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THE FACTORIZATION OF THE NINTH FERMAT NUMBER

A. K. LENSTRA, H. W. LENSTRA, JR., M. S. MANASSE, AND J. M. POLLARD

Dedicated to the memory ofD. H. Lehmer

Abstract. In this paper we exhibit the full prime factorization of the ninth
Fermât number Fg = 2512 + 1 . It is the product of three prime factors that
have 7, 49, and 99 decimal digits. We found the two largest prime factors by
means of the number field sieve, which is a factoring algorithm that depends on
arithmetic in an algebraic number field. In the present case, the number field
used was Q(v^2). The calculations were done on approximately 700 worksta-
tions scattered around the world, and in one of the final stages a supercomputer
was used. The entire factorization took four months.

Introduction

For a nonnegative integer k , the kth Fermât number Fk is defined by Fk -
22 4- 1. The ninth Fermât number Fy = 2512 + 1 has 155 decimal digits:

F9 = 13407 807929 942597 099574 024998205846127479 365820 592393
377723 561443 721764030073 546976 801874 298166 903427 690031
858186486050 853753 882811946569 946433 649006 084097.

It is the product of three prime numbers:

F<) = Pi • P49 • P99 ,

where p7, p49 , and p99 have 7, 49, and 99 decimal digits:

p7 = 2424833,
P49 = 7455602 825647 884208 337395 736200454918 783366 342657,
p99 = 741 640062627530 801524 787141 901937474059940781 097519

023905 821316144415 759504 705008 092818 711693 940737.

In binary, p7, p49, and P99 have 22, 163, and 329 digits:
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1001 010000000000 000001,
1010001 100111 110000 110010 110001 010011 001111 001101
101100111111001101 101001 111101000010001111 101010110010
101101 010111 100000 110001 010011 001001 010101 000010 100000
000001,
10101 101100110110001111010110100000010011100101010000
101110011110100011001010111000110001111001100101110011
010011000110111110011000100110010101001011000101100110
011110000110110010000110111011001010010110001100001011
111111 111001001000101010101001 111010100011001001 111010
010100000000101101 101010111001000100110001 101101 100000
000001.

The binary representation of F9 itself consists of 511 zeros surrounded by 2
ones.

In this paper we discuss several aspects of the factorization of the ninth Fer-
mât number. Section 1 is devoted to Fermât numbers and their place in number
theory and its history. In §2 we address the general problem of factoring inte-
gers, and we describe the basic technique that many modern factoring methods
rely on. In §3 we return to the ninth Fermât number, and we explain why previ-
ous factoring attempts of Fg failed. We factored the number by means of the
number field sieve. This method depends on a few basic facts from algebraic
number theory, which are reviewed in §4. Our account of the number field
sieve, in §5, can be read as an introduction to the more complete descriptions
that are found in [28] and [10]. The actual sieving forms the subject of §6. The
final stage of the factorization of Fa , which involved the solution of a huge
linear system, is recounted in §7.

1. Fermât numbers

Fermât numbers were first considered in 1640 by the French mathemati-
cian Pierre de Fermât (1601-1665), whose interest in the problem of factoring
integers of the form 2m ± 1 arose from their connection with "perfect", "ami-
cable", and "submultiple" numbers [47; 48, Chapter II, §IV]. He remarked that
a number of the form 2m + 1 , where m is a positive integer, can be prime
only if m is a power of 2, which makes 2m + 1 a Fermât number. A Fermât
number that is prime is called a Fermât prime. Fermât repeatedly expressed
his strong belief that all Fermât numbers were prime. Apparently, this belief
was based on his observation that each prime divisor p of Fk must satisfy a
strong condition, namely p = 1 mod 2k+l . In present-day language, one would
formulate his proof of this as follows. If 22 = -1 modp, then (2 modp)
has multiplicative order 2k+l , and so 2k+] divides p - 1 , by Fermat's own
"little" theorem, which also dates from 1640. It is not clear whether Fermât
was aware of the stronger condition p = 1 mod 2k+2 for prime divisors p of
Fk , k > 2. To prove this, it suffices to replace (2 mod p), in the argument
above, by its square root (22    (22     - 1) mod p), which has order 2^+2. (It is
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amusing to note that also (Fk_\ modp) has order 2k+1, because its square is
an odd power of (2 modp).) Incidentally, from the binary representations of
the prime factors of F9 we see that

ord2(p7 - 1) = 16,    ord2(p49 - 1) = 11,    ord2(p99 - 1) = 11,

where ord2 counts the number of factors 2.
The first five Fermât numbers Fq = 3, F\ = 5, F2 = 17, Ft, = 257, and

F4 = 65537 are indeed prime, but to this day these remain the only known
Fermât primes. Nowadays it is considered more likely, on loose probabilistic
grounds, that there are only finitely many Fermât primes. It may well be that
F0 through F4 are the only ones. On similar grounds, it is considered likely
that all Fermât numbers are squarefree, with perhaps finitely many exceptions.

As for F$, Fermât knew that any prime divisor of F$ must be among 193,
449, 577, 641, 769, ... , which is the sequence of primes that are 1 mod 26,
with Ft, = 257 omitted (distinct Fermât numbers are clearly relatively prime).
Thus it is difficult to understand how he missed the factor 641, which is only
the fourth one to try; among those that are 1 mod 27, it is the first! One is
led to believe that Fermât did not seriously attempt to verify his conjecture
numerically, or that he made a computational error if he did. The factor 641
of F5 was found by Euler in 1732, who thereby refuted Fermat's belief [18].
The cofactor /75/641 = 6700417 is also prime.

Gauss showed in 1801 that Fermât primes are of importance in elementary
geometry: a regular Tz-gon can be constructed with ruler and compasses if and
only if 77 is the product of a power of 2 and a set of distinct Fermât primes
[19].

Since the second half of the nineteenth century, many mathematicians have
been intrigued by the problem of finding prime factors of Fermât numbers and,
more generally, numbers of the form 2m ± 1 . Somewhat later, this interest was
extended to the larger class of Cunningham numbers bm ± 1 (with b small
and m large) [16, 7]. The best factoring algorithms were usually applied to
these numbers, so that the progress made in the general area of factoring large
integers was reflected in the factorization of Fermât and Cunningham numbers.

The effort required for the complete prime factorization of a Fermât number
may be expected to be substantially larger than for the preceding one, since the
latter has only half as many digits (rounded upwards) as the former. In several
cases the factorization could be accomplished only by means of a newly invented
method. In 1880, Landry factored F6, but his method was never published (see
[25; 17, Chapter XV, p. 377; 20; 50]). In 1970, Morrison and Brillhart found
the factorization of Fi with the continued fraction method [36]. Brent and the
fourth author factored F% in 1980 by means of a modified version of Pollard's
rho method [6]. In 1-988, Brent used the elliptic curve method to factor Fu
(see [4, 5]). Most recently, F<) was factored in 1990 by means of the number
field sieve.

Unlike methods previously used, the number field sieve is far more effective
on Fermât and Cunningham numbers than on general numbers. Factoring gen-
eral numbers of the order of magnitude of Fx, with the number field sieve—or
with any other known method—requires currently substantially more time and
financial resources than were spent on F9 ; and factoring general numbers of
the order of magnitude of lO15/^ is not yet practically feasible.
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The fact that the number field sieve performs abnormally well on Fermât
and Cunningham numbers implies that these numbers are losing their value as
a yardstick to measure progress in factoring. One wonders which class of num-
bers will take their place. Good test numbers for factoring algorithms should
meet several conditions. They should be defined a priori, to avoid the impres-
sion that the factored numbers were generated by multiplying known factors.
They should be easy to compute. They should not have known arithmetic prop-
erties that might be exploited by a special factorization algorithm. For any size
range, there should be enough test numbers so that one does not quickly run
out, but few enough to spark competition for them. They should have some
mathematical significance, so that factoring them is a respectable activity. The
last condition is perhaps a controversial one; but do we want to factor numbers
that are obtained from a pseudorandom number generator, or from the digits
of n (see [2, 44])? The values of the partition function [1] meet the conditions
above reasonably well, although they appear to be too highly divisible by small
primes. In addition, their factorization is financially attractive (see [42]). We
offer them to future factorers as test numbers. Nonetheless, factoring Fermât
numbers remains a challenging problem, and it is likely to exercise a special
fascination for a long time to come.

In addition to the more or less general methods mentioned above, a very
special method has been used to search for factors of Fermât numbers. It
proceeds not by fixing k and searching for numbers p dividing Fk , but by
fixing p and searching for numbers k with Fk = 0 mod p . To do this, one
first chooses a number p = u • 2l + 1 , with u odd and / relatively large, that is
free of small prime factors; one can do this by fixing one of u, / and sieving
over the other. Next one determines, by repeated squarings modulo p, the
residue classes (22 mod p), k -2,3, ... . From what we proved above about
prime factors of Fermât numbers it follows that if no value k < I -2 is found
with 22  = — 1 mod p , then p does not divide any Fk , k > 2 ; in this case p is

tkdiscarded. If a value of k is found with 22 = -1 mod p—which one expects,
loosely, to happen with probability l/u , if p is prime—then p is a factor of
Fk . The primality of p is then usually automatic from knowledge that one may
have about smaller prime factors of Fk or, if p is sufficiently small, from the
fact that all its divisors are 1 mod 2k+2.

