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1 Introduction

Most discussions of bulk physics in AdS/CFT focus on perturbative fields about a fixed

background [1–8]. This has led to much progress in understanding the correspondence,

see [9] for a recent review, but sooner or later we will need to confront the fact that the

bulk theory is gravitational; in generic states gravitational backreaction cannot be treated

as an afterthought. In particular the strong redshift effects near black hole horizons make

physics from the point of view of the outside observer unusually sensitive to gravitational

effects there [10–14]. Gravitational backreaction also provides the mechanism by which the

holographic encoding of the higher-dimensional bulk into the lower-dimensional boundary

theory breaks down if we try to preserve bulk locality beyond what is allowed by holographic

entropy bounds [9, 15–17].

One especially confusing aspect of gravitational physics is that time translations are

gauge transformations: much of the interesting dynamics is tied up in the gauge constraints.

For example consider figure 1. It is sometimes said that in the context of the two-sided

AdS-Schwarzschild geometry, we can see the interior of the wormhole by evolving both

boundary times forward [18–22]. But in fact as we move from the left to the central

diagram in figure 1, we see that we can evolve the boundary times as far to the future as

we like without ever having the bulk time slice go behind the horizon. It is not until we move

the interior part of the slice up that we start to directly see physics behind the horizon, but

this is precisely the part of the evolution which is generated by the Hamiltonian constraint

of general relativity. How are we to distinguish the slices in the center and right diagram,

when from the CFT point of view they describe precisely the same quantum state?
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Figure 1. Different kinds of time evolution in the bulk and boundary: the endpoints of a bulk

timeslice are moved up and down using the ADM Hamiltonian, while the interior of the slice is

evolved using the Hamiltonian constraint. Since the Hamiltonian constraint is zero on physical

states, the second two slices describe the same CFT state.

A related point is that the entire formation and evaporation of a small black hole in

AdS is spacelike to some boundary time slice, and thus must be describable purely via

the Hamiltonian constraints. In other words, there is a spatial slice that intersects the

collapsing matter prior to the formation of an event horizon and another spatial slice that

intersects the Hawking radiation after the complete evaporation of the resulting black hole,

both of which asymptote to the same time slice of the boundary. Such a description of

the Hawking process would be complementary to the more standard one in which tempo-

ral diffeomorphisms are imagined to be gauge fixed, directly tying together the bulk and

boundary time evolutions.

Another interesting question related to the black hole interior and gauge constraints is

the following. Say that we believe that a black hole which evolves for a long enough time

develops a firewall [23, 24]. Where precisely does it form? A naive answer would be at the

event horizon, but this is unlikely to actually be correct. The event horizon is a teleological

notion, which for example can be modified by putting our evaporating black hole inside

of a huge shell of collapsing matter, which will not collapse until long after our black hole

evaporates. It seems doubtful, to say the least, that we could remove a firewall by so silly

a trick as this. One might also suggest that firewalls form at “the” apparent horizon, but

actually apparent horizons are highly non-unique since they depend on a choice of Cauchy

slice [25]. The recently studied “holographic screens” [26] also are too non-unique to do

the job. If indeed there are firewalls, there should be a gauge-invariant prescription for

where (and also how) they form.1

In this paper we will be primarily interested in a third issue raised by considering grav-

itational physics in AdS/CFT: the factorization problem [27, 28]. This is the observation

that the presence of gauge constraints in the bulk poses a potential obstacle to the exis-

1There is clearly at least some approximate sense of “where” the edge of a black hole currently is, for

example the event horizon telescope will soon image the disc of Sagittarius A* and the LIGO team already

simulates black hole merger events using code which excises some kind of black hole region. It would be

interesting to understand the generality of the underlying assumptions in such calculations, and whether

or not a formal definition could be given which applies in sufficiently generic situations to be relevant for

the firewall arguments.
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tence of a CFT dual, since such constraints might not be consistent with the tensor product

structure of the boundary field theory when studied on a disconnected spacetime. As a

simple example, consider 1 + 1 dimensional Maxwell theory on a line interval times time:

S = −1

4

∫ ∞
−∞

dt

∫ L

0
dxFµνF

µν . (1.1)

The equations of motion for this theory tell us that the electric field is constant throughout

spacetime, but its value cannot be the only dynamical variable since phase space is always

even-dimensional. To find the other dynamical variable we need to be more careful about

the boundary conditions: the variation of the Maxwell action on any spacetime M has a

boundary term

δS ⊃ −
∫
∂M

√
γrµF

µνδAν , (1.2)

where rµ is the (outward pointing) normal form. To formulate a good variational problem,

we need to impose boundary conditions such that this term vanishes for variations within

the space of configurations obeying the boundary conditions. There are various options for

these boundary conditions, the natural choice for AdS/CFT (the “standard quantization”)

is to take

Aµ|∂M ∝ rµ. (1.3)

These boundary conditions are not preserved under general gauge transformations: we

must at least require that any gauge transformation Λ(x) approaches a constant on each

connected component of ∂M . In fact the most natural choice is to require that these con-

stants are all zero (modulo 2π) for the gauge transformations which we actually quotient

by: transformations where they are nonzero are then viewed as asymptotic symmetries

which act nontrivially on phase space.2 For our example on R × I, it is always possible

to go to A0 = 0 gauge by a gauge transformation that vanishes at the endpoints of the

interval. The equation of motion then requires that

Ax = −Et+ a, (1.4)

where a is a constant which could be removed by an “illegal” gauge transformation Λ =

−ax. Since we are not allowed to do such gauge transformations, a is physical: in fact it is

nothing but the Wilson line from x = 0 to x = L at t = 0. After quantization, this system

just becomes the quantum mechanics of a particle on a circle (here we are assuming the

gauge group is U(1), not R), and in particular it has no tensor product decomposition into

degrees of freedom to the left and right of the line x = L/2.

Of course pure Maxwell theory is not expected to have a gravity dual anyways, so the

non-factorization of this system may at first appear uninteresting. But in fact it has far-

reaching consequences: the Einstein-Maxwell theory on the two-sided AdS-Schwarzschild

2In AdS/CFT this is motivated by wanting to preserve boundary locality. Quotienting by gauge transfor-

mations which approach nonzero constants amounts to imposing a singlet condition for a global symmetry

in the boundary CFT, which violates locality. When the boundary is 0 + 1 dimensional locality is a less

serious constraint, but we still want to avoid projections that mix the two asymptotic boundaries. Quoti-

enting by gauge transformations which approach independent nonzero constants on the different boundary

components requires us to just set E = 0, which leads to an empty theory.
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geometry in any spacetime dimension has a zero mode sector which is equivalent to this the-

ory, and which tells us, among other things, that in gravitational theories with CFT duals,

one-sided states must exist with all gauge charges allowed by charge quantization [27, 29].

Nonetheless it would be nice to concretely realize the factorization problem in a gravita-

tional model, which at least somewhat plausibly might have been hoped to have a CFT

dual. Our main goal in this paper is to do precisely this.

The theory we will study is the 1 + 1 dimensional Jackiw-Teitelboim theory of dilaton

gravity [30–32], with bulk Lagrangian density

L = Φ0R+ Φ(R+ 2). (1.5)

The first two sections of our paper will simply repeat the analysis sketched above for

Maxwell theory in this model, which we will see similarly does not have a factorized Hilbert

space.3 This lack of factorization implies that the theory cannot have a CFT dual, nev-

ertheless it is a self-consistent quantum mechanical system, albeit one with a continuous

spectrum. There is nothing in the gravitational analysis that requires a breakdown of the

JT description. However, we will comment on what might be added to the theory so that

it could have a CFT dual; then the JT Lagrangian would be a low energy approximation

and the canonical gravity analysis would eventually exit its regime of validity.

