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OPERATOR VALUED FUNCTIONS 

BY MARVIN ROSENBLUM AND JAMES ROVNYAK1 

Introduction. Let f be a function defined on the circle T 
= {eie : 0 ̂  6 < 2T } or line R = ( — <*>, <*> ) whose values are nonnegative 
operators on a separable complex Hubert space. We are concerned 
with the problem of finding conditions that F = G*G a.e. where G is 
the strong boundary value function of a suitable operator valued 
analytic function defined in the disk \z\ < 1 or half-plane y>0. 
Mainly we are interested in special classes of functions in which such 
a factorization is always possible. 

Our study is motivated by the Fejér-Riesz theorem on the factor-
ization of nonnegative trigonometric polynomials, and Ahiezer's 
version [l ] of its generalization to entire functions of exponential type 
which are nonnegative on the real axis. Both results generalize to 
operator valued functions, and, in fact, both appear as special cases 
of a very general result (Theorem 3.1). 

More generally we present a unified treatment of the factorization 
problem, and thus much of §1 is expository. There we develop the 
theory of a corresponding abstract factorization problem for non-
negative Hubert space operators. Both the results and methods of §1 
are purely operator theoretic. In §2 we show how the abstract theory 
relates to the theory of operator valued functions defined on the circle 
T or line R. The main applications to the factorization problem for 
nonnegative operator valued functions are deferred to §3. 

The factorization problem arises in the prediction theory of sta-
tionary stochastic processes. For this connection see Helson and 
Lowdenslager [ l l ] , Rozanov [27], and Wiener and Masani [28]. 

We wish to thank Professor Loren Pitt for calling our attention to 
the paper by E. Robinson [23]. We have extended Robinson's results 
in §2. 
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Baton Rouge, Louisiana, November 21, 1969. Also presented by the second author at 
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1. Shift analysis and factorization. By a shift operator we mean an 
isometry 5 on a Hubert space such that 5*n—»0 strongly as w—> oo. 
In this section we fix a Hubert space JC and a shift operator S on 3C. 
We write C=ker 5*. The dimension of 6 is called the multiplicity of 
5. The projection mapping 3C onto (B is denoted P 0 . For any 
j = 0, 1, 2, • • • , the projection mapping 3C onto S*<5 is given by 
Pj = S'(I — SS*)S*j. Since the projections P 0 , P i ,P* • * • arepairwise 
orthogonal and sum strongly to the identity operator on 3C, we have 

00 

0 

I t is easy to exhibit the reducing subspaces of S in terms of this de-
composition. If 3C0 is a subspace of 5C which reduces 5, then S0 = S| 3Co 
is a shift operator on 3C0. Hence 

00 

o 

for some subspace <B0 of C. Conversely, any subspace 3C0 of 3C of this 
form reduces 5. 

We write (B(5C), (B(3C, 6), for example, for the spaces of bounded 
operators mapping 3C into 3C, respectively 3C into 6. 

We associate with each r£(B(3C) a semi-infinite matrix, T~[Ajk\, 
with entries ^4yfc£(B(e), 7, £ = 0 , 1, 2, • • • . The action of T is deter-
mined by the matrix according to this rule: Tf~g where ƒ = ^2o S'a,, 
g = J2o Sjbj and 

n^4oo A oi -4o2 • • • 

^io An A12 • • • 

I ^ 2 0 ^ 2 1 ^ 2 2 * * * 

Explicitly, 

(1) A* = PoS*'TSkPo | C, j , * = 0, 1, 2, • • • . 

If Ti~[i4y;fe], r2^ /[^yfc], then rir2
r^[Cy/b] where, for each 

jf k = 0, 1, 2, • • • , C/fc= ]CpU AjpBpk with convergence in the strong 
operator topology. This follows from (1) and the fact, already noted, 
that the projections Pp = 5pPo5*p, £ = 0, 1, 2, • • • , sum strongly to 
the identity operator on 3C. 

1.1. DEFINITION. Let !T£(B(ac). We say that T is 

l&o 
al 

1 Ö2 

1 . 

b<n 
bx 

b, 
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(i) S-Toeplitzil S*TS-T, 

(ii) S-analyticiï TS^ST, 
(iii) S-inner if T is S-analytic and partially isometric, 
(iv) S-outer if T is S-analytic and CL(TJC) reduces 5. 
I t is easy to see that T is S-Toeplitz or S-analytic if and only if its 

matrix has the form 

JTAo v4„_i ^__2 • • * 

Ax A0 A-x • • • 

A2 Ai A0 • • • 

respectively. Then 

A,= PoS*'TPo\ C, j = 0 ,1 ,2 , • . -, 

and 

4_y = P0TS*Po\ e, i - 1,2,3, 

b y ( 1 ) - . 
We will usually denote S-analytic operators by letters A, By • • • . 

Then without further explanation we will write (Aj)£, (JB/)O\ * * • for 
the corresponding operators in <B(C) which appear in the matrix repre-
sentations as above. 

Notice that the initial space of any S-inner operator B reduces S. 
In fact ker B is invariant under S since BS — SB, while for any /GJST, 
\\Bf\\ = | | / | | implies | | 5 5 / | | = | | 5 5 / | | =115/11 =| | / | | = | | 5 / | | . On the other 
hand, the final space of an S-inner operator B reduces S if and only if 
B* is also S-inner. In this degenerate case, Bo is a partially isometric 
operator on 6, and B is completely determined by B0 according to 
the formula 

\ o / o 

where (CJ)Q is any sequence in G such that 23o° \ci\ 2 < °°-
If A is an S-analytic operator on 3C, then T = A*A is S-Toeplitz 

and nonnegative. We are mainly concerned with the problem of find-
ing conditions on a nonnegative S-Toeplitz operator such that it will 
be of this form. 

I t is convenient to begin with a characterization of products A A* 
where A is S-analytic. This characterization is implicit in de Branges 
and Rovnyak [4], See also Sz.-Nagy and Foias [21 ]. 

^ 0 

A! 

A, 

u 
Ao 

Ax 

u 
0 

Ao 
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1.2. THEOREM. Let T be a nonnegative operator on 3C. Then T=AA* 
for some S-analytic operator A if and only if T—STS* = J*J for some 
/£&(3C, C). In this case, A is determined by T up to a trivial right 
factor. More precisely, if A and C are two S-analytic operators such 
that T = AA*and T=CC*t then A=CV, C = AV* for some operator V 
such that both V and V* are S-inner, with initial spaces ^£(BS'<5A 

and ^2o ©5yCc respectively, where e^ = CL(Po^4*5C) and Qc 
= CL(P0C*3C). 

PROOF. If T = AA* where A is S-analytic, then T-STS* 
=A(I-SS*)A*=AP0A* = J*J where / = P 0 ^*e&(3C, 6). 

Suppose T—STS*=zJ*J for some /£(B(3C, C). On iterating this 
identity we obtain 

n 

T _ $n+lTS*n+l = 2^S'J*JS*' 
0 

for all n = 0, 1, 2, • • • . Therefore, if we regard J as an operator from 
3C to 5C, we have 

<Tf, g) - (S^TS*»+y, g) == £ </S*y, JS*>'g) 
0 

\ o o / 

for all / , gG3C,w = 0 ,1 ,2 , • • • . Define i4 G CB(OC) by i4*= 2 ? 5^/5*^. 
I t is easy to see that the series converges in the strong operator topol-
ogy, A is S-analytic, and by the last identity, (Tf, g) — (AA*f, g) for 
a l l ƒ» &G3C. Therefore the condition in the theorem is both necessary 
and sufficient. 

Now let A and C be two S-analytic operators such that A A * = CC*. 
If T is the common value of A A* and CC* then 

,4P04* = T - STS* = CPoC* 

as above. In particular there is a unique partial isometry Fo£(B(e) 
with initial space GA = CL(PO^4*3C) and final space ec = CL(P0C*3C) 
such that 

V0:PoA*f->P0C*f, /<E3C. 

The operator V0 has a unique extension to an S-analytic operator V 
on 3C, determined by 

VS'c = S'ToC, c G e, j = 0, 1, 2, • • • . 
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Clearly V and F* are S-inner with initial spaces ^2o (BS*QA and 
2Zo° (BSJ'(5c respectively. By construction Ac — CVc whenever 
c=*PoA*f for some/£3C. We find at once that Ag = CVg for every 
g e Z o " ®S'CA. If g i -So" ®S*eA and g = ^ S*/, h, &i, h , • • • 
G<B, then 

0=(g,S*PoA*f)=(Abhf) 

for all/G5C. So .4g = £ o 5',46y = 0 = CTg. Hence ^ = C F . Applying 
a similar argument with the roles of A and C interchanged, we get 
also C = A V*. This completes the proof. 

As an application we derive the standard characterization of the 
invariant subspaces of 5 in terms of 5-inner operators. 

1.3. THEOREM. A subspace 9TC of 3C is invariant under S if and only 
if ?iïl=B3Q,for some S-inner operator B. In this case B is determined by 
9H up to a trivial right factor as in Theorem 1.2. 

1.4. LEMMA. If Q is a projection operator acting on a separable Hu
bert space JC, then 

dimeac = Elle^H2 

for any orthonormal basis {<!>}}JEJ for X. 

PROOF OF 1.4. Let {^k}kGK be any orthonormal basis for Q3Z. Then 

Elle<MI2 = E E l«2«y,*i>l» 
y e / ye / kSK 

= E EK***»)!* 

= ZIWI2 = dimöae. 
kBK 

PROOF OF 1.3. The range of an 5-inner operator is clearly a closed 
invariant subspace for S. 

