
Copyright Notice

©2007 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be ob-

tained from the IEEE.

INV ITED

P A P E R

The Factor Graph Approach to
Model-Based Signal Processing
Factor graphs can model complex systems and help to design effective
algorithms for detection and estimation problems.

By Hans-Andrea Loeliger, Fellow IEEE, Justin Dauwels, Member IEEE,

Junli Hu, Member IEEE, Sascha Korl, Member IEEE, Li Ping, Senior Member IEEE, and

Frank R. Kschischang, Fellow IEEE

ABSTRACT | The message-passing approach to model-based

signal processing is developed with a focus on Gaussian

message passing in linear state-space models, which includes

recursive least squares, linear minimum-mean-squared-error

estimation, and Kalman filtering algorithms. Tabulated mes-

sage computation rules for the building blocks of linear models

allow us to compose a variety of such algorithms without

additional derivations or computations. Beyond the Gaussian

case, it is emphasized that the message-passing approach

encourages us to mix and match different algorithmic tech-

niques, which is exemplified by two different approachesV

steepest descent and expectation maximizationVto message

passing through a multiplier node.

KEYWORDS | Estimation; factor graphs; graphical models;

Kalman filtering; message passing; signal processing

I . INTRODUCTION

Graphical models such as factor graphs allow a unified

approach to a number of topics in coding, signal

processing, machine learning, statistics, and statistical

physics. In particular, many algorithms in these fields have

been shown to be special cases of the basic sum-product

and max-product algorithms that operate by message

passing in a factor graph [1]–[3]. In this paper, we

elaborate on this topic with an emphasis on signal

processing. We hope to convey that factor graphs continue

to grow more useful for the design of practical algorithms

for model-based detection and estimation problems in-

volving many (discrete and/or continuous) variables. In

particular, the factor graph approach allows us to compose

nontrivial algorithms for such problems from tabulated

rules for Blocal[computations corresponding to the

building blocks of the system model; it also encourages

us to mix and match a large variety of techniques ranging

from classical Gaussian and gradient techniques over

expectation maximization (EM) to sequential Monte Carlo

methods (particle filters).

Factor graphs are graphical models [4]–[7]. In many

respects, the different notation systems for graphical

models (Bayesian networks [7], [8], Markov random fields

[7], [9], junction graphs [10], [11], etc.) are essentially

equivalent, but there are some real differences when it

comes to practical use. Indeed, some of the material of this

paper (in particular, in Sections IV, V, and Appendix III)

is not easily expressed in other notation systems.

While much interesting recent work on graphical

models specifically addresses graphs with cycles (e.g.,

[12]–[21]), the present paper is mostly concerned with

cycle-free graphs, or with cycle-free subgraphs of complex

system models. We will encounter some factor graphs with

cycles, though.

The message-passing approach to signal processing was

suggested in [2], [22] and has been used, e.g., in [23]–[39]

for tasks like equalization, multi-user detection, multiple-

input multiple-output (MIMO) detection, channel estima-

tion, etc. The literature on graphical models for general

inference problems is vast. For example, factor graphs have

Manuscript received May 9, 2006; revised March 13, 2007. The work of J. Dauwels

was supported in part by Swiss NF under Grant 200021-101955. The work of S. Korl

was supported in part by Phonak AG.

H.-A. Loeliger and J. Hu are with the Signal Processing Laboratory (ISI), Department

of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich,

Switzerland (e-mail: loeliger@isi.ee.ethz.ch; hu@isi.ee.ethz.ch).

J. Dauwels was with the Department of Information Technology and Electrical

Engineering, ETH Zurich, CH-8092 Zurich, Switzerland. He is now with Amari

Research Unit, RIKEN Brain Science Institute, Saitama-ken 351-0106, Japan

(e-mail: justin@dauwels.com).

S. Korl was with the Department of Information Technology and Electrical

Engineering, ETH Zurich, CH-8092 Zurich, Switzerland. He is now with Phonak AG,

CH-8712 Stäfa, Switzerland (e-mail: sascha.korl@phonak.ch).

L. Ping is with the Department of Electronic Engineering, City University of

Hong Kong, Kowloon, Hong Kong (e-mail: eeliping@cityu.edu.hk).

F. R. Kschischang is with the Department of Electrical and Computer

Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

(e-mail: frank@comm.utoronto.ca).

Digital Object Identifier: 10.1109/JPROC.2007.896497

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 12950018-9219/$25.00 �2007 IEEE

also been used for link monitoring in wireless networks

[40], for genome analysis [41], and for clustering [42].

This paper begins with an introduction to factor

graphs that complements [2] and [3]. We then turn to an

in-depth discussion of Gaussian message passing for linear

models, i.e., Kalman filtering and some of its ramifica-

tions. In particular, we will present tabulated message

computation rules for multivariate Gaussian messages

that are extensions and refinements of similar tables in [3]

and [33]. With these tables, it is possible to write down

(essentially without any computation) efficient Gaussian/

linear minimum-mean-squared-error (LMMSE) estima-

tion algorithms for a wide variety of applications, as is

illustrated by several nontrivial examples.

Beyond the Gaussian case, we will address the

representation of messages for continuous variables and

of suitable message computation rules. A wide variety of

algorithmic techniques can be put into message-passing

form, which helps to mix and match these techniques in

complex system models. To illustrate this point, we

demonstrate the application of two different techniques,

steepest descent and expectation maximization, to mes-

sage passing through a multiplier node.

Some background material on multivariate Gaussian

distributions and LMMSE estimation is summarized in

Appendix I. Appendix II contains the proofs for Section V.

Appendix III reviews some results by Forney on the

Fourier transform on factor graphs [43] and adapts them to

the setting of the present paper.

The following notation will be used. The transpose of a

matrix (or vector) A is denoted by AT; AH denotes the

complex conjugate of AT; A# denotes the Moore–Penrose

pseudo-inverse of A; and B/[denotes equality of functions
up to a scale factor.

II . FACTOR GRAPHS

We review some basic notions of factor graphs. For com-

plementary introductions to factor graphs and their history

and their relation to other graphical models, we refer the

interested reader to [2] and [3]. Other than in [2], we will

use Forney-style factor graphs (also known as Bnormal

factor graphs[) as in [3]. (The original factor graphs [2]

have both variable nodes and factor nodes. Forney-style

factor graphs were introduced in [43], but we deviate in

some details from the notation of [43].)

Assume, for example, that some function fðu;w; x; y; zÞ
can be factored as

fðu;w; x; y; zÞ ¼ f1ðuÞf2ðu;w; xÞf3ðx; y; zÞf4ðzÞ: (1)

This factorization is expressed by the factor graph shown

in Fig. 1. In general, a (Forney-style) factor graph consists

of nodes, edges, and Bhalf-edges[(which are connected

only to one node), and there are the following rules.

1) There is a (unique) node for every factor.

2) There is a (unique) edge or half-edge for every

variable.

3) The node representing some factor g is connected
with the edge (or half-edge) representing some

variable x if and only if g is a function of x.
Implicit in these rules is the assumption that no

variable appears in more than two factors. We will see

below how this restriction is easily circumvented.

A main application of factor graphs are stochastic

models. For example, let X be a real-valued random

variable and let Y1 and Y2 be two independent real-valued

noisy observations of X. The joint probability density of

these variables is

fðx; y1; y2Þ ¼ fðxÞfð y1jxÞfð y2jxÞ (2)

which we claim is represented by the factor graph of

Fig. 2. Literally, Fig. 2 represents an extended model with

auxiliary variables X0 and X00 and with joint density

fðx; x0; x00; y1; y2Þ ¼ fðxÞfð y1jx0Þfð y2jx00Þf¼ðx; x0; x00Þ (3)

where the equality constraint Bfunction[

f¼ðx; x0; x00Þ ¼� �ðx� x0Þ�ðx� x00Þ (4)

Fig. 1. Forney-style factor graph.

Fig. 2. Factor graph of (2) and (3).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1296 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

(with �ð�Þ denoting the Dirac delta) enforces PðX ¼ X0Þ ¼
PðX ¼ X00Þ ¼ 1. Clearly, (2) is a marginal of (3)

fðx; y1; y2Þ ¼
Z

x0

Z

x00

fðx; x0; x00; y1; y2Þdx0dx00: (5)

For most practical purposes, equality constraint nodes

(such as the node labeled B¼[in Fig. 2) may be viewed

simply as branching points that allow more than two

factors to share some variable.

Assume now that Y1 and Y2 are observed and that we

are interested in the a posteriori probability fðx j y1; y2Þ. For
fixed y1 and y2, we have

fðx j y1; y2Þ / fðx; y1; y2Þ (6)

where B/[denotes equality up to a scale factor. It follows

that fðx j y1; y2Þ is also represented by the factor graph of

Fig. 2 (up to a scale factor). This clearly holds in general:

passing from some a priori model to an a posteriori model

[based on fixing the value of some variable(s)] does not

change the factor graph.

We will usually denote unknown variables by capital

letters and known (observed) variables by small letters.

(Formally, a B-valued known variable is an element of B
while a B-valued unknown variable is a function from the

configuration space into B [3].) For the factor graph of

fðx j y1; y2Þ, we would thus modify Fig. 2 by replacing Y1 by
y2 and Y2 by y2 if these variables are known (observed).

A more detailed version of Fig. 2 is shown in Fig. 3,

where we assume

Y1 ¼X þ Z1 (7)

Y2 ¼X þ Z2 (8)

with random variables Z1 and Z2 that are independent of

each other and of X. The nodes labeled Bþ[represent the

factors �ðxþ z1 � y1Þ and �ðxþ z2 � y2Þ, respectively. As
illustrated by this example, the (Forney-style) factor graph

notation naturally supports modular and hierarchical system

modeling. Fig. 3 also illustrates the use of arrows and of

special symbols (such as B¼[and Bþ[) to define factors and
to make factor graphs readable as block diagrams.

As a nonstochastic example, consider the following

system identification problem. Let Uk and ~Yk, k 2 Z, be the

real-valued input signal and the real-valued output signal,

respectively, of some unknown system that we wish to

approximate by a linear finite impulse response (FIR) filter

of order M

Yk ¼
XM

‘¼0
h‘Uk�‘ (9)

~Yk ¼ Yk þ Zk: (10)

The slack variable Zk absorbs the difference between the

filter output Yk and the observed output ~Yk. Assume that

we know both the input signal Uk ¼ uk, k ¼ �Mþ 1;
�Mþ 2; . . . ;N and the output signal ~Yk ¼ ~yk, k ¼ 1; 2;
. . . ;N. We wish to determine the unknown filter coef-

ficients h0; . . . ; hM such that the squared error
PN

k¼1 Z
2
k is

as small as possible.

We first note that minimizing
PN

k¼1 Z
2
k is equivalent to

maximizing

YN

k¼1
e�z

2
k=2�

2 ¼ e�
PN

k¼1 z
2
k=2�

2

(11)

(for arbitrary positive �2) subject to the constraints (9)

and (10).

For later use, we rewrite (9) as

Yk ¼ ½u�kH (12)

with the row vector ½u�k ¼
� ðuk; uk�1; . . . ; uk�MÞ and the

column vector H ¼� ðh0; h1; . . . ; hMÞT .
A factor graph of this example is shown in Fig. 4. The

lower part represents the unconstrained cost function (11)

and the linear constraint (10); the upper part represents

the linear constraint (12), i.e., the factors �ð yk � ½u�kHÞ for
k ¼ 1; 2; . . . ;N.

Note that the original least-squares problem to

determine the filter coefficients is equivalent to maximiz-

ing the function represented by Fig. 4 over all assignments

of values to all unknown variables. We will see in Section VFig. 3. More detailed version of Fig. 2.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1297

how efficient recursive least-squares algorithms (RLS) for

this maximization may be obtained from tabulated rules

for Gaussian message-passing algorithms.

III . MESSAGE-PASSING ALGORITHMS

We briefly review the basic sum-product and max-product

algorithms [2], [44]. In this section, the emphasis will be

on cycle-free factor graphs.

A. Sum-Product Algorithm
For some given function fðx1; . . . ; xnÞ, assume that we

wish to compute

�fkðxkÞ ¼�
X

x1;...; xn
except xk

fðx1; . . . ; xnÞ: (13)

If fðx1; . . . ; xnÞ is a probability mass function of discrete

random variables X1; . . . ;Xn, then (13) is the probability

mass function of Xk.
In later sections, we will primarily be interested in

continuous variables. In this case, the summation in (13) is

replaced by integration.

