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Abstract:

We analyse in some detail a highly tractable non-singular modification of the Kerr

geometry, dubbed the “eye of the storm” — a rotating regular black hole with an

asymptotically Minkowski core. This is achieved by “exponentially suppressing”

the mass parameter in the Kerr spacetime: m → m e−ℓ/r. The single suppression

parameter ℓ quantifies the deviation from the usual Kerr spacetime. Some of the

classical energy conditions are globally satisfied, whilst certain choices for ℓ force any

energy-condition-violating physics into the deep core. The geometry possesses the full

“Killing tower” of principal tensor, Killing–Yano tensor, and nontrivial Killing tensor,

with associated Carter constant; hence the Hamilton–Jacobi equations are separa-

ble, and the geodesics integrable. Both the Klein–Gordon equation and Maxwell’s

equations are also separable on this candidate spacetime. The tightly controlled

deviation from Kerr renders the physics extraordinarily tractable when compared

with analogous candidates in the literature. This spacetime will be amenable to

straightforward extraction of astrophysical observables falsifiable/ verifiable by the

experimental community.
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1 Introduction

Classical curvature singularities, resulting from gravitational collapse, typically occur

at distance scales where there is no longer any empirical reason to believe that general

relativity is applicable. Consequently, there are at least two routes available to the

aspiring relativist:

• Try to build a full-fledged and phenomenologically verifiable theory of quantum

gravity from scratch (hard).

• Purely classically, excise curvature singularities from GR in astrophysically

appropriate regimes, and extract associated astrophysical observables which

are at least in principle falsifiable/verifiable by the experimental communities

now operating in observational and gravitational wave astronomy (nontrivial,

but comparably straightforward).

Recent experimental successes have greatly enhanced humanity’s ability to probe

theoretical predictions concerning astrophysical objects. These include the direct

observation of gravitational waves emanating from an astrophysical source in the

LIGO/Virgo merger events [1, 2], as well as the pioneering image of the black hole in
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M87 by the Event Horizon Telescope (EHT) [3–8]. Combined with the planned exper-

imental capabilities of the upcoming LISA project [9], and planned next-generation

ground-based observatories [10], it is becoming increasingly desirable for theoreticians

to compile results for mathematically tractable, curvature-singularity-free candidate

spacetimes that speak to the advances made in the experimental community. It is a

very real hope that phenomenological evidence will then be obtained which enables

us to delineate between candidate spacetimes based on their astrophysical signature.

Not only will this process paint a more accurate picture concerning curvature singu-

larities, but it will also give the theoretical community experimentally-informed clues

as to which specific modifications to the Einstein equations, or indeed to theoretical

physics in general, might be necessary in constructing a “theory of everything”.

Exploration regarding the extraction of astrophysical observables for nonsingular

candidate geometries has been performed in a vast array of contexts [11–26]. One

could propose a list of further constraints on such geometries which would render

them as appropriate as possible for the experimental community, and streamline the

discourse between theory and experiment. For instance, an “idealised” candidate

spacetime could be asked to satisfy at least the following constraints:

• Astrophysical sources rotate — impose axisymmetry.

• Impose asymptotic flatness at spatial infinity [27].

• The Hamilton–Jacobi equations should be separable — the geodesic equations

should be at least numerically integrable to enable direct comparison with ex-

perimental data. (A sufficient condition for this in axisymmetry is the existence

of a nontrivial Killing 2-tensor Kµν .)

• Impose separability of both Maxwell’s equations and the equations governing

the spin two polar and axial modes on the background spacetime — this allows

for the “standard” numerical techniques to be applied in analysing the quasi-

normal modes of spin-one electromagnetic and spin-two gravitational pertur-

bations on the background spacetime, which are fundamental in analysing the

ringdown phase of binary mergers. (A good mathematical precursor for this

constraint is the separability of the Klein–Gordon equation.)

• Impose a high degree of mathematical tractability. The complex process be-

ginning with the inception of a candidate geometry, and finishing with a result

able to be directly compared with experimental measurement involves many

nontrivial steps — candidate spacetimes amenable to highly tractable mathe-

matical analysis will yield their astrophysical observables with far more ease.

• Constrain the amount of exotic matter and demand satisfaction of the relevant

classical energy conditions outside horizons — empirical evidence suggests any

violation of the classical energy conditions should occur at a quantum scale, and

(apart from the violations of the SEC due to a positive cosmological constant)

we have not observed exotic matter in an astrophysical context [28–30].
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The above list serves only as a rough guideline. Naturally, there are many other

constraints that are likely to be desirable — forbid closed timelike curves, for in-

stance, or impose separability of the Dirac equation, etc. However the above list

speaks directly to the current observational and experimental community. Finding

appropriate geometries which satisfy all of these constraints is highly nontrivial, and

generally speaking the best one can do is to use them as goalposts when constructing

a candidate spacetime.

A subset of the nonsingular geometries of interest are the so-called “regular black

holes” (RBHs). By regular, one means in the sense of Bardeen [31], with regularity

achieved via enforcing global finiteness on orthonormal curvature tensor components

and Riemann curvature invariants. In both spherical symmetry and axisymmetry,

RBHs have a well-established lineage both in the historical and recent literature [13–

16, 21, 22, 31–55].

Herein we shall explore a rotating RBH with an asymptotically Minkowski core.