Many factors of Fermât numbers have been found by the method just
sketched. In 1903, A. E. Western [15] found the prime factor p7 = 2424833 =
37 • 216 + 1 of F9. In 1984, Keller found the prime factor 5 • 223473 + 1 of
/«23471 ; the latter number is the largest Fermât number known to be composite.

If no factor of Fk can be found, one can apply a primality test that is es-
sentially due to Pepin [37]: for k > 1 , the number Fk is prime if and only if
3(**-i)/2 = _i mo(j fk xhis congruence can be checked in time 0((lo$Fk)3),
and in time 0((logFk)2+e) (for any positive e) if one uses fast multiplication
techniques. One should not view Pepin's test as a polynomial-time algorithm,
however. In fact, the input is k , and from log Fk « 2k log 2 we see that the time
that the test takes is a doubly exponential function of the length (log k)/ log 2 of
the input. Pepin's test has indeed been applied only for a very limited collection
of values of k .

Known factors of Fk can be investigated for primality by means of general
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primality tests. In this way, Brillhart [22, p. 110] found in 1967 that the number
7*9/2424833, which has 148 decimal digits, is composite. In 1988, Brent and
Morain found that F[ i divided by the product of four relatively small prime
factors is a prime number of 564 decimal digits, thereby completing the prime
factorization of Fu .

The many results on factors of Fermât numbers that have been obtained by
the methods above, as well as bibliographic information, can be found in [17,
Chapter XV; 16, 7, 41, 23]. For up-to-date information one should consult the
current issues of Mathematics of Computation, as well as the updates to [7] that
are regularly published by S. S. Wagstaff, Jr. We give a brief summary of the
present state of knowledge.

The complete prime factorization of Fk is known for k < 9, for k = 11 ,
and for no other k . One or more prime factors of Fk are known for all k < 32
except k = 14, 20, 22, 24, 28, and 31, as well as for 76 larger values of k ,
the largest being k = 23471. For k = 10, 12, 13, 15, 16, 17, and 18 the
cofactor is known to be composite. No nontrivial factor is known of i7^ or
F2o, but it is known that these numbers are composite. For k = 22, 24, 28, 31,
and all except 76 values of k > 32, it is unknown whether Fk is prime or
composite.

The smallest Fermât number that has not been completely factored is Fio.
Its known prime factors are

11131 -212 + 1 =45 592577,
395937 -214+1 =6487 031809.

The cofactor has 291 decimal digits. Unless it has a relatively small factor, it is
not likely to be factored soon.

The factorization of Fermât numbers is of possible interest in the theory of
finite fields. Let m be a nonnegative integer, and let the field K be obtained by
m successive quadratic extensions of the two-element field, so that # K — 22™ ;
an elegant explicit description of K was given by Conway [14, Chapter 6] and
another by Wiedemann [49]. It is easy to see that the multiplicative group of
K is a direct sum of 777 cyclic groups of orders Fq, F\, ... , Fm-x . Therefore,
knowledge of the prime factors of Fermât numbers is useful if one wishes to
determine the multiplicative order of a given nonzero element of K, or if one
searches for a primitive root of K.

2. Factoring integers

In this section, n is an odd integer greater than 1. It should be thought of
as an integer that we want to factor into primes. We denote by Z the ring of
integers, by Z/77Z the ring of integers modulo n , and by (Z/nZ)* the group
of units (i.e., invertible elements) of Z/nZ.

2.1.   Factoring with square roots of 1.    The subgroup {x e Z/nZ : x2 = 1}
of (Z/nZ)* may be viewed as a vector space over the two-element field F2 =
Z/2Z, the vector addition being given by multiplication. Many factoring algo-
rithms depend on the elementary fact that the dimension of this vector space is
equal to the number of distinct prime factors of n. In particular, if n is not
a power of a prime number, then there is an element x e Z/nZ, x ^ ±1,
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such that x2 = 1 . Moreover, explicit knowledge of such an element x,
say x = (y mod n), leads to a nontrivial factorization of 77. Namely, from
y2 = 1 mod n , y ^ ± 1 mod n , it follows that n divides the product of y - 1
and y 4-1 without dividing the factors, so that gcd(>> - 1, n) and gcd(y 4-1, n)
are nontrivial divisors of n . They are in fact complementary divisors, so that
only one of the gcd's needs to be calculated; this can be done with Euclid's
algorithm. We conclude that, to factor 77, it suffices to find x e Z/77Z with
x2= 1 , x^±l.

2.2. Repeated prime factors. The procedure just sketched will fail if 77 is a
prime power, so it is wise to rule out that possibility before attempting to factor
n in this way. To do this, one can begin by subjecting 77 to a primality test,
as in [27, §5]. If n is prime, the factorization is finished. Suppose that n is
not prime. One still needs to check that n is not a prime power. This check
is often omitted, since in many cases it is considered highly unlikely that n is
a prime power if it is not prime; it may even be considered highly likely that
n is squarefree, that is, not divisible by the square of a prime number. For
example, suppose that 77 is the unfactored portion of some randomly drawn
integer, and one is certain that it has no prime factor below a certain bound
B. Then the probability for n not to be squarefree is 0{l/(BlogB)), in a
sense that can be made precise, and the probability that « is a proper power
of a prime number is even smaller. A similar statement may be true if n is the
unfactored portion of a Cunningham number, since, to our knowledge, no such
number has been found to be divisible by the square of a prime factor that was
difficult to find. Whether other classes of test numbers that one may propose
behave similarly remains to be seen; if the number 77 to be factored is provided
by a "friend", or by a colleague who does not yet have sufficient understanding
of the arithmetical properties of the numbers that his computations produce, it
may be unwise to ignore the possibility of repeated prime factors.

2.3. Squarefreeness tests. No squarefreeness tests for integers are known that
are essentially faster than factoring (see [9, §7]). This is often contrasted with
the case of polynomials in one variable over a field K , in which case it suffices
to take the gcd with the derivative. This illustrates that for many algorithmic
questions the well-known analogy between Z and K[X] appears to break down.
Note also that for many fields K, including finite fields and algebraic number
fields, there exist excellent practical factoring algorithms for K[X] (see [26]).
which have no known analogue in Z.

There do exist factoring methods that become a little faster if one wishes
only to test squarefreeness; for example, if n is not a square—which can easily
be tested—then to determine whether or not n is squarefree it suffices to do
trial division up to tí1/3 instead of nx¡2.

There is also a factoring method that has great difficulties with numbers n
that are not squarefree. Suppose, for example, that p is a large prime for which
p - 1 and p + 1 both have a large prime factor, and that 77 has exactly two
factors p. The factoring method described in [43], which depends on the use
of "random class groups", does not have a reasonable chance of finding any
nontrivial factor of n, at least not within the time that is conjectured in [43]
(see [32, §11]).
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2.4. Recognizing powers. Ruling out that 77 is a prime power is much easier
than testing n for squarefreeness. One way to proceed is by testing that n is
not a proper power. Namely, if n = m1, where m , I are integers and / > 1,
then m > 3, 2 < / < [(logn)/ log 3], and one may assume that / is prime.
Hence, the number of values to be considered for / is quite small, and this
number can be further reduced if a better lower bound for m is known, such
as a number B as in §2.2. For each value of /, one can calculate an integer mo
for which |wo - nxl'\ < 1, using Newton's method, and test whether n = mlQ ;
this is the case if and only if n is an /th power. One can often save time by
calculating wo only if n satisfies the conditions

n'-l = l    modi2       (mod 8 if/= 2)
and

„(i-D//sl     modtf
for several small primes q with q = 1 mod /. These are necessary conditions
for a number n that is free of small prime factors to be an /th power, if / is
prime.
2.5. Ruling our prime powers. There is a second, less well-known way to
proceed, which tests only that n is not a prime power. It assumes that one
has already proved that n is composite by means of Fermat's theorem, which
states that a" = a mod n for every integer a, if n is prime. Hence, if an
integer a has been found for which a" ^ a mod n , then one is sure that n is
composite. If 71 is a prime power, say n = pk , then Fermat's theorem implies
that aP = a mod p and hence also that a" = ap = a mod p ; that is, p divides
a" - a, so it also divides gcd(a" -a, n). This suggests the following approach.
Having found an integer a for which (an - a mod n) is nonzero, we calculate
the gcd of that number with n . If the gcd is 1, we can conclude that n is not
a prime power. If the gcd is not 1, then the gcd is a nontrivial factor of 77,
which is usually more valuable than the information that n is or is not a prime
power.