There has been considerable recent interest in this model, see [36] for a nice review

and further references. Our approach however is rather different in method and emphasis

from this literature:

• We work primarily in Lorentzian signature, focusing on identifying the physical on-

shell degrees of freedom.

• The “Schwarzian” Lagrangian will make no appearance in our analysis. Indeed the

Schwarzian theory is not sensible by itself in Lorentzian signature, from our point of

view it is an artifact of a particular way of evaluating the Euclidean path integral.

• We will make almost no mention of the group SL(2,R), which acts on the JT theory

neither as a global symmetry nor as a natural subgroup of the gauged diffeomorphism

group.

These differences arise because our analysis is not particularly motivated by the SYK

model [37–42], while the Schwarzian action on elements of diff(S1)/SL(2,R) is particularly

well-suited for understanding how the JT theory is embedded in that model [38, 39, 41–45].

We nonetheless include a section where we explain how our analysis fits into the Lorentzian

version of the SYK model, and we will there explain how to understand our results in the

Schwarzian language. We hope that our analysis of the JT theory with “more conventional”

techniques will be useful even to SYK-oriented readers.

Finally we discuss some of the possible implications of our work for higher-dimensional

gravity. In particular, we will argue that there is a quite close analogy between JT gravity

3A similar analysis of the asymptotically-Minkowski CGHS model was done in [33]. See also [34, 35],

who discussed degrees of freedom related to those we find here in a one-sided context.
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in 1 + 1 dimensions and pure Einstein gravity in 2 + 1 dimensions: both seem to have

precise path integral descriptions in the bulk, both have wormhole solutions, both have

a two-sided Hilbert space which does not factorize, neither have black hole microstates

counted by the Bekenstein-Hawking formula, and neither have CFT duals. In both cases

the answers to these questions become more standard once matter is added, something we

leave for future work.

Previous attempts to quantize Jackiw-Teitelboim gravity with other boundary condi-

tions include [46–48].

2 Classical Jackiw-Teitelboim gravity

The Jackiw-Teitelboim action on a 1 + 1 dimensional asymptotically-AdS spacetime M is

given by

S = Φ0

(∫
M
d2x
√
−gR+ 2

∫
∂M

√
|γ|K

)
+

∫
M
d2x
√
−gΦ (R+ 2)+2

∫
∂M

dt
√
|γ|Φ(K−1).

(2.1)

Here Φ0 is a large positive constant, which in a situation where we obtained this theory by

dimensional reduction would correspond to the volume in higher-dimensional Planck units

of the compact directions [32, 49]. From a two-dimensional point of view Φ0 is just the

coefficient of the topological Einstein-Hilbert part of the action. Φ is a dynamical scalar

field we will call the dilaton. K is the trace of the extrinsic curvature of the boundary,

defined as

K ≡ γµν∇µrν , (2.2)

with γµν the induced metric on the boundary and rµ the outward-pointing normal form

there.4 The boundary term not involving K is a holographic renormalization, which en-

sures that the action and Hamiltonian are finite on configurations obeying the boundary

conditions we will soon discuss. The variation of this action is5

δS =

∫
d2x
√
−g
[(

1

2
(R+ 2)Φgµν −RµνΦ +∇µ∇νΦ− gµν∇2Φ

)
δgµν

− Φ0

(
Rµν − 1

2
Rgµν

)
δgµν + (R+ 2)δΦ

]
+

∫
∂M

dx
√
|γ|
[
2(K − 1)δΦ + (rν∇νΦ− Φ) γαβδγαβ

]
, (2.4)

4In our conventions the normal vector rµ is outward-pointing if it is spacelike but inward-pointing if it

is timelike. This ensures that Stokes theorem∫
M

ddx
√
|g|∇µV µ =

∫
∂M

dd−1x
√
|γ|rµV µ (2.3)

holds regardless of the signature of the boundary. The induced metric is related to the ordinary one by

γµν ≡ gµν ∓ rµrν , where rµ is spacelike/timelike.
5For spacetimes with additional boundaries which are not asymptotically-AdS, such as the time slice Σ

we will use in computing the Hartle-Hawking wave function below, this equation remains correct except that

the terms −
∫
∂M

dx
√
|γ|
(
2δΦ + Φγαβδγαβ

)
appear only on the asymptotically-AdS parts of the boundary,

since it is only there that we include the holographic renormalization counterterm −2
∫
dx
√
|γ|Φ.
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so after some simplification the equations of motion are

R+ 2 = 0

(∇µ∇ν − gµν) Φ = 0. (2.5)

As in the electromagnetic case, we need to choose boundary conditions such that the

boundary terms in (2.4) vanish for any variation in the space of configurations obeying

these boundary conditions. The obvious choice is to fix the induced metric γµν and dilaton

Φ at the AdS boundary, which we can do by imposing

γtt|∂M = r2
c

Φ|∂M = φbrc (2.6)

and then taking rc → ∞ with φb fixed and positive. φb is analogous to the AdS radius

in Planck units in higher dimensions, it will be large in the semiclassical limit. These

boundary conditions are only preserved by the subset of infinitesimal diffeomorphisms ξµ

which approach an isometry of the boundary metric,

γ α
µ γ β

ν ∇(αξβ)|∂M = 0, (2.7)

which means that the pullback of ξµ to each component of ∂M must be a time translation.

As in electromagnetism, we will only actually quotient by diffeomorphisms where these

time translations are trivial, with the motivation again being to preserve boundary locality

(note also that otherwise we would be left with a boundary theory with no states of nonzero

energy). We thus expect boundary time translations to be asymptotic symmetries which

act nontrivially on phase space: indeed they will be generated by the ADM Hamiltonians

on the respective boundaries.

To understand these Hamiltonians more concretely, we can then define a “CFT metric”

at each boundary,

γCFT
µν ≡ γµν

r2
c

, (2.8)

in terms of which we can define a boundary stress tensor [50]

TµνCFT ≡
2√
|γCFT|

δS

δγCFT
µν

. (2.9)

From (2.4) we then apparently have

TµνCFT = 2r3
cγ

µν
(
rλ∇λΦ− Φ

)
|∂M . (2.10)

The tt component of this (which is the only component) at each boundary is the AdS ana-

logue of the ADM Hamiltonian for that boundary, and the full canonical Hamiltonian is the

sum of these Hamiltonians. From now on we specialize to boundary conditions where there

are precisely two asymptotically-AdS boundaries: we are then restricting to spacetimes

with topology R × [0, 1], on which the metric and dilaton obey (2.6) at each asymptotic

boundary, and the full Hamiltonian H is the sum of left and right ADM Hamiltonians HL

and HR.

– 6 –
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2.1 Solutions

There are various ways to describe the set of solutions of the equations of motion (2.5).

One nice way is to observe that the first equation requires the metric to have constant

negative curvature, which means that it is described by a piece of AdS2. AdS2 can be

obtained via an embedding into 1 + 2 dimensional Minkowski space, with metric

ds2 = −dT 2
1 − dT 2

2 + dX2. (2.11)

AdS2 is the universal cover of the induced geometry on the surface

T 2
1 + T 2

2 −X2 = 1 (2.12)

in this Minkowski space. The two AdS boundaries are at X → ±∞.

We may then ask what the set of possible solutions for Φ look like: the answer is

that for any solution of (2.5), the slices of constant Φ are given by the intersections of the

embedding surface (2.12) with a family of hyperplanes

Φ = AT1 +BT2 + CX, (2.13)

where A,B,C are three fixed real parameters which label the solution: we can think of

them as parametrizing the normal vector nµ = (−A,−B,C) to the hypersurfaces. The

solutions where nµ is spacelike or null will never obey our boundary conditions (2.6), since

Φ will be negative almost everywhere on one of the AdS boundaries at X → ±∞. When

nµ is timelike, we can set B = C = 0 by an SO(1, 2) rotation in the embedding space, so

we can restrict to solutions of the form

Φ = ΦhT1, (2.14)

where we have relabelled A to Φh for a reason which will be apparent momentarily.