Suppose SÏÏI is a subspace of 3C which is invariant under 5, and let 
P be the projection mapping 3C onto 9fTC. We show that P satisfies the 
condition in Theorem 1.2. Since P is self adjoint, idempotent, and 
PSP = SP, the operator Q — P — SPS* is self ad joint and idempotent. 
Hence Q is also a projection operator. We claim that dim Q3C ^ d i m G. 
If 6 is infinite dimensional, then 3Q has the same dimension as C and 
the inequality is trivial. If 6 is finite dimensional, then 3C is separable. 
Let {eic}keK be any orthonormal basis for <B. Then the vectors 
Skki kÇzK, j = 0, 1, 2, • • • , form an orthonormal basis for 3C. By 
Lemma 1.4, 
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00 

dim Q3C = X) Z (QS'et, S'*) 

- £ è((P- SPS*)S*et, S>ek) 

= lim X) CPSV», SV»> 
»-•» *ejc 

^ £ M* «dime. 

Hence dim ÇJC^dim 6 in any case. 
I t follows that there exists an isometry V mapping Q3Q, into (3. 

But then P - S P S * = () = / * ƒ where J = F<2G(B(3C, e) . By Theorem 
1.2, P=BB* for some 5-analytic operator B. Since P is a projection 
operator, B is S-inner. By construction 9fïl = P3C = i33C. 

The uniqueness assertion follows from the corresponding part of 
Theorem 1.2. 

We proceed to a characterization of products A *A where A is an 
5-analytic operator on 5C. 

1.5. DEFINITION. A nonnegative S-Toeplitz operator T on tfC is 
called jadorable if P = ^4*^4 for some S-analytic operator A on 3C. 

1.6. DEFINITION. Let P be any nonnegative 5-Toeplitz operator 
on 3C. We write 5Cr = CL(P1/25C) for the closure of the range of P1 /2 , 
considered as a Hubert space in the metric of 3C. We write ST for the 
unique isometry on 3Cr such that 5 r(P1 / 2 / ) = P 1 ' 2 ^ for each ƒ G OC. 
We put QT = ker 5y. 

The definition of ST is meaningful because for each ƒ in 5C, 
| |P1 /25/ | |2 = (5*P5/ , / ) = <P/,/) = | |P1 /2 / | |2 . 

1.7. THEOREM. L#£ The a nonnegative S-Toeplitz operator on 3C. The 
following are equivalent: 

(i) P is factorable, 
(ii) Sr is a sfti/*/ operator on JCr, 
(iii) tóere is a dense subspace C0 #ƒ 6 swcft /te£ 

lim {sup[| (Tc,S"f)\ : ƒ G 3C, <P/,/> = l]} = 0 
n—K» 

/or me/* c£<Bo. /w //m case we can write T — A*A where A is S-outer 
and ^4oèO. 

The theorem is a version of Lowdenslager's theorem [17] as pre-
sented by Rosenblum [25 ]. Technically it is different because 3CT 
is now defined without a change from the norm of 3C. 
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PROOF. (i)=*(iii). Let T=A*A where A is S-analytic. If c £ e , 
/ G X , and < r / , / ) = l, then 

| (Tc,S*f)\* = | (A*Ac,Snf)\2 = | (S*nAc, Af)\2 

S \\S*«Ac\\2\\Af\\2 = \\S*nAc\\2{Tf,f) = ||S*M<;||2. 

I t follows that (iii) holds with e 0 = 6. 
(iii)=»(ii). Suppose (iii) holds. For each c£Co and » = 0, 1, 2, • • • , 

| | 5 r r 1 / 2
c | | = sup[ | {Tc,S«f)\ : ƒ G 3C, <7y,/> = l ] . 

This follows from the fact that (Tc, S"f) = (T1i% Tli*S»f) = (Tl'% 
Sn

TT1'if) = (STT1i% J 1 ' 2 / ) , and, the set of vectors T1'2/, /G3C, 
(Tf,f) = l, is dense in the unit sphere in 3Cr. Therefore if (iii) holds, 
then 

(2) lim || <£ng|| = 0 
n—•«> 

for any g in 5Cr of the form g=Tll2c, cEVo- If g=Tll2Shc, for some 
c e e 0 and & = 0, 1, 2, • • - , then STg^S%nTl'2Skc = ST

nSk
TT1i2c 

= STn~kTll2c if only n^k; hence (2) holds for such g. By linearity and 
approximation, (2) holds for all g in 30r. Hence ST is a shift operator 
and (ii) holds. 

(ii)=>(i). Assume that ST is a shift operator. Define J&(&(<5T, C) by 
Jk^T1'2^ &Ge r . To see that P / 2 e r ç e , note that by the definition 
of ST, T1'2ST

:g = S*T1i2g, g&3CT; hence if kEeT = kerST then 
r i / 2 £ £ e = ker 5*. Thus J is well defined. Clearly J is one-to-one. 
Therefore in the polar decomposition J = RV, R — ^JJ*)112, V is an 
isometry mapping <2,T into 6. Since we assume that ST is a shift 
operator, each g£3Cr has a unique representation 

o 

where fe/£ (By, J = 0, 1, 2, • • • . Therefore we can define an isometry K 
mapping 5Cy into 3C by setting 

0 

We have then KST = £ # . Now define A G(B(3C) by Af=KTli*f, /G3C. 
For any fEX, ASf=KT1iiSf=KSTT1i2f=SKT1i*f=SAf, and <!ƒ,ƒ> 
= <r1/2/, r i / 2 / ) = (u:r1/2/, KT*iy)-(Af, AJ). Thus 4 is 5-analytic 
and r = 4 ' M , so (i) holds. 

I t is easily checked that for the operator 4 just constructed 
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CL(AW) =CL(KTli23Q) =K3CT reduces S so A is S-outer. Also 
AQ — POAP0\ e = i £ ^ 0 . This completes the proof. 

The condition AQ^O was used by Masani [18] to discuss unique-
ness of factors. 

1.8. THEOREM. Let T be a nonnegative S-Toeplitz operator. If T is 
factorable, then there is a unique S-outer operator A such that T = A*A 
and A 0 è 0. 

We make use of a second uniqueness result. 

1.9. THEOREM. Let T be a nonnegative S-Toeplitz operator. Suppose 
T is factorable and let T = A*A and T—C*C be two representations 
where A and C are S-outer operators. Then A and C are equivalent in 
the sense that A = VC, C = V*A where V is an operator such that both V 
and V* are S-inner with initial spaces CL(C5C) and CL(A3Ç) respec
tively. Conversely if A and C are equivalent S-outer operators then 
A*A=C*C. 

1.10. LEMMA. If A is an S-outer operator, then CL(^45C) 
= Zo" 05CL(i4 o e) . 

PROOF OF 1.10. If f-AgE.A3Q,, we can write f=Ac+ASS*g for 
some c G 6 . Then P0f = PoAcEA0e because A0=P0APo\<2> by (1). 
Therefore P0AXQA0e and P 0 CL(4rc)CCLG4 0 C)CP 0 CL(AW)t 

hence P0 CL(A3C) — CL(A0e). Since A is S-outer, CL(A3Q) reduces 
S so 

00 

CL(AX) = X e s>'e0 
0 

where e 0 = ker (S*\ CL(AW)) = P 0 CL(A3Q) = CL(i40e). 
PROOFS OF 1.8 AND 1.9. Let A and C be S-outer operators such that 

A*A =C*C. Define V on CJC to 3C by VCf = Af, /G3C. Since A*A 
= C*C, V is well defined and has a unique extension to a partial 
isometry on 3C, also denoted V, with initial space CL(C3C) and final 
space CL (ASO). We find at once that both V and V* commute with 
S, so both are S-inner. The first assertion in Theorem 1.9 follows; the 
second is verified by direct calculation. 

Suppose now that A0^Q, C 0 ^ 0 . Since A=*VC, C=V*A, we 
have AO^VQCO, C O = F * ^ O . Hence A2

0 = COVZV0CQ^C2
0 and Cl 

= AoV0Vo*AoèAl so Al^Cl. Since ^ o ^ O , Co^O, we have A0 = C0. 
Since A0=VQCO, V0 is the identity on CL(C0C). Hence V is the 
identity on CL(C0C). Since V commutes with 5 and CL(C3C) 
= ]CT ©S> CL(C0e) by Lemma 1.10, it follows that F i s the identity 
on CL(C3C). But A » VC, so we get A = C. This proves the unique-
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ness part of Theorem 1.8. The existence assertion follows from 
Theorem 1.7. 

1.11. THEOREM. Let A be an S-analytic operator. Then A has a 
unique factorization A = BC where Cis S-outer, Co^O, and B is S-inner 
with initial space CL(C3C). For this choice of C, C*C — A*A. On the 
other handy if C is any S-outer operator such that C*C = A*A, then 
A =BC for some S-inner operator B with initial space CL(C3C). 

PROOF. Consider any S-outer operator C such that C*C — A*A. By 
Theorem 1.8 there is a unique such C with Co^O. But for any such 
C there is a unique partial isometry B on 3C with initial space CL(C3C) 
such that B(Cf)=Af, /G3C, i.e. A =BC. If g^CfECW then BSg 
= BCSf=ASf = SAf = SBg. Since C is S-outer, CL(COC) reduces S. 
Therefore if g JLC3C then Sg JX3C and BSg = 0 = SBg. I t follows that 
B is S-inner. The assertions of the theorem follow quickly from these 
facts. 

The S-outer operators are distinguished from more general S-ana-
lytic operators by their extremal properties. Our first result in this 
direction is motivated by work of Lax [lS] and Masani [18]. 

1.12. THEOREM. Each of the following conditions is necessary and 
sufficient for an S-analytic operator C to be S-outer \ 

(i) CL(C5C) = ]C° © S ' CL(CoC), 
(ii) for each cGC, (C*C0c, c) = inf/ex (C*C(c — Sf), c — Sf)> 
(iii) CO*CQ}ZA*AQ for every S-analytic operator A such that C*C 

= A*A. 

