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Abstract

For a polynomial f(x) over a finite field Fq , denote the polynomial f{y)-f(x) by </>f(x,y).
The polynomial ipj has frequently been used in questions on the values of / . The existence
is proved here of a polynomial F over Fq of the form F = Lr, where L is an affine lin-
earized polynomial over F , such that / = g(F) for some polynomial g and the part of q>r
which splits completely into linear factors over the algebraic closure of ¥q is exactly <pF . This
illuminates an aspect of work of D. R. Hayes and Daqing Wan on the existence of permutation
polynomials of even degree. Related results on value sets, including the exhibition of a class of
permutation polynomials, are also mentioned.

1980 Mathematics subject classification (Anter. Math. Soc.) (1985 Revision): 11 T 06.

1. Introduction

Let f(x) be a monic polynomial in F [x] , where F is the finite field of
prime power order q = pm . (Without loss, we shall assume throughout that
/ is separable, that is, f(x) $ F^^] . ) Questions relating to the value set
of / in F? (for example, whether / is a permuation polynomial on Fq)
have frequently been tackled by consideration of the polynomial (p^(x, y)
defined by q>f(x, y) = f(y)-f(x), its factorization over Fq and any further
reducibility over the algebraic closure F? of Fq (see [15], Chapter 7, Section
4 and references on pages 379-381, [4], [11], [19], [20], for example).
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Of course, <Pj-(x, y) has the trivial factor y - x and, more generally, if
/ = g(h), a composition of polynomials in Fq[x], then, in Fq[x, y], q>j is
divisible by tph . Such factorization aside, the most conspicuous possibility
for factors of cp f in Fq[x, y] are linear ones y - £x - a (£, a e Fq). Denote
by A Ax, y) the factor of <p Ax, y) (monic in y, say) that is the product
of all linear factors in F [x, y]. Employing some old terminology of Carlitz
[3], [16], we say that / or <pf is factorable if lf = <pf, that is, <pf splits
completely into linear factors in Fq[x, y]. More generally, we refer to Xf

(actually in F [x, y] by Corollary 2.2 below) as the factorable part of (pf.

Preliminary studies on polynomials / with non-trivial factorable part
(that is, having degA^ > 1) have been undertaken by Hayes [13] and Daqing
Wan [20]; see also [11]. Here we describe X, for arbitrary / and, in partic-
ular, identify all factorable polynomials. In summary, / always possesses a
"factorable core", namely a factorable polynomial F(x) in F [x] for which
/ = g(F) (for some g(x) in F?[x]) and X^ = XF = q>F. In turn, F is a
"cyclic extension of a linearized core" as we proceed now to describe.

To do this, we modify slightly the standard terminology for linearized
polynomials—also known as //-polynomials, [15, Section 3.4]. For any s >
1, define a ps-polynomial (over Fq ) as one of the form

k

(1.1) i W = E « / (ao,...,akeFp).

where we note that Fp = Fq and the reference to Fq is appropriate if the
coefficients actually belong to the subfield Fq of Fq . In extension of this, an
affine ps-polynomial (over F ), by definition, is one of the form L{x) + a,
where L is a ps-polynomial (over Fq) and a G Fp (or F^). Clearly, a
//-polynomial I is a linear transformation of F as an F.-vector space.
Moreover, if £ e Fpl and a e F , then, identically,

(1.2) p p

To introduce cyclic extensions, given an affine ps-polynomial L(x) + a,
and r > 1, set F(x) = (L(x) + af, and let £ be a primitive rth root of
unity in Fp . Then, provided r | (ps - 1) if degL > 1 (so that £ e Fp,), it
follows from (1.2) that

r-\

(1.3) <pF(x, y) = H{(L(y) + a) - C(L(x) + a)}
i=0

= f[{L(y - C'
i=0 i=0 y.
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where the inner product in (1.3) is over all roots yf of L(x) + a( 1 - £') = 0.
Thus F is factorable. The two theorems we now state and are to prove
demonstrate that, in fact, the factorable parts of all polynomials are ac-
counted for by the above.