We can present these solutions more concretely by choosing coordinates

T1 =
√

1 + x2 cos τ

T2 =
√

1 + x2 sin τ

X = x, (2.15)

in terms of which we have

ds2 = −(1 + x2)dτ2 +
dx2

1 + x2

Φ = Φh

√
1 + x2 cos τ. (2.16)

We illustrate this solution in figure 2. Its maximal extension involves infinitely many

boundary regions, some with Φ = +∞ and some with Φ = −∞. As is normal with

Reissner-Nordstrom-type solutions, we expect that small matter fluctuations (once matter

is included) will cause the “inner horizons”, where Φ = −Φh, to become singular, collapsing

– 7 –
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Figure 2. The dilaton profile in the wormhole solution of Jackiw-Teitelboim gravity. Between

the two vertical black lines the geometry is global AdS2, and we indicate the value of the dilaton

on various surfaces. In Reissner-Nordstrom language, the dashed black lines where Φ = Φh are

the “outer horizon”, while the dashed red lines where Φ = −Φh are the “inner horizon”. The

dynamical problem with boundary conditions (2.6) is well-defined only in the shaded green region.

If we assume that the inner horizon is singular, this solution describes a wormhole connecting two

asymptotically-AdS boundaries.

the geometry down to just the wormhole region shaded green in figure 2. In pure Jackiw-

Teitelboim gravity there is no matter which can do this, but the dynamical problem with

two asymptotically-AdS boundaries obeying (2.6) is still only well-defined in the green

region, since additional boundary data would be needed to extend the solution out of this

region. Since we are primarily interested in constructing a theory which is a good model

for gravity in higher dimensions, where the inner horizon is indeed always singular, we find

it simplest to just truncate the spacetime at the inner horizon.6

In addition to these “global” coordinates, we can also go to “Schwarzschild” coordi-

nates, via

T1 = r/rs

T2 =
√

(r/rs)2 − 1 sinh(rst)

X =
√

(r/rs)2 − 1 cosh(rst), (2.17)

in terms of which we have

ds2 = −(r2 − r2
s)dt

2 +
dr2

r2 − r2
s

Φ = φbr. (2.18)

6Were we not to do this, then we would need to include additional degrees of freedom to keep track of

what happens on the other pieces of the boundary.
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For r > rs and −∞ < t <∞, these coordinates cover the “right exterior” piece of the green

shaded region in figure 2, which as usual lies between the right asymptotic boundary and

the right part of the Φ = Φh bifurcate outer horizon. The parameters of these solutions

are related via

rs =
Φh

φb
. (2.19)

These coordinates have the nice feature that slices of constant r are also slices of constant

Φ, so in particular the cutoff surface in the boundary conditions (2.6) just lies at r = rc,

and moreover t becomes the boundary time.

From (2.18) it is easy to evaluate the boundary stress tensor (2.10) on each boundary

for these solutions, one finds

HL = HR =
Φ2
h

φb
, (2.20)

so the full canonical Hamiltonian evaluates to

H = HL +HR =
2Φ2

h

φb
. (2.21)

2.2 Phase space and symplectic form

In the previous subsection we described a one-parameter family of solutions of the JT

theory, labeled by the value of the dilaton on the bifurcate horizon, Φh. This parameter

is analogous to the electric field in our 1 + 1 Maxwell example: it is locally measurable.

As in the Maxwell example however, Φh cannot be the only parameter on the space of

solutions: phase space must be even-dimensional. The other parameter, analogous to a

in the Maxwell example, arises because in going to the coordinates (2.16), we in fact did

an illegal gauge transformation. The easiest way to restore any solution parameters we

removed this way is to act with another illegal gauge transformation, of the class which

approaches an asymptotic symmetry at infinity: the parameters of this gauge transforma-

tion (modulo legal gauge transformations) will become the gravitational analogue of a in

the electromagnetic example. In the present discussion, the only asymptotic symmetries

are time translations on the left and right asymptotic boundaries. So at first it might seem

that we have discovered two new parameters: our phase space still seems odd-dimensional!

But in fact equation (2.20) tell us that HL = HR on all solutions, so the operator HL−HR

generates no evolution on phase space. Thus we have only one new parameter, which we

will call δ, which tells us how long we evolved the solution (2.16) by HR + HL. More

explicitly, the relationship between global time τ and the “left” and “right” Schwarzschild

times tL, tR at the AdS boundaries is

cos τ =
1

cosh(rstL)
=

1

cosh(rstR)
, (2.22)

so a slice which is attached to the left and right boundaries at tL and tR respectively has

δ =
tL + tR

2
. (2.23)

We illustrate this in figure 3.

– 9 –
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Figure 3. Different time slices of the wormhole solution can correspond to different initial data for

the JT gravity. Here the first and second slices are different points in phase space, while the first

and third are the same since they differ by evolution by HR −HL.

Figure 4. Using a geodesic, shown in red, to measure δ.

There is another somewhat more operational way of describing δ, shown in figure 4.

The idea is to start at the point on the left boundary where our time slice is attached,

fire a geodesic into the bulk which is orthogonal to surfaces of constant Φ, and then see at

what time t̂R this geodesic arrives at the right boundary. We then have

tR − t̂R = 2δ, (2.24)

where tR is the time where our time slice intersects the right boundary. Thus we can think

of δ as measuring the “relative time shift” between the two boundaries: from now on we

will refer to it as the “time shift operator” From this point view, the time shift operator is

quite similar to the one-sided “hydrodynamic modes” discussed in [34, 35].

We thus have arrived at the following two-dimensional Hamiltonian system:

δ̇ = 1

Φ̇h = 0

H =
2Φ2

h

φb
. (2.25)

The ranges of these phase space coordinates are Φh > 0, −∞ < δ <∞. For any Hamilto-

nian system the symplectic form ωab is defined by

ẋa = (ω−1)ba∂bH, (2.26)

– 10 –
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so from (2.25) we apparently have

ω =
4Φh

φb
dδ ∧ dΦh, (2.27)

which is more elegantly written by changing coordinates from Φh to H, giving us

ω = dδ ∧ dH. (2.28)

Thus δ is simply the canonical conjugate of H.

Before moving on to the quantum theory, it is convenient to here introduce another

pair of coordinates on this phase space. Roughly speaking these are the geodesic distance

between the two endpoints of a time slice and its canonical conjugate, but since that

distance is infinite in the rc → ∞ limit we need to be a bit more careful. We will defined

a “renormalized geodesic distance”, L, via

L ≡ Lbare − 2 log(2Φ|∂M ). (2.29)

Using the symmetry generated by HR − HL we can always choose tL = tR, so then

from (2.16), we have

Lbare =

∫ xc

−xc

dx√
1 + x2

, (2.30)

with xc determined in terms of rc by solving

φbrc = Φh

√
1 + x2

c cos τ (2.31)

and τ determined in terms of δ via (2.22) and (2.23). We then find

L = 2 log

(
cosh (Φhδ/φb)

Φh

)
= 2 log

(
cosh

(√
E

2φb
δ

))
− log

φbE

2
, (2.32)

which shows that L is indeed a well-defined function on our two-dimensional phase space.

A calculation then shows that if we define

P = 2Φh tanh (Φhδ/φb) =
√

2φbE tanh

(√
E

2φb
δ

)
, (2.33)

the symplectic form becomes

ω = dL ∧ dP, (2.34)

so L and P are canonically conjugate variables, both ranging from −∞ to ∞. The Hamil-

tonian takes a very nice form in terms of L and P :7

H =
P 2

2φb
+

2

φb
e−L. (2.35)

In terms of the renormalized geodesic length, JT gravity becomes just the mechanics of a

non-relativistic particle moving in an exponential potential! This is a scattering problem,

with waves that come in from L = ∞ and reflect off of the potential, and indeed that is

what happens in the solutions (2.16).