PROOF. Let (o) be the condition that C is S-outer. 
(o)<=>(i). Sufficiency is obvious; necessity follows from Lemma 1.10. 
(o)=>(ii). If C is S-outer and c £ C , then S*CcECL(CW) and the 

vector g — S*Cc minimizes \\Cc~Sg\\. Hence 

inf (C*C(c - Sf), c-Sf) = inf \\Cc - SCf\\2 

/eoe /eoc 

» inf | | C c - S £ | | 2 = ||P0Cc||2 

</eCL(C3C) 

=: \CQCOC, c ) . 

(ii)=*(iii). If (ii) holds and A is S-analytic with C*C=A*A, then, 
for any c £ C , 

(ctCoC, c) = inf (A*A(c - Sf), c - Sf) = inf \\Ac - SAf\\* 
rex, /eoc 

à inf \\Ac - Sg||2 = | | P o ^ | | 2 •= (A*oAoC,c). 
*e3e 

file:////Cc~
file:///CqCoC
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(iii)=»(i). Assume (iii) holds. Factor C=*BA where A is S-outer and 
B is S-inner with initial space CLG43C). This is possible by Theorem 
1.11. Then C*C = A*A, so by (iii), CÎC*^A,*A«. But C0 = BoA0 

where ||.Bo||=sl. Hence C*Cos=-4*-4o. I t follows that Bo is isometric 
on AoC Since B0~PoBP0\ 6, B agrees with B0 on ^40C, and therefore 
BSj agrees with SjB0 on CL(A0e)J = 0, 1, 2, • • • . Hence 

BS* CL(A0e) = S'BQ CL(A0Q) = 5 ' CL(C0e), 

( CO \ 00 

X) ©s'CL(AQe)) = 2©^CL(c 0 e) . 
0 / 0 

Therefore (iii) implies (i), and each of the conditions (i)-(iii) is 
equivalent to C being S-outer. 

Some interesting variants of condition (iii) in Theorem 1.12 are 
suggested by a result of Robinson [23] (see Theorem 2.6). We now 
extend Robinson's ideas. 

1.13. THEOREM. Let C be an S-analytic operator. Let V? be any subset 
of the double commutant of S such that the weakly closed linear span of *W 
and the identity operator contains S. Let $ be any subset of 3C such that 
Po$ spans a dense subspace of G. Then C is S-outer if and only if 
(3) \\W*Cj\\ ^ \\W*Aj\\ 

for all WGW, /GSS and every S-analytic operator A such that A*A 
= C*C. 

In particular if C is S-outer, then (3) holds for every operator W 
in the double commutant of S, all /£3C, and every S-analytic operator 
A such that A*A =C*C. The proof shows more, and for reference 
purposes we isolate some additional facts in 

1.14. LEMMA. Let B be an S-inner operator with initial space am. 
00 If g G 9ft and W is any S-analytic operator which commutes with 

B} then 
(4) ||W*g|| S \\W*Bg\\ 

with equality if and only if BW*g = W*Bg. 
(ii) Let V? be any set of S-analytic operators which commute with B 

such that the weakly closed linear span of V? and the identity operator 
contains S. Let 9 be any subset of 9TI such that PoS spans a dense sub-
space of Poïiïl. If equality holds in (4) for all WGW and all g G 8» l^en 

B* is also S-inner. 

In Theorem 1.13 or Lemma 1.14 we could choose "W={F e}< > 0 , 
where F t = exp[—/(/+S)(J—S)""1] for each / > 0 . The exponential is 
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defined to be the strong limit of exp[~t(I+rS)(I—rS)~l] as r f \ . 
See Sz.-Nagy and Foia§ [21 ]. A short calculation gives 

e"' exp[-*( / + rS){I - rS)~l] dt 
o 

for 0 < r < l , where the integral is taken in the weak sense. I t follows 
that 

S « 7 - 2 f e->V< dt. 
Jo 

The last integral can also be taken as an improper Riemann integral 
with convergence in the uniform operator topology. In particular, the 
weakly closed linear span of °W = {V*}t>o and I contains S. See 
Theorem 2.6. 

A different choice of V? leads to 

1.15. THEOREM. Let C be an S-analytic operator. Then C is S-outer 
if and only if 

(5) £ C*C, £ Ê A*, Ai, « = 0,1,2, • • • , 
0 0 

for every S-analytic operator A such that A*A —C*C. More generally t 

(5) holds if A and C are any S-analytic operators which are related by 
A—BC for some S-inner operator B whose initial space contains 
CLfCJC). 

PROOF OF 1.14. Let g£9Tl and let W be any S-analytic operator 
which commutes with B. Then B*Bg — g and so 

\\W*g\\ = ||W*B*Bg|| = | |FW*£g | | ^ ||W*£g||. 

Since B* is a partial isometry, equality holds only if W*Bg = Bh for 
some A£9fft. Then B*Bh=:h1 and since W commutes with By we get 
W*g = h. Hence W*Bg = BW*g. Conversely if W*Bg = BW*g then 
\\W*Bg\\ =\\BW*g\\ £\\W*g\\g)\W*Bg\\, and equality holds through-
out. This proves (i). 

To prove (ii) note that, by (i), BW*g = W*Bg for all WE*W, 
g £ S - By our assumptions on "W it follows that BS*g = S*Bg, gGg. 
Multiply this by 5 and use the fact that P0 = I-SS* to get BP0g 
= P0Bg, gGg. If we set e 0 = Po9TC, so that 3E= J^ ®S>e0, then our 
assumptions concerning g imply that Bc = P0Bc for all c £ e 0 and 
hence for all c £ C . But then B agrees with BQ=*POBPQ\ C on 6 and 
so BS* with SjB0 on S'C, j = 0, 1, 2, • • • . I t follows that B0 is a par-
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tially isometric operator on <3, and B(^2Q S3'CJ)= ^2Q S'(B0CJ) for 
any sequence (CJ)Q in Q such that Zo° | c / | 2 <«>. We quickly de-
duce (ii). 

PROOF OF 1.13. Suppose that C is S-outer, and let A be any 5-
analytic operator such that A*A ~C*C. By Theorem 1.11, A =BC 
for some S-inner operator B with initial space CL(CX). If W is any 
operator in the double commutant of 5 and ƒ is any vector in 3C, we 
get (3) from (4) on setting g~Cf. 

Conversely suppose that (3) holds for all PF£%Y\ / £ 3 \ Factor 
C — BA where A is 5-outer and B is S-inner with initial space 
9TC = CLW3C). By Theorem 1.12 (i), P03TC = CL(,4oe). Set S^Poff. 
Since P0Af=A0Pof,fE:3C>, our assumptions on ^ imply that P 0 9 spans 
a dense subspace of P09TC. By (3), ||W*Bg\\ è\\W*g\\ for all WG*W, 
g £ S - Since the reverse inequality holds automatically by Lemma 
1.14 (i), by Lemma 1.14 (ii), B* is also S-inner. I t follows that 
CL(C3C)=B CL(^43C) is the initial space of an S-inner operator, 
hence CL(C3C) reduces S and C is S-outer. 

PROOF OF 1.15. In Theorem 1.13 choose V?= {Sn+1}o and $F = e. 
Thus C is 5-outer if and only if 

| |S*»+ la| | ^ ||S*»+M<;|| 

for each » = 0, 1, 2, • • • , c£<3, and every 5-analytic operator A 
such that A* A = C*C Thus C is «S-outer if and only if, for each such 
A and w = 0, 1, 2, • • • , 

P<fi*S*+1S*n+lCP0 S PoA^S^S^^APo 

or 

PoC* U - S S*PoS**\ CPo Û PoA* U - Z •W>S*') ^ P 0 . 

This last inequality is equivalent to (5). I t is clear from the proof 
that we can verify (5) for any 5-analytic operators A and C such that 
A =BC for some 5-inner operator B whose initial space contains 
CL(C3C). 

We turn again to the problem of giving conditions on a nonnegative 
S-Toeplitz operator T that T be factorable. Theorem 1.7 gives condi-
tions which are both necessary and sufficient. I t follows, for example, 
that if T is 5-Toeplitz and T^dl for some ô>0, then T is factorable. 
For then 3Cr = 3C and ST^T^^ST"112; hence Srn->0 strongly and ST 

is a shift operator. Thus T is factorable. However, the conditions in 
Theorem 1.7 are not always so easy to apply. I t is therefore of interest 
to have sufficient conditions which are useful for applications. 
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The next result is central in our work. 

1.16. THEOREM. Let Tbea nonnegative S-Toeplitz operator. Suppose 
that there exists an operator VT^O in the double commutant of S such 
that TV is S-analytic. Then T is factorable. Moreover if T=A*A where 
A is S-outer, then A*V is also S-analytic. 

1.17. LEMMA. Let V^O be an operator in the double commutant of S. 
Then V has a factorization V— UW where U is an isometry in the double 
commutant of S and W is an S-outer operator in the double commutant 
of S. 

PROOF OF 1.17. Let V~[Vj„k] where F, = 0forall j = - 1 , - 2 , 
Since V is in the double commutant of 5, there exist scalars Vj such 
that Vj = VjIy i = 0, ± 1 , ±2 , • • • . Let 5 ( 1 ) be a shift operator on a 
Hubert space 5C(1) such that C ( 1 )=ker 5 ( 1 )* has dimension 1. Con-
struct an 5(1)-analytic operator F (1 ) such that F(1)~[vy_jb]. Factor 
7(i) =[ƒ<!) ww where U«> is S^-inner and W™ is S^-outer. Let 
J7(1)~[wi_jb], W(1)~[w/_jb] where Uj~Wj = 0 for j = — 1, —2, • • • . 
Then there exist operators U, W on 3C such that Ï 7 ~ [£/,•-*], W 
~[Wj-k] where üy = «/7, Wj = WjI for all j = 0, ± 1 , ±2 , • • • , and 
these operators have the required properties. 

