let −∞ ≤
s ≤ 1

2 and α, β > 0. Suppose that f α1 f β2 ≤ f α3 f β4 and that for every a, b ∈ Rn , for
every s-affine probability ν supported by [a, b],

(∫
f1 dν

)α (∫
f2 dν

)β
≤
(∫

f3 dν

)α (∫
f4 dν

)β
.

Then for every s-concave probability µ on Rn ,

(∫
f1 dµ

)α (∫
f2 dµ

)β
≤
(∫

f3 dµ

)α (∫
f4 dµ

)β
.

Proof. By adding a small constant to f3, we may assume that f3 > 0 on Rn . Let µ be
an s-concave compactly supported probability inRn and denote its support by K . Define

f = f1 −
(∫

f1 dµ∫
f3 dµ

)
f3, 
(θ) =

(∫
f1 dµ∫
f3 dµ

)α/β (∫
f2 dθ

)
−
(∫

f4 dθ

)
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for every probability θ ∈ P(K ) and Pf as in Theorem 1. By the assumptions on f1,

f2, f3 and f4, the functions f and 
 are upper semi-continuous and 
 is affine. Since
µ ∈ Pf , by Theorem 2, there exists a probability ν which is either a Dirac or s-affine
and supported by a segment [a, b] such that 
(µ) ≤ 
(ν) and

∫
f dν ≥ 0. This gives

(∫
f1 dµ∫
f3 dµ

)α/β ∫
f2 dµ−

∫
f4 dµ ≤

(∫
f1 dµ∫
f3 dµ

)α/β ∫
f2 dν −

∫
f4 dν

≤
(∫

f1 dν∫
f3 dν

)α/β ∫
f2 dν −

∫
f4 dν ≤ 0.

By a standard approximation this gives the result for any s-concave probability in Rn .

4. Proof of Theorem 1

Obviously the Dirac measures at points x such that f (x) ≥ 0 are extreme points of
convPf thus, from now on, we describe the extreme points of convPf which are not
Dirac measures.

In steps 1–3 we fix a measure ν, extreme in convPf , which is not a Dirac measure
and prove that it satisfies the properties quoted in (2) of Theorem 1. We denote by G the
least affine subspace which contains the support of ν.

Step 1: dim G = 1.

Proof. If dim G ≥ 2 there exists x0 in the relative interior of supp ν and a two-dimensional
subspace of Rn , E such that x0 + E ⊂ G. For all u ∈ S1(E), the unit circle in E , let
Hu = {x ∈ G; 〈x − x0, u〉 = 0}, H+u = {x ∈ G; 〈x − x0, u〉 ≥ 0} and H−u = {x ∈
G; 〈x − x0, u〉 ≤ 0} and define φ: S1(E) → R by φ(u) = ∫

H+u
f dν − (∫ f dν)/2.

For all u ∈ S1(E), Hu is a hyperplane in G, hence ν(Hu) = 0. This implies that
φ(−u) = −φ(u) and that φ is continuous. Hence there exists u0 ∈ S1(E) such that
φ(u0) = 0. By the choice of x0, it is clear that ν(H+u0

) > 0 and ν(H−u0
) > 0, thus we

may define ν1 = ν|H+u0

/
ν(H+u0

) and ν2 = ν|H−u0

/
ν(H−u0

). Then ν = ν(H+u0
)ν1 + ν(H−u0

)ν2

with ν1 and ν2 ∈ Pf \{ν}, which means that ν is not extreme in convPf .

From step 1 and Borell’s characterization, the support of ν is a segment [a, b], dν =
ψ dm, where m is the Lebesgue measure on [a, b], 0 ≤ ψ ∈ L1

loc(R
n, dm) and ψ is

γ -concave with γ = s/(1− s). We have −∞ ≤ s ≤ 1
2 , hence γ ∈ [−1, 1].

Step 2:
∫

f dν = 0 and
∫ x

a f dν > 0 on (a, b) or
∫ b

x f dν > 0 on (a, b).

Proof. Notice that the function x 	→ ∫ x
a f dν is continuous on [a, b]. If there exists c ∈

(a, b) such that
∫ c

a f dν = 0,define ν1 = ν|[a,c]
/
ν([a, c]) and ν2 = ν|[c,b]

/
ν([c, b]), then

ν = ν([a, c])ν1+ ν([c, b])ν2 with ν1 and ν2 ∈ Pf \{ν}. This means that ν is not extreme
in convPf . If

∫
f dν > 0, then there exists c ∈ (a, b) with

∫ c
a f dν = (∫ f dν)/2 > 0.

Defining ν1 and ν2 in the same way we get the same result.

Step 3: ν is s-affine.
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Proof. By step 2 we may assume that
∫ x

a f dν > 0, for all x ∈ (a, b). Let c ∈ (a, b),
u = (b− a)/‖b− a‖2 and for α ∈ R, define ϕα: [a, b]→ R by ϕα(x) = (ψ(c)/2)(1+
γα〈x − c, u〉)1/γ+ extending it by continuity for γ = 0. It is clear that ϕα is γ -affine on
[a, b]. We consider the following measures with support included in [a, b]:

dµα = (ψ − ϕα)+ dm, dνα = inf(ψ, ϕα) dm.