THEOREM 1.1. A separable monic polynomial F{x) in F [x] is factorable
if and only if F {x) = Lr(x)+S where 8 e F? and L isanaffine p-polynomial

i r\\p —i) ij L . is uciuuiiy un ujjine f

exceeding 1.
over Fq, with r\(p - 1) if L is actually an affine p -polynomial of degree

THEOREM 1.2. Let f(x) be a separable monic polynomial in ¥ [x]. Then
there exists a monic polynomial g{x) and a monic factorable polynomial
F{x) in FJJC] such that f = g(F) and Xf = XF = <pF.

In Theorem 1.2 the factorable core F can be specified uniquely with 5 — 0
in Theorem 1.1 and, additionally, with L a p-polynomial, not affine, if
r= 1.

It was the Carlitz conjecture (see [14]) on the non-existence of permuta-
tion polynomials of even degree n over F (q odd) which motivated the
present treatment. A proof appears to be difficult when p \ n but, partly
aided by consideration of the factorable part, it has been accomplished for
n < 16 by Dickson [9], Hayes [13] and Daqing Wan [20]. In fact, appli-
cation of our theorems would significantly simplify their arguments and, in
principle, allow further cases n = 18, 20, 22, . . . to be solved (notably the
case n = 18, p = 3 , in which p2\n). We do not, however, incorporate such
applications here because there is an alternative viewpoint (that of primitive
permutation groups) which has an important bearing on the problem; a fur-
ther paper is planned with this stance. Nonetheless we shall include some
comments on the value sets of factorable polynomials and, in particular, ex-
hibit what seems to be a new class of permutation polynomials.

When / is separable, <p^ is a product of distinct, irreducible polynomials

in ¥q[x,y]. If / is inseparable, then f(x) - / , ( J T ) = fl (x) for some
separable fl(x),f1(x) in Fq[x] and evidently we may treat f2 in place of
/ . For convenience, therefore, we shall assume that all polynomials in Fq[x]
are monic and separable and all polynomials in F [x, y] are monic in y.

2. The linearized core

We begin with some generalities. Given an irreducible (for example, lin-
ear) polynomial p(x, y) in F?[JC , y], let the field obtained by adjoining the
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coefficients of p to Yq be F? , . Define

1=0

The following basic result is evident from [3].

LEMMA 2.1. Let p(x,y) be an irreducible polynomial in Fq[x,y] as
above. Then ~p{x,y) is in Fq[x,y]. Further, if p(x, y) is a factor of
6(x, y) e Fg[x, y], then ~p(x, y) divides d(x, y).

COROLLARY 2.2. Given f{x) e Fq[x], then kf(x, y) e Fq[x, y]. Further,
if fiJx, y) is the product of all linear factors of XAx, y) of the form y -
x-a(aeFq), then fif(x, y) e Fq[x, y].

PROOF. Since Ay and p.^ divide <py in Fq[x,y], Lemma 2.1 can be
applied to all their linear factors (in Fq[x, y]) and the result follows.

The next crucial fact follows from [10], especially Theorems 2.3 and 4.2,
and is a polynomial version of [6, Lemma 4]. In its statement, / , f* , F,
etc., are all monic separable polynomials in F J x ] .

LEMMA 2.3. Suppose p(x, y) GFq[x, y] divides <pf. {x, y) for some f* .
Then there exists F(x) in Fq[x] such that, for any f, p{x,y) divides
<Pf{x > y) if and only if f = h(F) for some h(x) e Fq[x].

Linearized polynomials come to the fore in the next lemma ([7, Lemma
4])-

LEMMA 2.4. Suppose the p-polynomial L over F decomposes functionally
over Fq as L = LX{L2). Then L = L\{L\), where L*(x) = L,(;c + L2(0)),
L*2(x) = L2{x) — L2(0) are p-polynomials over F .

With the above preparations, we now demonstrate the existence of a lin-
earized core.