PROOF OF 1.16. Using Lemma 1.17 we can reduce the theorem to the 
case where V is an isometry. 

Suppose then that V*V = I. We show that V*TV=T. Since 
T+I^I, by a previous remark we can write T+I = A*A where A 
is S-analytic. Since F * F = I and AV^VA by hypothesis, V*TV 
= V*A*AV-V*V=A*A - 1 = T, as claimed. 

Since TV is S-analytic, (TV)S* = S*(TV) and S*»7*r = V*TS*» 
for each n = 0, 1, 2, • • • . Hence if c £ 6 and /E3C, (Tf, /> = 1, then 

(Tc,S*f) = (S*nTcyf) = <S**F*7T<;,/> 

= <F*T5*wFc, ƒ) = (r/^^Fc, r w / ) , 
so 

l<r*,s»y>| g||r^||||5*»Fc||||rw/|| 
= \\TU*\\\\S*'Vc\\(Tf,f) 

- | | r ' « | | | | 5 * - 7 c | | . 

Therefore T satisfies condition (iii) of Theorem 1.7, so T is factorable. 
Let T = A*A where A is S-outer. Since [(A*V)S-S(A*V)]A 

=A*AVS - SA*AV - ( r V ) 5 - S(TV) = 0, we have (A*V)Sf 
= S(A*V)f for all fEA3C. But i f / ±^3C then 5 / J.43C and VSf ±A3Z 
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because CL(A3Q) reduces S and hence also F. Therefore (A*V)Sf = 0 
= S(A * V)f iorf±A OC. Hence A * V is S-analy tic. 

We prove next a comparison theorem which is adapted from 
B. Moore [19]. Similar results were obtained by Lowdenslager [17] 
and Douglas [7]. 

1.18. THEOREM. Let Z\, T% be nonnegative S-Toeplitz operators such 
that TiST*. Assume that 

lim (T2fn,fn) - 0 

for every sequence (fn) in 3C such that limn,fc-*oo(r2(/n—ƒ*)» ƒ« —fk)=0 
and limn+niTifnj fn) = 0. T7&ew if Ti is factorable so is !T2. 

PROOF. Since ||r*/2/||* = <7V, f)^(T2f, / ) = | | ^ / 2 / | | 2 , /Goc, there is 
a unique operator C mapping 0Cr2 = CL(r2/23C) into 5Cri = CL(r} / 2X) 
such that 

cr2 ƒ= z\ ƒ, / e x . 
Our assumptions imply that C has zero kernel and hence C* has range 
dense in 5Cr2- For any / £ 3 C and w = 0, 1, 2, • • • , 

CSTtT* ƒ = C r 2 5 ƒ = Ti 5 ƒ = SV^i ƒ = STlCT2 ƒ. 

Hence C S J ^ S ^ C and S%C* = C*ST? for each » = 0, 1, 2, • • • . 
If JPI is factorable then 5 ^ is a shift operator on 5Cn by Theorem 1.7. 
But then ||Sr*g||--»0 for each g in the range of C*. Since the range of 
C* is dense in 3Cy2, 5r2

n—>0 strongly, so 5r2 is a shift operator and T2 

is factorable by Theorem 1.7. 

2. Operator valued functions on a circle or line. In the rest of the 
paper, 6 will denote a fixed separable Hubert space. We write | • | 
for the norm in both C and (B(6). By a vector or operator valued func-
tion we mean a function with values in 6 or (B(6) respectively. We 
are mainly concerned with functions defined on the unit circle 
r = {ei$ :O^0<27r} in the complex plane or the real line R. Unless 
otherwise stated, we use the weak definitions of analyticity and 
measurability for vector and operator valued functions and integrals 
of such functions. Measure theoretic notions always refer to the Borel 
subsets of F and R, normalized Lebesgue measure on I \ and Lebesgue 
measure on R. In general we do not distinguish functions which differ 
only on a null set. 

We take for granted (1) basic complex function theory, as presented 
in Hoffman [12] or Privalov [22], (2) elementary properties of Fou-
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rier series and integrals for vector valued functions, and (3) the defini-
tions and basic properties of the Lebesgue and Hardy classes L\, H% 
and L®(Q), H®(e) on both T and R. We recall, at least, the definition 
of H®(Q): this is the class of all -FGL^ce) such that FHlç^Hl. We have 
then FÇzH®(e)(T) (respectively FE:H^(G)(R)) if and only if F is the 
a.e. strong boundary value function of a bounded operator valued 
analytic function defined in the disk \z\ < 1 (respectively the half-
plane 3>>0). There is a similar characterization of Hi on T or R. 
Thus, although the elements of H% and H&(e) are functions defined 
on V or R, we can and frequently will refer to values of such functions 
in the disk \z\ < 1 or half-plane y>0. 

Henceforth 5 will denote the standard shift operator "multiplica-
tion by ei$" in H%(T) or "multiplication by (x-i)/{x+i)" in Hl(R). 
In H%(T)} ker S* is the set of constant functions, and in Hl(R), 
ker S* is the set of functions of the form k(x) = c/(x+i)} c £ C In 
either case S has multiplicity equal to the dimension of C. In fact 
there is a natural way to identify ker S* with 6 in either case. 

An operator TE®>(Hl) is 5-Toeplitz if and only if Tf=PFf,f<EHl, 
for some FE:L^(e)l where P is the projection mapping L% onto Hi. 
In this case F is essentially determined by T and we write !T=7V. 
We have T$ = TF*, and TF^0 if and only if F^O a.e. An operator 
AÇz(&(H%) is S-analytic if and only if A = TQ for some GELH^(Q)} 

in which case 

Af=Gf, fenl. 

If J^Giffi(e) and GÇZH&(Q), the relation F = G*G a.e. is equivalent to 
TF = TQTQ. These facts are more or less well known. See, for example, 
Brown and Halmos [5]. 

A function GGif®(e) is called inner (resp. outer) if A = To is S-inner 
(resp. S-outer). In connection with this it should be noted that a 
subspace 3TC of Hi reduces S if and only if M =H® for some subspace 
(B of e. 

For any G£Ü<B«O), the values associated with G in the disk \z\ < 1 
or half-plane y > 0 have a norm-convergent representation 

(6) G{z) = Y,Afii, | * | < 1 , 
o 

or 

JL /* — i\j 

(7) G(z)-ZM—— ), y > 0 , 
o \z + %/ 
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for some sequence {A3)Q in (B(6). If we make the natural identification 
between 6 and ker 5*, the sequence (A3)Q also appears in the 
matrix representation of TG, namely To~[Aj-k] where A-j = 0, 
j = l, 2, 3, • • • . In particular A0 = G(0) or A0 = G(i) depending on 
the case. 

I t is already clear how to translate many of the results in §1 into 
corresponding theorems for bounded operator valued functions on 
the circle or line. However, bounded functions do not offer the natural 
generality for such results. Henceforth, the functions which we treat 
are possibly unbounded. 

2.1. DEFINITION, (i) An operator valued function G on T or R is 
said to be of class 9l+ if there exists a bounded scalar valued outer 
function <£ ( ^ 0 ) such that (j>GÇzH®(e). 

(ii) Operator valued inner functions are defined as before: G is 
inner if GGiJ^co and multiplication by G in Hi is a partial isometry. 
In this case, the initial space of multiplication by G in Hi has the 
form H® where (B is a subspace of 6, and we write (B = (Bin(G

:). 
(iii) An operator valued function G on T or R is called outer if G 

is of class 3l+, and for some (and hence any) <j> chosen for G as in (i), 
<pG is outer in the sense previously defined for functions in iJ^(e)» 
i.e. CL((<j>G)Hl) reduces the standard shift operator 5. In this case 
CL((0G)iJ|) ~H® for a subspace (B of 6 which is independent of the 
choice of <j>, and we write (B = (Bout(G). 

Definitions and theorems concerning operator valued functions 
apply in particular to scalar valued functions (specialize to the case 
dim 6 = 1 and interpret operators on 6 as scalars). In this case our 
definitions of inner and outer functions are consistent with the 
classical definitions. In the scalar case we are permitted to think of 
inner and outer functions as defined on the circle T or line R, or on 
the disk | z \ < 1 or half-plane y > 0. We show that the same is true for 
operator valued functions of class Vl+. 

An operator valued analytic function G(z) defined in the disk 
l^l < 1 or half-plane y>0 is said to have a scalar outer majorant if 
there exists a scalar valued outer function \J/(z) such that |G(2)| 
= |\K2) | m the disk or half-plane. 

2.2. LEMMA, (i) Let G(z) be an operator valued analytic function 
which has a scalar outer majorant in the disk \ z \ < 1 or half-plane y > 0. 
Then G{z) has an ax. strong boundary value f unction 

(8) G(eid) = lim G(re*) or G(x) = lim G(x + iy). 

If G(z)?éO then log|G(<^)| ELl(0, 2TT) or (l+x2)"1 log|G(*)| 
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G-LK"-00» °°)i and \G(z)\ S \$(*)\ where 

(9) *(s) - exp | 1 ƒ 2 T ^ ~ log | G(e*) | <»} 

/or | z | < 1 , or 

M /• - 1 + te log I G(0 I 1 

(10) *(*) = exp \- f fl-^i dt\ 
/or 37 > 0 respectively, 

(ii) ^4# operator valued function G(eid) or G(x) on T or R is of class 
9l+ if and only if it is ax, equal to the boundary value function of an 
operator valued analytic f unction G(z) which has a scalar outer majorant 
in the disk \z\ < 1 or half-plane y>0 respectively. 

PROOF. We give the proof for the circle case only. If G(z) is an op-
erator valued analytic function with a scalar outer majorant in the 
disk \z\ < 1 , then 

(11) log I G(re«) | è ±- f ^ * ~f t log k{e«) dt 
2TJ0 1 — 2r cos(0 — t) + r2 

for O ^ r < 1 , O ^ 0 < 2 T T , where k(eu)^0 a.e. and log kie^SL^O, 2TT). 