Nowadays one often proves compositeness by using a variant of Fermat's
theorem that depends on the splitting

i-i
a"-a = a-(au- 1) • Y[{au'2' + 1),

!=0
where « - 1 = u • 2', with u odd and / = ord2(7z - 1). Hence, if n is prime,
then for any integer a one of the 14- 2 factors on the right is divisible by n .
This variant has the advantage that the converse is true in a strong sense: if n
is not prime, then most integers a have the property that none of the factors on
the right is 0 mod 77 (see [40] for a precise statement and proof); such integers
a are called witnesses to the compositeness of n . Currently, if one is sure that
the number n to be factored is composite, it is usually because one has found
such a witness. Just as above, a witness a can be used to check that n is in
fact not a prime power: calculate a" - a (mod n), which one does most easily
by first squaring the number a"'2' (mod 77) that was last calculated; if it is
nonzero, one verifies as before that gcd(a" - a, n) = 1, and if it is zero then
one of the t + 2 factors on the right has a nontrivial factor in common with 77,
which can readily be found. (In the latter case, 77 is in fact not a prime power,
since the odd parts of the 14-2 factors are pairwise relatively prime.)
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As we mentioned in §1, the number 7^/2424833 was proved to be composite
by Brillhart in 1967. We do not know whether he or anybody else proved that it
is not a prime power until this fact became plain from its prime factorization.
We did not, not because we thought it was not worth our time, but simply
because we did not think of it. If it had been a prime power, our method would
have failed completely, and we would have felt greatly embarrassed towards the
many people who helped us in this project. One may believe that the risk that
we were unconsciously taking was extremely small, but until the number was
factored this was indeed nothing more than a belief. In any case, it would be
wise to include, in the witness test described above, the few extra lines that prove
that the number is not a prime power, and to explicitly publish this information
about a number rather than just saying that it is composite.

2.6. A general scheme. For the rest of this section we assume that n , besides
being odd and greater than 1, is not a prime power. We wish to factor 77 into
primes. As we have seen, each x e Z/77Z with x2 = 1 , x / ± 1 gives rise to a
nontrivial factor of n . In fact, it is not difficult to see that the full factorization
of n into powers of distinct prime numbers can be obtained from a set of
generators of the F2-vector space {x e Z/nZ:x2 — 1}. (If we make this vector
space into a Boolean ring with x*y = (1 + x4y-xy)/2 as multiplication, then
a set of ring generators also suffices.) The question is how to determine such
a set of generators. Several algorithms have been proposed to do this, most of
them following some refinement of the following scheme.

Step 1. Selecting the factor base. Select a collection of nonzero elements
ap E Z/nZ, with p ranging over some finite index set P. How this selection
takes place depends on the particular algorithm; it is usually not done randomly,
but in such a way that Step 2 below can be performed in an efficient manner.
The collection {ap)pep is called the factor base. We shall assume that all ap
are units of Z/77Z. In practice, this is likely to be true, since if 77 is difficult
to factor, one does not expect one of its prime factors to show up in one of the
ap 's; one can verify the assumption, or find a nontrivial factor of 77, by means
of a gcd computation. Denote by Zp the additive abelian group consisting of
all vectors (vp)pep with u^eZ, and let /: Zp —> (Z/nZ)* be the group homo-
morphism (from an additively to a multiplicatively written group) that sends
(vp)p€P l° Iloepap ■ This map is surjective if and only if the elements ap
generate (Z/77Z)*. For the choices of ap that are made in practice that is usu-
ally the case, although we are currently unable to prove this. (In general, hardly
anything has been rigorously proved about practical factoring algorithms.)

Step 2. Collecting relations. Each element v = {vp)peP of the kernel of /
is a relation between the ap, in the sense that n/;ep a"p = 1 • In the second
step, one looks for such relations by a method that depends on the algorithm.
One stops as soon as the collection V of relations that have been found has
slightly more than # P elements. One hopes that V generates the kernel of f.
although this is again typically beyond proof. Note that the kernel of / is of
finite index in Zp, so that by a well-known theorem from algebra it is freely
generated by # P elements; therefore, the hope is not entirely unreasonable.

Step 3. Finding dependencies. For each v e V , let v e (Z/2Z)P = FP be the
vector that one obtains from v by reducing its coordinates modulo 2. Since
# V > # P, the vectors v are linearly dependent over F2. In Step 3, one finds
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explicit dependencies by solving a linear system. The matrix that describes the
system tends to be huge and sparse, which implies that special methods can be
applied (see [24]). Nevertheless, one usually employs ordinary Gaussian elim-
ination. The size of the matrices may make it desirable to modify Gaussian
elimination somewhat; see §7. Each dependency that is found can be written
in the form Zvew^ = ® f°r some subset W c V, and each such subset gives
rise to a vector tu = (Zvewv)ß e ^P f°r wmcn 2 • w belongs to the kernel
of /. Each such w, in turn, gives rise to an element x = f(w) £ (Z/nZ)*
satisfying x2 = /(2 • w) = 1, and therefore possibly to a decomposition of n
into two nontrivial factors. If the factorization is trivial (because x = ± 1 ),
or, more generally, if the factors that are found are themselves not prime pow-
ers, then one repeats the same procedure starting from a different dependency
between the vectors v. Note that it is useless to use a dependency that is a
linear combination of dependencies that have been used earlier. Also, if several
factorizations of 77 into two factors are obtained, they should be combined into
one factorization of n into several factors by a few gcd calculations. One stops
when all factors are prime powers; if indeed / is surjective and V generates
the kernel of /, this is guaranteed to happen before all dependencies between
the v are exhausted.

2.7. The rational sieve and smoothness. A typical example is the rational sieve.
In this factoring algorithm the factor base is selected to be

P = {p : p is prime, p < B},
ap = (pmodn)       (p e P),

where B is a suitably chosen bound. Collecting relations between the ap is
done as follows. Using a sieve, one searches for positive integers b with the
property that both b and n + b are B-smooth, that is, have all their prime
factors smaller than or equal to B. Replacing both sides in the congruence
b = n + b mod n by their prime factorizations, we see that each such b gives
rise to a multiplicative relation between the ap . The main merit of the result-
ing factoring algorithm—which is, essentially, the number field sieve, with the
number field chosen to be the field of rational numbers—is that it illustrates the
scheme above concisely. The rational sieve is not recommended for practical
use, not because it is inefficient in itself, but because other methods are much
faster.

The choice of the "smoothness bound" B is very important: if B , and hence
#P, is chosen too large, one needs to generate many relations, and one may end
up with a matrix that is larger than one can handle in Step 3. On the other
hand, if B is chosen too small, then not enough integers b will be found for
which both b and n + b are ß-smooth. The same remarks apply to the other
algorithms that satisfy our schematic description.

In practice, the optimal value for B is determined empirically. In theory,
one makes use of results that have been proved about the function i// defined
by

y/(x, y) = #{m e Z: 0 < m < x,  m is y-smooth} ;

so y/(x, y)/[x] is equal to the probability that a random positive integer < x
has all its prime factors  < y.   Brief summaries of these results, which are
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adequate for the purposes of factoring, can be found in [38, §2; 27, §2.A and
(3.16)].

Not surprisingly, one finds that both from a practical and a theoretical point
of view the optimal choice of the smoothness bound and the performance of the
factoring algorithm depend mainly on the size of the numbers that one wishes
to be smooth. The smaller these numbers are, the more likely are they to be
smooth, the smaller the smoothness bound that can be taken, and the faster the
algorithm. For a fuller discussion of this we refer to [10, §10].

In the rational sieve, one wishes the numbers b(n + b) to be smooth, and
since b is small, these numbers may be expected to be a21+o(1) (for n —> oo).
The theory of the i/7-function then suggests that the optimal choice for B is

B = exp((v/2/2 + o(l))(log77)1''2(loglog77)1/2)       (n -> oo),

and that the running time of the entire algorithm is

exp((\/2 + 0(l))(log7î)1</2(loglog77)1/2)       (tî^oo).

(This assumes that the dependencies in Step 3 are found by a method that is
faster than Gaussian elimination.)

2.8. Other factoring algorithms. A big improvement is brought about by the
continued fraction method [36] and by the quadratic sieve algorithm [38, 45],
which belong to the same family. In these algorithms the numbers that one
wishes to be smooth are only n'^+o'i) jn[s leads to the conjectured running
time

exp((l+o(l))(log77)l'/2(loglog7î)1/2)       (77^00),

the smoothness bound being approximately the square root of this. Although
the quadratic sieve never had the honor of factoring a Fermât number, it is
still considered to be the best practical algorithm for factoring numbers without
small prime factors.

In the number field sieve [28, 10], the numbers that one wishes to be smooth
are tîo(1) , or more precisely

exp(0((log7i)2/3(loglog77)1/3)),

and both the smoothness bound and the running time are conjecturally of the
form

exp(0((log«)1/3(loglog77)2''3)).

This leads one to expect that the number field sieve is asymptotically the fastest
factoring algorithm that is known. It remains to be tested whether for numbers
in realistic ranges the number field sieve beats the quadratic sieve, if one does
not restrict to special classes of numbers like Fermât numbers and Cunningham
numbers.

It is to be noted that the running time estimates that we just gave depend only
on the number to be factored, and not on the size of the factor that is found.
Thus, the quadratic sieve algorithm needs just as much time to find a small
prime factor as to find a large one. There exist other factoring algorithms, not
satisfying our schematic description, that are especially good at finding small

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FACTORIZATION OF THE NINTH FERMAT NUMBER 329

prime factors of a number. These include trial division, Pollard's p± 1 method,
Pollard's rho method, and the elliptic curve method (see [27, 31, 3, 34]).

