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Summary. Estimation of Distribution Algorithms (EDA) have been proposed as an
extension of genetic algorithms. In this paper the major design issues of EDA’s are dis-
cussed using an interdisciplinary framework, the minimum relative entropy (MinRel)
approximation. We assume that the function to be optimized is additively decom-
posed (ADF). The interaction graph GADF of the ADF is used to create exact or
approximate factorizations of the Boltzmann distribution. The relation between the
Factorized Distribution Algorithm FDA and the MinRel approximation is shown.
We present a new algorithm, derived from the Bethe-Kikuchi approach developed in
statistical physics. It minimizes the relative entropy KLD(q|pβ) to the Boltzmann
distribution pβ by solving a difficult constrained optimization problem. We present
in detail the concave-convex minimization algorithm CCCP to solve the optimization
problem. The two algorithms are compared using popular benchmark problems (2-d
grid problems, 2-d Ising spin glasses, Kaufman’s n−k function.) We use instances up
to 900 variables.

Key words: Estimation of distributions, Boltzmann distribution, factoriza-
tion of distributions, maximum entropy principle, minimum relative en-
tropy, maximum log-likelihood, Bethe-Kikuchi approximation.

1 Introduction

The Estimation of Distribution (EDA) family of population based search algo-
rithms was introduced in (21) as an an extension of genetic algorithms.1 The
following observations lead to this proposal. First, genetic algorithm have
difficulties to optimize deceptive and non-separable functions, and second,
the search distributions implicitly generated by recombination and crossover
do not exploit the correlation of the variables in samples of high fitness val-
ues.
1 In (21) they have been named conditional distribution algorithms.



2 Heinz Mühlenbein and Robin Höns

EDA uses probability distributions derived from the function to be opti-
mized to generate search points instead of crossover and mutation as done
by genetic algorithms. The other parts of the algorithms are identical. In both
cases a population of points is used and points with good fitness are selected
either to estimate a search distribution or to be used for crossover and muta-
tion.

The family of EDA algorithms can be understood and further developed
without the background of genetic algorithms. The problem to estimate em-
pirical distributions has been investigated independently in several scientific
disciplines. In this paper we will show how results in statistics, belief net-
works and statistical physics can be used to understand and further develop
EDA. In fact, an interdisciplinary research effort is well under way which
cross-fertilizes the different disciplines.

Unfortunately each discipline uses a different language and deals with
slightly different problems. In EDA we want to generate points with a high
probability p(x), in belief networks one computes a single marginal distri-
bution p(y|z) for new evidence z, and statistical physicists want to compute
the free energy of a Boltzmann distribution. Thus the algorithms developed
for belief networks concentrate on computing a single marginal distribution,
whereas for EDA we want to sample p(x) in areas of high fitness values, i.e.
we are interested in a sampling method which generates points with a high
value of p(x). But all disciplines need fast algorithms to compute marginal
distributions. The foundation of the theory is the same for all disciplines. It
is based on graphical models and their decomposition.

Today two major branches of EDA can be distinguished. In the first
branch the factorization of the distribution is computed from the structure
of the function to be optimized, in the second one the structure is computed
from the correlations of the data generated. The second branch has been de-
rived from the theory of belief networks (11). It computes a factorization from
samples instead from the analytical expression of the fitness function. The
underlying theory is the same for both branches. For large real life applica-
tions often a hybrid between these two approaches is most successful (17). In
this paper we investigate the first branch only.

We discuss the problem of computing approximations of distributions
using factorizations is investigated with the framework of minimum relative
entropy. We distinguish exact factorizations and approximate factorizations.
We shortly summarize the results for our well-known algorithm FDA. We
present in detail a new algorithm BKDA. It is derived from an approach
used in statistical physics to approximate the Boltzmann distribution. It is
called the Bethe-Kikuchi approximation. In this approach the marginals from
the unknown Boltzmann distribution are not computed from data, but from
a difficult constrained optimization problem. This paper extends the theory
first described in (15).

In the last section we summarize the functionality of our software sys-
tem FDA. It can be downloaded from http://www.ais.fraunhofer.de/∼muehlen.
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The different EDA algorithms are shortly numerically compared, using large
benchmark optimization problems like 2-D Ising spin glasses, and Kauf-
man’s n − k function. We investigate problems with up to 900 variables,
continuing the work in (17), where graph bi-partitioning problems of 1000
nodes have been solved.

2 Factorization of the Search Distribution

EDA has been derived from a search distribution point of view. We just re-
capitulate the major steps published in (20; 17). We will use in this paper the
following notation. Capital letters denote variables, lower cases instances of
variables. If the distinction between variables and instances is not necessary,
we will use lower case letters. Vectors are denoted by x, a single variable by
xi.
Let a function f : X → IR≥0 be given. We consider the optimization problem

xopt = argmaxf(x) (1)

A promising search distribution for optimization is the Boltzmann distribu-
tion.

Definition 1 For β ≥ 0 define the Boltzmann distribution2 of a function f(x) as

pβ(x) :=
eβf(x)∑
y eβf(y)

=:
eβf(x)

Zf (β)
(2)

where Zf (β) is the partition function. To simplify the notation β and/or f might be
omitted.

The Boltzmann distribution concentrates with increasing β around the
global optima of the function. Obviously, the distribution converges for
β → ∞ to a distribution where only the optima have a probability greater
than 0 (see (18)). Therefore, if it were possible to sample efficiently from this
distribution for arbitrary β, optimization would be an easy task. But the com-
putation of the partition function needs an exponential effort for a problem of
n variables. We have therefore proposed an algorithm which incrementally
computes the Boltzmann distribution from empirical data using Boltzmann
selection.

Definition 2 Given a distribution p and a selection parameter Δβ, Boltzmann
selection calculates the distribution for selecting points according to

ps(x) =
p(x)eΔβf(x)∑
y p(y)eΔβf(y)

(3)

2 The Boltzmann distribution is usually defined as e−
E(x)

T /Z. The term E(x) is called
the energy and T = 1/β the temperature. We use the inverse temperature β instead
of the temperature.
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The following theorem is easy to prove.

Theorem 3. If pβ(x) is a Boltzmann distribution, then ps(x) is a Boltzmann dis-
tribution with inverse temperature β(t + 1) = β(t) + Δβ(t).