Construct a scalar valued outer function $(z) such that 

- l o g 4>(re») = — I log+ k(eu) dt 

for 0 ^ r < l , OS0<2w. Then <f>(z) and cf)(z)G(z) are bounded functions 
in the disk \z\ < 1 . Since every bounded operator valued analytic 
function in the disk has a strong boundary value function, G(eie) 
exists a.e. Clearly G(eie) is of class 9l+ on I \ We have proved the exis-
tence of (8) in (i) and the sufficiency part of (ii). 

Suppose G(eie) is any operator valued function of class 9l+ on I \ 
and set F<t>{eid) =4>(eid)G(eie) where <j>(eiB) is chosen for G(ei$) as in 
Definition 2.1. Then F+(e") GH£iCi(T), and if a,6GC, | a | ^ 1 , 

log | (F*(re*)a, »>< | £^~ f * ^ / ^ I l o g 1 < W ) a > ô>c I * 
27r^o 1 — 2rcos(0—0+f 
1 f 2T 1 - f2 

^ — f ; : log FM*) dt 

for 0 g r < l , Og0<27T. So if G(eie) does not vanish a.e., then 
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log\G(ei$)\ - l o g l ^ C ^ I - l o g l ^ ^ l G - L K O , 2TT), and G(eid) is the 
boundary value function of G(z) =<f>(z)'~lF<f>(z)1 \z\ < 1 , which has the 
scalar outer majorant (9). The remaining parts of the lemma follow. 

Let G be an operator valued function of class dl+ on T or R. The 
values associated with G in the disk \z\ < 1 or half-plane ;y>0 have 
norm convergent representations (6) or (7). I t is not hard to see that 
if G is an outer function, then (Bout(G) = CL(G(0)e) or CL(G(i)<3) de-
pending on whether G is defined on T or R. Similarly, it can be shown 
that if G is an inner function, then (Bin(G) = V|w|<i G(w)*Q or 
Vim w>0 G(w)*Q depending on the case. 

A consequence of Lemma 2.2 is that if G(z) is an operator valued 
analytic function defined for \z\ < 1 such that 

ƒ» 2ir 

| G(reie) | r dB < oo 
-«- - o 

for some p, 0<p< oo, then G(z) has a strong boundary value func-
tion which is of class 9l+. To see this note that u(reid) =log\G(rei6)\ 
is subharmonic in the unit disk, and by assumption 

sup I f(u(reie)) dd < oo 
0^r<l Jo 

where ƒ (x) = epx for all real x. By a theorem of Gârding and Hörmander 
[8, p. 95], G(z) satisfies an inequality of the form (11), which is equiv-
alent to the existence of a scalar outer majorant. The analogous half-
plane result uses the condition 

ƒ 00 

I G(x + iy) \p dx < oo 
- 0 0 

where 0<p< oo. 

2.3. THEOREM. Let G be an operator valued f unction of class 91+ on T 
or R. Then G has a unique factorization G = GiG0 where G0 is an outer 
function such that G o (0 )e0 or Go(i)^0 in the circle and line cases 
respectively, and Gi is an inner f unction such that (Bin (GO = (B0Ut(Go). In 
this case G*G0 = G*G a.e. Conversely, if GQ is any operator valued outer 
function and G is any operator valued function of class 9l+ on T or R 
such that G*G ~ G%G0 a.e.t then G = GxGQfor some inner f unction Gx such 
that (Bin(Gi) = (Bout(Go). 

PROOF. We easily reduce the theorem to the case where G(E.H®«o). 
Then the result follows from Theorem 1.11 and the discussion at the 
beginning of this section. 



I97i] NONNEGATIVE OPERATOR VALUED FUNCTIONS 305 

2.4. THEOREM. Let G\ and G2 be operator valued outer functions on 
TorR. 

(i) We have Gfd = G*G2 a.e. if and only if G2 = UGh Gi = £/*G2 ax. 
where U is a (constant) partially isometric operator on C with initial 
space (Bout(Gi) and final space (Bout(G2). 

(ii) If Gi*Gi = G2*G2
 a-e- and G/(0)^0 or G , ( i )^0 in the circle and 

line cases respectively, j = l, 2, then Gi = G2 a.e. 

PROOF. Suppose G*Gi = G^G^ a.e. Choose a bounded scalar valued 
outer function 0 ^ 0 such that, for each j — 1 , 2, Fj=<f>Gj is an outer 
function in iüT&ce). Our assumptions imply that Tf%TFl=TfxTFv so 
by Theorem 1.9, TF2=TUTFV TF1 = TUTF2 where U is an operator 
valued function such that both U and U* are inner with initial spaces 
(Bout(Fi) = (Bout(Gi) and (Bout(^2) = (Bout(G2) respectively. I t follows that 
U can be taken to be a constant partially isometric operator on G 
with initial space (Bout(Gi) and final space (Bout(G2). Moreover F 2 = [/Fi, 
Fi= U*F2 a.e. and so G2 = C/Gi, Gi= i7*G2 a.e. This proves the neces-
sity of the condition in (i). The sufficiency is proved by reversing the 
steps in this argument. The proof of (ii) is similar, except that for 
(ii) we use Theorem 1.8. 

If Ay By . . . are operator valued functions of class 91+ on T or Rf 

we write (Aj)™, (J5y)̂ °, . . . for the coefficients in the expansions (6) 
and (7) for the corresponding analytic functions in the disk | s | < 1 
or half-plane y > 0. 

2.5. THEOREM. Let C be an operator valued function of class 9l+ on 
T. Then C is outer if 

(12) CoCo à AUO 

for every operator valued function A of class 9l+ on T such that A *A 
= C*C a.e. Conversely y if C is outer, then 

(13) E CfCj ê Ê AfAh n = 0, 1, 2, • • - , 
o o 

for every operator valued function A of class 9l+ on T such that A *A 
= C*C. 

PROOF. Suppose (12) holds for all A as in the theorem. Choose 0 for 
C as in Definition 2.1 such that C"=0C£.ffS (e)(r). We show that the 
5-analytic operator Tc on Hl(T) is 5-outer. Let TV, A'^H^{e)(T)t 

be any «S-analytic operator such that TA'TA' — TC'TC*. If we define 
A by A ' =<t>A y then A is of class 91+ and A *A == C*C a.e. By (12) then 
CQCO^A*AO, and hence 
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Ci*C{ = U o | 2 C o * C o è | « o M o * ^ o = Ai* Al. 

I t follows from Theorem 1.12 that TV is 5-outer (see the discussion 
following (6) and (7)). Hence C' and C'/<j> are outer functions. 

Suppose that C is an outer function. Choose a sequence (0(A5))i°° of 
bounded scalar valued outer f unctions such that Cik) =$(Aî)C '£i?5(e)(r) 
for each & = 1, 2, 3, • • • and lim <f>(k)(z) = l uniformly on any disk 
\z\ Sr> r<l. For example, if 0 is a single bounded scalar valued 
outer function such that $C£ü?<B(e)(r), we could choose 

<t>«°\z) = exp \— I log[min(41 4>(e«) | , 1)] dd\ , 
\ZETT *J o e — 2 / 

\z\ < 1 , fe = l, 2, 3, • • - . If Y ? \ YÎ*\ 7 f , • • • are the Taylor coeffi-
cients of l/0(Aj), then 

hm 7/ = 1, 7 = 0, 

= 0, j > 0. 

But for any w = 0, 1, 2, • • • , & = 1, 2, 3, • • - , 

2-, Q Q = 2^ Aj Aj 
y=o y«o 

by Theorem 1.15 (again, see the discussion following (6) and (7)). 
We now deduce (13) by letting k—><*>. 

The continuous analogue of Theorem 2.5 is due to Robinson [23] 
in the case where dim 6 = 1. 

2.6. THEOREM. Let C be an operator valued function of class 3l+ on 
R such that C(x)cÇzHl(R) for each c £ 6 . Then C is outer if and only if 

(14) f \v(s)\2ds è f \u(s)\*is 
J o ^ o 

for all / > 0 , whenever u, v are vector valued f unctions such that 

(C(x)c) 1 T00 (v(s)) 
(15) < Ï = eix8\ > ds 

for some operator valued function A of class 9l+ on R such that A *A 
= C*C a.e. and some c £ e . 

PROOF. Let CW= { Vl}t>o, where for each / > 0 , V1 is the operator 
"multiplication by eitz" in H\(R). Every fÇ:H%(R) has a representa-
tion 

file:///ZeTt
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1 f00 

f(x) = I eix8g(s) ds 
JK ( 2 7 T ) 1 / 2 J 0 

where g£Le(0 , oo), and conversely each such g determines an 
fÇzH%(R) by this formula. If ƒ and g are so related, then 

(16) ||F<*/||2 = f~\g(s)\*ds 

for all £>0. By the discussion following Lemma 1.14, the weakly 
closed linear span of "W and the identity operator contains the 
standard shift operator S. 

Suppose now that C is an outer function. Let A be any operator 
valued function of class 9Z+ on R such that A*A=C*C a.e. By 
Theorem 2.3, A = BC where B is an inner function such that (&in(B) 
:=(Bout(C,)• By assumption C(x)cE:H%(R)1 and hence A{x)c^H%{R) 
for each £ £ C . I t is easy to see that C(x)c is in the initial space of 
multiplication by B in Hl(R) for any c £ C So, by Lemma 1.14 (i), 

| |7*Cc|| S \\V^Ac\\ 

for all 2>0, c £ 6 . We get (14) by combining this with (16). 
Conversely suppose that (14) holds whenever u, v have the form 

(15). We use the inequality only for a special choice of A. Namely, 
choose A outer such that C = BA where B is an inner function such 
that (Bin(-S) = (Bout04). Such an A exists by Theorem 2.3. Since A is 
outer, we can apply what we just proved with the roles of A and C 
interchanged, and this shows that equality holds in (14), or equiva-
lently 

WV^AcW = ||F«*5i4c|| 

for all £>0 and c£(B. Let 9 be the set of elements of H$(R) of the 
form Ac, c £ 6 . With this choice of g and °W as above we apply Lemma 
1.14 (ii) to the 5-inner operator "multiplication by B" in Hl(R). 
I t follows from the lemma that B* is also an inner function. Hence 
B can be taken to be a constant partially isometric operator on G. 
Finally, since A is an outer function, so is C. 