If fðx1; . . . ; xnÞ has a cycle-free factor graph, the func-

tion (13) can be computed by the sum-product algorithm,

which splits the Bbig[marginalization (13) into a sequence

of Bsmall[marginalizations. For example, assume that

fðx1; . . . ; x7Þ can be written as

fðx1; . . . ; x7Þ ¼ f1ðx1Þf2ðx2Þf3ðx1; x2; x3Þf4ðx4Þ
� f5ðx3; x4; x5Þf6ðx5; x6; x7Þf7ðx7Þ (14)

as in the factor graph in Fig. 5. Assume that we wish to

compute �f3ðx3Þ. It is easily verified that

�f3ðx3Þ ¼ �Cðx3Þ�Dðx3Þ (15)

with

�Cðx3Þ ¼�
X

x1; x2

f1ðx1Þf2ðx2Þf3ðx1; x2; x3Þ (16)

and

�Dðx3Þ ¼�
X

x4; x5

f4ðx4Þf5ðx3; x4; x5Þ�Fðx5Þ (17)

with

�Fðx5Þ ¼�
X

x6; x7

f6ðx5; x6; x7Þf7ðx7Þ: (18)

The quantities �C, �D, and �F in (15)–(18) may be viewed

as summaries of the dashed boxes in Fig. 5, which are

obtained by eliminating the variables inside the box by

summation. Such summaries may be thought of as

messages in the factor graph, as is shown in Fig. 5.

With the trivial summaries/messages �Aðx1Þ ¼� f1ðx1Þ,
and �Bðx2Þ ¼� f2ðx2Þ, we can write (16) as

�Cðx3Þ ¼�
X

x1; x2

f3ðx1; x2; x3Þ�Aðx1Þ�Bðx2Þ: (19)

Similarly, with the trivial summaries �Eðx4Þ ¼� f4ðx4Þ and
�Gðx7Þ ¼� f7ðx7Þ, we can write (17) as

�Dðx3Þ ¼�
X

x4; x5

f5ðx3; x4; x5Þ�Eðx4Þ�Fðx5Þ (20)

Fig. 4. Two sections of factor graph for FIR filter

identification problem.

Fig. 5. ‘‘Summarized’’ factors as messages in factor graph.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1298 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

and (18) as

�Fðx5Þ ¼�
X

x6; x7

f6ðx5; x6; x7Þ�Gðx7Þ: (21)

All these messages/summaries (19)–(21) are formed

according to the following rule.

Sum-Product Rule: The message out of some node/factor

f‘ along some edge Xk is formed as the product of f‘ and all
incoming messages along all edges except Xk, summed over

all involved variables except Xk.

From this example, it is obvious that the marginal �fkðxkÞ
may be obtained simultaneously for all k by computing two

messages, one in each direction, for every edge in the

factor graph. The function �fk is the product of these two

messages as in (15).

We also observe the following.

1) The sum-product algorithm works for any cycle-

free factor graph.

2) Open half-edges such as X6 in Fig. 5 do not carry

an incoming message. Equivalently, they may be

thought as carrying the constant function

�ðxÞ ¼ 1 as incoming message.

3) Known variables such as ~yk in Fig. 4 are simply

plugged into the corresponding factors; they are

not otherwise involved in the algorithm.

4) It is usually (but not always!) sufficient to know

the Bmarginal[(13) up to a scale factor. In such

cases, it suffices to know the messages only up

to a scale factor. The option to freely scale

messages is often essential for numerically

reliable computations.

Since the sum-product rule is a Blocal[computation, it

can be applied also to factor graphs with cycles. The sum-

product algorithm then becomes an iterative algorithm

where messages are recomputed according to some schedule

until some stopping criterion is satisfied or until the available

time is over. The algorithm may be initialized by assigning to

all messages the neutral constant function �ðxÞ ¼ 1.

B. Max-Product Algorithm
Assume we wish to maximize some function

fðx1; . . . ; xnÞ, i.e., we wish to compute

ðx̂1; . . . ; x̂nÞ ¼ argmax
x1;...; xn

fðx1; . . . ; xnÞ (22)

where we assume that f has a maximum. Note that

x̂k ¼ argmax
xk

f̂ kðxkÞ (23)

with

f̂ kðxkÞ ¼
�

max
x1;...; xn
except xk

fðx1; . . . ; xnÞ: (24)

If fðx1; . . . ; xnÞ has a cycle-free factor graph, the function

(24) can be computed by the max-product algorithm. For

example, assume that fðx1; . . . ; x7Þ can be written as in

(14), which corresponds to the factor graph of Fig. 5.

Assume that we wish to compute f̂ 3ðx3Þ. It is easily

verified that

f̂ 3ðx3Þ ¼ �Cðx3Þ�Dðx3Þ (25)

with �A . . .�G defined as in (16)–(21) except that

summation is everywhere replaced by maximization. In

other words, the max-product algorithm is almost

identical to the sum-product algorithm except that the

messages are computed as follows.

Max-Product Rule: The message out of some node/factor

f‘ along some edge Xk is formed as the product of f‘ and all
incoming messages along all edges except Xk, maximized

over all involved variables except Xk.

The remarks at the end of Section III-A apply also to

the max-product algorithm. In particular, the Bmax-

marginals[f̂ kðxkÞ may be obtained simultaneously for all

k by computing two messages, one in each direction, for

every edge in the factor graph; f̂ kðxkÞ is the product of

these two messages as in (25).

The analogies between the sum-product algorithm

and the max-product algorithm are obvious. Indeed, the

sum-product algorithm can be formulated to operate

with abstract addition and multiplication operators B[
and B�[, respectively, and setting B[¼ Bmax[then

yields the max-product algorithm [22, Sec. 3.6], [10].

Translating the max-product algorithm into the logarith-

mic domain yields the max-sum (or min-sum) algorithm

[2], [10], [22].

C. Arrows and Notation for Messages
The use of ad hoc names for the messages (such as

�A; . . . ; �G in Fig. 5) is often unsatisfactory. We will

therefore use the following systematic notation. Let X be

a variable that is represented by a directed edge (i.e., an

edge depicted with an arrow). Then, �X

!
denotes the

message that flows in the direction of the edge and �X

denotes the message in the opposite direction. We will

sometimes draw the edges with arrows just for the sake of

this notation (e.g., the edge X in Fig. 6 and all edges in

Fig. 7).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1299

D. Example
For a simple example, consider sum-product message

passing in the factor graph of Fig. 3 to compute the a
posteriori probability fðx j y1; y2Þ for known (observed)

Y1 ¼ y1 and Y2 ¼ y2. The required messages are indicated

in Fig. 6. Note that

fðx j y1; y2Þ / fðx; y1; y2Þ (26)

¼ �
!
XðxÞ�

XðxÞ: (27)

By the rules of the sum-product algorithm, we have

�
!
Z1ðz1Þ ¼ fZ1ðz1Þ (28)

�
!
Z2ðz2Þ ¼ fZ2ðz2Þ (29)

�

X0ðx0Þ ¼

Z

z1

�ðx0 þ z1 � y1Þ�
!
Z1ðz1Þdz1 (30)

¼ fZ1ð y1 � x0Þ (31)

�

X00ðx00Þ ¼

Z

z2

�ðx00 þ z2 � y2Þ�
!
Z2ðz2Þdz2 (32)

¼ fZ2ð y2 � x00Þ (33)

�

XðxÞ ¼

Z

x0

Z

x00

�ðx� x0Þ�ðx� x00Þ

� � X0ðx0Þ�

X00ðx00Þdx0dx00 (34)

¼ �

X0ðxÞ�

X00ðxÞ (35)

¼ fZ1ð y1 � xÞfZ2ð y2 � xÞ (36)

�
!
XðxÞ ¼ fXðxÞ: (37)

In this example, the max-product algorithm computes

exactly the same messages.

E. Marginals and Output Edges
Both in the sum-product algorithm and in the max-

product algorithm, the final results are the marginals

�
!
X�

X of the variables (such as X) of interest. It is often

convenient to think of such marginals as messages out of a

half-edge �X (without incoming message) connected to

Xð¼ X0Þ as shown in Fig. 7; both by the sum-product rule

and by the max-product rule, we have

�
!

�XðxÞ ¼
Z

x0

Z

x00

�ðx� x0Þ�ðx� x00Þ

� �!Xðx00Þ�

X0ðx0Þdx0dx00 (38)

¼ �
!
XðxÞ�

X0ðxÞ: (39)

It follows that the message computation rules for margin-

als coincide with the message computation rules out of

equality constraint nodes (as, e.g., in Table 2).

IV. LINEAR STATE-SPACE MODELS

Linear state-space models are important in many applica-

tions; some examples will be given in the following. In

Section V, we will discuss Gaussian sum-product and max-

product message passing in such models.

The general linear state-space model may be described

as follows. For k ¼ 1; 2; 3; . . . ;N, the input Uk, the output

Yk, and the state Xk are (real or complex) scalars or vectors

coupled by the equations

Xk ¼ AkXk�1 þ BkUk (40)

Yk ¼ CkXk (41)

where Ak, Bk, and Ck are (real or complex) matrices of

suitable dimensions. The factor graph corresponding to

these equations is given in Fig. 8.

Note that the upper part of Fig. 4 is a special case of

Fig. 8 without input (i.e., Bk ¼ 0), with Xk ¼ H, with Ak an
identity matrix, and with Ck ¼ ½u�k.

As exemplified by Fig. 4, linear state-space models

are often combined with quadratic cost functions or

Fig. 6. Message passing in Fig. 3.

Fig. 7. Adding an output half-edge �X to some edge X.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1300 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

(equivalently) with Gaussian noise models. The factor

graph approach to this classical happy combination is the

core of the present paper. A key feature of this com-

bination is that the sum-product algorithm coincides with

the max-product algorithm (up to a scale factor) and that

all messages are Gaussians (or degenerate Gaussians), as

will be discussed in Section V and Appendix I.

We will now give two more examples of this kind.

A. Equalization
Consider the transmission of real symbols Uk,

k ¼ 1; . . . ;N, over a discrete-time linear intersymbol

interference channel with additive white Gaussian noise.

The received real values ~Yk, k ¼ 1; . . . ;N, are given by

~Yk ¼
XM

‘¼0
h‘Uk�‘ þ Zk (42)

where Zk, k ¼ 1; . . . ;N are i.i.d. zero-mean Gaussian ran-

dom variables with variance �2 and where h0; . . . ; hM are

known real coefficients. (The initial channel state U0;U�1;
. . . ;U�Mþ1 may be known or unknown, depending on the

application.)

We bring (42) into the state-space form (40), (41) by

defining Yk ¼� ~Yk � Zk (the noise-free output), Xk ¼� ðUk;

. . . ;Uk�MÞT , and the matrices

Ak ¼� A ¼� 0 0

IM 0

� �

(43)

(where IM denotes the M�M identity matrix) and

Bk ¼� B ¼� ð1; 0; . . . ; 0ÞT (44)

Ck ¼� C ¼� ðh0; h1; . . . ; hMÞ: (45)

The factor graph of the model (42) is shown in Fig. 9.

The dashed box at the top of Fig. 9 represents a code

constraint (e.g., the factor graph of a low-density parity

check code) or another model for Uk, if available.

The factor graph in Fig. 9 (without the dashed box)

represents the likelihood function fð ~y; y; zjuÞ for

gu ¼� ðu1; . . . ; uNÞ, y ¼ ð y1; . . . ; yNÞ, etc. If the dashed box

in Fig. 9 represents an a priori density fðuÞ, then the total

graph in Fig. 9 represents

fðuÞfð~y; y; zjuÞ ¼ fðu; ~y; y; zÞ (46)

/ fðu; y; zj~yÞ: (47)

If, in addition, the dashed box in Fig. 9 does not introduce

cycles, then the sum-product messages along Uk satisfy

�
!
Uk
ðukÞ�

Uk
ðukÞ / fðukj~yÞ (48)

from which the symbol-wise MAP (maximum a posteriori)
estimate of Uk may be obtained as

ûk ¼ argmax
uk

�
!
Uk
ðukÞ�

Uk
ðukÞ: (49)

If the dashed box introduces cycles, we may use iterative

(Bturbo[) message passing and still use (49) to obtain an

estimate of Uk. Efficient algorithms to compute the

messages �

Uk

will be discussed in Section V-B.

B. Separation of Superimposed Signals
Let U ¼ ðU1; . . . ;UKÞT be a K-tuple of real-valued

random variables, let H be a real N � K matrix, let

Fig. 9. Factor graph for equalization.

Fig. 8. Factor graph of general linear state-space model (40), (41).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1301

Y ¼ HU, and let

~Y ¼HU þ Z (50)

¼ Y þ Z (51)

where Z ¼ ðZ1; . . . ; ZNÞT is an N-tuple of real zero-mean

i.i.d. Gaussian random variables with variance �2. Based
on the observation ~Y ¼ ~y, we wish to compute pðukj~yÞ
and/or a LMMSE estimate of Uk for k ¼ 1; 2; . . . ;K.

Two different factor graphs for this system model are

shown in Figs. 10 and 11. In Fig. 10, hk denotes the kth
column of the matrix H; in Fig. 11, e1 ¼� ð1; 0; . . . ; 0ÞT,
e2 ¼� ð0; 1; 0; . . . ; 0ÞT , etc. In Fig. 10, most of the factor

graph just represents the decomposition

HU ¼
XK

k¼1
hkUk: (52)

In Fig. 11, most of the factor graph just represents the

decomposition

U ¼
XK

k¼1
ekUk: (53)

Although these decompositions appear trivial, the result-

ing message-passing algorithms in these factor graphs

(using tabulated rules for Gaussian messages) are not

trivial, cf. Section V-C. The complexity of these algo-

rithms depends mainly on N and K; Fig. 10 may be

preferable for K 9 N while Fig. 11 may be preferable for

K G N.