Algorithm 1 describes BEDA, the Boltzmann Estimated Distribution Algo-
rithm.

Algorithm 1: BEDA – Boltzmann Estimated Distribution

1 t ⇐ 1. Generate N points according to the uniform distribution
p(x, 0) with β(0) = 0.

2 do {
3 With a given Δβ(t) > 0, let

ps(x, t) =
p(x, t)eΔβ(t)f(x)

P
y p(y, t)eΔβ(t)f(y)

.

4 Generate N new points according to the distribution p(x, t +
1) = ps(x, t).

5 t ⇐ t + 1.
6 } until (stopping criterion reached)

BEDA is a conceptional algorithm, because the calculation of the distri-
bution ps(x, t) requires a sum over exponentially many terms. In the next
section we transform BEDA into a practical numerical algorithm.

2.1 Factorization of the distribution

From now on we assume that the fitness function is additively decomposed.

Definition 4 Let s1, . . . , sm be index sets, si ⊆ {1, . . . , n}. Let fi be functions
depending only on variables xj with j ∈ si. Then

f(x) =
m∑

i=1

fi(xsi ) (4)

is an additive decomposition of the fitness function (ADF). The ADF is k-
bounded if maxi |si| ≤ k.

Definition 5 Let an ADF be given. Then the interaction graph GADF is defined
as follows: The vertices of GADF represent the variables of the ADF . Two vertices
are connected by an arc iff the corresponding variables are contained in a common
sub-function.

Given an ADF we want to estimate the Boltzmann distribution (equation
(2)) using a product of marginal distributions. The approximation has to ful-
fill two conditions
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• The approximation should only use marginals of low order.
• Sampling from the approximation should be easy.

A class of distributions fulfilling these conditions are the acyclic Bayesian
network (acBN).

q(x) =
n∏

i=1

q(xi|πi) (5)

where πi are called the parents of xi. For acyclic Bayesian networks sampling
can easily be done starting with the root x1. Cyclic Bayesian networks are
difficult to sample from.

Note that any distribution can be written in the form of an acyclic Bayesian
network because of

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1) (6)

But this factorization uses marginal distributions of size O(n), thus sampling
from the distribution is exponential in n. Therefore we are looking for factor-
izations where the size of the marginals is bounded independent of n.

For ADF′s the following procedure can be used to create factorizations.
We need the following sets:

Definition 6 Given s1, . . . , sm, we define for i = 1, . . . , m the sets di, bi and ci:

di :=
i⋃

j=1

sj , bi := si \ di−1, ci := si ∩ di−1 (7)

We demand dm = {1, . . . , n} and set d0 = ∅. In the theory of decomposable graphs,
di are called histories, bi residuals and ci separators (13).

The next definition is stated a bit informally.

Definition 7 A set of marginal distributions q̃(xbi ,xci) is called consistent if the
marginal distributions fulfill the laws of probability, e.g.∑

xbi
,xci

q̃(xbi ,xci) = 1 (8)

∑
xbi

q̃(xbi ,xci) = q̃(xci) (9)

Definition 8 If bi �= ∅ we define a FDA factorization for a given ADF by

q(x) =
∏m

i=1
q̃(xbi |xci) (10)

A FDA factorization is k-bounded if the size of the sets {bi, ci} is bounded by a
constant k independent of n.
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Remark: Any FDA factorization can easily be transformed into an acyclic Bayesian
network which has the same largest clique size. The FDA factorization is only a more
compact representation. Therefore the class of FDA factorizations is identical to the
class of acyclic Bayesian networks. Sampling is done iteratively, starting with q̃(xb1)

Proposition 9 Let a consistent set of marginal distributions q̃(xbi ,xci) be given.
Then the FDA factorization defines a valid distribution (

∑
q(x) = 1). Furthermore

q(xbi |xci) = q̃(xbi |xci), i = 1, . . .m (11)

whereas in general

q(xbi ,xci) �= q̃(xbi ,xci), i = 1, . . .m (12)

The proof follows from the definition of marginal probabilities. The proof
of equation (11) is somewhat technical, but straightforward. The inequality
(12) is often overlooked. It means that sampling from the factorization does
not reproduce the given marginals.

The next theorem was proven in (20). It formulates a condition under
which the FDA factorization reproduces the marginals.

Theorem 10 (Factorization Theorem). Let f(x) =
∑m

i=1 fsi(x) be an additive
decomposition. If

∀i = 1, . . . , m; bi �= ∅ (13)
∀i ≥ 2 ∃j < i such that ci ⊆ sj (14)

then

pβ(x) =
∏m

i=1
pβ(xbi |xci) =

∏m
i=1 pβ(xbi ,xci)∏m

i=2 pβ(xci)
(15)

The Factorization Theorem is not restricted to distributions and their fac-
torization. It is connected to the decomposition of GADF . A general formula-
tion and a historical survey of this important theorem can be found in (1).

Definition 11 The constraint defined by equation (14) is called the running inter-
section property (RIP).

The above theorem does not address the problem how to compute a good
or even an exact factorization. The construction defined by equation (7) de-
pends on the sequence s1, . . . , sm. For many sequences the RIP might not
be fulfilled. But if the sequence is permutated, it might be possible that the
RIP will be fulfilled. Furthermore, we can join two or more sub-functions,
resulting in larger sets s̃i. It might be that using these larger sets, the RIP is
fulfilled. For an efficient FDA we are looking for k − bounded factorizations
which fulfill the RIP.
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Testing all the sequences is prohibitive. Actually, it turns out that the
computation of exact factorizations is done better by investigating the cor-
responding interaction graph GADF . A well-known algorithm computes a
junction tree of GADF (see(10)). From the junction tree a factorization can eas-
ily be obtained. This factorization fulfills the RIP. A short description of the
algorithm can be found in (15). The largest clique of the junction tree gives
the largest marginal of the factorization. The decision problem if there exists
an k-bounded junction tree is NP in general.

The space complexity of exact factorizations has been investigated in (6).
For many problems the size of the largest clique is O(n), making a numerical
application using this factorization prohibitive. Thus for real applications we
are looking for good k-bounded factorizations which violate the RIP in a few
cases only.

2.2 The Factorized Distribution Algorithm

We first describe our algorithm FDA which runs with any FDA factorization.