3. The ninth Fermât number

As we mentioned in §1, A. E. Western discovered in 1903 the factor 2424833
of 7*9, and Brillhart proved in 1967 that 7^/2424833 is composite. In this
section we let n be the number 7*9/2424833, which has 148 decimal digits:

n = 5529 373746539492 451469451709955220061537996975706118
061624 681552 800446 063738 635599 565773 930892108210210778
168305 399196 915314 944498011438 291393118209.

We review the attempts that have been made to factor tí .
We do not believe that the possibility of factoring n by means of the qua-

dratic sieve algorithm was ever seriously considered. It would not have been
beyond human resources, but it would have presented considerable financial
and organizational difficulties.

Several factoring algorithms that are good at finding small prime factors had
been applied to 77. Richard Brent tried Pollard's p ± 1 method and a modified
version of Pollard's rho method (see [27]), both without success. He estimates
that if there had been a prime factor less than 1020, it would probably have
been found by the rho method. The failure of the rho method is simply due
to the size of the least prime factor P49 of n . The p ± 1 method would have
been successful if at least one of the four numbers P49 ± 1, P99 ± 1 had been
built from small prime factors. The failure of this method is explained by the
factorizations

P49- 1 = 2" . 19-47-82 488781 • 1143 290228161321
•43 226490 359557 706629,

P49 + 1 = 2 • 3 • 167 982422 287027
•7397 205338652138126604651761 133609,

P99- 1 =2" • 1129-26813-40 644377- 17 338437 577121
• 16975143302271 505426 897585 653131 126520
182328 037821 729720 833840 187223,

P99 + 1 = 2 • 32 • 83
• 496412 357849 752879 199991 393508 659621 191392 758432
074313189974107191710682399400 942498539967 666627.

These factorizations were found by Richard Crandall with the p -1 method and
the elliptic curve method. (He used a special second phase that he developed in
collaboration with Joe Buhler, that is similar to the second phase given in [3].)

Several people, including Richard Brent, Robert Silverman, Peter Mont-
gomery, Sam Wagstaff, and ourselves, attempted to factor 77 using the ellip-
tic curve method, supplemented with a second phase. Brent tried 5000 ellip-
tic curves, his first-phase bound (i.e., the bound B\ from [34]) ranging from
240000 to 400000. This took 200 hours on a Fujitsu VP 100. Robert Silver-
man and Peter Montgomery tried 500 elliptic curves each, with a first-phase
bound equal to  1 000000.  We tried approximately 2000 elliptic curves, with
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first-phase bounds ranging from 300000 to 1 000000, during a one-week run
on a network of approximately 75 Firefly workstations at Digital Equipment
Corporation Systems Research Center (DEC SRC). The elliptic curve method
did not succeed in finding a factor. Our experience indicates that if there had
been a prime factor less than 1030 , it would almost certainly have been found.
If there had been a factor less than 1040 we should probably have continued
with the elliptic curve method. Our decision to stop was justified by the final
factorization, which the elliptic curve method did not have a reasonable chance
of finding without major technological or algorithmic improvements.

The best published lower bound for the prime factors of n that had been
rigorously established before n was completely factored is 247 « 1.4 > 1014 (see
[21, Table 2]). We have been informed by Robert Silverman that the work
leading to [35] implied a lower bound 2048 • 1010 , and that he later improved
this to 2048 • 1012 . The best unpublished lower bound that we are aware of is
251 « 2.25 • 1015, due to Gary Gostin (1987).

If we had been certain—which we were not—that n had no prime factor less
than 1030, then we would have known that 77 is a product of either two, three,
or four prime factors. Among all composite numbers of 148 digits that have no
prime factor less than 1030, about 15.8% are products of three primes, about
0.5% are products of four primes, and the others are products of two primes.
We expected—rightly, as it turned out—to find two prime factors, but some of
us would have been more excited with three large ones.

4. Algebraic number theory

We factored 7*9 by means of the number field sieve, which is a factoring algo-
rithm that makes use of rings of algebraic integers. The number field sieve was
introduced in [28] as a method for factoring Cunningham numbers. Meanwhile,
a variant of the number field sieve has been invented that can, in principle, fac-
tor general numbers, but it has not yet proved to be of practical value (see
[10]).

In this section we review the basic properties of the ring Z[v/2], which is
the ring that was used in the case of F9. A more general account of algebraic
number theory can be found in [46], and for computational techniques we refer
to [11].
4.1.   The number field Qiv^) and the norm map.   The elements of the field
Q(\f2) can be written uniquely as expressions ZUoQi^ > with Qi belonging
to the field Q of rational numbers. For computational purposes we identify
these elements with vectors consisting of five rational components <7o, q\ , qj,
(?3, (?4, and addition and subtraction in the field are then just vector addition
and subtraction. From the rule s[2 = 2 one readily deduces how elements of
the field are to be multiplied. Explicitly, multiplying an element of the field by
ß = Zi=o^'^ amounts to multiplying the corresponding column vector by
the matrix

/ q0    2<?4    2tf3    2<72    2(7, \
q\ q0 2<74 2q3 2q2
q2 q\ q0 2q4 2q3     .
<?3 <?2 Q\ Qo 2(?4

V(?4 <73 <72 Q\ <7o /
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The norm N(ß) of ß is defined to be the determinant of this matrix, which
is a rational number. Note that the norm can be written as a homogeneous
fifth-degree polynomial in the q¡, with integer coefficients. We have

N(ßy) = N(ß)N(y)   forß,yeQ«/2),
because the matrix belonging to ßy is the product of the two matrices belonging
to ß and y . Applying this to y - ß~x , and using that N(l) — 1 , we find that
N(ß) j- 0 whenever ß ¿ 0.

The norm is one of the principal tools for studying the multiplicative structure
of the field, and almost all that the number field sieve needs to know about
multiplication is obtained from the norm map. In particular, for the purposes
of the number field sieve no multiplication routine is needed.

Below it will be useful to know that

(4.2) N(a-by2~') = a5-2ib5   fora,bEQ,   l</<4.
One proves this by evaluating the determinant of the corresponding matrices.

Division in the field can be done by means of linear algebra, since finding
y¡ß is the same as solving the equation ß • x = y, which can be written as a
system of five linear equations in five unknowns. There exist better methods,
but we do not discuss these, since the number field sieve needs division just as
little as it needs multiplication.

4.3. The number ring Z[v/2] and smoothness. The elements ZUori^ °f
QXv^) for which all r¡ belong to Z form a subring, which is denoted by Z[\fï\.
If ß belongs to Z[v^], then the matrix associated with ß has integer entries,
so its determinant N(ß) belongs to Z. If B is a positive real number, then
a nonzero element ß of Z\sf2\ will be called B-smooth if the absolute value
\N(ß)\ of its norm is 5-smooth in the sense of §2.7. We note that \N{ß)\ can
be interpreted as the index of the subgroup ßZ\\/2\ = {ßy: y e Zfv^]} of
Z[^2]:

(4.4) \N(ß)\^#(Z[^2]/ßZ[^2])    for ß e Zfv^],  ß?0.
This follows from the following well-known lemma in linear algebra: // A is a
k x k matrix with integer entries and nonzero determinant, and we view A as
a map Zk —> Zk , then the index of AZk in Zk is finite and equal to \at\A\.

4.5. Ring homomorphisms. We will need to know a little about ring ho-
momorphisms defined on Ztv^]. Let 7? be a commutative ring with 1. If
y. Zfv^] —► 7? is a ring homomorphism, then the element c = y/{\f2) of 7?
clearly satisfies c5 = 2, where 2 now denotes the element 1 + 1 of R. Con-
versely, if c E R satisfies c5 = 2, then there is a unique ring homomorphism
y/\ Z[v/2] -» 7? satisfying y/{\/2) - c, namely the map defined by

hÍ>^') = ¿>''     (nez);
\/=0 / i=0

here the r, on the right are interpreted as elements of R , just as we put 2=1 + 1
above. We conclude that giving a ring homomorphism from Z\\f2\ to R is the
same as giving an element c of R that satisfies c5 = 2 .
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Example. Let tj = (2512+1)/2424833, and put R = Z/nZ and c = (2205 mod 7?).
We have 2512 = -1 mod 77, and therefore

c5 = (21025 mod n) = (2. (2512)2 mod 77) = (2 mod 77).