Since γ ∈ [−1, 1], ψ is γ -concave and ϕα is γ -affine on [a, b], we get from Lemma 1
that (ψ − ϕα)+ is γ -concave so µα is s-concave. It is clear that inf(ψ, ϕα) is also γ -
concave so να is also s-concave. By Lebesgue’s theorem, the function α 	→ ∫

f dνα is
continuous on R and

lim
α→−∞

∫
f dνα =

∫ c

a
f dν > 0, lim

α→+∞

∫
f dνα =

∫ b

c
f dν < 0

since
∫

f dν = 0. Hence there exists α0 such that
∫

f dνα0 = 0. Since ν = µα0 + να0

this gives
∫

f dµα0 = 0 and taking λ = να0([a, b]) ∈ (0, 1),we get ν = (1−λ)ν1+λν2

where ν1 = µα0/(1− λ) and ν2 = να0/λ. The probabilities ν1 and ν2 belong to Pf and
since ν is extreme, we deduce that ν1 = ν2 = ν which means that ψ = ϕα0/λ and ν is
s-affine.

In step 4 we prove that a probability satisfying properties (2) of Theorem 1 is extreme
in convPf .

Step 4: if a probability ν is s-affine on a segment [a, b] ⊂ Rn ,
∫

f dν = 0 and
∫ x

a f dν >

0 on (a, b) or
∫ b

x f dν > 0 on (a, b), then ν is extreme in convPf .

Proof. We define F : [a, b]→ R by F(x) = ∫ x
a f dν, we may and do assume that F > 0

on (a, b). We denote by ψ the density of ν with respect to the Lebesgue measure m on
[a, b]. It is a γ -affine function on [a, b]. Suppose that ν is the convex combination of
measures µ1, . . . , µp ∈ Pf \{ν} :

ν =
p∑

i=1

λiµi , 0 < λi ≤ 1,
p∑

i=1

λi = 1. (1)

For all i = 1, . . . , p,
∫

f dµi ≥ 0, since µi ∈ Pf , and by hypothesis on ν,
∫

f dν =
0 = ∑p

i=1 λi
∫

f dµi so
∫

f dµi = 0. By (1), for each i = 1, . . . , p, µi is absolutely
continuous with respect to ν and since µi ∈ Pf , it has a γ -concave density ψi with
respect to m on [a, b]. Therefore, if we denote by ρi the density of µi with respect to ν,
we have

p∑
i=1

λiρi = 1 on [a, b] and ρi = dµi

dν
= ψi

ψ

is the quotient of a γ -concave function by a γ -affine function. It is easily checked
that these properties imply that ρi is quasi-concave, non-negative and continuous on its
support. Moreover a quasi-concave function on a segment is either monotone or first
non-decreasing then non-increasing on this segment. Since

∑p
i=1 λiρi = 1 on [a, b], at

least one of the functions ρi which are non-zero at a is non-increasing in a neighbourhood
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of a. We may assume that one of these functions is ρ1. Hence ρ1 is non-increasing on its
support [a, c], where c ∈ (a, b]. Integrating by parts, we get

∫
f dµ1 = 0 =

∫ c

a
ρ1 d F = [ρ1 F]c

a −
∫ c

a
F dρ1 = ρ1(c)F(c)−

∫ c

a
F dρ1.

Since ρ1(c)F(c) ≥ 0, ρ1 is non-increasing and F > 0 on (a, c), this implies that ρ1 is
constant on [a, c] and F(c) = 0. Therefore c = b and since dµ1 = ρ1 dν with µ1 and
ν probabilities on [a, b], ρ1 = 1 on [a, b] hence µ1 = ν; this is absurd.

This ends the proof of Theorem 1.

5. Generalization to Several Constraints

We do not know the exact characterization of the extreme points of the set of s-concave
probabilities satisfying several constraints but we can still establish the following gen-
eralization of Theorem 1.

Theorem 3. Let n be a positive integer, let K be a compact convex set in Rn , let
p ∈ {1, . . . , n} and let −∞ ≤ s ≤ 1/(p + 1). For f = ( f1, . . . , fp) : K → R

p, with
fi upper semi-continuous functions, we denote by Pf the set of s-concave probabilities
supported in K satisfying

∫
fi dµ ≥ 0, ∀i. Let ν be an extreme point of convPf and

denote by G the least affine subspace which contains its support. Then dim G ≤ p and
if dim G = p, then ν is s-affine on its support,

∫
f dν = 0 and for all x0 in the relative

interior of supp(ν), for all u in the unit sphere of G,
∫
〈x−x0,u〉≥0 f dν �= 0. Moreover,

if 
: P(K ) → R is a convex upper semi-continuous function then supµ∈Pf

(µ) is

achieved at an extreme point of convPf as described above.

Proof. Fix a measure ν, extreme in convPf and let G be the least affine subspace which
contains the support of ν, we can assume that dim G ≥ p.