Algorithm 2: FDA – Factorized Distribution Algorithm

1 Calculate bi and ci by the Sub-function Merger Algorithm.
2 t ⇐ 1. Generate an initial population with N individuals from the

uniform distribution.
3 do {
4 Select M ≤ N individuals using Boltzmann selection.
5 Estimate the conditional probabilities p(xbi |xci , t) from the se-

lected points.
6 Generate new points according to p(x, t + 1) =Qm

i=1 p(xbi |xci , t).
7 t ⇐ t + 1.
8 } until (stopping criterion reached)

The computational complexity of FDA is O(N ∗∑m
i=1 2|si|), where |si| de-

notes the size of the marginals. For a k-bounded FDA factorization we obtain
O(N∗m∗2k), thus the complexity is linear in m. If the FDA factorization is ex-
act, then the convergence proof of BEDA is valid for FDA too. But since FDA
uses finite samples to estimate the conditional probabilities, convergence to
the optimum will depend on the size of the sample. Sampling theory can be
used to estimate the probability of convergence for a given sample size.

A factorization fulfilling the RIP is sufficient for convergence to the opti-
mum, but not necessary. But such a factorization can be difficult to compute
or may be not k − bounded. Therefore we use FDA mainly with approximate
factorizations. A good approximate factorization should include all edges of
the interaction graph.
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We have implemented a general heuristic which automatically computes
a FDA factorization. The heuristic uses mainly merging of sub-functions. Let
us discuss the problem with a simple loop.

s1 = {1, 2}, s2 = {2, 3}, s3 = {3, 4}, s4 = {1, 4}

All possible sequences end in b4 = ∅. We can use the factorization q(x) =
q̃(x1, x2)q̃(x3|x2)q̃(x4|x3) using s1, s2, s3 only. But if the sub-functions f3 and
f4 are merged then we obtain from our procedure

q(x) = q̃(x1, x2)q̃(x3|x2)q̃(x4|x3, x1)

This factorization uses all edges from GADF but violates the RIP. Merging of
sub-functions lead to larger marginals. Therefore a good heuristic has three
conflicting goals: to minimize the number of RIP violations, to use all depen-
dencies of GADF , and to find a k-bounded factorization with a small k.

Algorithm 3: Sub-function Merger

1 S ⇐ {s1, . . . , sm}
2 j ⇐ 1

3 while d̃j �= {1, . . . , n} do {
4 Chose an si ∈ S to be added
5 S ⇐ S \ {si}
6 Let the indices of the new variables in si be bi = {k1, . . . , kl}
7 for λ = 1 to l do {
8 δλ ⇐ {k ∈ d̃j−1|(xk, xkλ

) ∈ GADF}
9 }

10 for λ = 1 to l do {
11 if exists λ′ �= λ with δλ ⊆ δλ′ and kλ′ not marked superflu-

ous
12 δλ′ ⇐ δλ′ ∪ {kλ}
13 Mark kλ superfluous
14 }
15 for λ = 1 to l do {
16 if not kλ superfluous
17 s̃j ⇐ δλ ∪ {k1, . . . , kλ}
18 j ⇐ j + 1

19 }
20 }

Algorithm 3 describes our heuristic. It is given a cut size, which bounds
the size of the sets. Each new variable is included in a set together with the
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previous variables on which it depends. However, if another variable de-
pends on a superset of variables, the two sets are merged. If the size is larger
than the cut size, variables are randomly left out. After completing the merge
phase, the algorithm calculates c̃j , b̃j and d̃j analogous to the construction
given by (7).

For 2-D grid problems exact factorizations are not k-bounded. If the
ADF consists of sub-functions of two neigboring grid points only, our sub-
function merger algorithm computes a factorization using marginals up to
order 3. The factorization covers the whole interaction graph GADF . For a
3*3 grid the sub-function merger constructs the following factorization

q(x) = q̃(x4, x5)q̃(x3|x4)q̃(x2|x5)q̃(x1|x2, 4)
q̃(x7|x4)q̃(x0|x1, x3)q̃(x8|x5, x7)q̃(x6|x3, x7) (16)

Because grids are very common, we have in addition implemented a
number of specialized factorizations for functions defined on grids. Our pre-
sentation of the sub-function merger algorithm has been very short. In the
area of Bayesian networks, the problem has been investigated in (3).

FDA has experimentally proven to be very successful on a number of
functions where standard genetic algorithms fail to find the global optimum.
In (16) the scaling behavior for various test functions has been studied. For
recent surveys the reader is referred to (17; 19; 15).

3 The maximum entropy principle

In this section we investigate the problem of approximating an unknown
distribution given some information in a theoretical framework.

Let x = (x1, . . . , xn), B = {0, 1}n. Let φj : B → {0, 1}, j = 1, m be binary
functions, often called features. Let a sample S be given, p̃(x) the observed
distribution. Let

Ep̃(φj) =
∑
x∈B

p̃(x)φj(x) (17)

Note that φj can specify any marginal distribution, but also more general
expectations.

Problem We are looking for a distribution p(x) which fulfills the constraints

Ep(φj) = Ep̃(φj) (18)

and is in some sense plausible.
If only a small number of features is given the problem is under-specified.

Consequently, for incomplete specifications the missing information must
be added by some automatic completion procedure. This is achieved by the
maximum entropy principle. Let us recall
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Definition 12 The entropy of a distribution is defined by

H(p) = −
∑

x

p(x) ln(p(x)) (19)

Maximum entropy principle (MaxEnt): Let

P = {p|Ep(φj) = Ep̃(φj), j = 1, . . . , m} (20)

Then the MaxEnt solution is given by

p∗ = argmaxp∈P H(p) (21)

The maximum entropy principle formulates the principle of indifference. If no
constraints are specified, the uniform random distribution will be the solu-
tion. MaxEnt has a long history in physics and probabilistic logic. The inter-
ested reader is referred to (8; 9).
The MaxEnt solution can be computed from the constrained optimization
problem

p∗ = argmaxp∈P H(p) (22)∑
x

p(x) = 1 (23)

∑
x

p(x)φj(x) = Ep̃(φj) (24)

This is a convex optimization problem with linear constraints. Therefore it
has a unique solution. It can be found by introducing Lagrange multipliers.