V. GAUSSIAN MESSAGE PASSING IN
LINEAR MODELS

Linear models as in Section IV consist of equality

constraints (branching points), adders, and multipliers

with a constant (scalar or vector or matrix) coefficient. The

sum-product and max-product message computation rules

for such nodes preserve Gaussianity: if the incoming

messages are members of the exponential family, then so

are the outgoing messages.

In this section, the computation of such messages will

be considered in detail. For scalar variables, there is not

much to say; for vector variables, however, the efficient

computation of messages and marginals is not trivial. The

at heart of this section are Tables 2–6 with formulas for

such messages and marginals. These tables allow us to

compose a variety of efficient algorithmsVboth classic

and recent variations of Kalman filteringVwithout addi-

tional computations or derivations.

However, before entering into the details of these

tables, it should be pointed out that the algorithms

considered here are many different things at the

same time.

1) For linear Gaussian factor graphs, the sum-

product algorithm and the max-product algorithm

coincide (up to a scale factor). (This follows from

Theorem 4 in Appendix I.)

2) The Gaussian assumption does not imply a

stochastic setting. For example, the least-squares

problem of Fig. 4 may also be viewed as a linear

Gaussian problem.

3) In a stochastic setting, the max-product ð¼
sum-productÞ algorithm may be used to compute

both maximum a posteriori (MAP) and maximum

likelihood (ML) estimates.

4) MAP estimation in a linear Gaussian model co-

incides both with minimum-mean-squared-error

(MMSE) estimation and with LMMSE estimation,

cf. Appendix I.

5) MAP estimation with assumed Gaussians coincides
with true LMMSE estimation (cf., Theorem 3 in

Appendix I). It follows that LMMSE estimation

may be carried out by Gaussian message passing in

an appropriate linear model.

6) If the sum-product algorithm converges in a

Gaussian factor graph with cycles, then the means

of the marginals are correct (despite the cycles)

[12], [13].Fig. 10. Factor graph of (50) and (51) (superimposed signals).

Fig. 11. Another factor graph of (50) and (51) (superimposed signals).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1302 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

It is thus obvious that Gaussian message passing in linear

models encompasses much of classical signal processing.

We now turn to the actual message computations. In

this section, all messages will be (multivariate) Gaussian

distributions, up to scale factors. Gaussian distributions

will be described either by the mean vector m and the

covariance matrix V or by the weight matrix W ¼� V�1 and
the transformed mean Wm, cf. Appendix I. (It happens

quite frequently that either V or W are singular for certain

messages, but this is seldom a serious problem.)

We will use the notation for messages of Section III-C,

which we will extend to the parameters m, V, and W . If

some directed edge represents the variable X, the forward

message has mean m
!
X , covariance matrix V

!
X , and weight

matrix W
!

X ¼ V
!�1
X ; the backward message has mean m

X ,

covariance matrix V

X , and weight matrix W

X ¼ V

 �1
X . The

product of these two messagesVthe marginal of the global

function if the factor graph has no cyclesVis the Gaussian

with mean mX and covariance matrix VX ¼ W�1X given by

WX ¼ W
!

X þW

X (54)

and

WXmX ¼ W
!

Xm
!
X þW

Xm

X: (55)

[Equations (54) and (55) are equivalent to (II.1) and (II.3)

in Table 2, cf. Section III-E.]

An open half-edge without an incoming message may

be viewed as carrying as incoming message the constant

function 1, which is the limit of a Gaussian with W ¼ 0

and mean m ¼ 0. A half-edge representing some known

variable X ¼ x0 may be viewed as carrying the incoming

message �ðx� x0Þ, which is the limit of a Gaussian with

V ¼ 0 and mean m ¼ x0.
We will also use the auxiliary quantity

~WX ¼� ðV
!
X þ V

XÞ�1 (56)

which is dual to VX ¼ ðW
!

X þW

XÞ�1. Some relations

among these quantities and the corresponding message

parameters are given in Table 1. These relations are proved

and then used in other proofs, in Appendix II.

Computation rules for the parameters of messages

(such as m
!
X , V
!
X , etc.) and marginals (such as mX , VX , etc.)

are listed in Tables 2–4 and 6. The equation numbers in

these tables are prefixed with the table number; for

example, (II.3) denotes equation 3 in Table 2. The proofs

are given in Appendix II.

In principle, Tables 2 and 3 suffice to compute all

messages in a linear model. However, using only the rules

of Tables 2 and 3 leads to frequent transformations of W
!

and W
!
m
!
into V

!
¼ W
 �1

and m
!
, and vice versa; if V

!
and W

!

are large matrices, such conversions are costly.

The inversion of large matrices can often be avoided by

using the message computation rules given in Table 4

(which follow from the Matrix Inversion Lemma [47], cf.

Theorem 7 in Appendix II). The point of these rules is

that the dimension of Y may be much smaller than the

dimension of X and Z; in particular, Y may be a scalar.

Table 3 shows the propagation of V
!

and m
!

forward

through a matrix multiplication node as well as the

Table 1 Single-Edge Relations Involving ~W

Table 2 Gaussian Messages: Elementary Nodes

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1303

propagation of W

and W

m

backward through such a node.

In the other direction, Table 5 may help: Table 5 (top)

together with Table 4 (bottom) allows the propagation

of W
!

and W
!
m
!

forward through a matrix multiplication

node; Table 5 (bottom) together with Table 4 (top)

allows the propagation of V

and m

backward through a

matrix multiplication node. The new Binternal[open

input in Table 5 (top) may be viewed as carrying an

incoming message that is a degenerate Gaussian with

W
!
¼ 0 and mean m

!¼ 0; the new Binternal[output in

Table 5 (bottom) may be viewed as carrying an in-

coming message that is a degenerate Gaussian with

m
 ¼ 0 and V

¼ 0.

The point of the groupings in Table 6 is to create

invertible matrices out of singular matrices.

We now demonstrate the use of these tables by three

examples, each of which is of interest on its own.

A. RLS Algorithms
Consider a factor graph as in Fig. 12, where X0 ¼

X1 ¼ X2 ¼ . . . are (unknown) real column vectors and

where c1; c2; . . . ; are (known) real row vectors. The

classic recursive least-squares (RLS) algorithm [47] may

be viewed as forward-only (left-to-right) Gaussian mes-

sage passing through this factor graph, with an extra

twist.

Note that Fig. 4 is a special case of Fig. 12 (with Xk ¼ H
and with ck ¼ ½u�k). It follows that the RLS algorithm may

be used, in particular, to solve the FIR filter identification

problem stated at the end of Section II.

We begin by noting that the max-product message �
!
Xk

(as shown in Fig. 12) is

�
!
XkðxÞ / max

z1;...; zk

Yk

‘¼1
e�z

2
‘
=ð2�2Þ (57)

¼ e�minz1;...; zk

Pk

‘¼1 z
2
‘ (58)

subject to the constraints ~y‘ ¼ c‘xþ z‘, ‘ ¼ 1; . . . ; k. It

follows that the least-squares estimate (or, in a stochastic

Table 3 Gaussian Messages: Matrix Multiplication Node

Table 4 Gaussian Messages: Composite Blocks. (Most Useful if Y Is Scalar)

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1304 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

setting, the ML estimate) of Xk ð¼ X0Þ based on ~y1; . . . ; ~yk is

x̂k ¼� argmax
x

�
!
Xk
ðxÞ (59)

¼ argmin
x

min
z1;...;zk

Xk

‘¼1
z2‘

�
�
�
�
�
~y‘¼c‘xþz‘

(60)

¼m
!
k (61)

the mean of the (properly normalized) Gaussian �
!
Xk .

Now, we consider the actual computation of the

messages shown in Fig. 12. The message �
!
Zk
is simply the

factor e�z
2
k=2�

2

, i.e., a Gaussian with mean m
!
Zk ¼ 0 and

variance V
!
Zk ¼ �2. The fact that ~Yk ¼ ~yk is known may be

expressed by an incoming degenerate-Gaussian message

�

~Y with mean m

~Y ¼ ~yk and variance V

~Y ¼ 0. It then

follows from (II.10) and (II.8) in Table 2 that the message

�

Yk
is Gaussian with mean m

Y ¼ ~yk and variance V

Y ¼ �2.

So much for the trivial (scalar-variable) messages in

Fig. 12. As for the messages �
!
Xk , we note that the RLS

algorithm comes in two versions. In one version, these

messages are represented by the mean vector m
!
Xk and the

Table 5 Reversing a Matrix Multiplication

Table 6 Combining Rectangular Matrices to Form a Nonsingular

Square Matrix

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1305

covariance matrix V
!
Xk ; in the other version, these

messages are represented by the weight matrix W
!

Xk ¼
V
!�1
Xk

and the transformed mean W
!

Xkm
!
Xk . In the latter case,

the message computation rules are immediate from

Tables 2 and 3: we first obtain �

X0
k
(the message inside

the dashed box) from (III.5) and (III.6), and then �
!
Xk
from

(II.1) and (II.3). Note that no matrix inversion is required

to compute these messages. However, extracting the

estimate x̂k ¼ m
!
Xk from W

!
Xkm
!
Xk amounts to solving a

system of linear equations. For the initial message �
!
X0 , we

set W
!

X0 ¼ 0 (the all-zeros matrix).

The other version of the RLS algorithm is obtained by

grouping the two nodes inside the dashed box in Fig. 12

and using (IV.1) and (IV.2) of Table 4 to propagate m
!
Xk and

V
!
Xk . Again, no matrix inversion is required to compute

these messages: the inversion in (IV.3) is only a scalar

division in this case. In this version of the RLS algorithm,

the estimate x̂k ¼ m
!
Xk is available at every step without

extra computations. As for the initial message �
!
X0 , an

obvious practical approach is to set m
!
X0 ¼ 0 and V

!
X0 ¼ �I,

where I is the identity matrix of appropriate dimensions

and where � is some Blarge[real number. (In a stochastic

setting, this initialization amounts to a prior on X0, which
turns x̂k ¼ m

!
Xk into a MAP estimate.)

We have now fully described max-product ð¼
sum-productÞ Gaussian message passing through Fig. 12.

However, as mentioned, the classical RLS algorithm

introduces an extra twist: in every step, the covariance

matrix V
!
Xk (as computed above) is multiplied by a scale

factor 	 9 1, 	 � 1, or (equivalently) W
!

Xk is multiplied by

1=	. In this way, the algorithm is made to slowly forget the

past. In the adaptive-filter problem of Fig. 4, this allows

the algorithm to track slowly changing filter coefficients

and it improves its numerical stability.

B. Gaussian Message Passing in General
Linear State-Space Model

We now consider Gaussian message passing in the

general linear state-space model of Fig. 8, which en-

compasses Kalman filtering (¼ forward-only message

passing), Kalman smoothing, LMMSE turbo equaliza-

tion, etc. The discussion will be based on Fig. 13, which

is a more detailed version of Fig. 8 with named

variables assigned to every edge and with an optional

decomposition of the state transition matrix Ak (if Ak is

not square or not regular) into

Ak ¼ A00kA
0
k (62)

with matrices A0k and A
00
k such that the rank of A0k equals the

number of rows of A0k and the rank of A00k equals the

number of columns of A00k . (In other words, the multi-

plication by A0k is a surjective mapping and the multi-

plication by A00k is an injective mapping.) Such a

decomposition is always possible. In the example of

Fig. 12. RLS as Gaussian message passing.

Fig. 13. Factor graph of general linear state-space model (extended version of Fig. 8).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1306 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

Section IV-A (equalization of an FIR channel), the

decomposition (62) yields A0k ¼ ðIM; 0Þ and A00k ¼ 0
IM

� 	

;

the pseudo-inverses of these matrices (which are used

below) are ðA0kÞ
¼ ðA0kÞ

T
and ðA00k Þ

¼ ðA00k Þ
T
.

The inputs Uk and the outputs Yk in Fig. 13 are usually

scalars (while the state variables Xk are vectors). If Uk is a

vector, it may be advantageous to decompose it (and

accordingly Bk) into parallel scalar inputs; similarly, if Yk is
a vector, it may be advantageous to decompose it (and Ck)
into parallel scalar outputs.

If all inputs Uk and all outputs Yk are scalars, then none

of the algorithms given below requires repeated matrix

inversions. In fact, some of the remarks on complexity in

the algorithms that follow implicitly assume that Uk and Yk
are scalars.

Let us recall that the point of all the following

algorithms is efficiency; if we do not mind inverting

matrices all the time, then Tables 2 and 3 suffice. There

are also, of course, issues with numerical stability, but

they are outside the scope of this paper.

Algorithm AVForward Recursion With m
!
Xk and V

!
Xk : (This

algorithm is known as Bcovariance matrix Kalman filter[

[47].) From �
!
Xk�1 and the incoming message �

Yk�1 , the

message �
!
X0
k�1

is obtained by (IV.1) and (IV.2). (X00k�1
is skipped.) The message �

!
Z0
k
is obtained by (III.1) and

(III.2). (Zk may be skipped.) The message �
!
U0
k
is obtained

from the incoming message �
!
Uk

by (III.1) and (III.2). The

message �
!
Xk

is then obtained by (II.7) and (II.9).