LEMMA 2.5. Given f{x) in Fq[x], there exists a p-polynomial L{x) and
a polynomial h(x) in Fq[x] such that f = h(L) and fi^ = fiL = XL = g>L.

PROOF. By Corollary 2.2 we may take p(x, y) = fij-(x, y) in Lemma 2.3.

Then certainly fif\(pf. But, also, writing nf(x, y) = nLiCv ~ x ~ aD > sav>

and Fqi = Fq(ax, ... , ay) we see that nf divides (y - x)q - (y - x) =
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<pL.{x,y), where L*(x) = xq - x. It follows from Lemma 2.3 that for
some L{x), L0(x) and h(x) in Fg[x] with <pL divisible by nf, f - h{L)
and L* = L0(L). Additionally, by Lemma 2.4, L (as well as Lo) can be
assumed to be p-polynomials. From the definition of nf and (1.3) (with
r = 1) we see that Hf = q>L. This finishes the proof.

3. The cyclic extension

Given r with p \ r, we now suppose that £ is a primitive r th root of
unity in ¥p (a field which we can equally well visualise as F?) .

LEMMA 3.1. Given f(x) in F [jr], suppose that r > 1 and y - £x - a

(where a e F ) divides <p f. Then, for each i = 0, . . . , r-\, y- C'x - /?(1 -

C) = y-fi-C(x-fi) divides <pf, where ft = a/( 1 - Q. Moreover, for some

g(x) inFq[x), f(x) = g((x-ft)r).

PROOF. The first part is [13, Theorem 5.1]. A simple application of
Lemma 2.3 with p(x, y) — (pF{x, y), where F(x) = (x - ft)r, yields the
rest.

The vital fact that, in Theorem 1.1, r\(ps - 1) is decided in the next
lemma. We continue to work in Fp[x], the argument employed being rele-
vant in the sequel too.

LEMMA 3.2. Let f{x) be a separable monk polynomial in FJJC] whose
linearized core L(x) in F [x] has degree greater than 1. Let s be the
maximal integer such that L is a ps-polynomial over Fq . Then the maximal
integer r with p \ r such that y -£x -a divides <pj for some primitive rth
root of unity C in F p , and a in F satisfies r | (ps - 1).

PROOF. We can assume r > 1. Suppose that y-Cx-a = y-ft-£(x-ft),
where ft = a/( 1 - £), is a factor of q>j-. By Lemma 3.1, f(x) — g((x - ft)r),
where g(x) e Fp[x], and, in fact, y - ft - £(* - ft) is a factor of (pf for
i = 0 r - 1.

As in [20, Lemma 3.1], for instance, we enlist the aid of some Fp(z)-
automorphisms of F (x), where f(x) = z , an indeterminate. In the first
place, for each i = 0, ..., r - I, there is an automorphism at which maps
x i-c C(x - ft) + ft (all these being roots of f{y) - z). There are also
automorphisms permuting the zeros of fij- (as a polynomial in y) defined by
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x >-^ x+y for any y with L(y) = 0 . Application of these maps demonstrates
that (independently of i) the number of factors of Xf of the form y—Cx—a,
i = 0 , . . . , r - 1, is the same (namely, degL). Further, operating on the
factor L(y) - L(x) — L(y - x) of X, with each a{ in turn, we obtain

r - l

Xf(x,y) = (L(y) - L{x))\{L{y - ft - C(x - ft))

(3.1) = (L(y) - L(x)) f[(L(y -ft)- L(C(x -

r-l

(3.2) - JJ H(y-ft-C(X-ft)-y)
L{y)=0 1=0

(3.3) =(L(y)-L(x)) ft ft { [v ~ fi ~
L(j,)=0/=l ^ V

Suppose that y is any root of L(x) (in Fp ) . By (3.3) and Lemma 3.1,

for any 1 = 1, . . . . r - 1, because (y-ft-y/(l-C')) - C ( x - f t - y / ( l - ? ) )
is a factor of Xf so also is (y- ft -y/(l - C')) - {2i{x - ft -y/{l- f1'))
(where the case / = r/2 when r is even needs some special consideration).
From (3.2), however, every factor of Xj- of the form y - £2'* - a has the
explicit shape y - ft - £2'(x - ft) - y{ , where L(y{) = 0. Consequently,
yx = (1 - C2')y/(1 - C') - (1 + C')y, that is, L((l + C>) = 0. Hence