Hence, there is a ring homomorphism <p : Z[v/2] —» Z/77Z with <p(\f2) =
(2205 mod n). This ring homomorphism will play an important role in the
following section.
4.6. Fifth roots of 2 in finite fields. One of the first things to do if one wishes
to understand the arithmetic of a ring like Z[^2] is to find ring homomorphisms
to finite fields of small cardinality. As we just saw, this comes down to finding,
for several small prime numbers p , an element c that lies in a finite extension of
the field Fp = Z/pZ and that satisfies c5 = 2. First we consider the case that c
lies in Fp itself. Each such c gives rise to a ring homomorphism Z[v/2] -» Fp ,
which will be denoted by y/PtC ■ The first seven examples of such pairs (p, c)
are

(4.7) (2,0), (3, 2), (5, 2), (7, 4), (13, 6), (17, 15), (19, 15).
For example, the presence of the pair (17,15) on this list means that 155 =
2 mod 17 ; and the absence of other pairs (17, c) means that (15 mod 17) is
the only zero of X5-2 in F17. Note that the prime p = 11 is skipped, and that
all other primes less than 20 occur exactly once on the list. In general, each prime
p that is not congruent to 1 mod 5 occurs exactly once. To prove this, let p
be such a prime and let A: be a positive integer satisfying 5/c = 1 mod (p - 1 ).
Then the two maps f, g: Fp —> Fp defined by f(x) = x5, g(x) = xk are
inverse to each other. Hence, there is a unique fifth root of 2 in ¥p, and it is
given by (2k modp). For a prime p with p = 1 mod 5 the fifth-power map
is five-to-one. Therefore, such a prime either does not occur at all, or it occurs
five times. For example, p = 11 does not occur, and p = 151 gives rise to the
five pairs

(4.8) (151,22), (151,25), (151,49), (151,90), (151, 116).
Asymptotically, one out of every five primes that are 1 mod 5 is of the second
sort.

The case that c lies in a proper extension of Fp is fortunately not needed
in the number field sieve. It is good to keep in mind that such c 's nevertheless
exist. For example, in a field Fgr of order 81 the polynomial (X5-2)/{X-2) —
X4 + 2X3 + X2 + 2X + 1 has four zeros; these zeros are conjugate over F3,
and they are fifth roots of 2. In the field F36, = Fi9(/) (with i2 = -1), the
polynomial X5 - 2 has, in addition to the zero (15 mod 19) from (4.7), two
pairs of conjugate zeros, namely 11 ±3/ and 10 ± 7/.

4.9. Ideals and prime ideals. We recall from algebra that an ideal of Z[\fï\
is an additive subgroup b c Zfv^] with the property that ßy e b for all ß Eb
and all y e Z[\fî\. The zero ideal {0} will not be of any interest to us. The
norm Nb of a nonzero ideal b c Zfv7!] is defined to be the index of b in
Z\\f2\, that is, Nb = #(Z[v/2]/b) ; this is finite, since b contains ßZ[\/2\ for
some nonzero ß , and /JZtv^] has already finite index (see (4.4)).

We also recall from algebra that a subset of Z[v/2] is an ideal if and only
if it is the kernel of some ring homomorphism that is defined on Z\\f2\. We
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call a nonzero ideal a prime ideal, or briefly a prime of Z[ \/2], if it is equal
to the kernel of a ring homomorphism from ZIv^] to some finite field; and if
that finite field can be taken to be a prime field Fp, then the ideal is called a
first-degree prime. Thus (4.7) can be viewed as a table of the "small" first-degree
primes of U$ï\.

If p is a first-degree prime, corresponding to a pair (p, c), then the map
y/PtC induces an isomorphism Z[-v/2]/p = Fp , and therefore Np is equal to the
prime number p . Conversely, if p is a nonzero ideal of prime norm p , then
p is a first-degree prime; this is because Z[v/2]/p is a ring with p elements,
and therefore isomorphic to Fp .

In general, the norm of a prime p is a power pf of a prime number p , and
/ is called the degree of p. For example, the conjugacy classes of fifth roots
of 2 in Fgi and F361 indicated above give rise to one fourth-degree prime of
norm 81 and two second-degree primes of norm 361. These are the smallest
norms of primes of Ztv^] that are of degree greater than 1.

4.10. Generators of ideals. Most of what we said so far about the ring Z[\fl\
is, with appropriate changes, valid for any ring that one obtains by adjoining
to Z a zero of an irreducible polynomial with integer coefficients and leading
coefficient 1. At this point, however, we come to a property that does not hold
in this generality. Namely,
(4.11 ) Z[v/2] is a principal ideal domain,
which means that every ideal b of Ztv^] is a principal ideal, that is, an ideal
of the form ßTftfl], with ß e Z[ v^]. If b = ßZ\s/2\, then ß is called a
generator of b.

For the proof of (4.11) we need a basic result from algebraic number theory
(cf. [46, §10.2]). It implies that there is a positive constant M, the Minkowski
constant, which can be explicitly calculated in terms of the ring, and which has
the following property: if each prime ideal of norm at most M is principal,
then every ideal of the ring is principal. In the case of the ring Z[\/2] one finds
that M = 13.92, so only the primes of norm at most 13 need to be looked at.
From  13 < 81  we see that all these primes are first-degree primes.

We conclude that to prove (4.11 ) it suffices to show that the first-degree primes
corresponding to the pairs (2,0), (3,2), (5,2), (7,4), and (13,6) are
principal. This can be done without the help of an electronic computer, as
follows.   Trying a few values for a,  b, and  /' in (4.2), one finds that the
element 1 - \[2 has norm -7. By (4.4), the ideal (1 - \¡2 )Z[v/2] has norm
7, so it is a first-degree prime, corresponding to a pair (p, c) with p = 7.
But there is only one such pair, namely the pair (7, 4).   We conclude that
the prime corresponding to the pair (7, 4) is equal to (1 - \¡2 )Z[\/Ï\, and
therefore principal. The argument obviously generalizes to any prime number
p that occurs exactly once as the norm of a prime; in other words, if p is a
prime number with p ^ 1 mod 5 , and p is the unique prime of norm p , then
for n e Z\\f2\ we have
(4.12) p = 7rZ[v/2] o 1^(71)1 =p.
Applying this to n = \¡2, p = 2, we find that the prime corresponding to
(2, 0) is principal. The prime of norm 3 is taken care of by n = 1 + \Í2, the
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prime of norm 5 by n = 1 + \f2 , and the prime of norm 13 by n — 3 - 2v/2 .
This proves (4.11).

It will be useful to have a version of (4.12) that is also valid for primes that
are 1 mod 5 . Let p be a first-degree prime of Z\\f2\, corresponding to a pair
(p, c), and let n e Z[v/2]. Then we have

(4.13) p = 7tZ[v/2]^ V/PjC(7r) = 0   and   \N{n)\=p.

To prove =>■, suppose that p = nZ[^2]. Then we have n e p, and p is the
kernel of y/PtC, so y/PiC(n) = 0. Also, from (4.4) we see that \N(n)\ = Np = p .
To prove <=, suppose that y/p,c{n) = 0 and \N(n)\ - p. Then n belongs
to the kernel p of y/p,c, so nZ[\/2] is contained in p. Since they both have
index p in Z[v/2], they must be equal. This proves (4.13).

Example. The number n = I 4- \/2 - 2\/2 is found to have norm -151 .
Substituting successively the values c = 22, 25, 49, 90, 116 listed in (4.8) for
\[2, we find that only c = 116 gives rise to a number that is 0 mod 151. Hence,
n generates the prime corresponding to the pair (151, 116). (Alternatively,
one can determine the correct value of c by calculating the gcd of X5 - 2 and
1 + X2 - 2X3 in Fm[X], which is found to be X - 116 .)
4.14. Unique factorization. A basic theorem in algebra asserts that principal
ideal domains are unique factorization domains. Thus (4.11 ) implies that the
nonzero elements of Zfv^] can be factored into prime elements in an essentially
unique way. More precisely, let for every prime p of Z[v/2] an element np
with p = nvZ[\/2] be chosen. Then there exist for every nonzero ß E Z[v/2]
uniquely determined nonnegative integers m(p) suchthat m(p) = 0 for all but
finitely many p, and such that

/?=e-n<(p),p
where e belongs to the group Z[-v/2]* of units of Z[\/ï\, and where the product
ranges over all primes p of Ztv^]. We have w(p) > 0 if and only if ß g p,
and in this case we say that p occurs in ß . We shall call m(p) the number of
factors p in ß . Note that we have

(4.15) \N(ß)\ = l[lSpm^,
p

because \N(np)\ = Np and \N(e)\ = 1, both by (4.4).

Examples. First let ß - -1 + \fT . The norm of ß is 15, so from (4.15) we see
that only the primes of norms 3 and 5 occur in ß , each with exponent 1. Using
the generators 1 + \/2 and 1 + \¡2 that we found above for these primes, we
obtain the prime factorization

-l + v/24 = e,-(l + v/2)-(l + v/22),

where &\ = -1 + \/2. Note that ei is indeed a unit, by N(&\) = 1 and (4.4).
Similarly, one finds that the prime factorization of the element 1 + \¡2 of norm
9 is given by

1 +v/23 = e2-(l + v^)2,
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where e2 = -l + v/2 - \fl + \/T . The factorization of the number 5 is quite
special: it is given by

(4.16) 5 = e3-(l + v^2)5,

where e3 = e2e^"2.

4.17. Units. The Dirichlet unit theorem (see [46, §12.4]) describes the unit
groups of general rings of algebraic integers. It implies that the group Z[\/2]*
of units of Z[\/2] is generated by two multiplicatively independent units of
infinite order, together with the unit en = -1. We found that we could take
these two units of infinite order to be the elements £i and e2 from the examples
just given, in the sense that every unit e that we ever encountered was of the
form

e = e^efh^2',    with v(0),v(l), v(2) e Z.
We never attempted to prove formally that every unit is of this form, although
this would probably have been easy from the material that we accumulated.
There exist good algorithms that can be used to verify this (see [8]).