7We thank Henry Lin for pointing out an error in the first version of this paper, which originated in

equation (2.17) and led to a much more unpleasant formula for the Hamiltonian.
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3 Quantum Jackiw-Teitelboim gravity

We now discuss the quantization of JT Gravity, starting with the Hilbert space formalism.

3.1 Hilbert Space and energy eigenstates

The most straightforward proposal for the Hilbert space of the quantum JT theory is that

it is spanned by a set of delta-function normalized states |E〉, with E > 0, such that

H|E〉 = E|E〉. (3.1)

We then can define the time shift operator as

δ ≡ i ∂
∂E

(3.2)

in the energy representation. Requiring that δ is hermitian on this Hilbert space then tells

us that we must restrict to wave functions ψ(E) which vanish at E = 0.

The reader may (rightly) be uncomfortable with this however: there is an old argument

due to Pauli that there can be no self-adjoint “time operator” which is canonically conjugate

to the Hamiltonian in a quantum mechanical system whose energy is bounded from below.

The argument is trivial: if δ were self-adjoint, then we could exponentiate it to obtain

the set of operators eiaδ, which we could use to lower the energy as much as we like,

contradicting the lower bound on the energy (see [51] for a more rigorous version of this

argument). Therefore our δ, though hermitian, must not be self-adjoint. In fact this

problem is visible already in the classical system: the vector flow on phase space generated

by δ hits the boundary at H = 0 in finite time.

These subtleties may be avoided if we instead use the renormalized geodesic distance

operator L. Classically this generates a good flow on phase space, so it should correspond

to a self-adjoint operator and thus have a basis of (delta-function normalized) eigenstates.

As usual in single-particle quantum mechanics, we can construct the Hilbert space out of

L2-normalizable functions of L. The energy eigenstates have wave functions which can be

determined from the Schrodinger equation:

− 1

2φb
Ψ′′E(L) +

2

φb
e−LΨE(L) = EΨE(L). (3.3)

The normalizable solutions of this equation with E > 0 are constructed using modified

Bessel functions, in the usual scattering normalization we have

ΨE(L) =
21−2i

√
2Eφb

Γ(−2i
√

2Eφb)
K2i
√

2Eφb

(
4e−L/2

)
. (3.4)

These wave functions decay doubly exponentially at large negative L, while at large positive

L we have

ΨE(L) ≈ e−i
√

2EφbL +Rei
√

2EφbL, (3.5)

with reflection coefficient

R = 2−4i
√

2Eφb
Γ(2i
√

2Eφb)

Γ(−2i
√

2Eφb)
. (3.6)

– 12 –



J
H
E
P
0
2
(
2
0
2
0
)
1
7
7

The Gamma function identity Γ(z)∗ = Γ(z∗) tells us that this reflection coefficient is a pure

phase, as is necessary since there is no transmission. These expressions can be thought of

as providing an exact solution of quantum JT gravity with two asymptotic boundaries.

3.2 Euclidean path integral

It may seem that given the scattering wave functions (3.4), no more needs to be said about

quantum JT gravity. To compare to what we do in higher dimensions however, it is useful

to consider how standard Euclidean gravity methods are related to our exact solution. We

begin this discussion by reviewing the Euclidean path integral for JT gravity with one

asymptotic boundary, on which the time coordinate tE has periodicity β. Namely we sum

over geometries with the topology of the disk, and with induced metric

γtEtE =
1

r2
c

(3.7)

at the boundary. We then again take the dilaton to obey

Φ|∂M = φbrc, (3.8)

and take rc →∞ to get asymptotically-AdS boundary conditions. The Euclidean action is

− SE =

∫
M
d2x
√
g [Φ0R+ Φ(R+ 2)] + 2

∫
∂M

dx
√
γ [Φ0K + Φ(K − 1)] . (3.9)

The saddle point for this path integral is the Euclidean Schwarzschild solution

ds2 = (r2 − r2
s)dt

2
E +

dr2

r2 − r2
s

Φ = φbr, (3.10)

where smoothness at r = rs requires

rs =
2π

β
. (3.11)

The extrinsic curvature at the boundary is

K =
rc√
r2
c − r2

s

= 1 +
1

2

r2
s

r2
c

+ . . . , (3.12)

so evaluating the Euclidean action on this solution one finds [45]

Z[β] ≡
∫
DgDΦ e−SE ≈ e4πΦ0+

4π2φb
β . (3.13)

If we interpret this as a thermal partition function, then we can use standard thermody-

namic formulas to find the energy and entropy:

〈HL〉 = −∂β logZ =
4π2φb
β2

= φbr
2
s =

Φ2
h

φb

S = β〈HL〉+ logZ = 4π (Φ0 + Φh) . (3.14)
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Figure 5. The Hartle-Hawking state: we sum over geometries and dilaton configurations with an

AdS boundary of length rcβ/2 and a “bulk” boundary Σ, which we interpret as a time-slice of the

two-boundary system. The boundary conditions on Σ depend on which basis we wish to compute

the wave function in.

We discuss in section 4 below to what extent these can actually be interpreted as thermal

energy and entropy, but we note now that one can rewrite the semiclassical result in the

suggestive manner

Z[β] ≈
∫ ∞

0
dEL ρL(EL)e−βEL , (3.15)

with

ρL(EL) ≡ S′(EL)eS(EL) ≈ e4π(Φ0+
√
φbEL). (3.16)

3.3 Hartle-Hawking state

Whether or not the Euclidean path integral defines a thermal partition function, we can

always use it to define a natural family of states in the Hilbert space of the two-boundary

system which we constructed in section 3.1 above: these states are labelled by a real

parameter β, and are collectively called the Hartle-Hawking state [52, 53]. They can be

interpreted as describing a wormhole connecting the two asymptotic boundaries, where

from either side an observer sees a black hole in equilibrium at inverse temperature β.

The basic idea of the Hartle-Hawking state is illustrated in figure 5. We can compute

the wave function of the Hartle-Hawking state in various bases, the traditional choice

is to fix the induced metric on the bulk slice Σ, together with any matter fields, which

computes the wave function in the Wheeler-de Witt representation. In this section, we will

semiclassically compute the wave function of the Hartle-Hawking state in the two bases of

the two-boundary Hilbert space, labelled by E and L, which we discussed in subsection 3.1.

The L basis calculation is conceptually simpler but technically harder, so we begin

with the E basis calculation. From (2.21) we know that the energy is a simple function

of the value of the dilaton at the bifurcate horizon, Φh. So we need to pick boundary

conditions on the bulk slice Σ which ensure (i) that it passes through the bifurcate horizon

and (ii) that the dilaton is equal to Φh there. To achieve these we will require that

nµ∂µΦ|Σ = 0

Φ|Σ = Φh

√
1 + x2, (3.17)
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Figure 6. Saddle point for the E-basis Hartle-Hawking wave function.

where nµ is the normal vector to Σ. In the second equation we have chosen “global” coor-

dinates on the slice, which is not really necessary, but it is perhaps useful to be concrete.

These boundary conditions are consistent with the action variation (2.4), since both bound-

ary terms vanish (remember that the Φγαβδγαβ and −δΦ terms are not present since this is

not an AdS boundary). More concisely, we want to integrate over geometries with a piece

of AdS boundary of length rcβ/2 and a piece of bulk boundary Σ with vanishing normal

derivative of Φ and Φ = Φh at its minimum on Σ. In the end we may then substitute

Φh =
√
φbE/2 to get the wave function in terms of E. We emphasize that here Φh and β

are not related via

Φh = 2πφb/β, (3.18)

β labels which Hartle-Hawking state we are considering and Φh is the argument in its wave

function. We expect however that (3.18) should hold at the peak of the wave function.