This geometry was in fact first proposed by Ghosh in reference 42; we discovered

it independently by following a set of carefully chosen metric construction criteria

which will be explored in § 2. Consequently, some results are repeated, though with

rather different representations and emphasis. Numerous new and important results

for this geometry are also presented. Set in stationary axisymmetry, this spacetime

is a tightly controlled deviation from standard Kerr, is amenable to highly tractable

mathematical analysis, and possesses the full “Killing tower” [56] of principal tensor,

Killing–Yano tensor, and nontrivial Killing tensor. This induces an associated Carter

constant [57, 58], giving a fourth constant of the motion and rendering the geodesic

equations of motion for test particles in principle integrable (i.e., imposing sepa-

rability of the Hamilton–Jacobi equation). We shall see that any energy-condition-

violating physics is able to be pushed into the deep core, at a distance scale where GR

is no longer empirically justified. Both the Klein–Gordon equation and Maxwell’s

equations are separable on the background spacetime, enabling quasi-normal modes

analysis for spin zero and spin one perturbations via the ‘standard’ techniques.

With reference to the above list of proposed constraints, comparison with the existing

literature on rotating RBHs reveals that this geometry is very close to “experimen-

tally ideal”.1 Before segueing into the analysis of this specific candidate geometry, it

is worth exploring the choices made in constructing the metric.

1It is also a good idea to bear in mind what cannot be done: For instance the spatial slices of the
Kerr spacetime cannot be put in conformally flat form [59], nor can the 3-metric even be globally
diagonalized [60].
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2 Metric ansatz

To set the stage, we shall first discuss static spherical symmetry for exposition, before

migrating the discussion to the more astrophysically appropriate realm of stationary

axisymmetry.

2.1 Spherical symmetry

Recall one can always put any static, spherically symmetric line element into the

standard form [61–63]

ds2 = −e−2Φ(r)

(

1− 2m(r)

r

)

dt2 +
dr2

1− 2m(r)
r

+ r2dΩ2
2 . (2.1)

Further specialising to Φ(r) = 0 spacetimes leaves one with the 1-function class of

geometries characterised by [64]:

ds2 = −
(

1− 2m(r)

r

)

dt2 +
dr2

1− 2m(r)
r

+ r2dΩ2
2 . (2.2)

Specialising to m(r) = m yields the Schwarzschild solution in standard curvature

coordinates. Consequently, one can think of equation (2.2) as the class of 1-function

modified Schwarzschild geometries. In the discourse that follows, it will be occasion-

ally useful to think from this more general perspective. Within this 1-function class

of geometries, with an eye towards RBHs specifically, one has:

Bardeen [31]:

m(r) =
mr3

(r2 + ℓ2)3/2
; ρ(r) =

mℓ2

4π
3
(r2 + ℓ2)5/2

. (2.3)

This implies an asymptotically de Sitter core with

ρ(0) =
m

4π
3
ℓ3

. (2.4)

So the central density depends on asymptotic mass.

Hayward [33]:

m(r) =
mr3

r3 + 2mℓ2
; ρ(r) =

m2ℓ2

2π
3
(r3 + 2mℓ2)3

. (2.5)

This implies an asymptotically de Sitter core with

ρ(0) =
1

8π
3
ℓ2

. (2.6)
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So the central density is independent of asymptotic mass.

Asymptotically Minkowski core [52]:

m(r) = m e−ℓ/r ; ρ(r) =
ℓm e−ℓ/r

4πr4
. (2.7)

This implies an asymptotically Minkowski core with

ρ(0) = 0 . (2.8)

So the central density is zero.

The inspiration for the construction of the candidate spacetime analysed herein comes

directly from the regular black hole with asymptotically Minkowski core, presented

and analysed in reference 52. The explicit line element is given by:

ds2 = −
(

1− 2m e−ℓ/r

r

)

dt2 +
dr2

1− 2m e−ℓ/r

r

+ r2 dΩ2
2 . (2.9)

In the ℓ → 0 limit, Schwarzschild spacetime in the usual curvature coordinates is

recovered precisely. Consequently the “supression parameter” ℓ can be viewed as

quantifying the deviation from Schwarzschild spacetime. When viewed as a modifi-

cation of Schwarzschild, one performs the following “regularisation” procedure:

• Make the modification m→ m(r) = m e−ℓ/r.

It should be emphasised that this is not a coordinate transformation.

Due to the severe mathematical discontinuity of the function e−ℓ/r at coordinate

location r = 0, the line element equation (2.9) is not Cω at r = 0 (it is in fact not

even C0). This implies that the region r < 0 is grossly unphysical for this candidate

spacetime. In and of itself, this is not a problem per se, and physical analysis is

valid for r ≥ 0. However, this raises the question: What are the most prudent

mathematical choices one can make when attempting to “regularise” a candidate

black hole via exponential suppression? In the regime of static spherical symmetry,

here are two other examples which are worth brief discussion.

Example: Consider

ds2 = −
(

1− 2m(r)

r

)

dt2 +
dr2

1− 2m(r)
r

+ r2 dΩ2
2 ; m(r) = m exp

(

− ℓ2

r2

)

.

(2.10)

(For related ideas, see for instance [45].) Purely mathematically, exp (−ℓ2/r2) is real
analytic only for r 6= 0, however it is C+∞ for all r. Superficially then, this example

looks more general than that of equation (2.9), due to the fact one can now extend

– 5 –



the analysis to r < 0. A deeper look reveals that this is not particularly useful. On

each spatial slice r = 0 is still a point, and in spacetime r = 0 is a timelike curve.

Consequently, one has two universes, corresponding to r ≥ 0 and r ≤ 0, with each

being a copy of the geometry characterised by equation (2.9), connected at the single

point r = 0. One may not traverse through this point, and the “other” universe is

physically irrelevant.

Example: Consider instead

ds2 = −
(

1− 2m(r)

r

)

dt2+
dr2

1− 2m(r)
r

+(r2+ ℓ2) dΩ2
2 ; m(r) = m exp

(

− ℓ2

r2

)

.