Given a unit e , one can find the integers v(i) in the following way. It is easily
checked that N(e0) = -1 and that 7V(ei) = 7V(e2) = 1 ■ Hence, 7V(e) = ev0(0) =
(_1)"(0) ) ami tnjs determines v(0) (mod 2). Next let c\ = exp((log2)/5) and
c2 = exp((2ffi + log2)/5) ; these are complex fifth roots of 2. Denote by ^ the
ring homomorphism from Z[v/2] to the field of complex numbers that maps
\/2 to e,, for /=1,2. Then we have

log|^i(e)| = v(l) • log|^i(ei)| + v(2) - log|^i(e2)|,
log|t/72(e)| = v(l) • log|^2(ei)| + v(2) • log|^2(e2)|.

A direct calculation shows that log \i¡/\ (e¡)| log |y2(e2)| -log11//\ (e2)| log |y2(£i )| #
0,so v(l), v(2) can be solved uniquely from a system of two linear equations.
Since the v(i) are expected to be integers, we can do the computation in limited
precision and round the result to integers. The inverse of the coefficient matrix
can be computed once and for all.

4.18. A table of first-degree primes. The table (4.7) of first-degree primes of
norm up to 19 was, for the purpose of factoring F9, extended up to 1294973 ;
see §6 for the considerations leading to the choice of this limit. We made the
table by treating all prime numbers p < 1294973 individually. For primes p
that are not 1 mod 5 we found c with the formula c = 2k mod p given in §4.6.
For primes p that are 1 mod 5 we first checked whether 2(p_1)''5 = 1 modp,
which is a necessary and sufficient condition for 2 to have a fifth root modulo p .
If this condition was satisfied—which occurred for 4944 primes, ranging from
151 to 1294471—then the five values of c (modp) were found by means of a
standard algorithm for finding zeros of polynomials over finite fields (see [26]).
The entire calculation took only a few minutes on a DEC3100 workstation. We
found that there are 99500 first-degree primes of norm up to 1294973, of which
the last one is given by (1294973, 1207394).
4.19. A table of prime elements. For each of the 99500 primes p in our
table we also needed to know an explicit generator np. These can be found by
means of a brute-force search, as follows. Calculate the norms of all elements
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X),-=ori"v/2 € Ztv^] for which the integers \r¡\ are below some large bound;
since the norm is a polynomial of degree five in the r¡, one can use a difference
scheme in this calculation. Whenever an element is found of which the absolute
value of the norm is equal to p for one of the pairs (p, c) in the table, then one
knows that a generator of a prime of norm p has been found. If p ^ 1 mod 5 ,
then c is uniquely determined by p , and the pair (p, c) can be crossed off the
list. If p = 1 mod 5, then we use (4.13) to determine the correct value of c
for which (p, c) can be crossed off the list.

What we actually did was slightly different.  We did not search among the
elements Z!i=o ri^2 as just described, but only among the elements that be-
long to the subring Z[a] of Ztv^], where a = -\[2 . This enabled us to
use a program that was written for a previous occasion. We considered all
1092 846526 expressions Zl=osia' e ^[a] for which the s¡ have no common
factor, for which s¡ > 0 if s,+1 through s4 are 0, and that lie in the "sphere"
X;tos,226,/5 < 15000. In this way we determined 49726 of the 99500 genera-
tors. For the other 49774 first-degree prime ideals p the same search produced
generators for the ideals ap of norm 8 • Np, so that we could determine the
proper generators by dividing out a. The whole calculation took only a few
hours on a single workstation.

We found it convenient to have N(np) > 0 for all p. To achieve this, one
can replace np by -np, if necessary.

5. The number field sieve

As in §3, we let n be the number F9/2424833 . The account of the number
field sieve that we give in this section is restricted to the specific case of the
factorization of the number 77.

To factor n with the number field sieve, we made use of the ring Z\\f2\
that was discussed in the previous section. As we saw in §4.5, there is a ring
homomorphism tp: Z\\f2\ —» Z/72Z that maps \¡2 to 2205 mod tí . An im-
portant role is played by the element a = — \/2 , which has the property that
(p(a) = (-2615 mod 77) = (2103 mod n). What is important about this is that
2103 is very small with respect to n ; it is not much bigger than tfh~. Note that
for any a, b e Z we have

(5.1) <p{a + ba) = <p(a4 2mb)    (in Z/nZ).

This equality plays the role that the congruence b = n + b mod 77 played in the
rational sieve from §2.7.

In the rational sieve, the factor base was formed by all prime numbers up to a
certain limit B . In the present case the factor base was selected as follows. Let
the set P c T\\fl\ consist of: (i) the 99700 prime numbers p < B{ = 1295377 ;
(ii) the three generating units en , £\ , and e2 (see §4.17); (iii) the generators np
of the 99500 first-degree primes p of Z[H] with Np < B2 = 1294973 (see
§§4.18 and 4.19). For each p e P, let ap = q>(p) e Z/77Z. These formed the
factor base.

Relations were found in several ways. In the first place, there are relations
that are already valid in Z[v^2], before tp is applied. Three such relations are
given by e¿ = 1, 2 = IflL , and 5 = e2£~2(l +v^2)5 (see (4.16)), but we did not
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use these (the first one is in fact useless). In addition, there is one such relation
for each of the 4944 prime numbers p = 1 mod 5 that occur five times in the
table of pairs (p, c) from §4.18. Such a prime number p factors in Z\\f7\ as

(5.2) P = £-Y[np,
p

where e is a unit and p ranges over the five primes of norm p. To see this,
observe that from y/p,c(p) — 0 it follows that each of these p's occurs in p.
Since this accounts for the full norm p5 of p (cf. (4.15)), we obtain (5.2).
The unit e occurring in (5.2) can be expressed in S[ and e2 by means of the
method explained in §4.17 (the unit £o does not occur, since p and the np
are of positive norm). Note that for this method we do not need to know the
unit e itself, but only the numbers log|iy/,(e)| for i = 1,2, and these can by
(5.2) be computed from the corresponding quantities for p and np. The 4944
relations found in this way constituted no more than 2.5% of the ~ 200000
relations that we needed.

We found the remaining ~ 195000 relations between the ap by searching
for pairs of integers a, b , with b > 0, satisfying the following conditions:

(5.3) gcd(a,b) = l;

(5.4) \a + 2103/3| is built up from prime numbers < TJi, and at most
one larger prime number p{ , which should satisfy B\ < p, <
108;

(5.5) |i75-8è5| is built up from prime numbers < 7?2 and at most one
larger prime number p2, which should satisfy B2 < p2 < 108.

If the large prime p\ in (5.4) does not occur, then we write pi = 1 , and likewise
for p2 in (5.5). Pairs a, b for which p\ =p2 = 1 will be called full relations,
and the other pairs partial relations.

We note that the number ai - 8Ô5 equals the norm of a 4 ba, by (4.2).
Hence, condition (5.5), with p2 = 1 , is equivalent to the requirement that
a + ba be 7?2-smooth, in the terminology of §4.3.

Before we describe, in §6, how the search for such pairs was performed, let
us see how they give rise to relations between the ap . We begin with a lemma
concerning the prime factorization of elements of the form a + ba .

Lemma. Let a, b eZ, gcd{a, b) = 1 . Then all primes p that occur in a + ba
are first-degree primes.
Proof. Suppose that p occurs in a + ba , and let y be a ring homomorphism
from Z[\/2] to a finite field F such that p is the kernel of ip. Let p be the
characteristic of F, so that Fp is a subfield of F . We have a + ba e p, so
\v(a-\- ba) = 0, and therefore

(5.6) yf{a) = -yr(b)w(a).
Note that y/(a) and y/(b) belong to Fp , because a, b eZ. If y/{b) = 0, then
by (5.6) we have y/{a) = 0 as well, so b and a are both divisible by p , which
contradicts that gcd(a, b) = 1 . Hence, i//(b) / 0, and from (5.6) we now see
that y/(a) - -y/(a)/y/(b) also belongs to Fp . We claim that y/(\fi.) belongs to
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Fp as well. If p = 2, we have i//(v^)5 = if/(2) = 0, so ■/(v/2) = 0, which does
belong to F2. If p ¿2, then a2 = 2sf2 implies that ij/{\/2) = i¡/{a)2lii/{2),
which belongs to Fp . From i//(\^2) E Fp it follows that i// maps all of Z[v/2]
to Fp . Hence, p is the kernel of a ring homomorphism from Z[ \/2] to Fp ,
which by definition means that it is a first-degree prime. This proves the lemma.

The lemma reduces the factorization of a + ba, with gcd(a, b) = 1 , to
the factorization of its norm a5 - 8¿>5, as follows. Let p be a prime number
dividing a5 — 8b5. If p ^ 1 mod 5, then p is the norm of a unique prime
p, and the number of factors p in a + ba must be equal to the number of
factors p in a5 - &b5. If p = 1 mod 5, then we have to determine which
fifth root c of 2 (modp) is involved. By (5.6), we must have (cmodp)3 =
(a modp)/{b modp), and this uniquely determines c, since c3 = c'3 modp
gives 2c = 2c' mod p upon squaring. Once we have determined c, we know
which p occurs in a 4- ba, and again the number of factors p in a + ba is
equal to the number of factors p in a5 - Sb5.