The saddle point for this calculation is shown in figure 6, it is a “sliver” of the Euclidean

Schwarzschild solution (3.10) with tE ∈ (0, β/2) and rs = Φh
φb

. The kink in the boundary

at r = rs does not violate the boundary conditions since it happens at the minimum of Φ:

the derivative of Φ vanishes in any direction there. To proceed further we need to evaluate

the Euclidean action of this solution, but this is complicated by the fact that the solution

has corners, which require additional terms in the action not present in (3.9).

We begin our discussion of corner terms by recalling the Gauss-Bonnet theorem in the

presence of corners:

χ ≡ 2− 2g − b =
1

4π

(∫
M
d2x
√
gR+ 2

∫
∂M

dx
√
γK + 2

∑
i

(π − θi)

)
. (3.19)

Here χ is the Euler character, g is the genus, b is the number of boundaries, and θi are the

interior opening angles of any corners (θi = π means no corner). These corner contributions

can be derived by smoothing out the corner and then taking a limit where the extrinsic

curvature K picks up a δ-function contribution. This suggests that we should upgrade our

Euclidean JT action (3.9) with corner terms

− SE → −SE + 2
∑
i

(Φ0 + Φ(xi)) (π − θi) , (3.20)
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and indeed this is the correct prescription for corners in the action for a path integral

which is describing an overlap of two states. In using the path integral to compute a wave

function however, there are additional corners (such as those in figure 5) which arise from

cutting an “overlap” type path integral: for these the corner prescription involves π/2− θi
instead of π − θi, since we need the corners to cancel when we glue two states together to

compute an overlap (see section 3.2 of [54] for some more discussion of this). If we denote

by C1 the set of corners of the first type and C2 the set of corners of the second type, and

also the AdS piece of the boundary by B, then the full Euclidean action for computing

wave functions is

−SE =

∫
M
d2x
√
g [Φ0R+ Φ(R+ 2)] + 2

∫
B+Σ

dx
√
γ(Φ0 + Φ)K − 2

∫
B
dx
√
γΦ

+ 2
∑
i∈C1

(Φ0 + Φ(xi)) (π − θi) + 2
∑
j∈C2

(Φ0 + Φ(xj))
(π

2
− θj

)
. (3.21)

Returning now to our saddles for the energy-basis wave function, the saddle in figure 6

has corners of both types, but fortunately the corners of type C2 both have θ = π
2 so

they don’t contribute. The kink at the horizon is a corner of type C1 since it would not

contribute if its internal angle θ were π, but in fact θ is

θ =
βΦh

2φb
(3.22)

so we do have a contribution. Away from this kink the bulk slice Σ is a geodesic, so K = 0

there. We thus have

−SE = Φ0

∫
M
d2x
√
gR+ 2

∫
B
dx
√
γ [Φ0K + Φ(K − 1)] + 2(Φ0 + Φh)

(
π − βΦh

2φb

)
. (3.23)

Evaluating this on our saddle point using (3.12), and remembering that tE is integrated

from 0 to β/2, we find8

− SE = 2π(Φ0 + Φh)− β

2

Φ2
h

φb
, (3.24)

so substituting Φh =
√
φbE/2 as in equation (2.21) we at last arrive at the semiclassical

Hartle-Hawking wave function

Ψβ(E) = exp
[
2πΦ0 +

√
2π2φbE − βE/4

]
. (3.25)

As expected, this wave function is peaked when (3.18) holds. Moreover if we square it and

integrate over E, we recover the “partition function” Z[β] from (3.13); in fact we recover

Z[β] precisely in the representation (3.15). Here however we are interpreting Z[β] not as a

thermal trace, but instead as the norm of the Hartle-Hawking state with the normalization

produced by the Euclidean path integral. We further discuss the meaning of (3.25) in

section 4 below.

8The calculation of the Φ0 terms can be simplified by using the Gauss-Bonnet theorem (3.19).
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Figure 7. Saddle point for the L-basis Hartle-Hawking wave function.

We now proceed to the L-basis calculation.9 We now want Σ to be a geodesic of

renormalized length L, so we now define Σ by requiring

K|Σ = 0

γΣ = ds2, (3.26)

with the range of s being equal to L+ 2 log(2φbrc). These boundary conditions are again

consistent with the variation (2.4), since now K = 0 and δγµν = 0 (remember again that

the Φγαβδγαβ and −δΦ terms are not present since Σ is not an AdS boundary).

The saddle points for this calculation are a bit more involved, we want a piece of

the Euclidean Schwarzschild geometry (3.10) whose boundary has a piece which is asymp-

totically AdS, with length rcβ/2, and a piece which is a geodesic through the bulk, of

renormalized length L. We illustrate this in figure 7. There is a two-parameter family of

geodesics in this geometry, parametrizing by proper length we have

r(λ) =
√
J2 + r2

s coshλ

tE(λ) =
1

rs
arctan

(rs
J

tanhλ
)

+ tE,0, (3.27)

where J tells us how close our geodesic approaches the center of the disk and tE,0 tells us

at what value of tE this closest approach happens. We can set tE,0 = 0 by convention, so

to construct a solution we need to give J and rs as functions of L and β such that our

geodesic indeed has renormalized length L and the AdS component of the boundary indeed

has length rcβ/2. After some algebra, we find that rs is obtained by solving the equation

a =
sinx

x
, (3.28)

with

x ≡ rsβ

4

a ≡ 4φbe
L/2β−1, (3.29)

9This calculation is something of an aside to the main points of our paper, so casual readers may wish

to skim the remainder of this section.

– 17 –



J
H
E
P
0
2
(
2
0
2
0
)
1
7
7

and

J =
√
e−Lφ−2

b − r2
s . (3.30)

Note that a is positive, and that we must have x ∈ (0, π) since the length rcβ/2 of the AdS

component of the boundary must be less than or equal to the full boundary length 2πrc
rs

.

A unique solution exists provided that a ≤ 1, or in other words that

β ≥ 4φbe
L/2, (3.31)

with rs = 0 when this inequality is saturated, and no solution exists for a > 1. When

a = 2/π, or in other words

β = 2πφbe
L/2, (3.32)

we find that rs = 2π
β , which corresponds to cutting the Euclidean solution (3.10) in two.

This should be what we find is the peak of the wave function. As L → −∞ we have

rs → 4π
β . If we fix β and decrease L, rs increases monotonically.

Finally to evaluate the action, we again use (3.21). There are now no corners of type

C1, but we will see that the two corners of type C2 now make a nontrivial contribution.

This is not obvious, since we expect that as rc → ∞ we have θ → π/2 at each corner for

any β and L, but since Φ(xj) = φbrc we are potentially sensitive to a subleading term in θ

which is O(1/rc). Indeed a short calculation tells us that we have

θ =
π

2
− rs

rc tan
(
βrs
4

) + . . . , (3.33)

so there will be a nontrivial corner contribution. The rest of the action is easy to evaluate,

we again have K = 0 on Σ and R = −2 in the bulk, so we need only compute the corner

terms, the Φ0 terms, and the terms at the AdS boundary. The result is

ψβ(L) = exp

[
2πΦ0 +

8φb
β

(
x2 +

2x

tanx

)]
, (3.34)

with x determined as a function of L and β by solving (3.28) and using (3.29). This wave

function has a unique maximum at x = π/2, which from (3.29) happens when rs = 2π
β , as

expected. This peak will dominate the integrated square of the wave function, which again

is consistent with the saddle point evaluation (3.13) of Z[β]. Near this peak we have

−S = constant− 8φb
β

(x− π/2)2 + . . . (3.35)

= constant− π2φb
2β

(L− Lpeak)2 + . . . , (3.36)

so the width in L is

δL =

√
β

π2φb
, (3.37)

which is consistent with the idea that large φb is the semiclassical limit.