(2.11)

Because we have modified the angular part of the metric, this is now intrinsically

more general (from a physical perspective). Specifically, on any spatial slice r = 0

now corresponds to a 2-sphere of finite area 4πℓ2, and in spacetime r = 0 is in fact

a timelike hypertube (i.e. a traversable wormhole throat). Now the two universes

corresponding to r ≤ 0 and r ≥ 0 are connected at the traversable throat r = 0,

and a would-be timelike traveller may propagate between them. The qualitative

causal structure has both an outer and an inner horizon, with a timelike traversable

hypersurface in the deep core at r = 0; this is qualitatively the same as for certain

specialisations explored in references 54, 55.

2.2 Kerr-like rotating spacetimes

Instead, herein we are interested in investigating a rotating version of the regular

black hole with asymptotically Minkowski core. This is better-motivated from an

astrophysical standpoint, and hence more likely to speak to the relevant parties

currently operating in observational and gravitational wave astronomy. Migrating the

discourse to stationary axisymmetry, we begin with the Kerr spacetime in standard

Boyer–Lindquist (BL) coordinates:

ds2 = −∆Kerr

Σ
(dt−a sin2 θ dφ)2+

sin2 θ

Σ
[(r2+a2) dφ−a dt]2+ Σ

∆Kerr

dr2+Σdθ2 , (2.12)

where as usual

Σ = r2 + a2 cos2 θ , ∆Kerr = r2 + a2 − 2mr . (2.13)

The inverse metric can be written as:

gµν
Kerr

∂µ∂ν =
1

Σ

{

− [(r
2 + a2) ∂t + a ∂φ]

2

∆Kerr

+
(∂φ + a sin2 θ ∂t)

2

sin2 θ
+∆Kerr∂

2
r + ∂2

θ

}

.

(2.14)
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In BL coordinates, the ring singularity present in Kerr spacetime is located at r = 0.

We now attempt to “regularise” Kerr spacetime. Inspired by the aforementioned

procedure for the RBH with asymptotically Minkowski core, we leave the object dr

in the metric undisturbed, and make a modification m→ m(r).

Prosaically, this class of geometries can be viewed as a “1-function off-shell” extension

of the Kerr geometry; this is a specialisation of Carter’s “2-function off-shell” exten-

sion to Kerr [56–58]. From reference 56, we already know that geometries within this

“1-function off-shell” extension to Kerr must possess a nontrivial Killing tensor Kµν .

This implies the existence of an associated Carter constant, and hence separability

of the Hamilton–Jacobi equations (and, in principle, integrable geodesics). This is

yet another motivation for exploring this line of inquiry. In § 3.4 we will explicitly

verify that in general the “1-function off-shell” extension to Kerr always in fact pos-

sesses the full “Killing tower” of Killing tensor, Killing–Yano tensor, and principal

tensor [56].

With the “1-function off-shell” extension to Kerr in hand, another potential approach

might be to instead make the modification m → m(r, θ). One may intuit from the

fact that the slices of axisymmetry are θ-dependent that any exponential “supression

mechanism” also ought to have a θ-dependence; θ-dependent modifications to certain

mass functions in axisymmetry have been discussed in [65, 66]. However, in Kerr

spacetime there are also geometric features of qualitative importance which are θ-

independent, such as the horizon locations. Imposing this θ-dependence also loses the

guarantee that one can put the metric into the form of Carter’s “2-function off-shell”

extension to Kerr; one may lose the existence of a nontrivial Killing tensor Kµν (and

of course the associated “Killing tower”) [56]. Imposing this θ-dependence also has

severe implications on mathematical tractability.

For both approaches considered, fixing the most desirable m(r) or m(r, θ) such that

the candidate geometry is both regular and tractable is nontrivial, and all of the

following examples are worth brief discussion.

Example: Consider “1-function off-shell” Kerr (in BL coordinates) with

m(r) = m exp

(

− ℓ

r

)

. (2.15)

Mathematically, one has the discontinuity at r = 0, and hence the region r < 0 is

omitted from the analysis. In terms of Cartesian coordinates r2naive = x2 + y2 + z2

one has

r2naive = r2 + a2 − a2z2

r2
; cos θ = z/r . (2.16)

Then

r2naive = r2 + a2 sin2 θ , (2.17)
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while

cos θnaive =
z

rnaive
=

z

r

r

rnaive
=

cos θ
√

1 + a2 sin2 θ/r2
=

r cos θ√
r2 + a2 sin2 θ

. (2.18)

So exponential suppression in the BL coordinate r (as r → 0+) suppresses the mass

function m(r) in the entire Cartesian disk rnaive ≤ a, where cos θnaive = 0. This

ought to render the spacetime curvature-regular (and indeed does so; this will be

demonstrated shortly). This specific example is particularly useful in that the “other

universes” in the maximal analytic extension of the usual version of Kerr are removed

from the analysis due to the restriction r ≥ 0. Consequently the maximal analytic

extension of this regularized spacetime will be trivial — there will be no concerns

arising from closed timelike curves in this candidate geometry.2

Example: Consider instead “1-function off-shell” Kerr (in BL coordinates) with

m(r) = m exp

(

− ℓ2

r2

)

. (2.19)

(See for instance [45].) Purely mathematically, one may now also consider r < 0 given

the metric is now C+∞ at r = 0. In terms of Cartesian coordinates r2naive = x2+y2+z2

one still has

r2naive = r2 + a2 sin2 θ ; (2.20)

cos θnaive =
r cos θ√

r2 + a2 sin2 θ
. (2.21)

So (quadratic) exponential suppression in the BL coordinate r (as r → 0+) suppresses

the mass function m(r) in the entire Cartesian disk rnaive ≤ a, where cos θnaive = 0.

However, physically there is now no point in continuing the r coordinate to r < 0.

In the absence of the ring singularity at rnaive = a, there is nothing to generate

an angle deficit or angle surfeit; the ring at rnaive = a is utterly ordinary. Conse-

quently, exploring r ≤ 0 is physically identical to exploring r ≥ 0. Notably, the

curvature quantities and general analysis for this example are less tractable than for

the example based on exp(−ℓ/r).