Step 1: dim G = p.

Proof. If dim G ≥ p + 1 there exists x0 in the relative interior of supp ν and a (p + 1)-
dimensional subspace ofRn , E such that x0+E ⊂ G.For all u ∈ Sp(E), the unit sphere in
E , let Hu = {x ∈ G; 〈x−x0, u〉 = 0}, H+u = {x ∈ G; 〈x−x0, u〉 ≥ 0} and H−u = {x ∈
G; 〈x − x0, u〉 ≤ 0} and define φ : Sp(E)→ R

p by φ(u) = ∫H+u
f dν − (∫ f dν)/2.

For all u ∈ Sp(E), Hu is a hyperplane in G, hence ν(Hu) = 0. This implies that
φ(−u) = −φ(u) and that φ is continuous. Hence, from Borsuk’s theorem, there exists
u0 ∈ Sp(E) such that φ(u0) = 0. By the choice of x0, it is clear that ν(H+u0

) > 0 and
ν(H−u0

) > 0, thus we may define ν1 = ν|H+u0

/
ν(H+u0

) and ν2 = ν|H−u0

/
ν(H−u0

). Then

ν = ν(H+u0
)ν1 + ν(H−u0

)ν2 with ν1 and ν2 ∈ Pf \{ν}, which means that ν is not extreme
in convPf .

Step 2: for all x0 in the interior of supp(ν), for all u in the unit sphere of G,
∫
〈x−x0,u〉≥0 f dν

�= 0 and
∫

f dν = 0.
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Proof. Assume first that there exists x0 in the interior of supp(ν), and u in the unit sphere
of G, such that

∫
〈x−x0,u〉≥0 f dν = 0. We define H+ = {x ∈ G; 〈x − x0, u〉 ≥ 0},

H− = {x ∈ G; 〈x − x0, u〉 ≤ 0}, ν1 = ν|H+
/
ν(H+) and ν2 = ν|H−

/
ν(H−). Then

ν = ν(H+)ν1 + ν(H−)ν2 with ν1 and ν2 ∈ Pf \{ν}, which means that ν is not extreme
in convPf .

Now we prove that
∫

f dν = 0. Assume that
∫

f dν �= 0. We identify G withRp and
we denote by ep+1 a vector orthogonal to G in Rn . For every u ∈ S p, the unit sphere of
G⊕Rep+1, let H+u = {x ∈ G; 〈x − ep+1, u〉 ≥ 0} and H−u = {x ∈ G; 〈x − ep+1, u〉 ≤
0}. This is a parametrization of the half-spaces of G by S p. As in step 1, we define
φ: S p → R

p by φ(u) = ∫
H+u

f dν − (∫ f dν)/2. The same use of Borsuk’s theorem
gives a vector u0 ∈ S p such that φ(u0) = 0. We conclude as in step 1 that ν is not
extreme in convPf .

Observe that the first part is also valid when dim G < p while in the second part, the
use of Borsuk’s theorem requires dim G = p.

Step 3: ν is s-affine.

Proof. By the characterization of Borell and steps 1 and 2, ν is absolutely continuous
with respect to the Lebesgue measure m on G, dν/dm = ψ is γ -concave on G with
γ = s/(1− sp) and

∫
f dν = 0. As in step 2, we identify G withRp, we denote by ep+1

a vector orthogonal to G in Rn and by S p the unit sphere of G ⊕Rep+1. Let c be within
the relative interior of supp(ν). For every u ∈ S p such that 〈u, ep+1〉 �= 0, we define a
γ -affine function ϕu : K → R by

ϕu(x) = ψ(c)

2

(
1+ γ 〈x − c, u〉

〈ep+1, u〉
)1/γ

+
,

extending it by continuity for γ = 0. We also define φ: S p → R
p by

φ(u) =




∫
f (ψ − ϕu)+ dm if 〈u, ep+1〉 > 0,∫
f inf(ψ, ϕu) dm if 〈u, ep+1〉 < 0,∫
〈x−c,u〉≥0 f dν if 〈u, ep+1〉 = 0.

It is easily checked that φ is continuous on S p and φ(u) + φ(−u) = ∫
f dν = 0.

Hence, from Borsuk’s theorem, there exists u0 ∈ Sp such that φ(u0) = 0. From step 2,
〈u0, ep+1〉 �= 0. Takingλ = ∫ inf(ψ, ϕu0) dm ∈ (0, 1),we define ν1 and ν2 by dν1/dm =
(ψ − ϕu0)+/(1 − λ) and dν2/dm = inf(ψ, ϕu0)/λ. We have −∞ ≤ s ≤ 1/(p + 1),
hence γ = s/(1 − sp) ∈ [−1, 1]. By Lemma 1, it is clear that ν1, ν2 ∈ Pf . Since
ν = (1 − λ)ν1 + λν2 and ν is extreme, we deduce that ν1 = ν2 = ν which means that
ψ = ϕu0/λ and ν is s-affine.

The proof of the part with the function
 is exactly the same as in Theorem 2. This ends
the proof of Theorem 3.
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