Thus we see that the Hartle-Hawking states fit nicely into Hilbert space of the Jackiw-

Teitelboim gravity, with (reasonably) simple semiclassical wave functions in the E and
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L bases. It would be interesting to extend these calculations to one-loop, in fact the

normalization of the Hartle-Hawking state is one-loop exact [55], so the wave function

itself might be as well.

4 Factorization and the range of the time shift

We now return to the interpretation of the single-boundary Euclidean path integral Z[β],

whose semiclassical value in the Jackiw-Teitelboim gravity is given by (3.13). So far the

only Hilbert space interpretation we have given it is as the norm of the unnormalized

Hartle-Hawking state in the two-boundary Hilbert space, as produced by the Euclidean

path integral without any rescaling. In AdS/CFT however there is another interpretation

for this path integral: following [56], we can interpret the unnormalized Hartle-Hawking

state as corresponding to the unnormalized thermofield double state

|ψβ〉 =
∑
i

e−
βEi
2 |i∗〉L|i〉R (4.1)

in the tensor product Hilbert space of two copies of the boundary CFT.10 The one-sided

path integral is then the norm of this state,

Z[β] =
∑
i

e−βEi (4.2)

but this is nothing but the one-sided thermal partition function. Is this interpretation valid

in the Jackiw-Teitelboim gravity?

The answer to this last question is no. The reason is that the Hilbert space of two-

boundary Jackiw-Teitelboim gravity, which is just a single-particle quantum mechanics,

does not tensor-factorize into a product of one-boundary Hilbert spaces. Although the

Hartle-Hawking state exists, there is no analogue of equation (4.1). Instead we have equa-

tion (3.25), which we can write in a manner more similar to (4.1) by labeling states by the

one-sided energy EL, which by (2.20) is half that of the two-sided energy used in (3.25),

to get

|ψβ〉 ∝
∫ ∞

0
dELe

2π(Φ0+
√
φbEL)−βEL/2|EL〉. (4.3)

This is not a state in a tensor-product Hilbert space: indeed there are no states at all

where EL 6= ER, since there is no matter in the pure JT theory all energy is sourced by

the bifurcate horizon. We therefore conclude that there can be no boundary theory dual to

pure quantum Jackiw-Teitelboim gravity. Were one to have existed, there would have been

such a factorization.11

10Here |i〉R are energy eigenstates of the “right” CFT and |i∗〉L are their conjugates under a two-sided

version of CPT which exchanges the two sides, see [57] for more explanation of this.
11Readers who have casually followed the recent SYK developments may be puzzled, since naively one

might have gotten the impression that the two-boundary JT theory should be dual to “two copies of the

Schwarzian theory”. This is wrong, basically because a single Schwarzian theory in Lorentzian signature

does not make sense. We give the precise statements in the following section.
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There is another interesting illustration of the non-factorization of the JT gravity

Hilbert space. In any tensor product Hilbert space

H = HL ⊗HR (4.4)

for which the Hamiltonian is a sum of the form

H = HL ⊗ IR + IL ⊗HR, (4.5)

we have the partition function identity

Ztot[β] ≡ Tre−βH =
(

TrLe
−βHL

)(
TrRe

−βHR
)

= ZL[β]ZR[β]. (4.6)

Both sides of this identity are computable in JT gravity, so we can test if it is true.

Assuming factorization, ZL and ZR would both be given by the function Z[β] we computed

in (3.13). Ztot[β] we can then attempt to compute by computing the thermal trace in our

two-sided Hilbert space. There is however an immediate problem: since the spectrum of

H is continuous, the trace in Ztot is not well-defined. Let’s illustrate this in a simpler

example: the quantum mechanics of a free non-relativistic particle of mass m moving on a

circle of radius R. Momenta is quantized as

p =
n

R
, (4.7)

so we have a density of states

ρ(E) = R

√
2m

E
. (4.8)

The thermal partition function is therefore

Z[β] =

∫ ∞
0

dE ρ(E)e−βE = R

√
2πm

β
. (4.9)

The key point is that the density of states, and therefore the partition function, are di-

vergent in the limit that R → ∞. In our Jackiw-Teitelboim quantum mechanics with

Hamiltonian (2.35), the dynamical coordinate L is similarly noncompact, leading to a con-

tinuous spectrum with a divergent density of states, so the left hand side of our putative

equation (4.6) is divergent while the right hand side is finite. This is another illustration

of the non-factorization of the two-boundary Jackiw-Teitelboim Hilbert space.

It may seem that we deserved the nonsense we got in attempting to test equation (4.6)

in JT gravity, since after all that equation was derived assuming factorization and we

already know that the JT Hilbert space doesn’t factorize. But in fact we can use this

equation to do something more interesting: we can ask how the theory would need to be

modified such that (4.6) would indeed hold. In other words, what would the two-sided

density of states ρtot(E) need to be such that we indeed had∫ ∞
0

dEρtot(E)e−βE = Z[β]2? (4.10)
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In the semiclassical approximation, this can happen only if

ρtot(E) ≈ ρL(E/2)2 ≈ e2S(EL), (4.11)

where ρL was defined in (3.16) and S is the entropy (3.14). In light of (4.8), this equation

has a natural interpretation: in a factorized theory obeying (4.6), our renormalized geodesic

observable L cannot really be larger than some length of order e2S(EL). From (2.32) we

then also learn that we cannot evolve the Hartle-Hawking state with our total Hamilto-

nian H = HL +HR for times which are longer than of order e2S(EL) without the Jackiw-

Teitelboim description breaking down. At least then, if not sooner, there must be “new

physics” in any theory which factorizes.12 The idea that exponentially long time evolu-

tion is in tension with the semiclassical description of the Hartle-Hawking state was also

discussed in [59].

In this last argument it may seem that we have gotten “something for nothing”, since

we learned what the range of the time-shift operator δ must be in a factorized theory using

only the Jackiw-Teitelboim path integral. This is indeed miraculous, but in fact it is the

same old miracle by which the Euclidean path integral evaluation of Z[β] is able to correctly

count black hole microstates using the only the low energy bulk effective action. This is

possible only because that Euclidean path integral is not a trace of the Hilbert space of the

bulk effective theory with one asymptotic boundary: in fact in JT gravity no such Hilbert

space exists. Given only the bulk theory, the only Hilbert space interpretation we can give

to Z[β] is as the norm of the unnormalized Hartle-Hawking state: what we have learned

here is that factorization is the key assumption which allows us to re-interpret this as a

thermal partition function.

5 Embedding in SYK

How might we attain a factorizable version of the Jackiw-Teitelboim gravity, in which Z[β]

is indeed a partition function? For the 1 + 1 Maxwell theory discussed in the introduction,

the answer is simple: we need to introduce new matter fields which possess the fundamental

unit of U(1) gauge charge. This modifies Gauss’s law such that the electric flux on the left

boundary is no longer required to be equivalent to the electric flux on the right boundary,

and the Wilson line which stretches from one boundary to the other can be split by a pair

of these dynamical charges [27].13 For gravity we might therefore expect that achieving

factorizability is as simple as introducing matter fields, and in some sense this is true.

12The timescale e2S(EL) is quite natural from the point of view of the proposal that exponentially complex

operations should disrupt the structure of spacetime [19–21, 58]: it is the time it takes for the time evolution

operator e−iHLt to reach maximal circuit complexity, and is also the time it takes the thermofield double

state to reach maximal state complexity.
13Strictly speaking we also need to introduce a UV cutoff as well since no continuum quantum field theory

on a connected space has a factorized Hilbert space. In quantum field theory the question of factorizability

is best understood in terms of whether or not the theory obeys the “split property”, see [29] for more

discussion of this.
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In more than two spacetime dimensions, where the global AdS vacuum exists, adding

matter would enable us to form one-sided black holes from the collapse of this matter.