Example: Consider modified Kerr (in BL coordinates) with the somewhat messier

θ-dependent mass function

m(r, θ) = m exp

(

− ℓ√
r2 + a2 cos θ2

)

= m exp

(

− ℓ√
Σ

)

. (2.22)

2It is perhaps worthwhile to note that even for standard Kerr spacetime, the closed timelike
curves can arise only by dodging into the “other” universe (r < 0). This is most obvious in Doran
coordinates where, since gtt = −1, the entire r > 0 region is manifestly stably causal [67–70].
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Now
√
r2 + a2 cos θ2 = 0 requires both r = 0 and θ = π/2. There will be the

discontinuity at r = 0 in the equatorial plane, where m(r, θ) → m exp
(

− ℓ
r

)

; one

must omit r < 0 from the analysis. Furthermore, via the standard results

r2naive = r2 + a2 sin2 θ , (2.23)

and

cos θnaive =
r cos θ√

r2 + a2 sin2 θ
, (2.24)

this implies that both rnaive = a and θnaive = π/2. So exponential suppression in√
r2 + a2 cos2 θ suppresses the mass function m(r, θ) only at the edge of the Cartesian

disk rnaive = a, where cos θnaive = 0. The geometry is now not flat on the interior

of the disk rnaive < a, with cos θnaive = 0. Supplementary to this, imposing the

θ-dependence in this specific manner has severe implications on the tractability of

the analysis.

Example: Consider instead modified Kerr (in BL coordinates) with the messier

θ-dependent mass function

m(r, θ) = m exp

(

− ℓ2

r2 + a2 cos2 θ

)

= m exp

(

−ℓ
2

Σ

)

. (2.25)

Note that one may now explore, purely mathematically, r < 0. By the same logic

as for the previous example, exponential suppression in r2 + a2 cos2 θ suppresses

the mass function m(r, θ) only at the edge of the Cartesian disk rnaive = a, where

cos θnaive = 0. The geometry is not flat on the interior of this disk. There is no

ring singularity at rnaive = a, and so nothing to generate an angle deficit or angle

surfeit; the ring at rnaive = a is utterly ordinary. Consequently, even though one may

mathematically explore r < 0, there is no physical reason to do so, by the same logic

as for previous examples. Furthermore, imposing the θ-dependence in this manner

severely affects mathematical tractability.

Ultimately, deciding which candidate geometry is preferable for analysis is nontrivial.

Exploring these examples has left us with the following conclusions:

• There is no physical point to forcing the analysis to be amenable to analytic

extension to r < 0 in this specific manner, and doing so has consequences

concerning mathematical tractability;

• There may or may not be a physical point to forcing the suppression mechanism

to have a θ-dependence, however doing so has severe implications on mathe-

matical tractability, and also does not render the central disk Minkowski.

2.3 The eye of the storm

Consequently, we advocate for the most mathematically tractable of the aforemen-

tioned examples in axisymmetry; this is the example m(r) = m exp(−ℓ/r). This
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results in the following specific and fully explicit metric, for now labelled the “eye of

the storm” (eos) spacetime:

ds2 =
Σ

∆eos

dr2+Σdθ2− ∆eos

Σ
(dt−a sin2 θ dφ)2+

sin2 θ

Σ
[(r2+a2) dφ−a dt]2 , (2.26)

where

Σ = r2 + a2 cos2 θ , ∆eos = r2 + a2 − 2mr e−ℓ/r . (2.27)

The inverse metric can be written as:

gµν
eos
∂µ∂ν =

1

Σ

{

− [(r
2 + a2) ∂t + a ∂φ]

2

∆eos

+
(∂φ + a sin2 θ ∂t)

2

sin2 θ
+∆eos∂

2
r + ∂2

θ

}

. (2.28)

We note again that this is the same geometry as presented by Ghosh in reference 42,

now with a considerably more detailed physical justification as to why it is of in-

terest. In the limit as r → +∞, asymptotic flatness is preserved. In the limit as

ℓ → 0, one returns the standard Kerr spacetime in BL coordinates. As such, we

enforce ℓ > 0 for nontrivial analysis, and the supression parameter ℓ can be viewed

as quantifying the deviation from Kerr spacetime. In the limit as a→ 0, one recovers

equation (2.9) precisely. In comparison with standard Kerr in BL coordinates, the

domains for the temporal and angular coordinates are unaffected. However the dis-

continuity at r = 0 restricts the domain for the r coordinate to r ≥ 0. This removes

concerns involving closed timelike curves which are present in the “usual” discourse

surrounding maximally extended Kerr. Crucially, as we shall shortly observe, the

ring singularity is excised; replaced instead by a region of spacetime which is asymp-

totically Minkowski. This renders the geometry globally nonsingular, and we have a

tractable model for a regular black hole with rotation.

From the form of the line element as in equation (2.26), ordering the coordinates as

(t, r, θ, φ), it is straightforward to read off a convenient covariant tetrad (co-tetrad)

which is a solution of gµν = ηµ̂ν̂ eµ̂µ eν̂ ν (it should be noted this co-tetrad is not

unique):

et̂µ =

√

∆eos

Σ

(

−1; 0, 0, a sin2 θ
)

; er̂µ =

√

Σ

∆eos

(0; 1, 0, 0) ;

eθ̂µ =
√
Σ (0; 0, 1, 0) ; eφ̂µ =

sin θ√
Σ

(

−a; 0, 0, r2 + a2
)

. (2.29)

This co-tetrad uniquely defines a contra-tetrad (contravariant tetrad, or just tetrad)

via eµ̂
µ = ηµ̂ν̂ eν̂ ν gνµ.
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Explicitly:

et̂
µ = − 1√

Σ∆eos

(

r2 + a2; 0, 0, a
)

; er̂
µ =

√

∆eos

Σ
(0; 1, 0, 0) ;

eθ̂
µ =

1√
Σ
(0; 0, 1, 0) ; eφ̂

µ =
1√

Σ sin2 θ

(

a sin2 θ; 0, 0, 1
)

. (2.30)

This tetrad will be employed to convert relevant tensor coordinate components into

an orthonormal basis.