Algorithm BVBackward Recursion With W

Xk and W

Xkm

Xk :

(This algorithm is known as Binformation matrix Kalman

filter[[47].) From the incoming message �

Yk , the message

�

X00
k
is obtained by (III.5) and (III.6). From this and from

the backward message �

X0
k
, the message �

Xk is obtained by

(II.1) and (II.3). The message at �

Z0
k
is then obtained by

(IV.4) and (IV.6). (U0k is skipped.) The message �

X0
k�1

is

obtained by (III.5) and (III.6). (Zk may be skipped.)

If the state transition matrix Ak is square and

nonsingular, then the algorithms can, of course, be applied

in the reverse direction. However, even if Ak is singular

(as, e.g., for FIR channel equalization), it is possible to

forward propagate W
!

Xk and W
!

Xkm
!
Xk and to backward

propagate m

Xk and V

Xk without matrix inversions. These

algorithms rely on the decomposition (62), which allows

us to group A0k with Ck�1 as in Table 6 (top) and A00k with

Bk as in Table 6 (bottom).

Algorithm CVForward With W
!

Xk and W
!

Xkm
!
Xk if Ak is

Singular: From the incoming message �

Yk�1 , the message

�

X00
k�1

is obtained by (III.5) and (III.6). From this and from

�
!
Xk�1 , the message �

!
X0
k�1

is obtained by (II.1) and (II.3).

The message �
!
Zk is obtained by the decomposition of A0k as

in Table 5 (top) and using first (IV.4) and (IV.6) and then

(III.5) and (III.6). The message �
!
Xk is obtained by

grouping A00k with Bk as in Table 6 (bottom) and using

(VI.3) and (VI.4). (Z0k is skipped.)

Algorithm DVBackward With m

Xk and V

Xk if Ak is

Singular: The message �
!
U0
k
is obtained from the incoming

message �
!
Uk
by (III.1) and (III.2). From this and from �

Xk ,

the message �

Z0
k
is obtained by (II.8) and (II.10). The

message �

Zk is obtained by the decomposition of A00k as in

Table 5 (bottom) and using first (IV.1) and (IV.2) and then

(III.1) and (III.2). The message �

Xk�1 is obtained by

grouping A0k with Ck�1 as in Table 6 (top) and using (VI.1)

and (VI.2). (X0k�1 is skipped.)

By combining Algorithm B either with its own for-

ward version (if Ak is nonsingular for all k) or with

Algorithm C (if Ak is singular), we can get WXk ð¼ W
!

Xkþ
W

XkÞ as well as

WXkmXk ¼WXk

!
mXk
! þ WXk

mXk

(63)

for all k. The estimate x̂k ¼ mXk may then be obtained by

solving (63) for mXk .

The computation of VXk and/or of output messages �

Uk

and/or �
!
Yk requires more effort. In fact, the computation

of �
!
Yk may be reduced to the computation of mXk and VXk ,

and the computation of �

Uk

may be reduced to the

computation of mU0
k
and ~WXk . Specifically, the output

message �
!
Yk may be extracted from the incoming message

�

Yk
and from VYk and mYk , and the latter two quantities are

easily obtained from VXk and mXk by means of (II.5), (II.6),

and (III.3), (III.4). The output message �

Uk

may be

extracted from the incoming message �
!
Uk

and from ~WUk

and mUk
, and the latter two quantities are easily obtained

from ~WXk and mU0
k
[¼ mXk � mZ0

k
by (II.11)] by means of

(II.12), (III.8), and (III.7).

In the example of Section IV-A (FIR channel equaliza-

tion), mUk
and VUk

may actually be read off directly from

mX‘ and VX‘ , respectively, for any ‘, k�M � ‘ � k. In this

case, computing VXk only everyM steps suffices to compute

all outgoing messages. These few computations of VXk
are perhaps best carried out directly according to VXk ¼
ðW
!

Xk þW

XkÞ�1 or VXk ¼ ðV
!�1
Xk
þW

XkÞ�1.
However, it is possible to compute VXk , WXk , and mXk

(and thus also all outgoing messages) in a general linear

state-space model without any matrix inversions (assuming

that Uk and Yk are scalars):

Algorithm EVAll Marginals and Output Messages by
Forward–Backward Propagation: Forward pass: with m

!
Xk

and V
!
Xk according to Algorithm A. Backward pass: with

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1307

W

Xkm

Xk and W

Xkm

Xk according to Algorithm B, augmented

by the simultaneous computation of VXk , mXk , and ~WXk as

follows. From mX0
k
and VX0

k
, we trivially obtain mXk and VXk

by (II.5) and (II.6). We then obtain ~WXk (from VXk and

W

Xk) by (I.2), and we also have ~WZ0
k
by (II.12). We further

obtain VZ0
k
by (I.4) and mZ0

k
by (I.6). From (III.8), we

obtain ~WX0
k�1
. Finally, VX0

k�1
and mX0

k�1
are obtained by (I.4)

and (I.6).

The outgoing messages �
!
Yk and/or �

Uk

may be ob-

tained as described.

The following algorithm is a variation of Algorithm E

that may be used for the example of Section IV-A (FIR

channel equalization). [The algorithm assumes that Ak is

singular and that A00k may be grouped with Bk as in Table 6

(bottom).]

Algorithm FVAll Marginals and Output Messages by
Forward–Backward Propagation: Forward pass: with m

!
Xk

and V
!
Xk according to Algorithm A. Backward pass: with

W

Xk and W

Xkm

Xk according to Algorithm B, augmented by

the simultaneous computation of VXk , mXk , and ~WXk as

follows. From mX0
k
and VX0

k
, we trivially have mXk and VXk .

By grouping A00k with Bk as in Table 6 (bottom), we obtain

mZk and VZk as well as mUk
and VUk

by (VI.5) and (VI.6). We

then obtain ~WZk (from VZk and WZk

) by (I.2). We then

compute ~WX0
k�1

and ~WX0
k�1
mX0

k�1
by (III.8) and (III.7),

respectively. Finally, VX0
k�1

and mX0
k�1

are obtained by (I.4)

and (I.6).

The outgoing message �Uk

may be extracted from VUk

,

mUk
, and �Uk

!
.

More such algorithms seem possible and are worth

exploring. For FIR channel equalization, the method de-

scribed just before Algorithm E may be the most attractive.

C. Wang/Poor Algorithm
Factor graphs as in Fig. 10 and Fig. 11 give rise to yet

another fundamental algorithm. The application of this

algorithm to Fig. 11 (combined with the conversion from

Gaussian to binary as described in Section V-D) is

essentially equivalent to the algorithm by Wang and Poor

in [48].

We describe the algorithm in terms of Fig. 14, which

subsumes Figs. 10 and 11. Note that Uk, 1 � k � K are real

scalars, bk are real column vectors, and A is a real matrix.

(We will assume that AHA is nonsingular, which means

that the rank of A equals the number of its columns.) The

column vectors Sk and Xk are defined as Sk ¼� bkUk and

Xk ¼� Sk þ Xk�1, respectively. Note also that X0 ¼ 0 and

XK ¼ U.
From the observation ~Y ¼ ~y and the incoming

messages at Uk ð1 � k � KÞ (with scalar mean m
!
Uk

and

variance V
!
Uk
), we wish to compute the outgoing messages

at Uk, i.e., the scalar means m

Uk

and the variances V

Uk
.

The pivotal quantity of the algorithm is ~WU which,

according to (56), is defined as

~WU ¼ ðV
!
U þ V

UÞ�1: (64)

(The actual computation of ~WU will be discussed in the

following.) This quantity is useful here because, according

to (II.12), it stays constant around a Bþ[node. In

particular, we have

~WSk ¼ ~WU (65)

for 0 � k � K. By means of (III.8), we then obtain ~WUk
,

from which the variance of the outgoing messages is

easily extracted

V

Uk
¼ ~W

�1
Uk
� V
!
Uk

(66)

¼ bHk ~WUbk

 ��1�V

!
Uk
: (67)

Note that bHk ~WUbk is a scalar. Note also that, if bk ¼ ek as
in Fig. 11, then bHk ~WUbk is simply the kth diagonal ele-

ment of ~WU .

Fig. 14. Unified version of Figs. 10 and 11 with additional variables to explain the algorithms of Section V-C.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1308 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

From (III.9), the mean of the outgoing messages is

m

Uk
¼ ~W

�1
Uk
bHk ~WUm

Sk (68)

¼ bHk ~WUbk

 ��1

bHk ~WUm

Sk (69)

which depends on both ~WU and m

Sk . The latter is easily

obtained from (II.9), (II.10), and (III.2)

m

Sk ¼m

U �

XK

‘¼1
m
!
S‘ þ m

!
Sk (70)

¼m

U �

XK

‘¼1
b‘m
!
U‘
þ bkm

!
Uk
: (71)

Note that the first two terms on the right-hand side of (71)

do not depend on k.
The mean vector m

U , which is used in (71), may be

obtained as follows. Using (III.6), we have

W

Um

U ¼ AHW

Ym

Y (72)

¼ AH��2~y (73)

and from (III.5), we have

W

U ¼ AHW

YA (74)

¼��2AHA: (75)

We thus obtain

AHAm

U ¼ AH~y (76)

and

m

U ¼ ðAHAÞ�1AH~y: (77)

[In an actual implementation of the algorithm, solving (76)

by means of, e.g., the Cholesky factorization of AHA is

usually preferable to literally computing (77).]

It remains to describe the computation of ~WU (¼ ~WXk ,

0 � k � K). We will actually describe two methods. The

first method goes as follows. From (III.8), we have

~WU ¼ AH ~WYA (78)

¼ AHðV
!
Y þ V

YÞ�1A: (79)

But V

Y ¼ �2I is known and V

!
Y is straightforward to

compute using (III.1) and (II.7)

V
!
Y ¼ AV

!
UA

H (80)

¼ A
XK

k¼1
bkV
!
Uk
bHk

 !

AH (81)

¼
XK

k¼1
ðAbkÞV

!
Uk
ðAbkÞH: (82)

So, evaluating (79) is a viable method to compute ~WU .

An alternative method to compute ~WU goes as follows.

First, we computeW

U by (75) and then we recursively com-

pute W

XK�1 ;W

XK�2 ; . . . ;W

X0 using (IV.6). Then, we have

~WU ¼ ~WX0 (83)

¼ V
!
X0 þ V

X0

� 	�1
(84)

¼ V
 �1
X0

(85)

¼W

X0 : (86)

D. Gaussian to Binary and Vice Versa
Linear Gaussian models are often subsystems of larger

models involving discrete variables. In digital communica-

tions, for example, binary codes usually coexist with linear

Gaussian channel models, cf. Figs. 9–11. In such cases, the

conversion of messages from the Gaussian domain to the

finite-alphabet domain and vice versa is an issue. Con-

sider, for example, the situation in Fig. 15, where X is a

fþ1;�1g-valued variable and Y is a real variable. The

B¼[-node in Fig. 15 denotes the factor �ðx� yÞ, which is

a Kronecker delta in x and a Dirac delta in y.
The conversion of a Gaussian message �Y

!
into a binary

(Bsoft bit[) message �X

!
is straightforward: according to the

sum-product rule, we have

�
!
XðxÞ ¼

Z

y

�
!
YðyÞ�ðx� yÞdy (87)

¼ �
!
YðxÞ: (88)

Fig. 15. Conversion of (real scalar) Gaussian to binary ðfþ1;�1gÞ
variables and vice versa.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1309

In the popular log-likelihood representation of soft-bit

messages, we thus have

L
!
X ¼� ln

�
!
Xðþ1Þ

�
!
Xð�1Þ

(89)

¼ 2m
!
Y=�
! 2

Y : (90)

In the opposite direction, an obvious and standard

approach is to match the mean and the variance

m

Y ¼m

X (91)

¼ �

Xðþ1Þ � �

Xð�1Þ

�

Xðþ1Þ þ �

Xð�1Þ

(92)

and

�
 2

Y ¼ �
 2

X (93)

¼ 1� m
 2

X : (94)

It should be noted, however, that (92) and (94) need not

be optimal even for graphs without cycles. An alternative

way to compute a Gaussian message �Y

is proposed in [18]

and [49].

VI. BEYOND GAUSSIANS

We have seen in the previous section that, for continuous

variables, working out the sum-product or max-product

message computation rules for particular nodes/factors is

not always trivial. In fact, literal implementation of these

two basic algorithms is often infeasible when continuous

variables are involved. Moreover, other algorithms may

be of interest for several reasons, e.g., to yield better

marginals or to guarantee convergence on graphs with

cycles [14]–[21]. However, it appears that most useful

algorithms for structured models with many variables can

be put into message-passing form, and the factor graph

approach helps us to mix and match different techniques.

A key issue with all message-passing algorithms is the

representation of messages for continuous variables. In

some cases, a closed family of functions with a small

number of parameters works nicely, the prime example

being linear Gaussian models as in Section V. However,

beyond the Gaussian case, this does not seem to happen

often. (An interesting exception is [27], which uses a

family of Tikhonov distributions.)