Let us now first consider the case that a, b is a full relation. Then the
factorization of a4-ba has the form

a + ba = e-Y[nup{p],
p

where e is a unit and p ranges over the first-degree primes of norm at most
B2. We just explained how the exponents w(p) can be determined from the
prime factorization of a5 - Sb5. We can write

«=n«?(0.
i=0

where the v(i) are determined as in §4.17; just as with (5.2), it is not necessary
to calculate e for this. Factoring a + 2103Z>, we obtain an identity of the form

a + 2l03b = Y[pw^,
p

with p ranging over the prime numbers < B\ and w(p) e Z>0 (if a + 2103è <
0, use -a, —b instead of a, b). Now replace, in (5.1), both sides by their
factorizations. Then we find that

2

Yltpie.y^ -i[<p(nPrM = Y[cp(pr^.
¡=0 P p

In this way, each full relation a , b gives rise to a relation between the ap .
With partial relations the situation is a bit more complicated. They give rise

to relations between the ap only if they are combined into cycles, as described
in [30]. In each cycle, one takes an alternating product of relations <p(a + ba) =
(p(a4-2xmb), in such a way that the large prime ideals and prime numbers cancel.
This leads to a relation between the ap , by a procedure that is completely similar
to the one above. It is not necessary to know generators 7tp for the large prime
ideals, since these are divided out.
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If, in (5.5), we have p2 > 1 , then the additional prime ideal corresponds to
the pair (p2, c modp2), where c - a2/(2b2) ; this is uniquely determined by
p2 unless p2 = 1 mod 5 .

6. Sieving
The search for pairs a, b satisfying conditions (5.3), (5.4), and (5.5) was

performed by means of a standard sieving technique that is a familiar ingredient
of the quadratic sieve algorithm (see [38]). For a description of this technique
as it is used in the number field sieve, we refer to [28] and [10, §§4 and 5].

We used 2.2 million values of b, all satisfying 0 < b < 2.5 • 106. For each b,
we sieved \a 4- 2103¿»| with the primes < 7?. , and we sieved \a5 - 8/>5| with the
primes < B2, each over 108 consecutive ¿z-values centered roughly at $1/5-b.

The best values for a are those that are close to 81/5 • b. If we take for
instance b = 106, then for such a's we are asking for simultaneous smoothness
of two numbers close to 1037 and 8 • 1030 ; for b — 107 this becomes 1038 and
8 • 1035. The quadratic sieve algorithm when applied to 77 would depend on
the smoothness of numbers close to yjn times the sieve length, which amounts
to at least 1080 . This is the main reason why the number field sieve performs
better for this value of n than the quadratic sieve. The comparison is still very
favorable when a is further removed from the center of its interval, although
the numbers become larger. The tails of the interval are less important, so the
fact that centering it at 0 would have been better did not bother us.

Smaller //-values are more likely to produce good pairs a , b than larger ones.
The best approach is therefore to process the /»-values consecutively starting at
1, until the total number of full relations plus the number of independent cycles
among the partial relations that have been found equals ~ 195000. One can
only hope that this happens before b assumes prohibitively large values. Of
course, B\ and B2 must have been selected in such a way that one is reasonably
confident that this approach will succeed. This is discussed below.

We started sieving in mid-February 1990 on approximately 35 workstations
at Bellcore. On the workstations we were using (DEC3100's and SPARC'S)
each b took approximately eight minutes to process. We had to split up the
a-intervals of length 108 into 200 intervals of length 5 • 105, in order to avoid
undue interference with other programs. After a month of mostly night-time
use of these workstations, the first range of 105 /3's was covered. Mid-March,
the network of Firefly workstations at DEC SRC was also put to work. This
approximately tripled our computing power. With these forces we could have
finished the sieving task within another seven months. However, at the time,
we did not know this, since we did not know how far we would have to go with
b.

Near the end of March it was rumored that we had a competitor. After
attempts to join forces had failed, we decided to accelerate a little by following
the strategy described in [29]. We posted messages on various electronic bulletin
boards, such as sei.crypt and sci.math, soliciting help. A sieving program, plus
auxiliary driver programs to run it, were made available at a central machine
at DEC SRC in Palo Alto to anyone who expressed an interest in helping us.
After contacting one of us personally, either by electronic mail or by telephone,
a possible contributor was also provided with a unique range of consecutive
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¿-values. The size of the range assigned to a particular contributor depended
on the amount of free computing time the contributor expected to be able to
donate. Each range was sized to last for about one week, after which a new range
was assigned. This allowed us to distribute the available b 's reasonably evenly
over the contributors, so that the b 's were processed more or less consecutively.

It is difficult to estimate precisely how many workstations were enlisted in this
way. Given that we had processed 2.2 million b 's by May 9, and assuming that
we mostly got night-time cycles, we must have used the equivalent of approxi-
mately 700 DEC3100 workstations. We thus achieved a sustained performance
of more than 3000 mips for a period of five weeks, at no cost. (Mips is a unit
of speed of computing, 1 mips being one million instructions per second.) The
total computational effort amounted to about 340 mips-years (1 mips-year is
about 3.15* 1013 instructions). We refer to the acknowledgments at the end of
this paper for the names of many of the people and institutions who responded
to our request and donated computing time.

Each copy of the sieving program communicated the pairs a, b that it
found by electronic mail to DEC SRC, along with the corresponding pair p\ ,
Pi and, in the case p2 > 1, p2 s 1 mod 5, the residue class (a/b mod p2).
In order not to overload the mail system at DEC SRC, the pairs were sent at
regular intervals. At DEC SRC, these data were stored on disk. Notice that
the corresponding two factorizations were not sent, due to storage limitations.
These were later recomputed at DEC SRC, but only for the relations that turned
out to be useful in producing cycles. The residue class (a/b mod p2) could
also have been recomputed, but since it simplified the cycle counting we found
it more convenient to send it along. Notice that (a/b mod p2) distinguishes
between the five prime ideals of norm p2.

When we ran the quadratic sieve factoring algorithm in a similar manner (see
[29]), we could be wasteful with inputs: we made sure that different inputs were
distributed to our contributors, but not that they were actually processed. We
could afford this approach because we had millions of inputs, each of which
was in principle capable of producing thousands of relations. For the number
field sieve the situation is different: each b produces only a small number
of relations, if any, and the average yield decreases as b increases. In order
not to lose our rather scarce and valuable "good" inputs (i.e., the small b-
values), we wanted to be able to monitor what happened to them after they
were given out. For this reason, each copy of the sieving program also reported
through electronic mail which b 's from its assigned range it had completed.
This allowed us to check them off from the list of b 's we had distributed. Values
that were not checked off within approximately ten days were redistributed.
Occasionally this led to duplications, but these could easily be sorted out.

By May 7 we had used approximately 2.1 million ¿'s less than 2.5 million,
and we had collected 44106 full relations and 2 999903 partial relations. The
latter gave rise to a total of 158105 cycles. Since 44106 + 158105 is well
over 195000, this was already more than we needed. Nevertheless, to facilitate
finding the dependencies, we went on for two more days. By May 9, after ap-
proximately 2.2 million ¿'s, we had 45719 full relations and 176025 cycles
among 3 114327 partial relations. Only about one fifth of these 3 114327 re-
lations turned out to be useful, in the sense that they actually appeared in one
of the  176025 cycles. It took a few hours on a single workstation to find the
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cycles in terms of the a, b, p\, and p2 involved, by means of an algorithm
explained in [30]. The number of cycles of each length is given in Table 1.

Table 1

cycle
length

2
3
4
5
6
7
8
9
10

number
of cycles
48289
43434
32827
22160
13444
7690
4192
2035
1055

cycle
length

11
12
13
14
15
16
17
19
20

number
of cycles

473
243
100
55
14
8
2
2
2

This is what we hoped and more or less expected to happen, but there was no
guarantee that our approach would work. For any choice of B\ and B2 (and
size of a-interval) we could quite accurately predict how many full and partial
relations we would find by processing all b 's up to a certain realistic limit. This
made it immediately clear that values B\ and B2 for which full relations alone
would suffice would be prohibitively large.

Thus we were faced with the problem of choosing B\ and B2 in such a
way that the full relations plus the cycles among the partials would be likely to
provide us with sufficiently many relations between the ap . It is, however, hard
to predict how many partials are needed to produce a given number of cycles.
For instance, the average number of cycles of length 2 resulting from a given
number of partials can be estimated quite accurately, but the variance is so large
that for each particular collection of partials this estimate may turn out to be
far too optimistic or pessimistic. An estimate that is too low is harmless, but an
estimate that is too high has very serious consequences: once b is sufficiently
large, hardly any new fulls or partials will be found, and the only alternative is
to start all over again with larger By and B2. As a consequence, we selected
the values for 7?i and 7?2 carefully and conservatively, we made sure that we
did not skip many ¿-values, and we milked each b for all it was worth by using
an excessively long a-interval.