L(p, Λ, γ) = −
∑

x

p(x) ln p(x) + γ(
∑

x

p(x) − 1) (25)

+
m∑

i=j

λj(Ep(φj) − Ep̃(φj)) (26)

where Λ = (λ1, . . . , λm).
The maxima of L can be obtained by computing the derivatives of L. We
compute

∂L

∂p(x)
= − ln p(x) − 1 −

m∑
j=1

λjφj(x) + γ (27)

Setting the derivative to zero gives the parametric form of the solution

p∗(x) = exp (γ − 1) exp
m∑

j=1

λjφj(x) (28)
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Definition 13 Let Q be the space of distributions of the parametric form

Q = {q|q(x) =
1
Z

exp
m∑

j=1

λjφj(x)} (29)

In order to characterize the MaxEnt solution, the relative entropy between
distributions has to be introduced.

Definition 14 The relative entropy or Kullback-Leibler divergence between two dis-
tributions p and q is defined as (see (4))

KLD(p, q) =
∑

x

p(x) ln
p(x)
q(x)

(30)

Note that KLD(p, q) �= KLD(q, p), i.e. KLD is not symmetric! If q(x) = 0
and p(x) > 0 we have KLD(p, q) = ∞. This means that KLD gives large
weights to values near zero. In all other aspects KLD is a distance measure.
The following lemma holds (4).

Lemma 15 For any two probability distributions p and q, KLD(p, q) ≥ 0 and
KLD(p, q) = 0 iff p = q.

In our application KLD fulfills the Pythagorean property.

Lemma 16 (Pythagorean Property) Let p ∈ P , q ∈ Q, and p∗ ∈ P ∩ Q, then

KLD(p, q) = KLD(p, p∗) + KLD(p∗, q) (31)

The proof is straightforward. The following theorem follows easily from the
lemma:

Theorem 17 (Maximum Entropy Solution). If p∗ ∈ P ∩ Q, then

p∗(x) = argmaxp∈P H(p) (32)

Furthermore, p∗ is unique.

The constrained optimization problem can be solved by standard math-
ematical algorithms. But also specialized algorithms have been invented, a
popular one is the Generalized Iterative Scaling Algorithm (GIS) (5). Unfortu-
nately the computational amount of the algorithm is exponential in general.

Obviously the MaxEnt approximation minimizes the relative entropy
KLD(p, u) to the uniform distribution u. Thus MaxEnt is a special case of
the minimum relative entropy MinRel principle. But there exists another jus-
tification of the MaxEnt solution, it is given by the Maximum Log-Likelihood
principle.
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Definition 18 Let S = {X1, . . . , XN} be an empirical sample, p̃(x) the empirical
distribution. Let q(x) be a distribution. Then the likelihood that q generates the data
is given by

LH(q) =
N∏

i=1

q(Xi) =
∏
x∈B

q(x)Np̃(x) (33)

The log-likelihood is defined as

LogLH(q) =
∑
x∈B

Np̃(x) ln q(x) (34)

Theorem 19 (Maximum Log-Likelihood solution). If p∗ ∈ P ∩ Q, then

p∗(x) = argmaxq∈Q LogLH(q) (35)

Furthermore, p∗ is unique.

Proof. Let p̃(x) be the observed distribution. Clearly p̃ ∈ P . Suppose q ∈ Q
and p∗ ∈ P ∩ Q. We show that LogLH(q) ≤ LogLH(p∗). The Pythagorean
property gives

KLD(p̃, q) = KLD(p̃, p∗) + KLD(p∗, q)

Therefore

KLD(p̃, q) ≥ KLD(p̃, p∗)

−H(p̃) − 1
N

LogLH(q) ≥ −H(p̃) − 1
N

LogLH(p∗)

LogLH(q) ≤ LogLH(p∗)

Thus the MaxEnt solution can be viewed under both the maximum entropy
framework as well as the maximum log-likelihood framework. This means
that p∗ will fit the data as closely as possible while as the maximum entropy
solution it will not assume facts beyond those given by the constraints.

We next investigate the relation of FDA factorizations and the MaxEnt
solution.

Definition 20 Given an ADF the MaxEnt problem is called complete marginal
if all marginal distributions p̃(xsk

) are given. The FDA factorization is called com-
plete, if the graphical model of the factorization contains the interaction graph
GADF .

Theorem 21. The MaxEnt solution of a complete marginal MaxEnt problem is the
exact distribution. The MaxEnt solution of any complete FDA factorization is the
exact distribution.
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Proof. Let a complete marginal MaxEnt problem be given. Then the features
φ(xsi ) are defined by Ep̃φ(xsi ) = p̃(xsi ). We abbreviate the parameters in
equation (29) by λ(xsi). Now set λ(xsi)p̃(xsi) = βf(xsi ). Thus the exact dis-
tribution is in the set Q. Obviously fulfills the exact distribution the marginal-
ization constraints. Therefore the exact distribution is the MaxEnt solution.
The proof for complete FDA factorizations works accordingly.

This theorem is the justification of the MaxEnt principle for FDA factor-
izations. If all relevant information of an ADF is given, the unique MaxEnt
solution is the exact distribution. But the computation of the MaxEnt solu-
tion for a complete FDA factorization is exponential if it does not fulfill the
RIP. Therefore FDA just samples from the factorization using the computed
marginals. But if the RIP is violated the generated distribution might be dif-
ferent from the exact distribution, even if the factorization is complete. Thus
in contrast to the MaxEnt solution, the FDA factorization with its simple sam-
pling procedure might not converge to the optima of the function.

We next describe another approach to approximate the Boltzmann distri-
bution. In this method the Kullback-Leibler divergence to the Boltzmann dis-
tribution is minimized without computing the marginal distributions from
samples. Instead the values of the marginals are computed from a difficult
constrained minimization problem.

