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ABSTRACT 
This paper evaluates the impact of eye localization on face 
recognition accuracy. To investigate its importance, we present an 
eye perturbation sensitivity analysis, as well as empirical 
evidence that reinforces the notion that eye localization plays a 
key role in the accuracy of face recognition systems. In particular, 
correct measurement of eye separation is shown to be more 
important than correct eye location, highlighting the critical role 
of eye separation in the scaling and normalization of face images. 
Results suggest that significant gains in recognition accuracy may 
be achieved by focussing more effort on the eye localization stage 
of the face recognition process. 

Categories and Subject Descriptors 
I.4.m [Image Processing and Computer Vision]: Miscellaneous 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Face recognition, eye localization, biometrics, PCA, EBGM, 
FaceIt 

1. INTRODUCTION 
Face-based biometrics have been growing in importance and 
researchers continue to seek more advanced algorithms to 
improve face system performance, especially under difficult 
conditions. Most face recognition systems rely on accurate 
detection of facial features either as input to the classifier directly, 
or more commonly for the purpose of normalizing images [4]. 
This paper suggests that when looking for ways to improve face 
biometrics, the eyes have it: eye localization is currently a major  
weak link.  

Symmetry of the eyes and their consistent relationship  with 
respect to other fiducial marks on faces make them extremely 

useful for parameterizing and normalizing geometric features of 
the face. Because eye separation does not change significantly 
with facial expression, nor with up and down movements of the 
face, eye separation distance is often used for face normalization. 
Nose distance, another feature often extracted, is relatively 
constant with respect to side to side movements of the face and 
also depends on accurate eye localization. In addition, orientation 
of the line between the eyes is often used to correct for pose 
variations. Lastly, eyes are essentially unaffected by other facial 
features like beards and mustaches, making them invaluable 
features to most face recognition systems. It is therefore not 
surprising that up to 1/3 of the total processing time for many face 
recognition algorithms is consumed by the eye localization stage 
[1] further underscoring its importance. 

In appreciation of the critical importance of eye localization, this 
paper investigates the question: what effect does the accuracy of 
eye localization have on face recognition accuracy? Using 
several face recognition algorithms, we present an eye 
perturbation sensitivity analysis as well as empirical evidence 
using real images under various weather conditions that show that 
eye localization has a significant effect. Clearly, this effect will 
vary somewhat from algorithm to algorithm but our contention is 
that all face algorithms will be comparably affected given the 
vital role that eyes play in face recognition. We suggest that 
efforts made to improve recognition accuracy may be better spent 
improving the eye localization stage rather than improving the 
classification algorithm itself. 

The paper is organized as follows. Brief descriptions of the face 
recognition algorithms used is presented, followed by a sensitivity 
analysis with respect to a systematic perturbation of eye 
coordinates. Next, we describe the set-up used to acquire face 
images under varying weather conditions and present results 
showing the effect of eye localization on algorithm performance. 
Results are also presented for face images under varying 
illumination and pose. We conclude with a discussion of the 
ramifications of our study and suggest avenues for further 
research.  

 
2. FACE RECOGNITION ALGORITHMS 
Three different face recognition algorithms were investigated in 
the following experiments: Principal Components Analysis (PCA) 
[17], Elastic Bunch Graph Matching (EBGM)[10] and FaceIt, a 
commercial application based on an LFA algorithm [11].  PCA 
and EBGM algorithms were provided by the Colorado State 
University (CSU) Face Identification Evaluation System (Version 
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5.0) [2]. FaceIt was implemented using programs built  from a 
software development kit licensed from Identix Inc. Brief 
descriptions of each algorithm are provided below, but the reader 
is referred to the relevant publications for details. 

Principal Components Analysis (PCA) 
The PCA recognition algorithm is a nearest neighbor classifier 
that operates in a subspace whose basis vectors are the 
eigenvectors of a scatter matrix formed by training images. 
Feature vectors are formed from training face images by 
concatenating the image pixel values and subtracting the mean 
vector. This process generates a set of very large, highly 
correlated vectors which are then rotated into a much smaller 
subspace with no sample covariance between features. During 
training, the most significant eigenvectors and the mean training 
vector are stored. A novel image is recognized by subtracting the 
mean vector, projecting the result into the PCA subspace and then 
identifying the training image whose projection is closest to the 
input. The distance metric used in this paper was the Mahalonobis 
Cosine [2]. 