Singularities of operator valued analytic functions are classified in 
exactly the same way as for scalar valued analytic functions. An 
operator valued function F{z) is said to be meromorphic in a region 0 
if F(z) is defined and analytic except at certain isolated points which 
are poles. An operator valued function F(z) which is meromorphic in 
the extended complex plane is called a rational function. Every opera-
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tor valued rational function has the form P(z)/q(z) where P(z) 
~AQ-\-AIZ-\- • • • +Amzm is a polynomial with operator coefficients 
and q(z)—bo+biZ+ • • • +bnz

n is a polynomial with scalar coeffi-
cients, q(z) fẑ O, and conversely. 

2.7. DEFINITION. Let u, v be nonzero scalar valued functions of 
class 9l+ on T or R. An operator valued function F on T or R is said 
to be of class 9TC(̂ , v) if uF and tf.F* are of class 9l+. 

If u = UiU0, v = ViV0 are inner-outer factorizations of w, v, then a 
function .F is of class 2fïl(w, t;) if and only if F is of class 9flft(&i, i>i). 
In other words the class 9TC(w, v) is independent of the outer factors 
in w, v. 

We show that functions of class 9fTC(w, A) can be characterized as 
two-sided boundary value functions of certain kinds of meromorphic 
functions defined off T or R. In particular, we can again speak of 
function values off V or R. 

If F(z) is an operator valued function defined in a region 0 of the 
complex plane, we write P(z) for one of the reflected functions 
F(z) = F(z)* in Ö={*:*GQ} or F(z) = F(l/z)* in 2 = {s t l / sGf i} , 
depending on context. 

2.8. THEOREM. Let u, v be nonzero scalar valued f unctions of class 91+ 
on r or i£. 

(i) Let F(z) be an operator valued f unction which is defined and mero
morphic separately f or \z\ < 1 , \z\ > 1 or for ;y>0, y<Q. Suppose that 
u(z)F(z)t v(z)P(z) are analytic and have scalar outer majorants in the 
disk \z\ < 1 or half-plane y>0. Suppose that F(reie) has the same strong 
limit F(eid) ax. as r f \ and r \ l , respectively F(x+iy) has the same 
strong limit F{x) a.e. as 3>\0 and y/*0. Then the boundary value f unc
tion is of class 9TC(w, v) on T or R, and conversely every operator valued 
function of class 9TC(w, v) on T or R arises in this way. 

(ii) In the situation of (i), if the boundary value function is essentially 
bounded on an open arc on T or interval on Rf and if u and v are analytic 
across the arc or interval, then the meromorphic functions are analytic 
continuations of each other across the arc or interval. 

In [14] Kriete proves that a square-integrable scalar valued func-
tion of class 9TC(w, v) has an integral representation analogous to the 
Paley-Wiener representation theorem for entire functions of expo-
nential type which are square integrable on the real axis.1 

PROOF. We give this proof for the line case only. 
(i) Suppose F(z) is meromorphic for y>0, y<0, and the assump-
1 Kriete discovered this result in the academic year 1966-67 and circulated it 

privately, before the authors began work on the present manuscript. 
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tions in (i) hold. By Lemma 2.2, u(x)F(x) and v(x)F(x)* are func-
tions of class 9l+ on R, so we immediately deduce that F(x) is of 
class 2fll(w, v) on R. Conversely, if F(x) is a given function of class 
9iïl(^, v) on R, then by Lemma 2.2, u{x)F(x) and v(x)F(x)* are a.e. 
strong boundary value functions of operator valued analytic func-
tions F+(z) and F-(z) which are defined and have scalar outer 
majorants in the half-plane y>0. The function 

F{z) = F+(*)/«(«), y > 0, 

= F-(z)Mz), y<0, 

is meromorphic separately for y>0, y<0, it satisfies the conditions 
in (i), and it has F(x) as an a.e. strong two-sided boundary value 
function. In fact, we get at once that F(x) =lim F(x+iy) a.e. as 3>\0 
in the strong operator topology, and as y SO in the weak operator 
topology. But weak convergence can be improved to strong con-
vergence here by the analogue of Lemma 2.2 for the lower half-plane, 

(ii) Using notation as above, we assume now that u(z) and v(z) 
have analytic continuations across an interval (a, b) and that F(x) 
is essentially bounded on (a, b). We may assume without loss of 
generality that the continuations of u(z) and v(z) have no zeros on 
(a, b). For we can contract the interval (a, b) slightly so that only a 
finite number of zeros are present, and these can be removed by 
dividing out a suitable outer factor (see the remark following Defi-
nition 2.7). Alternately, it can be shown that the inner parts of u 
and v are analytic and nonzero in a neighborhood of (a, b). Then, 
using scalar majorants for F+(z) and F^(z) of the form (10) and the 
fact that F(x) is essentially bounded on (a, 6), we can reduce to the 
case where F(z) is bounded on and inside some rectangle p:x = a, 
x = b, y= — S, y = ô (ô>0) , ignoring points on the real axis. At worst 
we will have to contract the interval (a, b) slightly once more. But 
now straightforward arguments will show that 

2m J p t — z 

is analytic in the interior of p and is the required continuation of F(z) 
across (a, b). 

An operator valued function F on T or R is in H^e) if and only if 
F is essentially bounded and for each c£<3 the scalar valued function 
Fc(-) = (F(-)c, c)e is in H°° on T or i?. This follows from elementary 
properties of Fourier series. I t is convenient to have an analogous 
characterization of the classes 9l+ and 91Z(#, v). 
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2.9. THEOREM. Let F be an operator valued function on T or R. Then 
F is of class 9l+ if and only if f or each c £ C the scalar valued f unction 
Fc is of class 91+ and 

log+1 F(eie) | dd< oo or I (1+* 2 ) - 1 log+ | F(x) \dx<<*>. 

If u, v are nonzero scalar valued f unctions of class 9l+ then F is of class 
2flï(w, v) if and only if Fe is of class 3E(w, v) for each c £ C and (17) holds. 

PROOF. Suppose that Fc is of class 91+ for all c £ 6 and (17) holds. 
By (17) there is a scalar valued outer function 0 such that \<j>\^1 

= max(| T^, 1). Then </> and G=<j>F are bounded functions, and G0 

—<t>Fc is of class 31+ for all c £ e . Hence Gc is in H°° for all c £ e , so 
GG^S(e)- Therefore F is of class 9l+. We omit the easy proof of the 
converse statement. The second assertion follows directly from the 
first. 

3. The factorization problem for nonnegative operator valued func-
tions. Let F be a nonnegative operator valued function defined on the 
the circle T or the line R. We call F factorable if F~G*G a.e. for some 
operator valued function G of class 9l+ on T or R. If F is factorable, 
then, by Theorems 2.3 and 2.4, F = G*G a.e. for an essentially unique 
outer function G, or a unique outer function G such that G ( 0 ) ^ 0 
or G(i)^0 in the circle and line cases respectively. Here, of course, 
we treat functions which are equal a.e. as being identical, and "essen-
tial uniqueness" refers to constant partially isometric left factors as 
in Theorem 2.4. 

In the special case where F G ^ ^ o , F is factorable if and only if 
the induced S-Toeplitz operator TF on H% is factorable in the sense 
of Definition 1.5. Therefore the results in §1 can be made to yield 
sufficient conditions for F to be factorable. 

Suppose, for example, that F is a bounded nonnegative operator 
valued function on T or R which is of class 2flX(p, v) for some nonzero 
scalar valued function v of class 9l+. By Theorem 1.16, F is factor-
able, and moreover if G is an outer function such that F=G*G a.e. 
then G is of class 311(1, v). This result is already sufficient for a num-
ber of interesting applications. But in fact the assumption that F 
is bounded is redundant. 

3.1. THEOREM. Let F be a nonnegative operator valued f unction de-
fined onT or R which is of class 9TC(z>, v) for some nonzero scalar valued 
function v of class 9l+. Then F is factorable, and moreover if G is any 
outer f unction such that F=G*G ax., then G is of class 9iïl(l, v). 
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PROOF. We give the proof in the circle case. We can assume without 
loss of generality that v is an inner function. By assumption vF is of 
class 91+, so there exists a bounded scalar valued outer function 
0 ( ^ 0 ) such that <t>vF£H®{e)(T). The function K = $F<j> is bounded 
and it induces an S-Toeplitz operator TK on Hl(T). We show that 
TK is factorable as an S-Toeplitz operator. 