Now, we find it useful to define the object

Ξ =
ℓΣ

2r3
. (2.31)

This will greatly simplify some of the following analysis. Where convenient for ex-

position, curvature quantities are displayed in the form:

(something dimensionful) × (something dimensionless) . (2.32)

Note that Ξ is dimensionless.

To confirm the assertion that the eye of the storm is curvature-regular, let us anal-

yse the nonzero components of the Riemann curvature tensor with respect to this

orthonormal basis. Fully explicitly, they are given by

Rt̂r̂
t̂r̂ =

2r3m e−ℓ/r

Σ3

[

2Ξ2 − 4Ξ + 1− 3
(a

r

)2

cos2 θ

]

,

−1
2
Rt̂r̂

θ̂φ̂ = −Rt̂θ̂
r̂φ̂ = Rt̂φ̂

r̂θ̂ =
a cos θr2m e−ℓ/r

Σ3

[

2Ξ +
(a

r

)2

cos2 θ − 3

]

,

Rt̂θ̂
t̂θ̂ = Rt̂φ̂

t̂φ̂ = Rr̂θ̂
r̂θ̂ = Rr̂φ̂

r̂φ̂ =
r3m e−ℓ/r

Σ3

[

2Ξ + 3
(a

r

)2

cos2 θ − 1

]

,

Rθ̂φ̂
θ̂φ̂ =

2r3m e−ℓ/r

Σ3

[

1− 3
(a

r

)2

cos2 θ

]

. (2.33)

All are of the general form

Rα̂β̂
µ̂ν̂ =

m e−ℓ/r

rnΣ3
X(r, θ; a, ℓ) , (2.34)

where the object X(r, θ; a, ℓ) is globally well-behaved. The only potentially dan-

gerous behaviour comes from the rnΣ3 present in the denominators in the limit as

r → 0+. However the exponential dominates; limr→0+ e−ℓ/r/(rnΣ3) = 0 for all θ.
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Consequently the ring singularity present at r = 0 in BL coordinates for Kerr is

replaced by a region of spacetime that is asymptotically Minkowski. This is already

enough to conclude that the spacetime is globally regular in the sense of Bardeen [31],

and is consistent with the findings in reference 42.

Note that because the spacetime is now stationary rather than static, the Kretschmann

scalar need no longer be positive definite [51]. It is now not sufficient to examine the

Kretschmann scalar for regularity; one needs to inspect all the individual orthonor-

mal Riemann components.

More generally, for the family of “1-function off-shell” Kerr geometries all nonzero

orthonormal components of the Riemann tensor can be represented by

Rα̂β̂
µ̂ν̂ = Z(r, θ,m(r), m′(r), m′′(r);m, a, ℓ) , (2.35)

for some function Z, and the condition for curvature regularity reduces to

m(r) = O(r3) . (2.36)

The condition for an asymptotically Minkowski core reduces to

m(r) = o(r3) . (2.37)

3 Geometric analysis

3.1 Curvature invariants

For the sake of rigour, let us examine the Riemann curvature invariants associated

with the candidate geometry.

The Ricci scalar is given by

R =
2ℓ2m e−ℓ/r

Σ r3
. (3.1)

The Ricci contraction RαβR
αβ is given by

RαβR
αβ =

8ℓ2
(

m e−ℓ/r
)2

Σ4

(

Ξ2 − 2Ξ + 2
)

. (3.2)

Note that (Ξ2 − 2Ξ + 2) = 1 + (Ξ− 1)2 ≥ 1 is manifestly positive.
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The Kretschmann scalar (K = RαβµνR
αβµν) is given by

K =
48r6

(

m e−ℓ/r
)2

Σ6

{

1− 15
(a

r

)2

cos2 θ + 15
(a

r

)4

cos4 θ −
(a

r

)6

cos6 θ

+
4

3
Ξ4 − 16

3
Ξ3 + 8Ξ2

[

1−
(a

r

)2

cos2 θ

]

− 4Ξ

[

1− 6
(a

r

)2

cos2 θ +
(a

r

)4

cos4 θ

]

}

.

(3.3)

Note the presence of both positive definite and negative definite terms, with the

negative definite terms depending on even powers of the spin parameter a, so that

they switch off as the rotation is set to zero. Indeed as a → 0 we have Ξ → ℓ
2r

and

so

Ka→0 →
48

(

m e−ℓ/r
)2

r6

{

4

3
Ξ4 − 16

3
Ξ3 + 8Ξ2 − 4Ξ + 1

}

→
48

(

m e−ℓ/r
)2

r6

{

(1− Ξ)4 +
Ξ2 (Ξ− 2)2

3
+

2

3
Ξ2

}

. (3.4)

This is now manifestly a positive definite sum of squares, as required.