+ C)y) - L(y) = 0. Thus, apart from the zero root, whenever
y is a root of L, y, £?, . . . , C~Xy are all distinct roots of L. Since / is
separable the important conclusion that L(x)/x e F [xr] results.

To complete the proof suppose L is given by (1.1) with k > 1 and
aoak ^ 0 and set / = {/: 0 < i < k, al ^ 0} . We deduce from the above
that r\psi - 1 for all i e I. In other words w\si for all / € / , where
w denotes the order of p modulo r. By the definition of / , the highest
common factor of the members of / is 1, which implies the fact, equivalent
to the stated result, that w\s.

We are now ready to finish the proofs of Theorems 1.1 and 1.2. Let L be
the linearized core of / and r be as in Lemma 3.2. We are done if r = 1;
so assume r > 1. Let y - ft - £(JC - ft) be a factor of (p, (as in Lemma
3.1). We assert that actually L(ft) € Fq .

To justify this, observe from Lemma 2.1 that y - ft9 - C(x - ft9) is also
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a factor of <pf. In turn, Lemma 3.1 yields y - flq - £(x - pq) as another
factor (because C9 is also a primitive r th root of unity). We therefore
have, by (3.2), that (1 - Qpq = (l-Qfi + y, where L(y) = 0. Hence
L((l-C)fi9) = L((l-Q0)+L(y) which implies that L(fi9) = L(fi). Because
L(x) € Fg[x] then, in fact, L(09) = Lq(0) and our claim is proved.

When degL = 1 the results are evident from Lemma 3.1. Assume there-
fore that deg L > 1. The import of Lemma 3.2 is that, for i = 0, ... , r-l,
L(C'x) = C'L(x) and (3.1) can be written

r - l

Xf{x, y) = (LOO " L{x)) H(L(y - fi) - £L{x - /?))

= Lr(y-p)-Lr(x-fi) = g>F(x,y).

where F(x) = Lr{x - 0) = (L(x) - L{p))r, which proves the results (recall
that L{0) e Fq ) .

4. Further results and remarks

The observations to be made here will not be worked out exhaustively
and details of the proofs will largely be left to the reader. The notation and
conventions will be as before except that later the prime power q will be
redefined.

Suppose that / is a separable monic polynomial of degree exceeding 1 over
Fq . By definition [15, Chapter 7, Section 4], / is called exceptional over Fq

if every irreducible factor (other than y - x) of (pj- in Fq[x, y] factorises
further in Fq[x, y], that is, no irreducible factor in Fq[x, y] (other than
y - x) is absolutely irreducible. Every exceptional polynomial over F is
a permutation polynomial over F (by [5, Theorem 5], for example), and
conversely (at least for large q as a function of d e g / ) [20, Theorem 2.4].

For the conjecture of Carlitz referred to in the introduction, it suffices to
show that, for q odd, there are no exceptional polynomials of even degree.
Now a composition / = g(h) of polynomials over F^ is exceptional (or a
permutation polynomial) if and only if both g and h are also exceptional (or
permuation polynomials). Thus, for many purposes, the study of exceptional
(or permutation) polynomials can be restricted to indecomposable polynomi-
als. As the nature of factorable polynomials in this context is not difficult to
determine (see below), it may also be presumed that / has trivial factorable
core. In particular, for example, for such an exceptional polynomial of even
degree, over Fq[x, y] <pj must have an odd number (> 1) of factors of
some odd degree (> 1). This immediately disposes of the possibility of
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exceptional polynomials of degree 12, for instance, (compare [20]) and the
principle has potential application to polynomials of higher degree. Never-
theless, for the reason stated in the introduction, we defer further discussion
on this specific topic. On the other hand, we now describe all factorable ex-
ceptional polynomials. To do this, we set d = (s, m), s — td, m = nd,
and re-define q as pd .