In general, therefore, one has to resort to simplified

messages for continuous variables.

The following message types are widely applicable.

1) Quantization of continuous variables. This ap-

proach is essentially limited to 1-D real variables.

2) Single point: the message �ðxÞ is replaced by a

single point x̂, which may be viewed as a temporary

or final decision on the value of the variable X.
3) Function value and derivative/gradient at a point

selected by the receiving node [50], [51] (to be

described in Section VII).

4) Gaussians (cf., Section V and Appendix I).

5) Gaussian mixtures.
6) List of samples: A probability density can be

represented by a list of samples. This message type

allows us to describe particle filters [52], [53] as

message-passing algorithms (see, e.g, [35], [36],

[38], [39], [54]–[56]).

7) Compound messages consist of the Bproduct[of

other message types.

All these message types, and many different message

computation rules, can coexist in large system models. The

identification of suitable message types and message

computation rules for particular applications remains a

large area of research. Some illustrative examples will be

given in the next two sections.

With such Blocal[approximations, and with the

Bglobal[approximation of allowing cycles in the factor

graph, practical detection/estimation algorithms may be

obtained for complex system models that cannot be

handled by Boptimal[methods.

In the next two sections, we will illustrate the use of

message computation rules beyond the sum-product and

max-product rules by the following example. Assume that,

in some linear state-space model (as in Fig. 8), one of the

matrices (Ak, Bk, Ck) is not known. In this case, this matrix

becomes a variable itself. For example, if Ck is unknown,
but constant over time (i.e., Ck ¼ C), we obtain the factor

graph of Fig. 16, which should be thought to be a part of

some larger factor graph as, e.g., in Fig. 9.

The key difficulty in such cases is the multiplier

node. We will outline two approaches to deal with such

cases: steepest descent and (a Blocal[version of) ex-

pectation maximization. However, more methods are

known (e.g., particle methods), and better methods may

yet be found.

It should also be noted that the graph of Fig. 16 has

cycles, which implies that message passing algorithms will

be iterative. The convergence of such algorithms is not, in

general, guaranteed, but robust (almost-sure) convergence

is often observed in practice.

VII. STEEPEST DESCENT AS
MESSAGE PASSING

The use of steepest descent as a Blocal[method in factor

graphs is illustrated in Fig. 17, which represents the global

function fð
Þ ¼� fAð
ÞfBð
Þ. The variable � is assumed to

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1310 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

take values in R or in R
n. Fig. 17 may be a part of some

bigger factor graph, and the nodes fA and fB may be sum-

maries of (i.e., messages out of) subsystems/subgraphs.

Suppose we wish to find

max ¼� argmax

fð
Þ (95)

by solving

d

d

ln fð
Þð Þ ¼ 0: (96)

Note that

d

d

ln fð
Þð Þ ¼ f 0ð
Þ

fð
Þ (97)

¼ fAð
Þf 0Bð
Þ þ fBð
Þf 0Að
Þ
fAð
ÞfBð
Þ

(98)

¼ d

d

ln fBð
Þð Þ þ d

d

ln fAð
Þð Þ: (99)

The functions fA and fB may be infeasible to represent,

or to compute, in their entirety, but it may be easy to

evaluate ðd=d
Þðln fAð
ÞÞ (and likewise for fB) at any given
point
.

One method to find a solution
̂ of (96) is steepest

descent. The message passing view of this method can be

described as follows.

1) An initial estimate
̂ is broadcast to the nodes fA
and fB. The node fA replies by sending

d

d

ln fAð
Þð Þ

�
�
�
�

¼
̂

and the node fB replies accordingly.

2) A new estimate
̂ is computed as

̂new ¼
̂old þ s � d
d

ln fð
Þð Þ
�
�
�
�

¼
̂old

(100)

where s 2 R is a positive step-size parameter.

3) The procedure is iterated as one pleases.

As always with message-passing algorithms, there is much

freedom in the scheduling of the individual operations.

The application of this method to cases as in Fig. 16

amounts to understanding its application to a multiplier

node as in Fig. 18. The coefficient (or coefficient vector/

matrix) C in Fig. 16 takes the role of � in Fig. 18.

Due to the single-point message
̂, the messages along

the X- and Y-edges work as if� were known. In particular,

if the incoming messages on these edges are Gaussians,

then so are the outgoing messages.

As described earlier, the outgoing message along the

edge � is the quantity

d

d

ln �

�ð
Þ

� 	
�
�
�
�

¼
̂
¼

d
d
 �

�ð
Þ

�

�ð
Þ

�
�
�
�
�

¼
̂

(101)

Fig. 17. Steepest descent as message passing.

Fig. 16. Linear state-space model with unknown coefficient vector C.

Fig. 18. Multiplier node.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1311

where �

�ð
Þ is the sum-product (or max-product) message

�

�ð
Þ ¼

Z

x

Z

y

�
!
XðxÞ�

Yð yÞ�ð y�
xÞdx dy (102)

¼
Z

x

�
!
XðxÞ�

Yð
xÞdx: (103)

The gradient message (101) can be evaluated in closed

form, even in the vector/matrix case, if the incoming

messages �
!
X and �

Y are both Gaussians. For the sake of

clarity, we now focus on the case where �, X, and Y are all

real-valued scalars. In this case, using

d

d

�

Yð
xÞ ¼

d

d

ðconstÞ exp �ð
x� m

YÞ2

2�
 2

Y

 !

(104)

¼ �

Yð
xÞ �

x2

�
 2
Y

þ xm

Y

�
 2
Y

 !

(105)

and (103), we can write (101) as

d
d
 �

�ð
Þ

�

�ð
Þ

�
�
�
�
�

¼
̂
¼
R

x �
!
XðxÞ d

d
 �

Yð
xÞ

� 	

dx
R

x �
!
XðxÞ�

Yð
xÞdx

�
�
�
�
�
�

¼
̂

(106)

¼

R

x �
!
XðxÞ�

Yð
̂xÞ �
̂x2

�
 2

Y

þ xm

Y

�
 2

Y

� �

dx

R

x �
!
XðxÞ�

Yð
̂xÞdx

(107)

¼ 1

�
 2

Y

E
~pðxj
̂Þ Xðm Y �
̂XÞ

h i

: (108)

The expectation in (108) is with respect to the (local)

probability density

~pðxj
̂Þ ¼� �
!
XðxÞ�

Yð
̂xÞ

R

x �
!
XðxÞ�

Yð
̂xÞdx

(109)

/ exp �x2 1

2�
! 2

X

þ
̂
2

2�
 2

Y

 !

þ x
m
!
X

�
! 2

X

þ
̂m

Y

�
 2

Y

 ! !

(110)

which is a Gaussian density with mean ~m and variance ~�2

given by

1

~�2 ¼
1

�
! 2

X

þ
̂
2

�
 2

Y

(111)

and

~m

~� 2 ¼
m
!
X

�
! 2

X

þ
̂m

Y

�
 2

Y

: (112)

From (108), we finally obtain the outgoing gradient

message (101) as

d

d

ln �

�ð
Þ

� 	
�
�
�
�

¼
̂
¼ m

Y

�
 2

Y

E
~pðxj
̂Þ½X� �

̂

�
 2

Y

E
~pðxj
̂Þ½X2� (113)

¼ m

Y

�
 2

Y

~m�
̂

�
 2

Y

ð~�2 þ ~m2Þ: (114)

VIII . EXPECTATION MAXIMIZATION
AS MESSAGE PASSING

Another classical method to deal with the estimation of

coefficients like C in Fig. 16 is expectation maximization

(EM) [57]–[59]. It turns out that EM can be put into

message-passing form, where it essentially boils down to a

message computation rule that differs from the sum-

product and max-product rules [60].

For example, consider the factor graph of Fig. 19

with the single node/factor gðx; y;
Þ (which should be

considered as a part of some larger factor graph). Along

the edge �, we receive only the single-point message
̂.
The messages along the X- and Y-edges are the

standard sum-product messages (computed under the

assumption � ¼
̂). The outgoing message along � is not

the sum-product message, but

�EMð
Þ ¼ ehð
Þ (115)

with

hð
Þ ¼� E
~pðx;yj
̂Þ ln gðX; Y;
Þ½ � (116)

Fig. 19. Messages corresponding to expectation maximization.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1312 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

where the expectation is with respect to the (local)

probability density

~pðx; yj
̂Þ / gðx; y;
̂Þ�!XðxÞ�

YðyÞ (117)

based on the incoming sum-product messages �
!
X and �

Y .

For the justification of (115), (116), and the corresponding

perspective on the EM algorithm, the reader is referred to

[60] and [61]. The main point is that the message (115) is

compatible with, and may be further processed by, the

sum-product or max-product algorithms.

One way to apply the general message computation

rule (115), (116) to a multiplier node as in Fig. 16 is

illustrated in Fig. 20. We assume that X and � are real

(column) vectors and Y is a real scalar (as in Fig. 16).

Instead of defining gðx; y;
Þ ¼ �ðy�
 TxÞ (which turns

out not to work [61]), we define

gðx;
Þ ¼
Z

y

�ðy�
TxÞ� YðyÞdy (118)

as indicated by the dashed box in Fig. 20. (It then follows

that the expection in (116) is over X alone.) If the incoming

messages �
!
X and �

Y are Gaussian densities, the outgoing

message �EMð
Þ turns out to be a Gaussian density with

inverse covariance matrix

W

� ¼
VX þ mXm

T
X

�
 2

Y

(119)

and with mean m

� given by

W

�m

� ¼

mXm

Y

�
 2

Y

(120)

(cf., [61]). The required sum-product marginals VX and mX

may be obtained from the standard Gaussian rules (54),

(55), (III.5), and (III.6), which yield

V�1X ¼ WX ¼ W
!

X þ
̂
̂
T
=�
 2

Y (121)

and

WXmX ¼ W
!

Xm
!
X þ
̂m

Y=�
 2

Y : (122)

By replacing the unwieldy sum-product message �

� by

the Gaussian message �EM, we have thus achieved a

completely Gaussian treatment of the multiplier node.

IX. CONCLUSION

The factor graph approach to signal processing involves the

following steps.

1) Choose a factor graph to represent the system

model.

2) Choose the message types and suitable message

computation rules. Use and maintain tables of

such computation rules.

3) Choose a message update schedule.

In this paper, we have elaborated on this approach with an

emphasis on Gaussian message passing in cycle-free factor

graphs of linear models, i.e., Kalman filtering and some

of its ramifications. Tables of message computation rules

for the building blocks of such models allow us to write

down a variety of efficient algorithms without additional

computations or derivations.

Beyond the Gaussian case, the factor graph approach

encourages and facilitates mixing and matching different

algorithmic techniques, which we have illustrated by two

different approaches to deal with multiplier nodes:

steepest descent and Blocal[expectation maximization.

The identification of suitable message types and mes-

sage computation rules for continuous variables remains a

large area of research. However, even the currently

available tools allow us to derive practical algorithms for

a wide range of nontrivial problems. h

APPENDIX I
ON GAUSSIAN DISTRIBUTIONS,
QUADRATIC FORMS, AND
LMMSE ESTIMATION

We briefly review some basic and well-known facts

about Gaussian distributions, quadratic forms, and

LMMSE estimation.

Let F ¼ R or F ¼ C. A general Gaussian random

(column) vector X ¼ ðX1; . . . ;XnÞT over F with mean

vector m ¼ ðm1; . . . ;mnÞT 2 Fn can be written as

X ¼ AU þ m (123)
Fig. 20. Gaussian message passing through a multiplier

node using EM.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1313

where A is a nonsingular n� n matrix over F and where

U ¼ ðU1; . . . ;UnÞT consists of independent F-valued
Gaussian random variables U1; . . . ;Un with mean zero

and variance one. The covariance matrix of X is V ¼ AAH.
The probability density of X is

fXðxÞ / e��ðx�mÞ
HWðx�mÞ (124)

/ e�� xHWx�2ReðxHWmÞð Þ (125)

for W ¼ V�1 ¼ ðA�1ÞHA�1 and with � ¼ 1=2 in the real

case ðF ¼ RÞ and � ¼ 1 in the complex case ðF ¼ CÞ.
Conversely, any function of the form (124) with positive

definite W may be obtained in this way with some suitable

matrix A.
Now, let Z be a Gaussian random (column) vector,

which we partition as

Z ¼ X

Y

� �

(126)

where X and Y are themselves (column) vectors. The

density of Z is fZðzÞ / e��qðx;yÞ with

qðx; yÞ ¼ ðx� mXÞH; ð y� mYÞH

 � WX WXY

WYX WY

� �
x� mX

y� mY

� �

(127)

with positive definite WX and WY and with WYX ¼ WH
XY .

For fixed y, considered as a function of x alone, (127)
becomes

qðx; yÞ ¼ xHWXx

� 2Re xHWX mX�W�1X WXYðy�mYÞ

 �
 �

þ const: (128)

Comparing this with (125) yields the following theorem.