Elastic Bunch Graph Matching (EBGM) 
The EBGM recognition algorithm [10] uses a wavelet transform 
to generate feature vectors at various landmark points in a face 
image. These feature vectors, known as "Gabor jets", are then 
associated with the nodes of a face graph created for each training 
image. Analogous to the projected vectors of PCA, the face graph 
serves to represent the face image in a low dimensional space. A 
novel image is recognized by creating a similar face graph for it, 
and, through a complex graph matching algorithm, measuring its 
similarity to stored face graphs in the training database. 

FaceIt 
While it is derived from LFA [11], FaceIt is a commercial product 
with years of unpublished improvements and modifications of 
improvements. The original LFA approach computes its features  
starting from a PCA space and transforms the resulting data using 
filters to produce more localized features. However, since some 
extracted features have an extent that span more than half the 
face, the features are not all that local.. The basic LFA features 
are dense in the original image space, and a more sparse subset is 
computed using a neural net.  This sparse set provides for 
effective reconstruction, even for frontal face images not in the 
original training set, using a relative small number of coefficients.  
Because of the localized nature of the features, the approach is 
inherently more robust with respect to lighting variations. 
However, it is interesting to note that the Identix literature claims 
the system uses the relative distances between different landmarks 
on the face to create a facial biometric template which is used for 
matching in recognition. 

 

3. EYE PERTURBATION EXPERIMENTS 
Face recognition algorithm papers tend to focus on the 
recognition and representation components, but all of them, 
including the LFA and PCA approaches, depend on preprocessing 
that begins with localization of the face and the eyes.  Using the 
eyes, and possibly other features, the image is normalized to a 
constant size and shape prior to feature extraction. The 
implication of error in eye localization is thus not just a shift of 

features, but also a scaling and possible rotation of the input 
image. 
To investigate the effect of eye localization, we begin with a 
sensitivity analysis using perturbed eye locations as input to the 
three face recognition algorithms: PCA, EBGM and FaceIt. We 
take a non-standard approach and use the same set of images as 
both probe and gallery.  This allows  the face recognition system 
to match the actual input image.  By allowing exactly the same 
image as both the probe and the gallery, we isolate eye 
localization - there is no variation in pose or lighting.  While 
unrealistic in the sense that a face recognition algorithm would 
hopefully produce identical eye locations given identical images, 
the removal of all other factors allows us to focus on the impact of 
eye location alone. 

3.1 Experiment Conditions and Factors 
In this experiment, a subset of the full FERET database [13] was 
used to create a gallery consisting 1024 images, where we use 4 
different front-facing images of each of 256 different subjects. 
Subjects varied in age, race, gender, with and without glasses. 
The same images were used as probes, but with perturbed eye 
locations input to the face algorithms.  The perturbed eye 
locations were offsets relative to the known center of the eye for 
each gallery image as depicted in the 13x13 pixel grid shown in 
figure 1. For example, the top left black pixel represents the 
location of one eye offset six pixels to the left and six pixels up 
from its true location.  For each algorithm, a total of 289 
experiments were run, using a total of 17 perturbations per eye. 

 
Figure 1. Eye perturbations depicted pictorially as 
black pixels in the 13x13 grid centered on the known 
location of the eye. 
 

3.2 Performance Metric 
Performance was measured using a cumulative match score or 
CMS [13]. The CMS is a function of an independent variable r 
(rank) and a rank set E, and is defined as the fraction of E that has 
a rank of r or lower. It can also be viewed as the fraction of 
probes yielding a correct match within the top r candidates. The 
CMS was computed using the best rank obtained for the 
individual. 