4 Approximating the Boltzmann distribution

The Boltzmann distribution plays an important role in statistical physics.
Therefore a number of approximation techniques have been developed. We
present an approach where an approximation q

q(x) =
1
Z

k∏
i=1

q̃(xk) (36)

is computed which minimizes the relative entropy to the Boltzmann distri-
bution. The method is described in (15) using the terminology of physics. We
give here a short mathematical derivation. The relative entropy is given by

KLD(q|pβ) =
∑

x

q(x) ln q(x) −
∑

x

q(x) ln pβ(x)

= −H(q) + lnZ − βEq(f)

We again assume that the function is defined by an ADF. Then we easily
obtain

Eq(f) =
m∑

i=1

q(xsi)fi(xsi) (37)
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The expected average of the function can be computed using the marginals.
More difficult problem is the computation of H(q). We will restrict our dis-
cussion to FDA factorizations.

q(x) =
∏m

i=1 q̃(xsi )∏m
i=1 q̃(xci)

(38)

For this factorization one computes

H(q) = −
m∑

i=1

q(xsi ) ln q̃(xsi) +
m∑

i=1

q(xci) ln q̃(xci)

≈ −
m∑

i=1

q(xsi ) ln q(xsi ) +
m∑

i=1

q(xci) ln q(xci) (39)

Note that for FDA factorizations which do not fulfill the RIP we have
q(xsi ) �= q̃(xsi) if we use FDA sampling. But in order to make the prob-
lem tractable we assume q(xsi) = q̃(xsi) Then minimizing KLD leads to the
following constraint optimization problem.

Definition 22 (Bethe-Kikuchi approximation) Compute the minimum of all
FDA factorizations q(x) (equation (38))

argminqKLD(q|pβ) =
m∑

i=1

q(xsi) ln q(xsi )

−
m∑

i=1

q(xci) ln q(xci) − β

m∑
i=1

q(xsi )fi(xsi ) (40)

subject to the constraints for all sj with ci ⊂ sj∑
xsi

q(xsi) = 1 (41)

∑
xsj

\xci

q(xsj ) = q(xci) (42)

Remark: The minimization problem is not convex! There might exist many local
minima. Furthermore, the exact distribution might not be a local minimum if the
factorization violates the RIP.
The constraints make the the solution of the problem difficult. We again use
the Lagrange function.

L(p, Λ, Γ ) = KLD(q|pβ) +
m∑

i=1

γi(
∑
xsi

q(xsi) − 1)

+
m∑

i=1

∑
xci

λ(sj , ci)(
∑

xsj
\xci

q(xsj ) − q(xci)) (43)
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The minima of L are determined be setting the derivatives of L zero. The
independent variables are q(xsi),q(xci),γi,and λ(sj , ci). We obtain

∂L

∂q(xsi)
= ln q(xsi ) + 1 − βq(xsi)f(xsi ) + γi + r(Λ) (44)

Setting the derivative to zero, we obtain the parametric form

q(xsi) = e−1−γie−r(Λ)eβf(xsi
) (45)

Note that the parametric form is again exponential. The Lagrange fac-
tors Γ are easily computed from

∑
xsi

q(xsi ) = 1. The factors Λ have to be
determined from a non-linear system of equations. Before we describe an
algorithm for solving it, we describe a simple special case, the mean-field
approximation.

4.1 The mean-field approximation

In the mean-field approximation uni-variate marginals only are used.

q(x) =
n∏

i=1

q(xi) (46)

We obtain for its entropy and Eq(f).

H(q) = −
∑

x

n∏
i=1

q(xi)
n∑

j=1

ln q(xj) = −
n∑

i=1

∑
xi

q(xi) ln q(xi)

Eq(f) =
∑

x

n∏
i=1

q(xi)f(x) =
m∑

i=1

n∏
j∈si

q(xj)f(xsi)

For the mean-field approximation the Kullback-Leibler divergence is con-
vex, thus the minimum exists and is unique. The minimum is obtained by
setting the derivative of KLD equal to zero, using the uni-variates as vari-
ables. We abbreviate qi = q(xi = 1).

Theorem 23. The uni-variate marginals of the mean-field approximation are given
by the nonlinear equation

q∗i =
1

1 + e
∂Eq
∂qi

(47)

Proof. We compute the derivative

∂KLD

∂qi
= ln

qi

1 − qi
+

∂Eq

∂qi
= 0 (48)

The solution gives (47).

Equation (47) can be solved by an iteration scheme.
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5 Loopy Belief Models and Region Graphs

The computation of the Bethe-Kikuchi approximation is difficult. We decided
to use a specialized algorithm, recently proposed in (26). It is based on the
concept of a region graph. A region graph is a loopy graphical model. It is
strongly related to partially ordered sets (posets) or Hasse diagrams. Similar
or identical structures have been presented in (2; 14; 24). This section follows
largely the notation of (26).

5.1 Regions

The region graph was introduced in (26) using a different graphical model,
the factor graph. The factor graph is a more detailed way to describe an ad-
ditive decomposition. We decided not to use the factor graph to show the
connection of region graphs to junction trees.

Definition 24 Let S = {s1, . . . , sm} be the index set of an additive decomposition
for a fitness function f , such that

f(x) =
∑
si∈S

fi(xsi ) (49)

A region R = (sR, IR) is a set of variable indices sR ⊆ {1, . . . , n} and a set of
sub-function indices IR ⊆ {1, . . . , m}, such that

∀i ∈ IR : si ⊆ sR (50)

The variables contained in the region are indexed by sR, whereas IR contains the
indices of the sub-functions which are contained in the region. It is asserted by (50)
that all variables needed for the contained sub-functions are in sR.

Our goal is to approximate the Boltzmann distribution with the energy
E(x) = −f(x) by minimizing the relative entropy. For a region we define a
local energy.

Definition 25 For a region R, define the region energy

ER(xsR) := −
∑
i∈IR

fi(xsi ) (51)

Region energies are defined only for those regions which contain the vari-
ables of at least one sub-functions. We will try to compute the marginals qR

on R from the Bethe-Kikuchi minimization problem. In (26) the marginals
are called the beliefs on R. This is the terminology of Bayesian networks.
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5.2 Region Graph

Definition 26 A region graph is a graph G = (R, ER), whereR is a set of regions
and ER is a set of directed edges. An edge (Rp, Rc) ∈ ER is only allowed if sRc ⊂
sRp . If (Rp, Rc) ∈ ER, we call Rp a parent of Rc and Rc child of Rp.

Since ER imposes a partial ordering on the set of regions, in (14) the same
structure was called a partially ordered set or poset.

Lemma 27 A region graph is directed acyclic.

Proof. This follows immediately from the requirement that edges are only
allowed from supersets to subsets.

A junction tree can be turned into a region graph by creating a region for
every cluster and every separator and adding edges from each node to each
neighboring separator.