Theorem 1 (Gaussian Conditioning Theorem): If X and Y
are jointly Gaussian with joint distribution / e��qðx;yÞ as
above, then conditioned on Y ¼ y (for any fixed y), X is

Gaussian with mean

E½XjY ¼ y� ¼ mX �W�1X WXYð y� mYÞ (129)

and covariance matrixW�1X . Ì

Note that E½XjY ¼ y� is both the MAP estimate and

the MMSE estimate of X given the observation Y ¼ y.

According to (129), E½XjY ¼ y� is an affine ð¼ linear with

offsetÞ function of the observation y. We thus have the

following theorem.

Theorem 2: For jointly Gaussian random variables or

vectors X and Y, the MAP estimate of X from the ob-

servation Y ¼ y is an affine function of y and coincides

both with the MMSE estimate and the LMMSE estimate.

Ì

Note that, in this theorem as well as in the following

theorem, the BL[in LMMSE must be understood as

Baffine[ð¼ linear with offsetÞ.

Theorem 3 (LMMSE via Gaussian MAP Estimation): Let X
and Y be random variables (or vectors) with arbitrary

distributions but with finite means and with finite second-

order moments. Then, the LMMSE estimate of X based on

the observation Y ¼ y may be obtained by pretending that

X and Y are jointly Gaussian (with their actual means and

second-order moments) and forming the corresponding

MAP estimate. Ì

The proof follows from noting that, according to the

orthogonality principle [47], the LMMSE estimate of X
based on Y ¼ y depends only on the means and second-

order moments.

In a different direction, we also note the following fact.

Theorem 4 (Gaussian Max/Int Theorem): Let qðx; yÞ be a
quadratic form as in (127) with WX positive definite. Then

Z1

�1

e�qðx;yÞdx /max
x

e�qðx;yÞ (130)

¼ e�minx qðx;yÞ: (131)

Ì

Note that the theorem still holds if qðx; yÞ is replaced
with �qðx; yÞ for any positive real �.

Proof: We first note the following fact. If W is a

positive definite matrix and

~qðxÞ ¼� ðx� mÞHWðx� mÞ þ c (132)

¼ xHWx� 2ReðxHWmÞ þ mHWmþ c (133)

then

Z1

�1

e�~qðxÞdx ¼ e�c
Z1

�1

e� ~qðxÞ�cð Þdx (134)

¼ e�c
Z1

�1

e�ðx�mÞ
HWðx�mÞdx (135)

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1314 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

¼ e�c
Z1

�1

e�x
HWxdx (136)

¼ e�minx ~qðxÞ
Z1

�1

e�x
HWxdx: (137)

Now consider (127) as a function of x with parameter y, as
in (128). This function is of the form (133) with WX

taking the role of W. It thus follows from (137) that

Z1

�1

e�qðx;yÞdx ¼ e�minx qðx;yÞ
Z1

�1

e�x
HWXxdx: (138)

But the integral on the right-hand side does not depend

on y, which proves (131). h

The minimization in (131) is given by the following

theorem.

Theorem 5 (Quadratic-Form Minimization): Let qðx; yÞ be
defined as in (127). Then

min
x

qðx; yÞ¼ð y� mYÞH WY �WXYW
�1
X WXY

 �
ð y� mYÞ:

(139)

Ì

This may be proved by noting from (128) or (129) that

argmin
x

qðx; yÞ ¼ mX �W�1X WXYð y� mYÞ: (140)

Plugging this into (127) yields (139).

Finally, we also have the following fact.

Theorem 6 (Sum of Quadratic Forms): Let both A and B
be positive semi-definite matrices. Then

ðx� aÞHAðx� aÞ þ ðx� bÞHBðx� bÞ
¼ xHWx� 2ReðxHWmÞ þ mHWmþ c (141)

with

W ¼ Aþ B (142)

Wm ¼ Aaþ Bb (143)

m ¼ðAþ BÞ#ðAaþ BbÞ (144)

and with the scalar

c ¼ ða� bÞHAðAþ BÞ#Bða� bÞ: (145)

Ì

The verification of (142) and (143) is straightforward.

A proof of (144) and (145) may be found in [33].

APPENDIX II
PROOFS OF TABLES 1–6

Proof of (I.1): From (56) and (54), we have

~W
�1
X ¼ V

!
X þ V

X (146)

¼ V

XðW
!

X þW

XÞV
!
X (147)

¼ V

XWXV

!
X (148)

and thus

~WX ¼ðV

XWXV

!
XÞ�1 (149)

¼W
!

XVXW

X: (150)

Proof of (I.2): From (150) and (54), we have

~WX ¼W
!

XVXðWX �W
!

XÞ (151)

¼W
!

X �W
!

XVXW
!

X: (152)

Proof of (I.3) and (I.4): Are analogous to the proofs of
(I.1) and (I.2), respectively.

Proof of (I.5): Follows from multiplying both sides of

(55) by VX .
Proof of (I.6): Using (I.4), we have

VXW
!

Xm
!
X ¼ðV

!
X � V

!
X ~WXV

!
XÞW
!

Xm
!
X (153)

¼m
!
X � V

!
X ~WXm

!
X : (154)

Inserting this into (I.5) yields (I.6).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1315

Proof of (II.1) and (II.3): From the sum-product rule,

we immediately have

�
!
ZðzÞ ¼

Z

x

Z

y

�
!
XðxÞ�

!
Yð yÞ�ðx� zÞ�ð y� zÞ dx dy (155)

¼ �
!
XðzÞ�

!
YðzÞ: (156)

Plugging in

�
!
XðxÞ / e��ðx�m

!
XÞHW

!
Xðx�m

!
XÞ (157)

(and analogously for �
!
Y) and then using Theorem 6 yields

�
!
ZðzÞ / e��ðz�m

!
ZÞHW

!
Zðz�m

!
ZÞ (158)

with W
!

Z and W
!

Zm
!
Z as in (II.1) and (II.3), respectively.

Proof of (II.5) and (II.6): The proof follows from the

fact that the marginals at all three edges coincide:

�
!
XðsÞ�

XðsÞ ¼ �

!
XðsÞ�

!
YðsÞ�

ZðsÞ (159)

¼ �
!
YðsÞ�

YðsÞ (160)

¼ �
!
ZðsÞ�

ZðsÞ: (161)

Proof of (II.7) and (II.9): The computation of �
!
Z

amounts to closing the box in the factor graph of Fig. 21.

In this figure, by elementary probability theory, the mean

of Z is the sum of the means of X and Y, and the variance

of Z is the sum of the variances of X and Y.
Proof of (II.12): From (II.7), we have

V
!
Z þ V

Z ¼ ðV

!
X þ V

!
YÞ þ V

Z (162)

and from (II.8) we have

V
!
X þ V

X ¼ V

!
X þ ðV

!
Y þ V

ZÞ (163)

and

V
!
Y þ V

Y ¼ V

!
Y þ ðV

!
X þ V

ZÞ: (164)

We thus have

V
!
X þ V

X ¼ V

!
Y þ V

Y ¼ V

!
Z þ V

Z (165)

which by (56) implies (II.12).

Proof of (III.1)–(III.4): By elementary probability

theory.

Proof of (III.5) and (III.6): By the sum-product rule,

we have

�

XðxÞ ¼

Z

y

�ðy� AxÞ� YðyÞdy (166)

¼ �

YðAxÞ (167)

/ e��ðAx�m

YÞHW

YðAx�m

YÞ (168)

/ e�� xHAHW

YAx�2ReðxHAHW

Ym

YÞ

 �

(169)

and comparison with (125) completes the proof.

Proof of (III.8): Using (I.2), (III.5), and (III.4),

we have

~WX ¼W

X �W

XVXW

X (170)

¼ AHW

YA� AHW

YAVXA
HW

YA (171)

¼ AHðW

Y �W

YVYW

YÞA (172)

¼ AH ~WYA: (173)

Proof of (III.7): Using (III.8) and (III.3), we have

~WXmX ¼ AH ~WYAmX (174)

¼ AH ~WYmY : (175)

Proof of (III.9): Using (I.2), (III.6), (III.5), and

(III.4), we have

~WXm

X ¼ðW

X �W

XVXW

XÞm

X (176)

¼ AHW

Ym

Y � AHW

YAVXA

HW

Ym

Y (177)

¼ AHðW

Y �W

YVYW

YÞm

Y (178)

¼ AH ~WYm

Y : (179)

We will now need the following well known fact.Fig. 21. Proof of (II.7) and (II.9).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1316 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

Theorem 7 (Matrix Inversion Lemma [47]): Assume that

the (real or complex) matrices A, B, C, D satisfy

A ¼ B�1 þ CD�1CH (180)

and assume that both B and D are positive definite. Then A
is positive definite and

A�1 ¼ B� BCðDþ CHBCÞ�1CHB: (181)

Ì

Proof of (IV.2): By (II.1) and (III.5), we have

W
!

Z ¼ W
!

X þ AHW

YA: (182)

Using the Matrix Inversion Lemma (Theorem 7 above)

yields

V
!
Z ¼ V

!
X � V

!
XA

HðV

Y þ AV

!
XA

HÞ�1AV
!
X: (183)

Proof of (IV.1): By (II.3) and (III.6), we have

m
!
Z ¼W

!�1
Z ðW
!

Xm
!
X þ AHW

Ym

YÞ (184)

¼ V
!
ZV
!�1
X ðm
!
X þ V

!
XA

HW

Ym

YÞ: (185)

Inserting (183) yields

m
!
Z ¼ I� V

!
XA

HðV

Y þ AV

!
XA

HÞ�1A
� 	

ðm!X þ V
!
XA

HW

Ym

YÞ

(186)

¼m
!
X þ V

!
XA

HW

Ym

Y � V

!
XA

H

� ðV

Y þ AV

!
XA

HÞ�1Aðm!X þ V
!
XA

HW

Ym

YÞ (187)

¼m
!
X þ V

!
XA

HðV

Y þ AV

!
XA

HÞ�1

� ðV

Y þ AV

!
XA

HÞW

Ym

Y � ðAm

!
X þ AV

!
XA

HW

Ym

YÞ

� 	

(188)

¼m
!
X þ V

!
XA

HðV

Y þ AV

!
XA

HÞ�1ðm Y � Am
!
XÞ: (189)

Proof of (IV.6): By (II.7) and (III.1), we have

V
!
Z ¼ V

!
X þ AV

!
YA

H: (190)

Using the Matrix Inversion Lemma (Theorem 7 above)

yields

W
!

Z ¼ W
!

X �W
!

XAðW
!

Y þ AHW
!

XAÞ�1AHW
!

X: (191)

Proof of (IV.4): By (II.9) and (III.2).

Proof of (IV.8): From (IV.4) and (IV.6), we have

W
!

Zm
!
Z ¼W

!
Zðm
!
X þ Am

!
YÞ (192)

¼ðW
!

X �W
!

XAHA
HW
!

XÞðm
!
X þ Am

!
YÞ (193)

¼W
!

Xm
!
X þW

!
XAH

� ðH�1m!Y � AHW
!

Xm
!
X � AHW

!
XAm
!
YÞ (194)

¼W
!

Xm
!
X þW

!
XAHðW

!
Ym
!
Y � AHW

!
Xm
!
XÞ: (195)

Proof of Table 5 (Top): Let U? be the kernel of the

surjective mapping ’ : x 7! Ax and let U be its orthogonal

complement (in the space of x). Let x ¼ xU þ xU? be the

decomposition of x into xU 2 U and xU? 2 U?. The

condition y ¼ Ax is equivalent to the condition

xU ¼ A#y: (196)

We next note that U is spanned by the columns of AH and

that U? is spanned by the columns of BH. It follows that
(196) is equivalent to

x ¼ A#yþ BHðarbitraryÞ: (197)

Proof of Table 5 (Bottom): Let U be the image of the

injective mapping ’ : x 7! Ax and let U? be its orthogonal

complement (in the space of y). Let y ¼ yU þ yU? be the

decomposition of y into yU 2 U and yU? 2 U?. The

condition y ¼ Ax is equivalent to the two conditions

x ¼ A#y (198)

and

yU? ¼ 0: (199)

We next note that U? is the kernel of the mapping

y 7! AHy and U is the kernel of the mapping y 7! BHy. It
follows that (199) is equivalent to BHy ¼ 0.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1317

Proofs of (VI.1) and (VI.2): Are immediate from

(III.2) and (III.1), respectively.

Proofs of (VI.3) and (VI.4): Are immediate from (III.6)

and (III.5), respectively.

Proofs of (VI.5) and (VI.6): Are immediate from (III.2)

and (III.1), respectively.

APPENDIX III
FOURIER TRANSFORM ON
FACTOR GRAPHS

We review some key results of Forney [43] and adapt

(and simplify) them to the setting of the present paper.

The Fourier transform of a function f : Rn ! C is the

function ~f : Rn ! C given by

~fð!1; . . . ; !nÞ ¼
Z

x1

. . .