3.3 Results and Discussion 
In all, 17 surface plots for each fixed eye could be shown, but we 
present two examples for each algorithm which show the range of 
possibilities. 3D mesh plots are interpolated to aid in 
visualization. The first set of plots has the left eye fixed at the 
correct location with the right eye systematically offset. The 
result, shown in figure 2, is that there is only a minor impact on 
the overall stability of the match for both FaceIt and EBGM. PCA 
is clearly more significantly affected by perturbations in eye loca- 
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Figure 2: Performance (CMS) for FaceIt (a), EBGM (b) 
and PCA (c) as a function of right-eye perturbation, with 
left eye fixed at the correct location [0,0]. 

 
tion,  no doubt a result of its greater dependence on face image 
alignment. This is evident with even greater clarity in the 
second set of plots of figure 3, showing results for the left eye 
displaced by 6 pixels in Y and –6 pixels in X. Since the left eye 
is displaced -6 pixels,  figure 3 shows instances for which the Y  
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Figure 3: Performance (CMS) for (a) FaceIt, (b) EBGM 
and (c) PCA as a function of right-eye perturbation, with 
left eye fixed at [-6,+6]. 

 
offset varies and the total eye separation in x increases from 0 
to 12 pixels. As expected, there is a significant reduction in the 
overall performance as the total displacement between the two 
eyes increases, with FaceIt appearing to be slightly more robust 
in this respect. 
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Figure 4: Performance (CMS) for (a) FaceIt, (b) EBGM 
and (c) PCA as a function of eye separation in the x 
direction (XDES). 

 

To better summarize the overall two-dimensional effect of 
offset,performance was also plotted against two computed 
variables: the difference in eye separation in the x direction 
(XDES) and the difference in eye separation in the y direction 
(YDES) (figures 4 and 5). Note, XDES is rather intuitive, 
negative for eyes closer together and positive for eyes further 
apart. Subtraction of y offsets (YDES) yields a value directly  
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Figure 5: Performance (CMS) for (a) FaceIt, (b) EBGM 
and (c) PCA as a function of eye separation in the y 
direction (YDES). 

 
 

proportional to the slope of the line connecting the eyes,  negative 
for the left eye above the right eye, and positive for the left eye 
below the right eye. 

From figure 4 it is evident that FaceIt and EBGM performanceis 
almost equally degraded as the eye separation decreases or 
increases and is relatively independent of YDES. This is further 



supported by noting that even when the line connecting the two 
eyes is not horizontal, performance still depends mostly on 
XDES. This is seen in figure 5, where YDES is plotted as a 
function of performance. Note that even for absolute values of 
YDES that are high, when XDES is low (that is, eye separation 
remains about the same), performance can remain relatively high 
provided the difference in the separation of the eyes in the x 
direction is minimal. The effect of eye localization appears to be 
more dramatic when errors are made in eye separation distance 
versus errors made in identifying the actual locations of eyes. 
Apparently, in instances where eye separation remains 
unchanged, but is shifted, performance is less affected in both 
FaceIt and EBGM algorithms. This is clearly not the case for 
PCA, which appears to be affected by both, and is severely 
degraded when the location of one or both eyes is in error (see 
figure 3c). In fact, this supports our contention that accurate eye 
localization with respect to normalization and scaling is vital to 
effective face recognition. PCA is more drastically affected due 
to its more global approach and weaker dependence on local 
features, resulting in a very strong dependence on face 
registration and hence eye localization. 
 

4. ATMOSPHERIC IMAGE DEGRADATION 
The following section describes a set of experiments performed to 
investigate the effect of eye localization under more realistic 
conditions, more specifically, for images degraded by 
atmospheric imaging effects. First, the perturbation experiments 
of section 3 are repeated using a single set of atmospherically 
degraded face images showing that "real" images yield similar 
behavior with respect to eye perturbations. Second, performance 
of FaceIt on a large number of atmospherically degraded images 
using FaceIt eye localization is compared to its performance using 
known eye coordinates, showing that accurate eye localization 
can make a significant difference in recognition rate. 