The global distribution of a junction tree is the product of all distributions
on the clusters divided by the distributions of all the separators (see (15)). We
generalize this factorization by introducing counting numbers of the regions.

Definition 28 The counting number cR of a region R is defined recursively as

cR = 1 −
∑

R′∈A(R)

cR′ (52)

where A(R) is the set of all ancestors of R.

This is well-defined, because the region graph is cycle-free. The maximal
regions (without ancestors) have counting number 1. From there, the count-
ing numbers can be calculated from the top to the bottom of the graph.

5.3 Region Graph and Junction Tree

The junction tree property has an equivalent on the region graph, called the
region graph condition.

Definition 29 We call a region graph valid if it fulfills the region graph condi-
tion, which states that

1. For all variable indices i ∈ {1, . . . , n} the set RX,i := {R ∈ R|i ∈ sR} of all
regions R that contain Xi form a connected subgraph with∑

R∈RX,i

cR = 1 , (53)

and
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2. For all sub-function indices i ∈ {1, . . . , m} the set Rf,i := {R ∈ R|i ∈ IR} of
all regions R that contain fi form a connected subgraph with∑

R∈Rf,i

cR = 1 . (54)

The connectivity of the subgraph, like the junction property, prevents that
in different parts of the graph contradictory beliefs can evolve. The condi-
tion on the counting numbers makes sure that every variable and every sub-
function is counted exactly once.

The Kikuchi approximation of the Boltzmann distribution is defined as
follows (see also (23)).

Definition 30 The Kikuchi approximation of the Boltzmann distribution for a
region graph is

k(x) =
∏

R∈R
qR(xsR)cR (55)

In general, it is not normalized and therefore no probability distribution. The nor-
malized Kikuchi approximation

pk(x) =
k(x)∑
y k(y)

(56)

is a probability distribution.

If the region graph is derived from a junction tree, with qR being the marginal
distributions on the clusters and separators, k(x) is a valid distribution, since
its definition coincides with the junction tree distribution. It has been proven
that cycle-free region graphs reproduce the exact distribution (25). Thus they
give the same result a a junction tree.

The problem of sampling from a Kikuchi approximation is discussed
later. We next describe a local iteration algorithm, based on the region graph
and message passing between regions. The iteration algorithm minimizes the
Kullback-Leibler divergence.

6 The Concave Convex Procedure

The Concave Convex Procedure (CCCP) (27) is a variant of Generalized Be-
lief Propagation GBP proposed in (25). It is based on the observation that the
Lagrangian consists of a convex and a negative convex (concave) term. The
CCCP algorithm alternates between updates of the convex and the concave
term.
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6.1 The convex and concave Lagrangian

We now derive the CCCP update procedure, following (27). The algorithm
is fairly complex. A detailed description can be found in the dissertation (7).
The Lagrangian to be minimized is given by equation (43)

L =
∑
R∈R

cR

⎛
⎝∑

xsR

qR(xsR)βE(xsR ) +
∑
xsR

qR(xsR) log qR(xsR)

⎞
⎠

+
∑
R∈R

γR

⎛
⎝1 −

∑
xsR

qR(xsR)

⎞
⎠

+
∑

(P,R)∈ER

∑
xsR

λPR(xsR)

⎛
⎝ ∑

xsP \sR

qP (xsP ) − qR(xsR)

⎞
⎠ (57)

The basic idea of CCCP is to split L in a convex and a concave part. The
problematical part is the entropy term: For regions with cR > 0, the entropy
term is convex, for regions with cR < 0 it is concave. The average energy and
the constraints are linear in the qR, so it does not matter where we put them.

To avoid an arbitrary separation into convex and concave regions, we set

cmax = max
R

cR (58)

and use this definition to split up L into a convex part

Lvex =
∑
R∈R

cmax

⎛
⎝∑

xsR

qR(xsR)βER(xsR) +
∑
xsR

qR(xsR) ln qR(xsR)

⎞
⎠

+
∑
R∈R

γR

⎛
⎝1 −

∑
xsR

qR(xsR)

⎞
⎠

+
∑

(P,R)∈ER

∑
xsR

λPR(xsR)

⎛
⎝ ∑

xsP \sR

qP (xsP ) − qR(xsR)

⎞
⎠ (59)

and a concave part

Lave =
∑
R∈R

(cR − cmax)(
∑
xsR

qR(xsR)ER(xsR)

+
∑
xsR

qR(xsR) ln qR(xsR)) (60)

Obviously L = Lvex + Lave.
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6.2 The outer and inner loops

CCCP consists of an inner loop in which the messages are updated until con-
vergence, and an outer loop in which the current estimates of the marginals
are updated. For the inner loop we use the iteration index τ and for the outer
the index ξ.

The Outer Loop

For the outer loop we make the ansatz

∇Lξ+1
vex + ∇Lξ

ave = 0 (61)

where ∇L denotes the vector of the partial derivatives of L with respect to
the marginals qR(xsR). The derivatives are given by

∂Lvex

∂qR(xsR)
= cmax (βER(xsR) + ln qR(xsR ) + 1) − γR

−
∑

P |(P,R)∈ER

λPR(xsR) +
∑

C|(R,C)∈ER

λRC(xsC ) (62)

and
∂Lave

∂qR(xsR)
= (cR − cmax) (βER(xsR) + ln qR(xsR) + 1) . (63)

Inserting (62) and (63) into (61) gives

cmax

(
βER(xsR) + ln qξ+1

R (xsR ) + 1
)
− γR

−
∑

P |(P,R)∈ER

λPR(xsR ) +
∑

C|(R,C)∈ER

λRC(xsC )

+ (cR − cmax)
(
βER(xsR) + ln qξ

R(xsR ) + 1
)

= 0 . (64)

Solving this for qξ+1
R (xsR) gives the update equations for the marginals in the

outer loop:

qξ+1
R (xsR) = qξ

R(xsR)
cmax−cR

cmax exp
[
− cR

cmax
βER(xsR)

]

exp

⎡
⎣γR − cR

cmax
+

1
cmax

(
∑

P |(P,R)∈ER

λPR(xsR))

⎤
⎦

exp− 1
cmax

⎡
⎣ ∑

C|(R,C)∈ER

λRC(xsC )

⎤
⎦ (65)
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For the regions with cR = cmax the previous marginal qξ
R(xsR) cancels out.