Z

xn

fðx1; . . . ; xnÞe�i!1x1 . . .

e�i!nxndx1 . . . dxn: (200)

With x ¼ ðx1; . . . ; xnÞT and ! ¼ ð!1; . . . ; !nÞT , this may be

written as

~fð!Þ ¼
Z

x

fðxÞe�i!Txdx: (201)

The function f may be recovered from its Fourier

transform ~f by means of the inverse Fourier transform

fðxÞ ¼ ð2�Þ�n
Z

x

~fð!Þei!Txd!: (202)

We will use both Fð fÞ and ~f (as above) to denote the

Fourier transform of f .
It is immediate from (200) that

F
Z

x3

fðx1; x2; x3Þdx3

0

@

1

A ¼ ~fð!1; !2; !3Þ
�
�
!3¼0: (203)

In words: marginalization in one domain corresponds to

zeroing in the other domain.

The Fourier transform of a 1-D real zero-mean

Gaussian density is

F 1
ffiffiffiffiffiffi
2�
p

�
e�x

2=2�2
� �

¼ e�!
2�2=2: (204)

The Fourier transform of a general n-dimensional real

Gaussian density with covariance matrix V ¼ W�1 is

F 	e�
1
2
ðx�mÞTWðx�mÞ

� 	

¼ e�i!
Tme�

1
2
!TV! (205)

(where 	 is the required scale factor to normalize the

density).

The Fourier transform may be carried out directly in a

factor graph as follows. Consider a factor graph for (some

factorization of) fðx1; . . . ; xnÞ such that x1; . . . ; xk are

represented by half-edges and xkþ1; . . . ; xn are represented
by full edges. Create a new factor graph (with the same

topology) by the following procedure.

1) Replace each variable x‘ by its dual (Bfrequency[)
variable !‘.

2) Replace each node/factor by its Fourier transform.

3) For each full edge, introduce a minus sign into one

of the adjacent factors.

The resulting factor graph will be called a dual factor graph

of the original factor graph. (The dual factor graph is not

unique due to the sign issue in step 3.)

Theorem 8 (Fourier Transform on Factor Graph): Let
~f
0ð!1; . . . ; !nÞ be the global function of a dual factor graph.
Then, the Fourier transform of

Z

xkþ1

. . .

Z

xn

fðx1; . . . ; xnÞdxkþ1 . . . dxn (206)

is

Z

!kþ1

. . .

Z

!n

~f
0ð!1; . . . ; !nÞd!kþ1 . . . d!n (207)

(up to a scale factor). Ì

Note that the factor graph is allowed to have cycles.

Note also that ~f
0
is not the Fourier transform of f ; only the

half-edge marginals (206) and (207) are a Fourier pair (up

to a scale factor).

Example 1: Let

fðx1; x2; x3Þ ¼ g1ðx1; x3Þg2ðx2; x3Þ (208)

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1318 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

the factor graph of which is shown in Fig. 22. Then

~f
0ð!1; !2; !3Þ
¼ ~g1ð!1; !3Þ~g2ð!2;�!3Þ (209)

¼
Z

!4

~g1ð!1; !3Þ~g2ð!2; !4Þ�ð!3 þ !4Þd!4 (210)

as shown in Figs. 23 and 24. Theorem 8 now claims that

the Fourier transform of

fðx1; x2Þ ¼�
Z

x3

fðx1; x2; x3Þdx3 (211)

is

~fð!1; !2Þ /
Z

!3

~f
0ð!1; !2; !3Þd!3 (212)

the Bclosed-box[global function in Figs. 23 and 24. Ì

An outline of the proof of Theorem 8 goes as follows.

We first note that the Fourier transform of

fðx1; x2; x5Þ ¼� g1ðx1; x5Þg2ðx2; x5Þ (213)

is the convolution

~fð!1; !2; !5Þ ¼
1

2�

Z

!3

Z

!4

~g1ð!1; !3Þ~g2ð!2; !4Þ

� �ð!3 þ !4 � !5Þd!4d!5 (214)

(see Figs. 25 and 26), which may be verified by direct

calculation of the inverse Fourier transform of (214).

Inserting !5 ¼ 0 changes Fig. 26 into Fig. 24 and Fig. 25

into Fig. 22 [the latter by (203)]. We have thus established

that the Fourier transform of Fig. 22 is indeed Fig. 24. But

the proof of this simple example is easily generalized to

general factor graphs by treating all full edges simulta-

neously like the edge x3 in Fig. 22 and using the

corresponding generalization of (214).

We will use the following generalization of the Dirac

delta. If V is a subspace of Rn, we define �V by �VðxÞ ¼ 0

for x 62 V and

Z

x

fðxÞ�VðxÞdx ¼�
Z

V

fðxÞdx (215)

for any integrable function f . For dimðVÞ ¼ 0, we define

�VðxÞ ¼ �ðxÞ, the Dirac delta.

Theorem 9 (Fourier Transform of Linear Constraints): Let
V be a subspace of R

n and let V? be its orthogonal

complement. Then

F �VðxÞð Þ / �V?ð!Þ: (216)

Ì

Proof: The main idea is to write �V as a limit of a

Gaussian distribution. Let k be the dimension of V. Let A0
be an n� k matrix whose columns form an orthonormal

basis of V, and let A1 be an n� ðn� kÞ matrix whose

columns form an orthonormal basis of V?. Note that kAT0xk
is the norm of the projection of x into V and kAT1 xk is the

Fig. 22. Factor graph of (208). Fig. 24. Factor graph of (210), which is equivalent to Fig. 23.

Fig. 23. Factor graph of (209), a dual factor graph of Fig. 22. Fig. 25. Factor graph of (213).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1319

norm of the projection of x into V?. Let A ¼ ðA0; A1Þ,
which is a nonsingular n� n matrix. Then

�VðxÞ / lim
�!1

e�
�
2

AT1 xk k2 (217)

¼ lim
�!1

e�
1
2� AT0xk k2��

2
AT1 xk k2 (218)

¼ lim
�!1

e�
1
2�x

TA0A
T
0x�

�
2
xTA1A

T
1 x (219)

¼ lim
�!1

e�
1
2
xTADATx (220)

with

D ¼� diagð1=�; . . . ; 1=�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

k times

; �; . . . ; �
|fflfflfflffl{zfflfflfflffl}

n�k times

Þ: (221)

Analoguously

�V?ðxÞ / lim
�!1

e�
1
2
xTAD�1ATx (222)

¼ lim
�!1

e�
1
2
xTðADATÞ�1x (223)

where the last step follows from noting that ATA ¼ I and
thus A�1 ¼ AT . The theorem then follows from noting that

(220) and (223) are a Fourier pair (up to a scale factor), as

is obvious from (205). h

Example 2 (Equality Constraint): Let

V ¼ ðx1; x2; x3ÞT 2 R
3 : x1 ¼ x2 ¼ x3

� �
: (224)

Then

V? ¼ ðx1; x2; x3ÞT 2 R
3 : x1 þ x2 þ x3 ¼ 0

� �
: (225)

It follows that the Fourier transform of

�VðxÞ ¼ �ðx1 � x2Þ�ðx2 � x3Þ (226)

is the sum constraint

�V?ð!Þ ¼ �ð!1 þ !2 þ !3Þ (227)

(up to a scale factor). Ì

With the Fourier transform of this example, applying

Theorem 8 to Fig. 25 yields Fig. 26.

Example 3 (Matrix Multiplication): Let A be a real matrix

(without any conditions on rank or aspect ratio). Let

V ¼ xT1 ; x
T
2

 �T
: x1 ¼ Ax2

n o

(228)

where x1 and x2 are column vectors of suitable dimensions.

Then

V? ¼ xT1 ; x
T
2

 �T
: x2 ¼ �ATx1

n o

: (229)

It follows that the Fourier transform of

�VðxÞ ¼ �ðx1 � Ax2Þ (230)

is

�V?ð!Þ ¼ �ð!2 þ AT!1Þ (231)

(up to a scale factor). Ì

It follows from Examples 2 and 3 that the two factor

graphs in each of the Tables 2 and 4–6 are Fourier pairs

(up to a scale factor).

Acknowledgment

The material of this paper has grown over many years

into its present shape. The first author wishes to

particularly acknowledge the enjoyable collaborations

with N. Wiberg and with P. O. Vontobel. Both the first

and the last author are immensely grateful to G. D. Forney,

Jr., for his continued encouragement and feedback. S. Korl

and H.-A. Loeliger are indebted to A. Lindgren for many

helpful discussions. L. Ping wishes to acknowledge helpful

discussions with Q. Guo.

Fig. 26. Fourier transform of Fig. 25 (up to scale factor).

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1320 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

REFERENCES

[1] B. J. Frey, F. R. Kschischang, H.-A. Loeliger,
and N. Wiberg, BFactor graphs and
algorithms,[in Proc. 35th Allerton Conf.
Communications, Control, and Computing,
Monticello, IL, Sep. 29–Oct. 1, 1997,
pp. 666–680.

[2] F. R. Kschischang, B. J. Frey, and
H.-A. Loeliger, BFactor graphs and the
sum-product algorithm,[IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[3] H.-A. Loeliger, BAn introduction to factor
graphs,[IEEE Signal Proc. Mag., pp. 28–41,
Jan. 2004.

[4] M. I. Jordan, BGraphical models,[Statistical
Sci., vol. 19, no. 1, pp. 140–155, 2004.

[5] M. Jordan, Ed., Learning in Graphical
Models. New York: Kluwer, 1998.

[6] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and
D. J. Spiegelhalter, Probabilistic Networks and
Expert Systems. New York: Springer, 1999.

[7] C. M. Bishop, Pattern Recognition and Machine
Learning. New York: Springer, 2006.

[8] J. Pearl, Probabilistic Reasoning in Intelligent
Systems, 2nd ed. San Mateo, CA: Morgan
Kaufmann, 1988.

[9] R. Kindermann and J. L. Snell, Markov
Random Fields and Their Applications.
Providence, RI: Amer. Math. Soc., 1980.

[10] S. M. Aji and R. J. McEliece, BThe generalized
distributive law,[IEEE Trans. Inform. Theory,
vol. 46, no. 2, pp. 325–343, Mar. 2000.

[11] S. M. Aji and R. J. McEliece, BThe generalized
distributive law and free energy
minimization,[in Proc. 39th Allerton Conf.
Communications, Control, and Computing,
Monticello, IL, Oct. 2001, pp. 672–681.

[12] Y. Weiss and W. T. Freeman, BOn the
optimality of the max-product belief
propagation algorithm in arbitrary graphs,[
IEEE Trans. Inform. Theory, vol. 47, no. 2,
pp. 736–744, Feb. 2001.

[13] P. Rusmevichientong and B. Van Roy, BAn
analysis of belief propagation on the turbo
decoding graph with Gaussian densities,[
IEEE Trans. Inform. Theory, vol. 47, no. 2,
pp. 745–765, Feb. 2001.

[14] J. S. Yedidia, W. T. Freeman, and Y. Weiss,
BGeneralized belief propagation,[Advances
Neural Information Processing Systems (NIPS),
vol. 13, pp. 689–695, Dec. 2000.

[15] J. Feldman, D. Karger, and M. J. Wainwright,
BLP decoding,[in Proc. 41st Allerton Conf.
Communication, Control, and Computing,
Monticello, IL, Oct. 1–3, 2003.

[16] J. S. Yedidia, W. T. Freeman, and Y. Weiss,
BConstructing free-energy approximations
and generalized belief propagation
algorithms,[IEEE Trans. Inform. Theory,
vol. 51, no. 7, pp. 2282–2312, Jul. 2005.

[17] V. Kolmogorov and M. J. Wainwright,
BOn the optimality of tree-reweighted
max-product message-passing,[in Proc. 21st
Conf. Uncertainty in Artificial Intelligence,
Edinburgh, Scotland, Jul. 2005.

[18] T. P. Minka, BA family of algorithms for
approximate Bayesian inference,[Ph.D.
dissertation, Massachusetts Inst. Technology
(MIT), Cambridge, 2001.

[19] T. P. Minka, BExpectation propagation for
approximate Bayesian inference,[in Proc.
17th Annu. Conf. Uncertainty in Artificial
Intelligence (UAI-01), 2001, vol. 17,
pp. 362–369.

[20] J. Winn and C. Bishop, BVariational message
passing,[J. Machine Learning Res., vol. 6,
pp. 661–694, 2005.

[21] M. Chertkov and V. Y. Chernyak, BLoop series
for discrete statistical models on graphs,[
J. Statistical Mechanics: Theory and Experiment,
Jun. 2006.

[22] N. Wiberg, BCodes and decoding on general
graphs,[Ph.D. dissertation 440, Univ.
Linköping, Linköping, Sweden, 1996,
Linköping Studies in Science and Technology.

[23] A. P. Worthen and W. E. Stark, BUnified
design of iterative receivers using factor
graphs,[IEEE Trans. Inform. Theory, vol. 47,
no. 2, pp. 843–849, Feb. 2001.

[24] J. Boutros and G. Caire, BIterative multiuser
joint decoding: Unified framework and
asymptotic analysis,[IEEE Trans. Inform.
Theory, vol. 48, no. 7, pp. 1772–1793,
Jul. 2002.

[25] E. Biglieri, A. Nordio, and G. Taricco,
BIterative receivers for coded MIMO
signaling,[Wirel. Commun. Mob. Comput.,
vol. 4, no. 7, pp. 697–710, Nov. 2004.