4.1 Experiment Setup 
To study the effects of weather on face recognition accuracy for 
our research, we have set up an outdoor LCD monitor on which 
we can project and acquire images of, face images (see figure 6). 
Images are projected on a 15" LCD marine monitor (300 nit 
display) and acquired asynchronously by two cameras at high 
speed from a distance of 94 and 182 ft. A single gallery of images 
(as described in section 3.1) is projected and acquired every day, 
approximately 15 times a day. All images are marked with a pair 
of easily identifiable markers so that regardless of the capabilities 
of the recognition algorithm, correct eye locations can be 
computed. Given the eye locations of the original FERET images 
and being able to locate the image markers enables us to 
accurately compute the location of eyes in all of the projected 
images. This apparatus was used to acquire experiment data. 

Figure 6: Camera setup for atmospheric degradation experiments. 

4.2 Eye Perturbation Experiments           
Using "Weathered" Images 

The goal of this experiment was to examine the impact of eye-
localization when there is actual imaging system degradation in 
the probe images.  

Experiment Conditions and Factors. The same set of images as 
used in the perturbation experiments was used here except that 
probe images consisted of the entire image set projected outside 
and re-acquired. The particular image set used was selected 
somewhat arbitrarily from a day with clear weather (i.e. no 
precipitation, snow, fog or mist). Experiment runs over the same 
set of eye perturbations were made for all algorithms. 

Results and Discussion. Results are shown only for FaceIt, since 
similar observations were made for all three algorithms. Note the 
similarity between figures 7a, 7b and 2a, 3a respectively. At a 
crude level, atmospheric degradation is analogous to a mixture of 
blurring and noise being added to the experiment.  Thus it is not 
surprising that the behavior with respect to eye perturbations 
appears to be similar, but smoothed out. In other words, while 
blurring tends to stabilize the algorithms with respect to eye 
localization errors, their general behavior with respect to a strong 
dependence on eye localization remains unchanged. This is 
evident even in the x and y difference plots in figures 8a and 8b 
(compare to figures 4a and 5a). Similar analogous results were 
observed for both EBGM and PCA (not shown). 
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Figure 7: Performance (CMS) for FaceIt on "weathered" 
face images as a function of right-eye perturbation, with 
left eye fixed at (a) [0,0] and at (b) [-6,+6]. 
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Figure 8: Performance (CMS) for FaceIt on "weathered" 
face images as a function of eye separation in the (a) x 
direction (XDES) and (b) y direction (YDES). 

 
 

4.3 FaceIt Experiments                              
Using "Weathered" Images 

The goal of this experiment was to examine the effect of eye-
localization error on the performance of a leading face recognition 
algorithm on real images acquired in the field. FaceIt was chosen 
due to its standing as one of three best performing face 
recognition algorithms in FRVT2000 and FVRT2002 [12]. It was 
also fast enough for the large number of face recognition 
experiments required by our experiments. 

Experiment Conditions and Factors. Again, the same set of 
images as used in the perturbation experiments was used here 
except that in the analysis, the gallery consisted of every first 
image in the set (known from previous experiments to be the 
"best" out of the four). Each probe set (one for each camera) 
consisted of images taken at various times of day, during days 
with no precipitation, snow, fog or mist. All images were acquired 
over approximately three months in the spring of this year. 

Performance Metrics. As before, the cumulative match score 
(CMS) at rank 1 was used as a measure of performance. However, 
in this case, four CMS values per experiment were averaged to 
reduce the overall variance. 

Results and Discussion. Results are shown in figures 9a and 9b. 
CMS measures are shown for 5 times of day for both near and far 
cameras. Images between 2:00pm and 6:00pm were omitted due 
to abnormal imaging effects caused by angle of the afternoon sun. 
This resulted in 59, 63, 56, 47 and 101 probe set samples for times 
6-8am, 8-10am, 10-12noon, 12-2pm and 6pm-6am respectively. 
Error bars are all set at the 85% confidence level and points are 
displayed at the midpoint of each time interval. 
Not surprisingly, these results show that eye localization plays a 
significant role in the accuracy of face recognition. Note that 
excluding images in which faces were not found at all by FaceIt 
did not significantly affect the measured difference.  
One point to note, instances in which there is a difference in FaceIt 
performance based on computed eye locations indicates a 
difference in higher stages of FaceIt processing, since the only 
difference in the face recognition algorithm processing is the 
accuracy of the eye localization. 