We decided to set the size of the factor base approximately equal to 2 • 105
only after experiments had ruled out 1.2-105, 1.4-105,and 1.6-105 as probably
too small, and 1.8• 105 as too risky. For 2-105 we predicted ~ 50000 full and
at least 3 million partial relations after the first 2.5 million b 's. This prediction
was based on Figure 1 (next page), where the results of some preliminary runs of
the sieving program are presented. For i ranging from 1 to 40 the total number
of relations (fulls plus partials) found for the 300 consecutive b 's starting at
i • 105 is given as a function of i. The upper curve gives the yield for an
a-interval of length 108, the lower curve for length 2 • 107.

Our experience with other number field sieve factorizations made us hope
that 3 million partials would produce 150000 cycles, which indeed turned out
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Figure 1. The number of full and partial relations found per
300 ¿'s, for 2.107 and for 108   a's

cycles

partíais

Figure 2. The number of cycles and full relations as a function
of the number of partial relations

to be the case. But even if 3 million partials had not been enough, we knew that
the b 's between 2.5 and 4 million would lead to at least another million partials,
and a good chance to find enough cycles. In Figure 2 we give the number of
cycles, the number of full relations, and their sum, that were obtained after we
had found a given number of partial relations. This does not include the initial
4944 relations.
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Now that we have seen how everything worked out in this particular case, we
know that with the same B\ and B2 and a much smaller a-interval we could
have produced 3 million partials in much less time after using more b 's. For
example, halving the length of the a-interval would reduce the average yield
per ¿-value by only 15%. It would probably have been optimal to use about
1.5 • 107 values of a per b , with b ranging up to about 5.5 million; this would
have taken about 40% of the time that we actually spent. Still, we cannot be
certain that this would have given rise to the same number of cycles.

We could have profited a little from the known factor 2424833 of F9
by putting it in the factor base, along with the prime ideal corresponding to
(2424833, 2205 mod 2424833), since the prime appears on the right if and only
if the prime ideal appears on the left. We realized this only after the third
author had found seven "awfully suspicious" pairs a, b, namely pairs with
Pi = P2 = 2424833 , while generating the cycles.

To conclude the second step, the full relations and the cycles had to be
transformed into relations between the ap. To this end, we recomputed the
2 • 722241 factorizations corresponding to the 722241 (not all distinct) pairs
a, b involved, and determined the unit contributions. This work was divided
over fifteen workstations at DEC SRC, and it took about sixteen hours.

7. Finding dependencies

As a result of the computations described in the previous section, we had
4944+45719+176025 = 226688 relations between 3+99700+99500= 199203
different ap 's. To finish the factorization of 77, we had to determine a few
dependencies between the 226688 rows of the 199203-column matrix over F2
that one obtains by taking the relations (i.e., the exponents of the ap) modulo
2. A dense representation of this matrix would require more than 5 Gigabytes
(= 5 • 230 bytes) of storage, where one byte represents 8 bits. Fortunately, the
matrix is sparse, because relatively few primes and prime ideals appear in the
factorizations leading to the relations; this situation is slightly worsened by the
fact that we obtained many relations by combining partial relations. In any
case, there were only 11 264596 nonzero entries in the matrix, for an average
of 49.7 nonzero entries per row. Thus, the entire matrix could easily be stored.

Finding dependencies was still a challenging task. The sieving step had posed
no problems that had not already been solved for other numbers, except that
an unusually large amount of computing time had to be arranged. The matrix
step, however, presented a difficulty that had not been encountered in previous
factorizations. Actually, the only reason that we had not embarked upon the
factorization of Fg earlier is that we did not know how to handle the matrix.

The largest matrices that we had ever dealt with in previous factorizations
contained approximately 80000 columns, and a few more rows. Dependencies
modulo 2 among the rows were found in an entirely straightforward fashion
by means of ordinary Gaussian elimination, with pivot-search from the sparse
side. In this way some profit could be gained from the sparseness, but not
much: usually, the storage that one ultimately needs is about two thirds of what
it would have been in the dense case. This fits in only 0.5 Gigabytes for an
80000 matrix, so that the elimination task for such a matrix is more or less
trivial for someone with access to a large supercomputer. At DEC SRC, where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



344 A. K. LENSTRA, H. W. LENSTRA, JR., M. S. MANASSE, AND J. M. POLLARD

the computations were carried out, the only machine with enough disk space that
could be devoted entirely to the elimination task was a four-processor Firefly
workstation. On this workstation, elimination of a sparse 80000-matrix takes
approximately six weeks. Here we should note that for two of the three 80000-
matrices we processed in this way, the resulting dependencies turned out to be
faulty. In both instances a rerun (with another six-week wait!) was successful.
We suspect that in both first runs an irreproducible cache read or write error had
occurred. Clearly, a single bit error can render the entire computation worthless.

Extrapolation of these figures to a 200000-matrix did not look promising.
Even if our workstation had enough disk space, 6 • (2.5)3 « 90 weeks is unac-
ceptably long, and the probability of a bit error occurring would be unaccept-
ably large. On a supercomputer the figures still would have looked unattractive.
Therefore, we investigated whether there was a better way to profit from the
sparseness of the matrix.

Among the several existing techniques for dealing with sparse matrices, we de-
cided to attempt structured Gaussian elimination [24, 39]. In structured Gauss-
ian elimination the columns of the matrix are partitioned into heavy and sparse
columns. Initially, all columns are considered sparse. Roughly speaking, one
does eliminations with pivots in sparse columns that cause fill-in only in the
heavy columns of the matrix, thereby removing the pivot rows and columns
from the matrix. When this is impossible, one either moves some of the columns
from the sparse to the heavy part, or one removes some excess rows, if there
are any. Next, one tries again. This is repeated until no sparse columns are left.
For reasons that are not yet understood it seems to be beneficial to have many
excess rows initially.

During this process one does not keep track of what happens in the heavy
columns, but one remembers only which eliminations have been carried out.
This information can then be used to build the smaller but much denser matrix
corresponding to the heavy columns, and to convert dependencies among its
rows into dependencies among the rows of the original matrix. Dependencies
in the smaller matrix can be found by means of ordinary Gaussian elimination.

It took us a few hours on a single workstation to reduce our 226688-row and
199203-column matrix to a 72413-row and 72213-column matrix. We kept 200
excess rows, to have a reasonable guarantee that one of the dependencies would
be useful. It took slightly more than one day to actually build the small matrix
and to verify that all entries in the sparse and eliminated part were indeed
zero. The small matrix turned out to be entirely dense. In the small matrix we
included at regular intervals rows that consisted of the sum (modulo 2) of all
previous rows, thus creating several spurious but predictable dependencies.

We immediately set out to reduce this "small" matrix, using ordinary Gauss-
ian elimination and our familiar set-up at DEC SRC. This time, however, we
had some protection against bit errors: if one of the spurious dependencies
failed to show up, something must have gone wrong recently. Then we could
back up a few hundred rows, and restart the elimination from a point where
we were confident that everything was still correct. We estimate that the entire
elimination on this single workstation would have taken less than seven weeks.

While this process was making its slow progress, the third author, tired of
keeping it alive and not too confident of its outcome, contacted Roger Frye
and Mike McKenna at Thinking Machines, and explained the problem to them.
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After a short while they had written a Gaussian elimination program for a
Connection Machine. They estimated that their program, when executed on a
65536-processor Connection Machine, could handle our 72000-matrix within
three hours. Jim Hudgens and George Marsaglia at the Supercomputer Com-
putation Research Institute at Florida State University arranged the computer
time we needed. We sent a box with ten tapes containing the data for the matrix
by Federal Express to Florida. Jim Hudgens consolidated these ten tapes into
one "exotape". During the evening of June 14 he mounted the exotape, so that
Roger Frye and Mike McKenna, remotely logged in from Thinking Machines
in Cambridge, Massachusetts, could read the data as one large sequential file,
and execute the program. It solved the system in three hours, but then a crash
occurred, due to a mistake in the output routine. The second run, which again
took three hours, produced a few hundred dependencies among the rows of the
dense 72000-matrix.

In the early morning of June 15, 1990, the dependencies were sent, elec-
tronically, to DEC SRC, where they were converted into dependencies of the
original sparse 200000-matrix. At least, that is what we hoped that they would
turn out to be. At 9:15 PDT we started our final program, the attempt to fac-
tor n by processing the dependencies sequentially until the factorization was
found. This led to the most exciting moment of the entire factorization of F9 :
at 9:45 PDT the program concluded that the first alleged dependency among
the rows of the sparse 200000-matrix was a true one. This moment of great
relief could not be spoilt by the sobering message, displayed at 10:15 PDT, that
the first dependency had just given rise to the trivial factorization of 77. An
hour later, at 11:15 PDT (18:15 GMT), the second dependency proved to be
luckier by finding a 49-digit factor. Both this factor and the 99-digit cofactor
were announced prime, because no witnesses to their compositeness could be
found among five randomly chosen integers (see §2).

Five minutes later the backup Gaussian elimination process, still crunching
along on a single workstation, was terminated, five days short of its goal. Still
on June 15, Andrew Odlyzko used the first author's Cray X-MP implementation
of the Jacobi sum primality test [12, 13] to prove that both factors were indeed
prime.
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