[26] G. Colavolpe and G. Germi, BOn the
application of factor graphs and the
sum-product algorithm to ISI channels,[
IEEE Trans. Commun., vol. 53, no. 5,
pp. 818–825, May 2005.

[27] G. Colavolpe, A. Barbieri, and G. Caire,
BAlgorithms for iterative decoding in the
presence of strong phase noise,[IEEE J. Select.
Areas Commun., vol. 23, no. 9, pp. 1748–1757,
Sep. 2005.

[28] H. Niu, M. Shen, J. A. Ritcey, and H. Liu,
BA factor graph approach to iterative channel
estimation and LDPC decoding over fading
channels,[IEEE Trans. Wireless Commun.,
vol. 4, no. 4, pp. 1345–1350, Jul. 2005.

[29] A. W. Eckford, BThe factor graph EM
algorithm: Applications for LDPC codes,[in
Proc. 6th Workshop Signal Proc. Advances in
Wireless Communications, Jun. 5–8, 2005,
pp. 910–914.

[30] Q. Guo, L. Ping, and H.-A. Loeliger, BTurbo
equalization based on factor graphs,[in Proc.
IEEE Int. Symp. Information Theory, Adelaide,
Australia, Sep. 4–9, 2005, pp. 2021–2025.

[31] F. Simoens and M. Moeneclaey, BCode-aided
estimation and detection on time-varying
correlated MIMO channels: A factor graph
approach,[EURASIP J. Applied Signal
Processing, vol. 2006, no. 1, pp. 1–11, 2006.

[32] R. Drost and A. C. Singer, BFactor graph
algorithms for equalization,[IEEE Trans.
Signal Processing, to appear.

[33] H.-A. Loeliger, BLeast squares and Kalman
filtering on Forney graphs,[in Codes, Graphs,
and Systems, R. E. Blahut and R. Koetter,
Eds. New York: Kluwer, 2002,
pp. 113–135, (Festschrift in Honor of David
Forney on the Occasion of his 60th Birthday).

[34] H.-A. Loeliger, J. Dauwels, V. M. Koch, and
S. Korl, BSignal processing with factor graphs:
Examples,[in Proc. First Int. Symp. Control,
Communications and Signal Processing,
Hammamet, Tunisia, Mar. 21–24, 2004,
pp. 571–574.

[35] S. Korl, H.-A. Loeliger, and A. G. Lindgren,
BAR model parameter estimation: From factor
graphs to algorithms,[in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing,
Montreal, Canada, May 17–21, 2004, vol. V,
pp. 509–512.

[36] J. Dauwels and H.-A. Loeliger, BPhase
estimation by message passing,[in Proc.
IEEE Int. Conf. Communications, Paris, France,
Jun. 20–24, 2004, pp. 523–527.

[37] V. M. Koch and H.-A. Loeliger, BEMG signal
decomposition by loopy belief propagation,[
in Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, Philadelphia, PA,
Mar. 18–23, 2005, pp. 397–400.

[38] S. Korl, BA factor graph approach to signal
modelling, system identification and
filtering,[Ph.D. dissertation 16170,
ETH Zurich, Switzerland, 2005.

[39] J. Dauwels, BOn graphical models for
communications and machine learning:
Algorithms, bounds, and analog
implementation,[Ph.D. dissertation 16365,
ETH Zurich, Switzerland, 2005.

[40] Y. Mao, F. R. Kschischang, B. Li, and
S. Pasupathy, BA factor graph approach to link
loss monitoring in wireless sensor networks,[
IEEE J. Select. Areas Commun., vol. 23, no. 4,
pp. 820–829, Apr. 2005.

[41] B. J. Frey, N. Mohammad, Q. D. Morris,
W. Zhang, M. D. Robinson, S. Mnaimneh,
R. Chang, Q. Pan, E. Sat, J. Rossant,
B. G. Bruneau, J. E. Aubin, B. J. Blencowe,
and T. R. Hughes, BGenome-wide analysis
of mouse transcripts using exon microarrays
and factor graphs,[Nature Genetics, vol. 37,
no. 9, Sep. 2005.

[42] B. J. Frey and D. Dueck, BClustering by
passing messages between data points,[
Science, vol. 315, pp. 972–976, Feb. 16, 2007.

[43] G. D. Forney, Jr., BCodes on graphs:
Normal realizations,[IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 520–548, Feb. 2001.

[44] N. Wiberg, H.-A. Loeliger, and R. Kötter,
BCodes and iterative decoding on general
graphs,[Eur. Trans. Telecommun., vol. 6,
pp. 513–525, Sep./Oct. 1995.

[45] Y. Mao and F. R. Kschischang, BOn factor
graphs and the Fourier transform,[
IEEE Trans. Inform. Theory, vol. 51, no. 5,
pp. 1635–1649, May 2005.

[46] S. Roweis and Z. Ghahramani, BA unifying
review of linear Gaussian models,[Neural
Computation, vol. 11, no. 2, pp. 305–345,
Feb. 1999.

[47] S. Haykin, Adaptive Filter Theory, 3rd ed.
Englewood Cliffs, NJ: Prentice Hall, 1996.

[48] X. Wang and H. V. Poor, BIterative (turbo)
soft interference cancellation and decoding
for coded CDMA,[IEEE Trans. Commun.,
vol. 47, pp. 1046–1061, Jul. 1999.

[49] J. Hu, H.-A. Loeliger, J. Dauwels, and
F. Kschischang, BA general computation rule
for lossy summaries/messages with examples
from equalization,[in Proc. 44th Allerton Conf.
Communication, Control, and Computing,
Monticello, IL, Sep. 27–29, 2006.

[50] H.-A. Loeliger, BSome remarks on factor
graphs,[in Proc. 3rd Int. Symp. Turbo Codes
Related Topics, Brest, France, Sep. 1–5, 2003,
pp. 111–115.

[51] J. Dauwels, S. Korl, and H.-A. Loeliger,
BSteepest descent on factor graphs,[in Proc.
IEEE Information Theory Workshop,
Rotorua, New Zealand, Aug. 28–Sep. 1,
2005, pp. 42–46.

[52] P. M. Djuric, J. H. Kotecha, J. Zhang,
Y. Huang, T. Ghirmai, M. F. Bugallo, and
J. Miguez, BParticle filtering,[IEEE Signal
Proc. Mag., vol. 20, pp. 19–38, Sep. 2003.

[53] A. Doucet, J. F. G. de Freitas, and
N. J. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York: Springer-
Verlag, 2001.

[54] M. Briers, A. Doucet, and S. S. Singh,
BSequential auxiliary particle belief
propagation,[in Proc. 7th. Int. Conf.
Information Fusion, 2005.

[55] F. Hamze and N. de Freitas, BHot coupling:
A particle approach to inference and
normalization on pairwise undirected
graphs,[in Advances in Neural Information
Processing Systems 18, Y. Weiss, B. Schölkopf,

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

Vol. 95, No. 6, June 2007 | Proceedings of the IEEE 1321

and J. Platt, Eds. Cambridge: MIT Press,
2006, pp. 491–498.

[56] J. Dauwels, S. Korl, and H.-A. Loeliger,
BParticle methods as message passing,[in
Proc. 2006 IEEE Int. Symp. Information Theory,
Seattle, WA, Jul. 9–14, 2006, pp. 2052–2056.

[57] A. P. Dempster, N. M. Laird, and D. B. Rubin,
BMaximum likelihood from incomplete data
via the EM algorithm,[J. Roy. Statistical Soc.,
ser. B, vol. 39, pp. 1–38, 1977.

[58] P. Stoica and Y. Selén, BCyclic minimizers,
majorization techniques, and the expectation-
maximization algorithm: A refresher,[

IEEE Signal Proc. Mag., pp. 112–114,
Jan. 2004.

[59] S. Lauritzen, BThe EM algorithm for graphical
association models with missing data,[
Computational Statistics and Data Analysis,
vol. 19, pp. 191–201, 1995.

[60] J. Dauwels, S. Korl, and H.-A. Loeliger,
BExpectation maximization as message
passing,[in Proc. 2005 IEEE Int. Symp.
Information Theory, Adelaide, Australia,
Sep. 4–9, 2005, pp. 583–586.

[61] J. Dauwels, A. W. Eckford, S. Korl, and
H.-A. Loeliger, Expectation maximization
in factor graphs, in preparation.

[62] P. O. Vontobel, BKalman filters, factor
graphs, and electrical networks,[ISI-ITET,
ETH Zurich, Internal Rep. INT/200202,
Apr. 2002.

[63] P. O. Vontobel and H.-A. Loeliger, BOn
factor graphs and electrical networks,[in
Mathematical Systems Theory in Biology,
Communication, Computation, and Finance,
J. Rosenthal and D. S. Gilliam, Eds.
New York: Springer Verlag,
2003, pp. 469–492.

ABOUT THE AUTHORS

Hans-Andrea Loeliger (Fellow, IEEE) received

the diploma in electrical engineering in 1985 and

Ph.D. degree in 1992, both from ETH Zurich,

Switzerland.

From 1992 to 1995, he was with Linköping

University, Sweden. From 1995 to 2000, he was

with Endora Tech AG, Basel, Switzerland, of which

he is a Cofounder. Since 2000, he has been a

Professor at ETH Zurich. His research interests lie

in the broad areas of signal processing, informa-

tion theory, communications, and electronics.

Justin Dauwels (Member, IEEE) received the

diploma (M.Sc. degree) in engineering physics

from the University of Gent, Belgium, in 2000,

and the Ph.D. degree in electrical engineering

from ETH Zurich, Switzerland, in 2005.

He is currently a Research Scientist at the

Amari Research Unit of the RIKEN Brain Science

Institute, Japan. His broader research interests

include signal processing, machine learning, dig-

ital communications, applied information theory,

and computational neuroscience.

Dr. Dauwels is a recipient of the ICASSP2006 Student Paper Award,

a JSPS Fellowship in 2006, and the Henri-Benedictus Fellowship of the

BAEF and the King Baudouin Foundation in 2007.

Junli Hu (Member, IEEE) received the B.Sc. degree

from Shanghai Jiantong University, in 1992, and

the diploma from ETH Zurich, Switzerland, in

1998, both in electrical engineering. Since 2004,

he has been working toward the Ph.D. degree at

the Signal and Information Processing Laboratory,

ETH Zurich.

Since 2001 he has been with Wavecom Elektro-

nik AG, Zurich. His current research interest is

equalization and estimation using graphical models.

Sascha Korl (Member, IEEE) was born in Vienna,

Austria, in 1974. He received the M.Sc. degree in

electrical engineering from the Graz University of

Technology, Graz, Austria, in 2000, and the Ph.D.

degree in electrical engineering from ETH Zurich,

Switzerland, in 2005.

During his studies he developed several new

message-passing techniques on factor graphs, for

example the use of particle and gradient techni-

ques on factor graphs and the derivation of EM-

type algorithms by local message updates on factor graphs. In 2005,

he joined the applied research department of Phonak AG, Stäfa,

Switzerland, where he is engaged in research on signal processing and

machine learning methods for innovative hearing solutions.

Li Ping (Senior Member, IEEE) received the Ph.D.

degree from Glasgow University, U.K., in 1990.

He lectured at the Department of Electronic

Engineering, Melbourne University, from 1990 to

1992, and worked as a member of research staff at

Telecom Australia Research Laboratories from

1993 to 1995. He has been with the Department

of Electronic Engineering, City University of Hong

Kong, since January 1996, where he is now a

Chair Professor. His research interests are mixed

analog/digital circuits, communications systems, and coding theory.

Dr. Ping was awarded a British Telecom-Royal Society Fellowship in

1986, the IEE J. J. Thomson premium in 1993, and a Croucher Senior

Research Fellowship in 2005.

Frank R. Kschischang (Fellow, IEEE) received the

B.A.Sc. (Honors) degree from the University of

British Columbia, Vancouver, BC, Canada, in 1985,

and the M.A.Sc. and Ph.D. degrees from the

University of Toronto, Toronto, ON, Canada, in

1988 and 1991, respectively, all in electrical

engineering.

During 1997 to 1998, he spent a sabbatical year

as a Visiting Scientist at the Massachusetts Insti-

tute of Technology, Cambridge, and in 2005 he

was a Guest Professor at ETH Zurich, Switzerland. Currently, he is a

Professor and Canada Research Chair in the Department of Electrical and

Computer Engineering, University of Toronto, where he has been a

faculty member since 1991. His research interests include coding

techniques, primarily on soft-decision decoding algorithms, trellis

structure of codes, codes defined on graphs, and iterative decoders

and in the application of coding techniques to wireline, wireless, and

optical communication systems.

Dr. Kschischang served as Associate Editor for Coding Theory of the

IEEE TRANSACTIONS ON INFORMATION THEORY from 1997 to 2000 and also

served as the Technical Program Co-Chair for the 2004 IEEE International

Symposium on Information Theory, Chicago, IL. He is a recipient of

the Ontario Premier’s Research Excellence Award.

Loeliger et al. : Factor Graph Approach to Model-Based Signal Processing

1322 Proceedings of the IEEE | Vol. 95, No. 6, June 2007