Therefore the bulk Lagrangian will no longer be UV-complete: the full bulk theory will

need to be able to count the microstates of those black holes in Lorentzian signature. In

two dimensions, the space must end somewhere, however we may add collapsing matter on

top of a smaller two-sided black hole to produce a larger one. Then it will again be the

case that the full bulk theory must be able to account for the exponentially large number

of additional microstates. What we really need then is to find a holographic boundary

description, where we understand the theory as a large-N quantum mechanics living on

the disconnected space R t R.

So far the only known explicit examples of this are based on the Sachdev-Ye-Kitaev

model [37–42, 45]. These examples unfortunately have a large number of light matter

fields, which cause bulk locality to break down at the AdS scale, but they do also have

a Jackiw-Teitelboim sector which decouples from all that at low temperatures.14 In Eu-

clidean signature this was shown in [41–45], in this section we sketch the (fairly trivial)

modifications which are needed to give the analogous argument in Lorentzian signature.

The SYK model is a collection of N Majorana fermions χa, interacting with Hamilto-

nian

H = − 1

4!

∑
a,b,c,d

Jabcdχ
aχbχcχd, (5.1)

where the antisymmetric tensor Jabcd represents disorder drawn at random from the Gaus-

sian ensemble

P [J ] ∝ exp

[
− N3

12J2

∑
a<b<c<d

(Jabcd)
2

]
. (5.2)

The Lagrangian of the SYK model is

L =
i

2

∑
a

χaχ̇a +
1

4!

∑
a,b,c,d

Jabcdχ
aχbχcχd. (5.3)

We are interested in the Lorentzian path integral for two copies of this model, so our

dynamical variables will be 2N Majorana fermions χai , where a runs as before from 1 to

N , while i is equal to either L or R and tells us which copy we are talking about. We will

take the disorder Jabcd to be the same for each copy, since the “real” model corresponds to

a single instantiation of the disorder and we want the same Hamiltonian on both sides.

The large-N solution of this model begins with an assumption, justified by numerics,

that we can view the disorder as “annealed” rather than “quenched”. This means that

we can integrate over it directly in the path integral rather than waiting until we compute

observables to average over it. We are then interested in evaluating the Lorentzian path

14Having locality break down at the AdS scale seems to be a common feature of all “exactly solvable”

models of AdS/CFT, see [16, 60] for other examples. The main advantage of SYK is that there is a

parametric limit, low temperature, where the gravitational sector decouples and the theory stays solvable.
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integral

Z =

∫
DJDχ exp

[
− 1

2

∫
dt
∑
a,i

χai χ̇
a
i + i

∑
a<b<c<d

Jabcd

∫
dt
∑
i

(
χai χ

b
iχ
c
iχ
d
i

)

− N3

12J2

∑
a<b<c<d

(Jabcd)
2

]
. (5.4)

At large N this integral can be done by a version of the Hubbard-Stratonivich transforma-

tion [61, 62]. We first integrate out the disorder, to arrive at

Z =

∫
Dχ exp

−1

2

∫
dt
∑
a,i

χai χ̇
a
i −

3J2

N3

∑
a<b<c<d

(∑
i

∫
dtχai χ

b
iχ
c
iχ
d
i

)2
 . (5.5)

We then “integrate in” bilocal auxilliary fields Σij(t, t
′) and Gij(t, t

′) such that

Z =

∫
DGDΣDχ exp

[
− 1

2

∫
dt
∑
a,i

χai χ̇
a
i

+
iN

2

∑
i,j

∫
dt

∫
dt′Σij(t, t

′)

(
Gij −

1

N

∑
a

χai (t)χ
a
j (t
′)

)

− J2N

8

∑
i,j

∫
dt

∫
dt′Gij(t, t

′)4

]
. (5.6)

Finally we can then integrate out the fermions, which are now Gaussian, arriving at15

Z =

∫
DGDΣ exp [iS(G,Σ)] , (5.7)

with the bilocal effective action S(G,Σ) given by

S(G,Σ) = − iN
2

log det (δij∂t′ − iΣij) +
N

2

∑
i,j

∫
dt

∫
dt′
(

ΣijGij +
iJ2

4
G4
ij

)
. (5.8)

Here the determinant is defined for matrices with both ij and tt′ indices. The equations

of motion are

Σij = iJ2G3
ij

∂t′ − iΣ = G−1, (5.9)

where we have used matrix notation in the second equation.

Now the key observation is that at low energies compared to J , we can ignore the

time derivative in equation (5.9), in which case these equations of motion become invariant

under the reparametrization symmetry diff(R)× diff(R):

Σ′ij(t
′
1, t
′
2) = (f ′i(t1)f ′j(t2))−3/4Σij(t1, t2)

G′ij(t
′
1, t
′
2) = (f ′i(t1)f ′j(t2))−1/4Gij(t1, t2). (5.10)

15We have suppressed details related to renormalization and the iε prescription here, see [42] for a

discussion of the former in the Euclidean case.
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In these transformations the primed and unprimed times are related by

t′1 = fi(t1)

t′2 = fj(t2). (5.11)

Most of this symmetry however will be spontaneously broken by any particular saddle point

solution Gcij , Σc
ij . In Lorentzian signature we are interested in excitations about the zero-

temperature thermofield double state: this state will be nontrivial since at large N the SYK

model has a large vacuum degeneracy. The equations of motion (5.9) can be solved without

too much difficulty by going to momentum space, the result is that the matrix Gij(t, t
′) is

nothing but the boundary two-point function of a Majorana fermion in global AdS2, with

metric (2.16). The ij indices tell us which boundary each of the two fermions is on. This

two-point function is invariant under only under the P̃SL(2,R) subgroup of diff(R)×diff(R)

which is inherited from Lorentz transformations in the embedding space (2.11) (P̃SL(2,R)

is the connected universal cover of the embedding space isometry group SO(1, 2), where

time evolution goes from −∞ to ∞). Thus at low energies we expect a set of zero modes

taking values in (
diff(R)× diff(R)

)
/P̃SL(2,R). (5.12)

These zero modes, let’s call them φn, will be lifted by finite J effects, so they will have an

effective action of the form

S(φn) =
N

J
s(φn) : (5.13)

the lowest-order in derivatives action with this symmetry is two copies of the Schwarzian

action,

s(φn) ∝
∑
i

∫
dt {fi(t), t} , (5.14)

where fi are our two diffeomorphisms of R and then we quotient by P̃SL(2,R) to get

the action for the φn. The classical solutions of the equations of motion obtained by

varying this action are a pair diffeomorphisms fi(t) induced by distinct boundary P̃SL(2,R)

transformations, identified modulo the joint P̃SL(2R) induced by isometries of global AdS2.

We then can simply note that in [45] precisely this theory, two copies of the Schwarzian

theory with a mixed P̃SL(2,R) gauged, was derived from the Lorentzian JT theory with two

asymptotic boundaries (see also [43, 44].16 This completes the derivation of the Lorentzian

JT theory from the SYK model.

There are two important observations about this derivation:

(1) We see that JT gravity is not equal to “two copies of the Schwarzian theory”, at least

not in the naive sense of having a tensor product of two sensible Lorentzian theories.

There is a tensor product in a larger unphysical Hilbert space obtained by quantizing

pairs of diffeomorphisms, but we must quotient by the subgroup P̃SL(2,R) which

16The basic idea is that if we solve the metric equation but not yet the Φ equation, then the functions

fi(t) keep track of where the two boundaries where Φ = φbrc are located in AdS2. We should quotient

by the embedding space isometry group P̃SL(2,R), which acts nontrivially on both fL(t) and fR(t). The

Schwarzian actions arise from the boundary terms in the action (2.1).
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mixes the two so the physical Hilbert space does not factorize. Doing this quotient

separately for each diffeomorphism would have led to an empty theory.