By Theorem 1.7 it is enough to show that lim ln(c)=0 as n—»«> 
for each c £ C , where 

In(c) = supf I (TKc,Snf)\ : ƒ G H%(T), (TKf,f) = 1} 

for all c £ © and » = 0, 1, 2, • • • . Here 6 is regarded as a subspace 
of H%(T) in the natural way. Let a be normalized Lebesgue measure 
on T; let x(ei6)~ eid> ei6ÇY\ and let P be the projection mapping 
L2

e(r) onto H%(T). Recall that 4>vFEH®{e)(T) and \v\ = 1 a.e. Con-
sider c£(B, / G i J e ( r ) , and estimate as follows: 

| < r * c , S » / > | = | f (Kc,xnf)eda 

-vc,xn4>tvFf) da 
à / e 

Px~nP ^ W, fl^'V) Y) da 

-If, 
-\f, 
= \ f {F^Px-nP — vc,vFll*4>f) da 

\Jv\ tf>* / e 

a I 0 I2 \ 1 / 2 

yW4>*Px-«P — vc\ da) (TKf,f) 
for any n — 0, 1, 2 , - - - . The inner products and norms appearing 
inside an integral apply to function values and, of course, are taken 
pointwise. Since Fl,2<j>* is a bounded function by the choice of <j>, we 
get a' I <t> I2 V / 2 

| p x - n p _ ^ ^ j _ const. ||S*ngc|| 
rl 4>* \ / 

for all c £ C and w = 0, 1, 2, • • • , where gc = P(<£/<£*)z/c. Since 5 is a 
shift operator, lim In(c) = 0 as n—><*> for all c £ C , so TK is factorable 
by Theorem 1.7. 

I t follows that K is factorable, and hence so is F. In fact, K = ikf*Af 
a.e. where MÇ£H®{Q)(T) and so F = G*G a.e. where G=(jrlM is of 
class Dl+. 
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If G is an outer function such that F=G*G a.e. then M=<j>G is an 
outer function in H^e)(T) such that M*M = K a.e. We show that 
the function W=<f>vG* is in iJ& (e )(r), thus proving that vG* is of 
class 91+ and hence G is of class 9Tl(l, v). Clearly W=vM*<f>/<l>* is 
bounded, and, by the choice of 0, 

WM = <j>2vFEH<sïe)(r). 

Therefore W CL(MH2
e(T)) QCL(H%(T)). Since M is a bounded outer 

function,if gGHlQ?) © CL(MH2
e(T)) thenS^EHl(T) e CL(MH%(T)) 

for a l l j = 0, 1, 2, • • • . 
Hence 

f (M*g, X-ju) da= f (x% Mu) dcr = 0 
•/ r v r 

for all uEH%(T), j = 0, 1, 2, • • • . I t follows that M*g = 0 a.e. so 
Wg = 0 a.e. But then WH%(T)QHl(T) so WeH^e)(T) and the proof 
is complete. 

Special choices of v in Theorem 3.1 lead to factorization theorems 
for polynomials, rational functions, and entire functions of exponen-
tial type. However, for polynomials and rational functions (bounded 
or unbounded on T or R) we do not need the full strength of Theorem 
3.1. In these cases it would be possible to argue directly from Theorem 
1.16. 

The operator generalization of the Fejér-Riesz theorem is due to 
Rosenblum [25], Rosenblatt [24], and Gohberg [9]. See also Helson 
[10]. 

3.2. THEOREM. Let F(eie) = ]C-n^Mti<? be a trigonometric polynomial 
whose coefficients are operators on © and which is nonnegative on T. 
Then F = G*G where G is an outer function on T of the form G(eid) 
= ^oCjeije for some operators C0, • • • , Cn on 6. 

PROOF. Let u(ei6)=eime, v(eie)=eine on T where m and n are non-
negative integers. A bounded weakly measurable operator valued 
function K on Y is of class 9ïl(w, v) if and only if uK, vK*EH^(e)(T)t 

or 

ƒ• 2 i r 

(K(eie)a, b)e*» dd = 0 
0 

whenever a, J £ 6 and either j>m or j< — n, or K(eie) = ]C"m5/e*# 
for some operators JB_W, • • • , Bn on 6. Thus the theorem follows 
from either Theorem 3.1 or Theorem 1.16. 

3.3. THEOREM. Let P(x) = Yjt?P&* be a polynomial whose coeffi-
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dents are operators on G and which is nonnegative on R. Then P = Q*Q 
where Q is an outer f unction on R of the f or m Q(x) = "ÏOoQjX'for some 
operators Q0, • • • , Qn on 6. 

PROOF. The function F(z) = (z2+l)"~nP(z) is meromorphic in the 
complex plane. Setting v(z) = [(2—i)/(z+i)]n we see thatv(z)F(z) and 
v(z)F(z) are analytic and bounded in the half-plane y>0. By Theorem 
2.8, F(x) is of class m(v, v) on R. By Theorem 3.1 or Theorem 1.16, 
F(x) ~G(x)*G(x) on R where G(x) is an outer function on R of class 
3ÏZ(1, v). By Theorem 2.8, G(x) is the restriction to the real axis of a 
meromorphic function G(z), defined in the complex plane and analytic 
a t each real point, such that G (z) and v(z)G(z) are analytic and have 
scalar outer majorants for y>0. Since G(x) and v(x)G(x) are bounded 
on R, actually G(z) and v{z)G{z) are bounded for y> 0 by Lemma 2.2. 
Thus, considering the upper and lower half-planes separately, we see 
that 

I (z + i)«G(z)\ < M(\z\ + 1)» 

for all complex z and some M>0. By Cauchy's estimates, Q(z) 
= (z+i)nG(z) is a polynomial of degree at most n. Since G{x) is an 
outer function on R, so is Q(x). By construction P(x) = Q(x)*Q(x) on 
R and the theorem follows. 

In §2 and the present section we have the standing assumption 
that 6 is a separable Hubert space. Actually Theorems 3.2 and 3.3 
are valid for nonseparable spaces 6 as well. Basically all that is needed 
to extend the proofs is to replace H%(T) by a more general Hubert 
space of square summable sequences or formal power series. If we 
then argue directly from Theorem 1.16, we obtain a proof of Theorem 
3.2 without the separability assumption. But then Theorem 3.3 can 
be deduced from Theorem 3.2 by a transformation of the independent 
variables. We chose a direct proof of Theorem 3.3 above to convey 
some feeling for the classes M(uy v). 

3.4. THEOREM. Let F(z) be an operator valued rational f unction which 
is either nonnegative at each point eiQQY which is not a pole, or nonegative 
at each point xÇzR which is not a pole. Then F(z) = G(z)G(z) where G(z) 
is an operator valued rational function such that the restriction of G{z) 
to the circle T or line R is an outer function. In particular, this G(z) 
is analytic in the disk \z\ < 1 or half-plane y>0 respectively. 

PROOF. We may choose a nonzero scalar polynomial q(z) such 
that the restriction of q(z) to T or R is an outer function and P(z) 
= q(z)q(z)F(z) is a polynomial in 1/z and z, respectively a polynomial 
in 0, with nonnegative values on T or R. Factor P(eid) = Q(ei$) *Q(ei6) 
or P(x) = Q(x)*Q(x) on T or R as in Theorem 3.2 or Theorem 3.3. 
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The required factorization is then obtained with G(z) = Q(z)/q(z). 
Let ƒ be a scalar valued entire function. We say t h a t / i s of exponen-

tial type if there is a real number r such that \f(z)\ ^Ke7^ for all z 
in the complex plane and some K>0. In this case the exact type of 
ƒ is defined to be the infimum 77 of all such numbers r. By Liouville's 
theorem r / è O except when ƒ = 0 , in which case 77 = — 00. We say 
that ƒ is of exponential type r, where r is a real number if ƒ is of ex-
ponential type and T/ST, For any entire function/, ƒ is the entire 
function such that ƒ(z) = ƒ(2). By a theorem of M. G. Kreïn [13], if 
ƒ is an entire function the following are equivalent: 

(i) the restrictions of ƒ and ƒ to the upper half-plane y>0 are of 
bounded type in the half-plane. 

(ii) ƒ is of exponential type and 

f (1 + x*)~1log+\f(x)\dx < 00. 
«/ —to 

See also de Branges [3]. If ƒ satisfies (i) and (ii) and is not iden-
tically zero, Nevanlinna's factorization gives 

(1 C °° 1 + tz log I Ht) I ) 

(1 r °° 1 + tz log I ƒ(/) I ) 
ƒ(*) = CLB-to*-*- ' exp { - I f ^ i i dt\ 

KwiJ -oo t — z 1 + t2 ) 

for y > 0 , where C+, C_ are constants of modulus 1, r+, r_ are real 
numbers, B+(z), B^{z) are Blaschke products, and the integrals con-
verge absolutely. The numbers r+ , r_ are called the mean types of ƒ 
and ƒ respectively (with respect to the upper half-plane). One of them 
may be negative, but r + + r _ ^ 0 and r/ = max(T+, r_), \r±\ g 77, where 
T/ is the exact type of ƒ. If / = 0 we set r + = r _ = — oo. In general 

(18) r± = lim sup y~~x log | f{±iy) | . 
y—• « 

See Boas [2], de Branges [3]. An entire function ƒ is said to be of 
Kreïn class, more precisely of class 5C(ri, r2) where ri, T 2 ^ 0 , if ƒ 
satisfies the equivalent conditions (i) and (ii), and r+rgri, T _ ^ T 2 
where r+ , r_ are defined for ƒ as above. 

We extend these concepts to operator valued functions. Recall 
that for any operator valued function F and any c £ C , Fc is the scalar 
valued function defined by Fc(-) = (F(-)c, c)e. An operator valued 
entire function F is said to be of exponential type r if for each c £ C 
the scalar valued entire function Fe is of exponential type r. An opera-
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tor valued entire function F is said to be of class 3C(ri, T2), n ^ O , 
r 2 èO, if for each c£<B the scalar valued entire function Fe is of class 
3C(TI, T2), and moreover 

ƒ 00 

(l + x2)-1log+\F(x)\dx < 00. 

3.5. LEMMA. Let F(x) be a locally bounded operator valued function 
defined on R. Let u(x) =eiTlx, v(x) — eiT2X on R where r i ^ O , r 2 èO. Then 
F(x) is of class 2Hfl(̂ , v) if and only if F(x) is the a.e. restriction to the 
real axis of an operator valued entire function of class 3C(ri, r2). 