To evaluate the Weyl contraction note that in this situation the (orthonormal) Weyl

tensor has only two algebraically independent components

Ct̂φ̂t̂φ̂ = −1
2
Ct̂r̂t̂r̂ = Ct̂θ̂t̂θ̂ = −Cφ̂r̂φ̂r̂ =

1

2
Cφ̂θ̂φ̂θ̂ = −Cr̂θ̂r̂θ̂ ; (3.5)

Ct̂φ̂r̂θ̂ =
1

2
Ct̂r̂φ̂θ̂ = Ct̂θ̂φ̂r̂ , (3.6)

where explicitly

Ct̂φ̂t̂φ̂ =
r3m e−ℓ/r

3Σ3

{

2Ξ2 − 6Ξ + 3− 9
(a

r

)2

cos2 θ

}

; (3.7)

Ct̂r̂φ̂θ̂ =
r2m e−ℓ/ra cos θ

Σ3

{

2Ξ− 3 +
(a

r

)2

cos2 θ

}

. (3.8)

The Weyl contraction (CαβµνC
αβµν) is given by

CαβµνC
αβµν = 48([Ct̂φ̂t̂φ̂]

2 − [Ct̂φ̂r̂θ̂]
2) . (3.9)

Note the presence of both positive definite and negative definite terms, with the

negative definite terms depending on even powers of the spin parameter a, so that

they switch off as the rotation is set to zero.
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It is then easy to check that CαβµνC
αβµν = K + 2RµνR

µν − 1
3
R2, as also required.

All of these Riemann curvature invariants are globally well-behaved, remaining finite

∀ r ∈ [0,+∞), cementing the fact that the eye of the storm is curvature-regular. In

the limit as ℓ → 0, the expected limiting behaviour when compared with standard

Kerr spacetime is observed. In the limit as a → 0, all Riemann invariants tend

to their counterparts for the spherically symmetric candidate geometry analysed in

reference 52.

3.2 Ricci and Einstein tensors

Both the Ricci and Einstein tensors are diagonal in the orthonormal basis. The Ricci

tensor is given by

Rµ̂
ν̂ =

2ℓm e−ℓ/r

Σ2
diag (Ξ− 1,Ξ− 1, 1, 1) , (3.10)

and the Einstein tensor is given by

Gµ̂
ν̂ = −2ℓm e−ℓ/r

Σ2
diag (1, 1,Ξ− 1,Ξ− 1) . (3.11)

These representations are highly tractable when compared with the analogous results

for other candidate rotating regular black holes in the literature [13, 35–40, 44, 47,

48, 54, 55].

3.3 Causal structure and ergoregion

Horizon locations are characterised by the roots of ∆eos(r), which are also the only

coordinate singularities present in the line element equation (2.26). Since ∆eos(r) is

real, while ∆eos(r = 0) = a2 > 0 and ∆eos(r → ∞) = O(r2), there are either two

distinct roots, one double root, or zero roots. Since ∆eos(r) > ∆Kerr(r) the location

of the roots of ∆eos(r) is trivially bounded by the location of the roots of ∆Kerr(r).

Specifically

m−
√
m2 − a2 < r−H ≤ r+H < m+

√
m2 − a2 . (3.12)

In particular, if m < a there certainly are no roots.

Analytically, we cannot explicitly solve for the roots of ∆eos(r). However what we can

do, assuming the existence of distinct roots r±H , is to “reverse engineer” by solving

for m(r+H , r
−

H) and a2(r+H , r
−

H). We note that by definition

(r+H)
2 − 2mr+H exp

(

−ℓ/r+H
)

+ a2 = 0 ; (3.13)

(r−H)
2 − 2mr−H exp

(

−ℓ/r−H
)

+ a2 = 0 . (3.14)
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These are two simultaneous equations linear in m and a2. We find

m(r+H , r
−

H) =
(r+H)

2 − (r−H)
2

2(e−ℓ/r+H r+H − e−ℓ/r−H r−H)
; (3.15)

and

a2(r+H , r
−

H) =
r+Hr

−

H(e
−ℓ/r−H r+H − e−ℓ/r+H r−H)

e−ℓ/r+H r+H − e−ℓ/r−H r−H
. (3.16)

In the degenerate extremal limit r+H → rH ← r−H , using the l’Hôpital rule, this

simplifies to

m(rH) =
(rH)

2 eℓ/rH

rH + ℓ
> rH ; and a2(rH) =

r2H(rH − ℓ)

rH + ℓ
< r2H . (3.17)

For fixed ℓ and rH , setting a→ a(rH), we have: (1) If m > m(rH) there will be two

distinct roots, one above and one below rH . (2) If m = m(rH) there is one degenerate

root exactly at rH . (3) If m < m(rH) there are no real roots.

Given this is the best one can say analytically, and that in this context the parameter

ℓ is often associated with the Planck scale, we may Taylor series expand about ℓ = 0

for an approximation.

Let us write

rH = m e−ℓ/r±H + S1

√

m2 e−2ℓ/rH − a2 , (3.18)

where S1 = ±1. For small ℓ, to second-order we find

rH = m+ S1

√

m2 − a2 − 2mℓ−O(ℓ2) . (3.19)

This has the correct limiting behaviour as ℓ→ 0. Investigating in more detail, instead

of expanding about ℓ = 0 we can instead search for the approximate horizon locations

by expanding about the Kerr horizon located at r = rH,Kerr = m+S1

√
m2 − a2.

To second-order this gives

rH = m+ S1

√
m2 − a2

−S1

m
[

2m
√
m2 − a2 + S1(2m

2 − a2)
]

(S1m+
√
m2 − a2)

[

m
√
m2 − a2 + S1(m2 − a2)

]ℓ+O
(

ℓ2
)

= rH,Kerr −
2m (rH,Kerr)− a2

(rH,Kerr)
[

rH,Kerr − a2

m

] ℓ +O(ℓ2) . (3.20)

Notably, the surface area of each horizon is qualitatively unchanged from Kerr space-
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time, given by

AH = 2π

∫ π

0

√
gθθ gφφ

∣

∣

∣

∣

rH

dθ = 4π(r2H + a2) . (3.21)

The ergosurface is characterised by gtt = 0, implicitly given by

r2erg + a2 cos2 θ = 2mrerg e
−ℓ/rerg , (3.22)

and for small ℓ, is to second-order given by

rerg = m+
√

m2 − a2 cos2 θ − 2mℓ−O(ℓ2) . (3.23)