THEOREM 4.1. Let t, n be relatively prime integers and L{x) be a sepa-
rable q'-polynomial of degree exceeding 1 over Fqn with no non-zero roots in
Yqn. Let r be an integer such that r\(q' - 1) but (r, q - 1) = 1. Then, for
any a in Fqn, (L(x)-a)r is an exceptional and so a permutation polynomial
over Fq*.

In Theorem 4.1, note that the conditions on r imply that (r, q" - 1) =
1. As an interesting corollary we deduce the following class of permutation
polynomials over Fqn, which, from [14], seem to be new (at least when
k> 1).

COROLLARY 4.2. Let t, n be relatively prime integers and r an integer
such that r\(q' - 1) but (r,q-l) = l. Suppose that

M(x) = x{"'k-i)/r + £ a ^ " - " " , k > l , a o ? O ,

is a polynomial in F *[*] with no roots in F ». Then f(x) — xMr(x) is an
exceptional and a permutation polynomial over Fq*.

We remark that, for r > 1, the polynomial / , though exceptional, is not
factorable; the irreducible factors of q>, in F [x, y] (other than y — x) all
have degree r (from (3.2)). Further (as we hope to discuss fully elsewhere),
while not evident from Theorem 4.1, the condition (r, q - 1) — 1 is not
required for Corollary 4.2.

EXAMPLE 1. Take q = t = 2, r = 3 . Define Fg as F2(0), where
63 = 6+1. Put M(x) = x5 + (d2 + d+l)x + 6+l in F J x ] . Then, over Fg,
M(x) = (x2 + x + 6 + 1)(x3 + x2 + dx + 1), where the factors are irreducible.
It follows from Corollary 4.2 that xM3(x) is a permutation polynomial over
F23« for all integers n with (n, 6) = 1.

EXAMPLE 2. Take q = t = 3 , r = 13. Put M(x) = xie - x2 - 1. By
theoretical reasoning (or calculation) over F3, M factorises into a product
of three irreducible polynomials, namely two of degree 24 and one of degree
8. (In any case [8, Example 2] shows that x28 - x - 1 is a product of seven
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irreducible quartics over F27.) It follows that xM 13(;t) is a permutation
polynomial over Fy for all n such that 3 \ n and 8 \ n . (In fact, as noted
above, the same conclusion can be drawn when 31 n but 8 \ n .)

We note that in this context, as well as the general criterion for a linearized
polynomial to be a permutation on pages 361-362 of [15], results such as
those in [18], [8], [1] and [2] may also be useful.

At the other extreme from permutation polynomials (as far as the size of
the value set is concerned), factorable polynomials F can also be ones whose
value set in F^ has minimal size of approximately q/degf (see [17], [19],
[12]). This occurs whenever <pF — kF splits completely into linear factors
over Fq[x, y] itself. In the final result, q denotes what was formerly qs.

THEOREM 4.3. Let L(x) be a separable q-polynomial of degree q (> 1)
over Fq« and a e Fqn be such that L(x) - a splits completely in F *[x].
Then, for any divisor r of q - 1, the number of distinct values taken by
F(x) = (L(x) - a)r in F?n is (fa""* - l)/r) + 1.

In Theorem 4.3, the "monodromy group of F over Fq ", that is, the
Galois group of F(x) - z over Fq{z), z an indeterminate, is regular as
a permutation group on the roots. As hinted at earlier, there clearly could be
merit in studying the monodromy group in the general case from the point of
view of permutation group theory. There is obviously also scope for further
work on the value sets of polynomials encompassing Theorems 4.1 and 4.3
and extended possibly to compositions of factorable polynomials.
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