PROOF. Suppose that F(x) —G{x) a.e. on R where G(z) is an opera-
tor valued entire function of class 3C(ri, r2). Using the Nevanlinna 
factorization we see at once that for each c £ e , Fc is of class 9TC(w, v). 
Also, by the definition of je(ri,r2), (l+x2)~1log+\F(x)\ G L ^ - o o , 00). 
Therefore by Lemma 2.9, F is of class WL(ut v). 

Conversely assume that F is of class 2iïl(&, v). Since F is locally 
bounded and u(z)=eiTlz, v(z)—eiT2Z are entire functions, by Lemma 
2.8, F(x)=G(x) a.e. for some operator valued entire function G(z) 
such that eiTlzG(z) and eir2Zö(z) have scalar outer majorants in the 
half-plane y>0. I t follows from Kreïn's theorem that, for each c £ 6 , 
the scalar valued entire function Gc is of exponential type. By (18) 
the mean types of Gc and (Gc)~= (G)c do not exceed n and r2 respec-
tively. In other words Gc is of class 3C(ri, r2) for each c G 6 . By Lemma 
2.2, (1+x2)-1 log+\G(x)\EL1(-o0y 00), and hence G(z) is of class 
3C(TI, r2). The result follows. 

We can now state an operator generalization of a classical factoriza-
tion theorem for entire functions of exponential type which are non-
negative on the real axis (Boas [2, p. 125], de Branges [3, p. 34], 
Levin [16, p. 437]). 

3.6. THEOREM. Let F(z) be an operator valued entire function of 
exponential type T , T ^ 0 , such that F(x) ^Ofor all real x, and 

ƒ 00 

(1 + x2)-1 log+1 F(x) J dx < 00. 

Then F(z) — G(z)G(z) for some operator valued entire function G(z) 
such that e~(l,2)iTZG(z) is of exponential type \T and the restriction of G(z) 
to the real axis is an outer function. 

A similar result is proved by the authors in [26]. The theorem stated 
here is a stronger result, and the proof which we give is considerably 
simpler than our previous argument. 
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PROOF. The function F(z) is of class 3C(r, r ) , so by Lemma 3.5 its 
restriction F(x) to R is of class 9ïl(ü, v) where v(x)~eiTX. Factor 
F(x)=G(x)*G(x) a.e. as in Theorem 3.1 where G{x) is outer and 
of class 3TC(1, v). By Lemma 3.5 we can alter G(x) on a set of mea-
sure zero so that it becomes the restriction to R of an operator 
valued entire function G(z) of class 3C(0, r ) . By analyticity F(z) 
= G{z)G(z) for all complex z, and e~-al2)iTZG(z) is of class 3C(|r, | r ) and 
hence of exponential type | T . 

Theorem 3.6 has a curious application to scalar valued entire 
functions. 

3.7. THEOREM. Let ƒ be a scalar valued entire function of exponential 
type r, r ^ O , such that \f(x)\ ^ 1 for all real x. Then f=ab+cd where 
a, by c, d are entire functions of exponential type | r such that âa+ëc 
— bb + dd~l identically. 

PROOF. Apply Theorem 3.6 to the matrix valued entire function 
F= [\ {]. Write e~al2)iTg G= [* I] and compare matrix entries in the 
relation F=ÖG. 

We return again to the general factorization problem for nonnega-
tive operator valued functions on the circle or line. For functions 
which have invertible values a.e. there is a simple sufficient condition 
for factorability (Lowdenslager [17], Devinatz [6], Douglas [7]). 

3.8. THEOREM. Let F be a weakly measurable nonnegative operator 
valued function which has invertible values a.e. on T or R. Suppose that 
either 

log+1 F(e*) | and log+ j F^6)"11 G Ll(0, 2w) 

or 

(1 + x2)~l\og*-\F(x)\ and (1 + x2)"1 log+ | F(x)~l\ G Ll(- «>, <*>). 

Then F is factorable, i.e. F=G*G a.e. for some operator valued f unction 
G of class 91+ on T or R. 

PROOF. We reduce to the case where F is bounded. In fact, consider 
Fi = F/f where / ( • ) = n i a x ( l , |-F(*)|)« O u r assumptions imply that ƒ 
is a factorable scalar valued function, so F and F\ are simultaneously 
factorable or not. Since OSFi^I on Y or R} we may assume that 
Og FSI on T or R. But now F^ml on T or R where m( •) = | ^ (O" 1 ! - 1 

is a factorable scalar valued function, say m = | ^ | 2 where \p is a 
bounded scalar valued outer function on T or R. The proof can now 
be completed by showing that the hypotheses of Theorem 1.18 are 
satisfied with 3C~H%, 7 \ = TmT, and T%—TF. If (/n)f is a sequence in 
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H% such that 

lim (T2(fn - ƒ*),ƒ» - ƒ*> « 0 and lim (Tifn,fn) = 0, 

then (Fll2fn)i is a Cauchy sequence in L\ and (&fn)i converges to 0 
in the metric of L%. But then \pfni—>0 a.e. for a suitable subsequence, 
and hence/Wi—>0 a.e. and F1,2fnj-^0 a.e. (in the metric of C). I t follows 
that ^1/2/n->0 in the metric of L\ and limn^00(r2/n, ƒ„) = 0. By 
Theorem 1.18, T2=TF is factorable as an 5-Toeplitz operator and 
therefore F is factorable. 

REFERENCES 

1. N. I. Ahiezer, On the theory of entire f unctions of finite degree, Dokl. Akad. Nauk 
SSSR 63 (1948), 475-478. (Russian) MR 10, 289. 

2. R. P. Boas, Jr, Entire functions. Academic Press, New York, 1954. MR 16, 914. 
3. L. de Branges, Hubert spaces of entire functions, Prentice-Hall, Englewood 

Cliffs, New Jersey, 1968. MR 37 #4590. 
4. L. de Branges and J. Rovnyak, "Appendix on square summable power series,n 

in Canonical models in quantum scattering theory, Perturbation Theory and its Appli-
cations in Quantum Mechanics, Wiley, New York, 1966, pp. 347-392. 

5. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine 
Angew. Math. 213 (1963/64), 89-102. MR 28 #3350; MR 30 p. 1205. 

6. A. Devinatz, The factorization of operator valued functions, Ann. of Math. (2) 
73 (1961), 458-495. MR 23 #A3997, 

7. R. G. Douglas, On factoring positive operator functions, J. Math. Mech. 16 
(1966), 119-126. MR 35 #782. 

8. L. Gârding and L. Hörmander, Strongly subharmonic functions, Math. Scand. 
15 (1964), 93-96. MR 31 #3621. 

9. I. C. Gohberg, The factorization problem for operator functions, Izv. Akad. Nauk 
SSSR Ser. Mat. 28 (1964), 1055-1082; English transi., Amer. Math. Soc. Transi. (2) 
49 (1966), 130-161. MR 30 #5182. 

10. H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964. 
MR 30 #1409. 

11. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several 
variables, Acta Math. 99 (1958), 165-202; II, ibid. 106 (1961), 175-213. MR 20 #4155; 
MR 31 #562. 

12. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Series in 
Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844. 

13. M. G. Kreïn, A contribution to the theory of entire f unctions of exponential type, 
Izv. Akad. Nauk SSSR 11 (1947), 309-326. (Russian) MR 9, 179. 

14. T. L. Kriete, A generalized Paley-Wiener theorem, J. Math. Anal. Appl. (to 
appear). 

15. P. D. Lax, Translation invariant spaces, Proc. Internat. Sympos. on Linear 
Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon Press, 
Oxford, 1961. MR 25 #4345. 

16. B. Ja. Levin, Distribution of zeros of entire functions, GITTL, Moscow, 1956; 
English transi., Transi. Math. Monographs, vol. 5, Amer. Math. Soc, Providence, 
R. I., 1964. MR 19, 402; MR 28 #217. 



318 MARVIN ROSENBLUM AND JAMES ROVNYAK 

17. D. Lowdenslager, On factoring matrix valued functions, Ann. of Math. (2) 78 
(1963), 450-454. MR 27 #6094. 

18. P. Masani, Shift invariant spaces and prediction theory, Acta Math. 107 (1962), 
275-290. MR 25 #4344. 

19. B. Moore, Outer factorization f or vectorial Toeplitz operators, Dissertation, Uni-
versity of Virginia, Charlottesville, Va., 1969. 

20. , The Szeg'ô infimum, Proc. Amer. Math. Soc. 29 (1971), (to appear). 
21. B. Sz.-Nagy and C. Foias, Analyse harmonique des operateurs de Vespace de 

Hubert, Masson, Paris; Akad. Kiadó, Budapest, 1967. MR 37 #877. 
22. I. I. Privalov, Boundary properties of analytic functions, GITTL, Moscow, 

1950; German transi., Hochschulbücher für Math., Band 25, VEB Deutscher Verlag, 
Berlin, 1956. MR 13, 926; MR 18, 727. 

23. E. A. Robinson, Extremal representation of stationary stochastic processes, Ark. 
Mat. 4 (1962), 379-384. MR 25 #4576. 

24. M. Rosenblatt, A multi-dimensional prediction problem, Ark. Mat. 3 (1958), 
407-424. MR 19, 1098. 

25. M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. 
Math. Anal. Appl. 23 (1968), 139-147. MR 37 #3378. 

26. M. Rosenblum and J. Rovnyak, Factorization of operator valued entire f unc
tions, Indiana Univ. Math. J. 20 (1970), 157-173. 

27. Ju A. Rozanov, Stationary random processes, Fizmatgiz, Moscow, 1963; 
English transi., Holden-Day, San Francisco, Calif., 1967. MR 28 #2580; MR 35 
#4985. 

28. N. Wiener and P. Masani, The prediction theory of multivariate stochastic 
processes. I. The regularity condition, Acta Math. 98 (1957), 111-150; II. The linear 
predictor, ibid., 99 (1958), 93-137. MR 20 #4323; MR 20 #4325. 

UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22901 