This has the correct limiting behaviour as ℓ → 0. Expanding instead around

rerg,Kerr = m+
√
m2 − a2 cos2 θ yields

rerg = rerg,Kerr −
2m (rerg,Kerr)− a2 cos2 θ

(rerg,Kerr)
[

rerg,Kerr − a2 cos2 θ
m

] ℓ+O(ℓ2) . (3.24)

The surface gravity of the outer horizon in our universe is given by

κout =
1

2

d

dr

(

∆eos

r2 + a2

)

∣

∣

∣

∣

∣

rH

=
m e−ℓ/rH (r3H − ℓr2H − a2rH − a2ℓ)

rH(r2H + a2)2
. (3.25)

Imposing the extremality constraint κout = 0 amounts to forcing inner and outer

horizons to merge, and one recovers the condition a2 → a2(rH) discussed above.

Alternatively one could impose this constraint directly and find the extremal horizon

location rH by solving a cubic, however for our purposes this is not informative as it

gives the same qualitative information that has already been obtained.

3.4 Killing tensor and Killing tower

Let us first display the relevant results in full generality for the class of “1-function

off-shell” Kerr geometries. When compared with the BL coordinate system of equa-

tion (2.26), the generalised line element for “1-function off-shell” Kerr simply makes

the replacement ∆eos → ∆ = r2+ a2− 2rm(r). The contravariant metric tensor can

then be written in the following form

gµν = − 1

Σ











Σ+ 2r(r2+a2)m(r)
∆

0 0 2ar m(r)
∆

0 −∆ 0 0

0 0 −1 0
2ar m(r)

∆
0 0 a2

∆
− 1

sin2 θ











µν

. (3.26)

With the goal of finding a nontrivial Killing 2-tensor Kµν , satisfying K(µν;α) = 0, we

wish to apply the Papadopoulos–Kokkotas algorithm [71, 72] for obtaining nontrivial

– 16 –



Killing tensors on axisymmetric spacetimes. This algorithm is an extension of older

results by Benenti and Francaviglia [73], and the first step is to decompose the

contravariant metric in BL-coordinates into the following general form

gµν =
1

A1(r) +B1(θ)











A5(r) +B5(θ) 0 0 A4(r) +B4(θ)

0 A2(r) 0 0

0 0 B2(θ) 0

A4(r) +B4(θ) 0 0 A3(r) +B3(θ)











µν

. (3.27)

Equation (3.26) is readily interpreted to be of this form, with the explicit assign-

ments

A1(r) = −r2 , A2(r) = −∆ , A3(r) =
a2

∆
,

A4(r) =
2arm(r)

∆
, A5(r) = r2 +

2r(r2 + a2)m(r)

∆
;

B1(θ) = −a2 cos2 θ , B2(θ) = −1 , B3(θ) = −
1

sin2 θ
,

B4(θ) = 0 , B5(θ) = a2 cos2 θ . (3.28)

Given this decomposition, the Papadopoulos–Kokkotas algorithm [71, 72] asserts

that the following yields a nontrivial contravariant Killing tensor:

Kµν =
1

A1 +B1











B1A5 − A1B5 0 0 B1A4 −A1B4

0 A2B1 0 0

0 0 −A1B2 0

B1A4 − A1B4 0 0 B1A3 −A1B3











µν

. (3.29)

As such, one finds the following nontrivial rank two contravariant Killing tensor for

“1-function off-shell” Kerr spacetimes:

Kµν =
a2 cos2 θ

Σ











2r(r2+a2)m(r)
∆

0 0 2arm(r)
∆

0 −∆ 0 0

0 0 r2

a2 cos2 θ
0

2arm(r)
∆

0 0 a2

∆
+
(

r
a sin θ cos θ

)2











µν

. (3.30)

Lowering the indices, one finds covariant Killing 2-tensor satisfyingK(µν;α) = 0 (easily

verified using Maple) in the BL coordinate basis.

Converting then to the orthonormal tetrad basis via Kµ̂ν̂ = eµ̂
µ eν̂

ν Kµν , and raising
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the indices, gives the following

K µ̂ν̂ =











−a2 cos2 θ 0 0 0

0 a2 cos2 θ 0 0

0 0 −r2 0

0 0 0 −r2











µ̂ν̂

. (3.31)

Notice that in the tetrad basis this is identical to the nontrivial Killing 2-tensor for

Kerr spacetime. Specifically, notice that it is independent of the mass function m(r).

As such, the entire family of “1-function off-shell” Kerr geometries inherits the same

Killing tensor as Kerr spacetime. Notably, both the Ricci tensor and Killing tensor

are diagonal in this tetrad basis, and as such the commutator [R,K]µ̂ν̂ will vanish; it

has been recently proven that this constraint is sufficient to conclude that the Klein–

Gordon equation is separable on the background spacetime [74]. As such, the eye of

the storm is amenable to a standard spin zero quasi-normal modes analysis (invoke

the inverse Cowling effect, assume a separable wave form, and use your favourite

numerical technique to approximate the ringdown signal). The same can be said for

all candidate geometries in the class of “1-function off-shell” Kerr [56–58].