We next introduce messages (see (25))

mPC(xsC ) := e
1

cmax
λP C(xsC

) (66)

and choose γR appropriately for normalization, which changes the update
equation to

qξ+1
R (xsR) ∝ qξ

R(xsR)
cmax−cR

cmax e−
cR

cmax
βER(xsR

)

∏
P |(P,R)∈ER mPR(xsR)∏
C|(R,C)∈ER mRC(xsC )

(67)

The Inner Loop

The inner loop update equation for the messages can be derived by inserting
(67) into the consistency equation∑

xsP \sR

qP (xsP ) = qR(xsR) (68)

This gives

∑
xsP \sR

qt
P (xsP )

cmax−cP
cmax e−

cP
cmax

βEP (xsP
)

∏
Q|(Q,P )∈ER mQP (xsP )∏
C|(P,C)∈ER mPC(xsC )

= qt
R(xsR)

cmax−cR
cmax e−

cR
cmax

βER(xsR
)

∏
Q|(Q,R)∈ER mQR(xsR)∏
C|(R,C)∈ER mRC(xsC )

(69)

The message mPR(xsR) is independent of the summation variables xsP \sR
,

so it can be extracted from the sum. It appears in the denominator on the left
side of (69) and in the numerator on the right side. This allows to solve the
equation for this message.

With the abbreviations

gR(xsR) := qξ
R(xsR )

cmax−cR
cmax e−

cR
cmax

βER(xsR
) (70)

hR(xsR) :=

∏
Q|(Q,R)∈ER mτ

QR(xsR )∏
C|(R,C)∈ER mτ

RC(xsC )
(71)

we arrive at the inner loop update equation

m
τ,upd
PR (xsR) = mτ

PR(xsR)

√∑
xsP \sR

gP (xsP )hP (xsP )

gR(xsR)hR(xsR)
(72)

In order to make the iteration more robust, damping is applied Linear
damping (26; 27) calculates the messages as a linear combination between
the old and update messages:

mτ
P→R(xR) = (1 − α)mτ−1

P→R(xR) + αm
τ,upd
P→R(xR) (73)
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6.3 FDA factorizations and region graphs

The Kikuchi factorization and the concept of region graph has also been
used for an EDA algorithm by (23). But the marginals are not determined
from minimization of the Kullback-Leibler divergence, they are estimated
from samples. Thus instead of the FDA factorization the Kikuchi factoriza-
tion is used. But here a difficult problem appears, namely to sample from the
Kikuchi approximation. The factorization is a loopy graphical model, it con-
tains cycles. Therefore Gibbs sampling has been used in (23), which gives a
valid distribution but is computational very expensive.

In contrast, we have implemented the full Bethe-Kikuchi method. In or-
der to circumvent the sampling problem, we decided to use FDA factoriza-
tions only for the Kikuchi method. Given an arbitrary FDA factorization, we
use the marginals used for the factorization to create a region graph. This is
always possible. Then the Bethe-Kikuchi approximation is computed using
this region graph. After the computation of the marginals the FDA factoriza-
tion is used again for sampling.

7 The FDA Software

The FDA software allows to optimize arbitrary fitness functions of binary
variables using various evolutionary algorithms like the simple genetic al-
gorithm GA, the Univariate Marginal Algorithm UMDA, the Factorized
Distribution Algorithm FDA, the Learning Factorized Distribution Algo-
rithm LFDA, the Bethe-Kikuchi Approximation BKDA, and the Iterated
Kernighan-Lin algorithm IKL. Details about these algorithms and a free down-
load of the FDA software can be found at the web site
http://www.ais.fraunhofer.de/∼muehlen.
The following list summarizes the implemented algorithms.

• −ag chooses the simple genetic algorithm GA. It allows one-point or two-
point crossover and mutation.

• −au chooses the UMDA algorithm. This algorithm estimates the univari-
ate marginal distributions from the population and then samples the next
generation with them.

• −af chooses the FDA algorithm. The FDA algorithm expects the fitness
function to be additively decomposable. To this end, the fitness functions
are given as a sum of ”local functions” on a subset of the variables. If there
is no such structure given, UMDA is used instead. −af should be com-
bined with one of the implemented automatic factorization algorithms
described under −j.

• −al selects the LFDA algorithm. This algorithm estimates the structure
from the data using the BIC measure. The edge that increases the BIC
most is added to the graphical model, until there is no more improve-
ment possible. There are two subparameters to this algorithm: ’m’ gives
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a maximal number of parents that a variable can have, and ’a’ gives the
weight of the structure penalty. The default values are ’-alm8a0.5’.

• −ab is our implementation of the Bethe-Kikuchi method BKDA. It is rec-
ommended for experienced users only. The user is prompted for a value
of beta used for the Boltzmann distribution. It should be run for a single
generation only.

• −am is an iterated random algorithm. It creates the next population us-
ing mutation from the maximum of the current population. It requires an
argument, which is the number of random bit flips which is performed
on the copies of the maximum in order to generate the starting points of
the next generation. It should be run together with a local optimizing al-
gorithm like the Kernighan-Lin algorithm. In FDA this option should be
used together with the −k switch with a population size of 2 till 4.

• −j selects the heuristic to compute the factorization for FDA. −jm selects
the sub-function join algorithm. The user should bound the size of the
marginal distribution by specifying a number, e.g. −jm9. In addition a
number of specialized factorizations for certain functions can be selected.

• −k turns on the local optimizer Kernighan-Lin algorithm (12). It can be
used together with all the other algorithms, excluding BKDA of course.

7.1 Local Hill Climbing

The use of a powerful local hill climbing algorithm changes the character of
the search dramatically. We have implemented a general Kernighan-Lin al-
gorithm (12). It is not a simple local hill climber, but it has a sophisticated
backtracking procedure. Our implementation scales with O(n2). The algo-
rithm can run together with GA, UMDA, FDA and LFDA using a small pop-
ulation size. It can also run as a simple iteration, the Iterated Kernighan-Lin
algorithm IKL with a population size of two. New and promising start con-
figurations are provided by randomly changing a certain percentage of the
best solution obtained so far. The performance of IKL strongly depends on
using a good value for this percentage.