         (a) 

         (b) 

Figure 9: Performance comparison for FaceIt using eye 
coordinates obtained by FaceIt vs. eye coor-dinates 
computed from markers on "weathered" face images for 
(a) NEAR camera and (b) FAR camera. 
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Incidentally, the rather large difference in performance for 
evening images was due to the larger dynamic range of the far 
camera images as compared to the near camera images, likely 
enabling more effective face image processing. 

5. ATMOSPHERIC IMAGE 
DEGRADATION 
The following section describes an experiment performed to 
investigate the effect of eye localization on images with subjects 
under various illumination conditions and poses.  

5.1 Experiment Conditions and Factors 
A total of 68 individuals from the CMU PIE database with neutral 
expressions, under 21 illuminations and 3 poses were used in this 
experiment [14]. Using front profile images in the gallery with 
room lights on, FaceIt performance was measured on probes each 
consisting of the 68 individuals under 21x3=63 different 
combinations of illumination and pose. Illuminations resulting in 
the darkest images were not used to insure that FaceIt would be 
able to properly locate the face. 
Poses used were front profile and the two closest poses on either 
side of the front profile. FaceIt was run twice, once using FaceIt 
eye localization, and a second time using specified eye 
coordinates. 

5.2 Experiment Conditions and Factors 
As before, the cumulative match score (CMS) for rank 1 was used 
as a measure of performance. However, in this case, balanced 
repeated replication (BRR) was used to tighten confidence 
intervals over the small set of data [8]. 

5.3 Results and Discussion 
Results are shown in figure 10 for three poses, with CMS values 
averaged over all illuminations using the BRR technique. As 
shown in the plot, there is a significant difference in performance 
for poses different from the front profile view (at a 90% 
confidence level). Poor eye localization clearly degrades the 
performance of the algorithm on the probe images. 
 

6. CONCLUSION 
While many people would expect eye localization to have an 
impact on recognition accuracy, this paper has shown, for the first 
time, that it has a significant quantitative impact. Even with ideal 
data, it was shown to have a significant effect on the recognition 
accuracy of several different face recognition algorithms. The 
response of the various face recognition algorithms to eye 
perturbations was found to be similar, despite significant 
differences in algorithm design, suggesting that our observations 
are relevant to many face analysis systems.  

The simulation using ideal data was then validated using the same 
experimental technique with actual images.  The behavior of the 
algorithms did not alter drastically when the same eye 
perturbations were used on "real" images, although the degraded 
images did result in performance loss being somewhat attenuated. 
This was, at first, somewhat surprising  

Figure 10: Traditional FERET CMS curve for three 
poses, one set using FaceIt eye localization, the other 
using computed eye locations. 

 

since one might expect eye localization to increase in importance 
as the quality of the face image degrades. Our results indicate that 
blurring/noise from the real imaging system may in fact help to 
make the algorithm less sensitive to errors in eye location. The 
working hypothesis is that blurring seems to mitigate the effect of 
eye localization, making (at least) these algorithms more stable 
with respect to eye perturbations. This may explain the 
observation that sometimes blurring helped recognition [5] and is 
consistent with human experiments that show that face processing 
is less affected by blurring than expected [6]; blurring may impact 
eye localization, but image smoothing mitigates the impact of  
such errors.  

Results comparing the performance of FaceIt using its own eye-
localization algorithm versus known eye coordinates on real face 
image data (both atmospherically degraded and under various 
pose and illumination conditions) showed that even a leading 
recognition algorithm can be significantly improved by increasing 
the accuracy of its eye localization routines. 
The importance of eye separation versus eye location was also 
noted. Our observations suggest that reliance on eye separation 
for scaling and normalization may be precarious especially in 
instances where face images are degraded or taken in more 
realistic environments. Since much of later face processing relies 
on proper scaling, our results suggests the need for additional 
"backup" methods of scaling, which may either complement the 
use of eye separation or supercede it.  
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