(2) This theory is embedded into a larger Hilbert space which does tensor-factorize,

that of two copies of the SYK model (with a fixed instantiation of the disorder). In

describing the low energy sector however, we found ourself needing to use “left-right”

degrees of freedom which, in the original SYK variables, have the form

GLR(t, t′) =
1

N

∑
a

χaL(t)χaR(t′). (5.15)

This last equation is quite interesting from the point of view [27]: it is a gravitational

version of the procedure of splitting a Wilson line with a pair of dynamical charges. Note in

particular that although the bulk fermions created by χai are not present in the JT gravity,

we still need them to express the JT degrees of freedom within the SYK description. This

was one of the main lessons of [27]: in the presence of bulk gauge fields, mapping low-energy

bulk operators into the boundary theory can require heavy bulk degrees of freedom which

do not otherwise appear in the low-energy effective action.17

6 Conclusion

One important lesson of Jackiw-Teitelboim gravity is that bulk quantum gravity can make

sense with a local Lagrangian. Indeed we have nonperturbatively constructed the Hilbert

space and dynamics of the two-boundary Jackiw-Teitelboim gravity, and we have shown

that many calculations are feasible within this simple setting. There are many more calcula-

tions which we did not attempt, two which we expect would be quite interesting are extend-

ing our calculation of the Hartle-Hawking wave function to one loop (and perhaps beyond),

and repeating our analysis for the supersymmetric version of Jackiw-Teitelboim gravity.

We believe that the basic reason for why the JT Lagrangian leads to a well-defined

bulk theory of quantum gravity is precisely that the Hilbert space it constructs doesn’t

factorize: even though it has wormhole solutions, it does not have black hole microstates.

We have seen that the usual computations of black hole thermodynamics can all be given

“non-thermodynamic interpretations” within this theory, with in particular the Euclidean

one-boundary path integral being interpreted as the normalization of the unnormalized

Hartle-Hawking state rather than a thermal partition function.

One important issue which we have not explored in detail is the role of topologically

nontrivial configurations in the Euclidean path integral of the Jackiw-Teitelboim theory.

Off-shell field configurations certainly exist where the spacetime evolves from a spatial

line interval to a line interval plus any number of circles, and if there are more than two

asymptotic boundaries then additional “rewiring configurations” are possible, which change

which pairs of asymptotic boundaries are connected. We illustrate two such configurations

17The form of (5.15) is quite similar to the equation 5.14 in [27] for the emergent Wilson link in the

CPN−1 nonlinear σ model. In both cases we have a large-N average over bilinears of microscopic charges.

That model thus seems to be quite a good model of emergent gravity in this particular case.
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Figure 8. Topology-changing Euclidean configurations. Our quantization of the Jackiw-Teitelboim

theory does not include such processes, consistent with what the Lorentzian path integral would

predict. But perhaps it should?

in figure 8. Such topology-changing configurations are not present in the Lorentzian path

integral, at least not if we define it to include sums only over globally-hyperbolic (in the

AdS sense) geometries, and there are also usually not real Euclidean solutions with these

topologies. Moreover the SYK model does not seem to have a discrete infinity of additional

states associated to including an arbitrary number of spatial circles. Nonetheless it would be

good to understand in what circumstances we can or should give a physical interpretation to

these configurations, for example in AdS/CFT topology-changing Euclidean configurations

are sometimes needed to reproduce known CFT results [63]. We leave exploration of this

question to future work, but we emphasize that until it is addressed we cannot really claim

to completely understand the bulk path integral formulation of Jackiw-Teitelboim gravity.

It is interesting to consider if such a self-contained theory of gravity is possible in

higher dimensions: for 3 + 1 dimensions and higher we expect that the answer is no, since

once there are propagating gravitons these are already enough to make black holes whose

microstates must be counted. But what about 2+1? In fact we suspect that pure Einstein

gravity in 2+1 dimensions with negative cosmological constant, and also its supersymmetric

extension, give two more examples of nontrivial bulk theories of quantum gravity which

make sense as local path integrals but do not have CFT duals. Here are some features

which resemble those of JT gravity:18

• All UV divergences in their path integrals can be absorbed by simple renormalizations

of G and Λ, so they are “secretly renormalizable” [64, 65].

• They have two-boundary wormholes, namely the BTZ solution [66], and thus have

semiclassical Hartle-Hawking states, whose normalization gives the one-boundary

Euclidean path integral with boundary S1 × S1.

18Another resemblance is that both theories perturbatively have first-order reformulations as topological

gauge theories, perhaps the puzzling features of this reformulation in 2 + 1 dimensions could be better

understood by studying their 1 + 1 dimensional avatars.
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• There are no propagating degrees of freedom in the bulk, but the quantum mechanics

of the time-shift operator and the Hamiltonian still exist, and thus give a nontrivial

dynamics to the two-boundary system. This is now in addition to the boundary

gravitons which are present even with one asymptotic boundary.

• The one-boundary theory, while no longer trivial because of boundary gravitons and

topologically nontrivial black hole geometries, does not have nearly enough states to

account for the Bekenstein-Hawking entropy which the normalization of the Hartle-

Hawking state would have predicted [67].

Thus we conjecture that a complete quantization of pure Einstein gravity with negative

cosmological constant (and its supersymmetric extension) should be possible using bulk

path integral methods in 2 + 1 dimensions. The existence of the BTZ “black hole” is no

obstruction to this, since it should be interpreted as a wormhole instead of a one-sided

black hole. As we found in JT gravity, we expect that the two-boundary Hilbert space will

not factorize due to the nonlocal consequences of the diffeomorphism constraints, which

therefore would immediately imply that this Hilbert space cannot arise from that of a

boundary CFT on a disconnected space. These conjectures are consistent with the results

of Maloney and Witten, who computed the one-boundary partition function exactly and

saw that it did not have the form of a thermal trace [68].19 There has been a fair bit of

worry about how to “fix” this, for example by including complex saddle points or additional

Planckian degrees of freedom, but inspired by JT gravity our proposal is instead that this

is simply the right answer! Pure gravity in 2 + 1 dimensions with negative cosmological

does exist, but it doesn’t have a dual CFT.20 This proposal clearly needs more scrutiny

before it should be accepted, but with the JT theory to guide us, where many of the same

issues arise in simpler guise, it seems to be time for another shot.
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[66] M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[67] A. Maloney, Geometric Microstates for the Three Dimensional Black Hole?,

arXiv:1508.04079 [INSPIRE].

[68] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions,

JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

– 31 –

https://doi.org/10.1103/PhysRevLett.115.211601
https://doi.org/10.1103/PhysRevLett.115.211601
https://arxiv.org/abs/1502.06692
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06692
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1016/S0370-2693(02)02980-5
https://arxiv.org/abs/hep-th/0210114
https://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
https://doi.org/10.1103/PhysRevLett.3.77
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,3,77%22
https://arxiv.org/abs/1703.01519
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.01519
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1016/0550-3213(88)90143-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B311,46%22
https://arxiv.org/abs/0706.3359
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3359
https://doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
https://inspirehep.net/search?p=find+EPRINT+hep-th/9204099
https://arxiv.org/abs/1508.04079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04079
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0155

	Introduction
	Classical Jackiw-Teitelboim gravity
	Solutions
	Phase space and symplectic form

	Quantum Jackiw-Teitelboim gravity
	Hilbert Space and energy eigenstates
	Euclidean path integral
	Hartle-Hawking state

	Factorization and the range of the time shift
	Embedding in SYK
	Conclusion