For the graph bi-partitioning problem a very fast version of Kernighan-
Lin has been implemented. It uses hash tables and a cut for backtracking.
This implementation scales approximately linearly with n. It allows the op-
timization of graphs with more than 1000 variables with pop sizes up to 50.

8 Numerical Results

The EDA family of algorithms seems to be mature, at least for binary prob-
lems. It is time to demonstrate the state-of-the-art with large instances of pop-
ular benchmark problems. In (17) large graph bi-partitioning problems have
been solved. Large problems have been also solved in (22). We will continue
this work here. We will use problems on 2-D grids and Kauffman’s n − k
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function. The number of variables will be up to 900. Kauffman’s function is
an example of an ADF with random connections, the 2-D grid problems are
important problems with regular connections.

2-D Spin glass:
f(x) =

∑
i,j

fi,j(si, sj) (74)

sj is one of the 4 neighbors of si, si ∈ {−1, 1}. The function values are ran-
domly drawn from a Gaussian distribution in the interval [−1, +1].

2-D grid on plaquettes:

f(x) =
∑
i,j

fi,j(xi,j , xi+1,j , xi,j+1, xi+1,k+1) (75)

The indices define a plaquette on the 2-D grid. The function values for each
sub-function are randomly drawn from a Gaussian distribution in the inter-
val [−1, +1].

Kauffman random n − 3:

f(x) =
n∑

i=1

fi(xi, xj , xk) (76)

The indices i, j, k are randomly chosen. The function values are drawn from
a Gaussian distribution in [0, 1].

The following table can be easily generated by any user of the FDA soft-
ware. We do not have the space to compare all the possible FDA algorithms.
The reader is encouraged to do tests himself.

The results confirm our theory. The standard FDA algorithm with large
population sizes (N = 30000) performs very good on all instances. It should
be no surprise that the population size has to be large. For the 2-D grid prob-
lems we used the special factorization −jg5. It uses marginals of size 5, even
for the Ising problems. For the Kauffman function the sub-function merger
algorithm −jm creates marginals up to size 12 for n = 400 and size 15 for
n = 625. It needs a large sample size to compute good estimates of these
marginals. We remind the reader that for the BKDA algorithm the samples
are computed only once, after computing the marginals. Surprisingly the
BKDA algorithm runs slightly faster than FDA. Note that β has to be very
large for the Kauffman function. This indicates that the Kauffman function
has many local maxima. Still larger values of β do not improve the results
for BKDA, because the convergence becomes a problem. Given the many as-
sumptios used for BKDA we find the performance surprisingly good. But it
seems to be not a breakthrough.
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problem size alg. sample. β best value
Ising 400 FDA 30000 - 297.259
Ising 400 BKDA 10000 30 297.259
Ising 625 FDA 30000 - 466.460
Ising 625 BKDA 10000 30 463.622
Plaqu. 400 FDA 10000 - 207.565
Plaque. 400 BKDA 10000 30 207.565
Plaque. 625 FDA 30000 - 320.069
Plaque. 625 BKDA 10000 30 320.132
Plauqe. 900 FDA 30000 - 459.274
Plaque. 900 BKDA 10000 30 454.237
n − 3 400 FDA 10000 - 0.7535
n − 3 400 BKDA 10000 12000 0.7520
n − 3 625 FDA 30000 - 0.7501
n − 3 625 BKDA 10000 15000 0.7436

Table 1. Comparison of FDA and BKDA on large problems.

9 Conclusion and Outlook

The efficient estimation and sampling of distributions is a common problem
in several scientific disciplines. Unfortunately each discipline uses a differ-
ent language to formulate its algorithms. We have identified two principles
used for the approximation – minimizing the Kullback-Leibler divergence
KLD(q, u) to the uniform distribution u or minimizing KLD(q, pβ) to the
Boltzmann distribution pβ .

We have shown that the basic theory is the same for the two algorithms.
This theory deals with the decomposition of graphical models and the com-
putation of approximate factorizations. If the interaction graph GADF allows
an exact factorization fulfilling the RIP, then both methods compute the exact
distribution.

We have discussed two EDA algorithms in detail. The standard FDA al-
gorithm computes a factorization from the graph representing the structure.
If the corresponding graphical model does not fulfill the assumptions of the
factorization theorem the exact distribution is only approximated. Factoriza-
tions which cover as much as possible from the interaction graph GADF are
obtained by merging of sub-functions. The marginals of the standard FDA
algorithm are computed from sampling the FDA factorization.

The Bethe-Kikuchi algorithm BKDA computes the marginals from a dif-
ficult constrained minimization problem. Because sampling from the orig-
inal Bethe-Kikuchi factorization is difficult, we have extended the original
approach. We use the FDA factorization which contains no loops. From this
factorization the marginals are computed using the Bethe-Kikuchi minimiza-
tion.

Our results show that for binary problems the EDA algorithms perform
as good or even better than other heuristics used for optimization. At this
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stage our algorithm is not yet optimized from a numerical point of view,
nevertheless is is already competitive to more specialized algorithms.

In our opinion too many EDA researchers still investigate 1-D problems.
Our theory (and also practice) shows that these problems can be solved ex-
actly in polynomial time if the junction tree factorization is used. They pose
no problem for optimization at all.

The interested reader can download our software from the WWW site
http://www.ais.fraunhofer.de/∼muehlen.
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[7] R. Höns. Estimation of Distribution Algorithms and Minimum Relative En-
tropy. PhD thesis, University of Bonn, 2005.

[8] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev,
6:620–643, 1957.

[9] E. T. Jaynes. Where do we stand on maximum entropy? In R. D.
Levine and M. Tribus, editors, The Maximum Entropy Formalism. MIT
Press, Cambridge, 1978.

[10] F. V. Jensen and F. Jensen. Optimal junction trees. In Proceedings of
the 10th Conference on Uncertainty in Artificial Intelligence, pages 360–366,
Seattle, 1994.

[11] M. I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambrigde,
1999.

[12] B. W. Kernighan and S. Lin. An efficient heuristic for partitioning
graphs. Bell. Syst. Techn. Journ., 2:291–307, 1970.

[13] S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.
[14] R. J. McEliece and M. Yildirim. Belief propagation on partially ordered

sets. In Proceedings of the 15th Internatonal Symposium on Mathematical
Theory of Networks and Systems (MTNS 2002), 2002.



The Factorized Distribution Algorithm 27
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