Furthermore, it is straightforward (e.g., using Maple) to verify that the following two-

form square-root of the Killing tensor is a genuine Killing–Yano tensor, satisfying the

Killing–Yano equation fµ̂(ν̂;α̂) = 0:

f µ̂ν̂ =











0 a cos θ 0 0

−a cos θ 0 0 0

0 0 0 −r
0 0 r 0











µ̂ν̂

. (3.32)

It is straightforward to check that K µ̂ν̂ = −f µ̂α̂ ηα̂β̂ f β̂ν̂ . The “principal tensor” [56]

is then simply the Hodge dual of this two-form, and in full generality the family of “1-

function off-shell” Kerr geometries possesses the full “Killing tower” [56] of Killing

tensor, Killing–Yano tensor, and principal tensor. Separability of the Hamilton–

Jacobi equations is guaranteed by the existence of Kµν and the associated Carter

constant, and in reference 75 the geodesics for the photon ring are computed. No-

tably, the eye of the storm is able to be delineated from Kerr, and results from

reference 76 conclude that the data from the image of M87 provided by the EHT

does not exclude the eye of the storm from being astrophysically viable. This is yet

another highly desirable feature of the eye of the storm geometry.

The spacetime is also amenable to straightforward calculation of the black hole

shadow [77, 78]. These calculations further demonstrate that the geometry falls

within experimental constraints provided by the EHT. Furthermore, the fact that
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the eye of the storm falls within this class of “1-function off-shell” Kerr geometries

implies that Maxwell’s equations also separate on the background spacetime; this is

confirmed by the proof given in Appendix A of reference [79]. We conjecture that

the equations governing the spin two polar and axial modes will also be separable on

this geometry.

4 Stress-energy and energy conditions

Recall that the Einstein tensor in an orthonormal basis is given by

Gµ̂
ν̂ = −2ℓm e−ℓ/r

Σ2
diag (1, 1,Ξ− 1,Ξ− 1) , (4.1)

where we have used Ξ = ℓΣ
2r3

. We wish to fix the geometrodynamics by interpreting

the spacetime through the lens of standard GR. As such, coupling the geometry to

the Einstein equations, we have

1

8π
Gµ̂

ν̂ = T µ̂
ν̂ = diag(−ρ, pr, pt, pt) . (4.2)

Due to the fact that −ρ = pr this equation holds globally in the geometry, regardless

of whether one is outside (inside) the outer (inner) horizons, or trapped in between

them. The fact that the Einstein tensor is diagonal in an orthonormal basis implies

that the stress-energy tensor is Hawking–Ellis type I [80–83]. This leads to the

following specific stress-energy components:

ρ = −pr =
ℓm e−ℓ/r

4πΣ2
,

pt =
ℓm e−ℓ/r

4πΣ2
(1− Ξ) . (4.3)

An extremely desirable feature of the “eye of the storm” spacetime is its relationship

with the classical energy conditions associated with GR. In view of ℓ > 0, one trivially

globally satisfies ρ > 0. The radial null energy condition (NEC) is trivially satisfied

since ρ+ pr = 0 globally. Analysing the transverse NEC:

ρ+ pt =
ℓm e−ℓ/r

4πΣ2
(2− Ξ) . (4.4)

This changes sign when Ξ = 2, or when Σ
r3

= 4
ℓ
. On the equatorial plane this is when

r = ℓ
4
. If Σ

r3
> 4

ℓ
, the transverse NEC is violated, whilst if Σ

r3
< 4

ℓ
, it is satisfied. For

the equatorial plane, the violated region is when r < ℓ
4
.
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Let us look at the strong energy condition (SEC), which implies ρ+pr+2pt > 0:

ρ+ pr + 2pt = 2pt =
ℓm e−ℓ/r

2πΣ2
(1− Ξ) . (4.5)

This changes sign when Ξ = 1, or when Σ
r3

= 2
ℓ
. If Σ

r3
> 2

ℓ
, the SEC is violated,

whilst if Σ
r3

< 2
ℓ
, the SEC is satisfied. For the equatorial plane the violated region is

whenever r < ℓ
2
.

Given the freedom to choose the suppression parameter ℓ, this means that all of

the energy-condition-violating physics can be forced into an arbitrarily small region

in the deep core. One can conceive of three sensible categories of relativist in the

present day:

• Those who believe that GR holds everywhere, other than at a distance scale

where a mature and phenomenologically verifiable theory of quantum gravity

must necessarily take over.

• Those who believe that GR can only be believed in regions external to any

Cauchy horizon(s).

• Those who believe that GR only holds outside any horizon full stop.

Regardless of one’s personal subscription, the freedom to scale ℓ as required means all

of the energy-condition-violating physics can be readily pushed into a region where

GR is no longer an appropriate theory. Notably, no exotic matter is required in the

exterior region of the spacetime. In the domain of outer communication, we have

manifest satisfaction of all of the classical energy conditions. This is consistent with

astrophysical observations, and is an extremely desirable feature of eye of the storm

spacetime when compared with the remaining literature concerning rotating RBHs;

for instance in the spacetimes explored in references 54, 55 one has global violation

of the NEC.

5 Conclusions

We have defined the class of “1-function off-shell” Kerr geometries, and demonstrated

the general existence of the full Killing tower for the geometries within it. Within this

class, we have selected the most desirable candidate spacetime, the eye of the storm,

according to a set of carefully chosen theoretically and experimentally motivated

metric construction criteria. This spacetime models a rotating regular black hole

with asymptotically Minkowski core, is asymptotically Kerr for large r, manifestly

satisfies all of the standard energy conditions of GR in both the region of theoretical

validity and the region of experimental validity, has integrable geodesics in principle,

and has the property of separability of the Klein–Gordon equation. The eye of

the storm is also the most mathematically tractable rotating RBH in the current
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literature, and is readily amenable to the extraction of astrophysical observables

falsifiable/verifiable by the experimental community.

Separability of both the Klein–Gordon equation and Maxwell’s equations leads us

to conjecture that the equations governing the spin two polar and axial modes will

also separate on this spacetime. Verifying this is an important topic for future

research. Extracting the full family of geodesics for test particles in the spacetime is

also an important calculation. Ultimately, one should calculate as far as is possible

the geodesics in full generality, and probe the geometry for quasi-normal modes

analysis.
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