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Abstract 24 

Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance threatening 25 

health and food security at a global scale. Strategies for preventing the evolution of resistance 26 

include cycling and mixtures of chemicals and diversification of management. We currently lack 27 

large-scale studies that evaluate the efficacy of these different strategies for minimizing the 28 

evolution of resistance. Here we use a national scale dataset of occurrence of the weed Alopecurus 29 

myosuroides (Blackgrass) in the UK to address this. Weed densities are correlated with assays of 30 

evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a 31 

national scale. Resistance was correlated with the frequency of historical herbicide applications 32 

suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, 33 

but was unrelated directly to other cultural techniques. We find that populations resistant to one 34 

herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the 35 

economic costs of evolved resistance are considerable: loss of control through resistance can 36 

double the economic costs of weeds. This research highlights the importance of managing threats 37 

to food production and healthcare systems using an evolutionarily informed approach in a 38 

proactive not reactive manner.  39 
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Introduction 40 

Xenobiotic chemicals including antibiotics, anti-cancer treatments, insecticides and herbicides, 41 

have brought enormous health benefits and increases in food production [1-3]. However, 42 

pathogens and pests are highly adaptable, and can rapidly evolve resistance to these chemicals 43 

rendering them ineffective. As a result, evolution of resistance is a major threat to public health 44 

and food security at a global scale [2-4]. 45 

The development of new xenobiotics plays an important role in the control of pathogens 46 

and pests. However, finding new chemical tools that are effective and meet regulatory safety 47 

standards involves significant time and cost [5]. The useful life of these chemicals can be very 48 

short, and in extreme cases resistance has evolved in just a few years [2, 5]. In the case of 49 

herbicides there have been no new modes of action developed in the past 30 years, and evolved 50 

resistance is reducing the range of management options available [5]. Slowing the evolution of 51 

resistance to current chemicals is thus a crucial priority [2, 3, 6].  Consequently, research on the 52 

evolution of resistance is carried out across a diverse range of applied disciplines [7, 8]. 53 

The primary approach to minimizing the rate of evolution of resistance is through using 54 

multiple xenobiotics with contrasting modes of action (MOAs: families of chemicals that target 55 

cellular machinery or metabolic processes in different ways). Four principal strategies exist for 56 

combining two or more chemical MOAs over space and time, with the objective of delaying the 57 

evolution of resistance to pesticides and drugs [9]: Periodic application and Responsive 58 

alternation (collectively referred to as ‘temporal cycling’) where treatments vary over time, but 59 

not space; Mosaic where treatments vary spatially but not temporally; and Combination where 60 

treatments vary over both space and time (with multiple MOAs administered at once). In 61 

medicine, drug combination therapies have slowed the evolution of resistance in HIV [10] and are 62 

recommended for treating tuberculosis [11] and malaria [12]. In agriculture both the scientific 63 

literature and industry advice suggest managing the evolution of resistance with temporal cycling 64 
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and/or combination of different MOAs [8, 13-18]. The rate of evolution for herbicide resistance 65 

should be slowed more effectively by combination (simultaneous use of multiple MOAs) than by 66 

responsive alternation (annual rotation) of MOAs [13, 14, 16, 17], however this has yet to be 67 

tested at large scales and under the usual scenario where resistance has already evolved to some 68 

MOAs. Notwithstanding in broad terms current management is founded on the theoretical 69 

prediction that increasing the diversity of chemicals used can reduce the rate of evolution of 70 

resistance.  71 

It is not inevitable that using a combination of MOAs will reduce the rate of evolution of 72 

resistance. The concept of combination treatment is based on the assumption that resistance to 73 

each MOA is driven by mutations at specific loci (target site resistance), each of which confers a 74 

large effect [7]. However, much resistance is driven by more general, non-specific non target site 75 

resistance [7]. This resistance may confer resistance to multiple MOAs, and thus combination and 76 

temporal cycling of products may have a reduced impact.  77 

To date, most recommendations for managing the evolution of resistance are predicated on 78 

the assumption that there are multiple effective modes of action [9]. However, this may not always 79 

be the case, particularly in systems where xenobiotics have been in use for several decades. 80 

Historical use means that some resistance already exists to some MOAs available for inclusion in 81 

a combination or temporal cycle. For weed control in particular this problem is exacerbated 82 

because new MOAs are introduced very infrequently [5]. In addition, non-target site resistance 83 

mechanisms may be present in populations never exposed to xenobiotics, pre-adapting those 84 

populations to quickly evolve resistance [19].  85 

In agriculture, resistance management is embedded within Integrated Management (IM), 86 

where pests are controlled by varying crops and management practices, including options beyond 87 

chemical control [20]. Significantly, mortality from non-chemical control is unaffected by the 88 

extent of evolved resistance and should not select for increased xenobiotic resistance. By reducing 89 
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population sizes independently of chemical control, IM is argued to be effective at both delivering 90 

pest control as well as reducing the rate of evolution to xenobiotics [21]. However, it is generally 91 

unclear how effective such strategies are, as well as the extent to which managers proactively use 92 

these methods.  93 

Understanding of the effectiveness of alternative strategies is limited by the availability of 94 

long-term management data that simultaneously records the abundance of pests, weeds or diseases 95 

and the extent of evolved resistance to xenobiotics.  Here we report such a dataset and use it to 96 

analyze the factors driving herbicide resistance at a landscape scale. We use blackgrass 97 

(Alopecurus myosuroides), an arable weed in the UK, as an empirical system for investigating the 98 

evolution of resistance at scales relevant to national cropping and food production. Data from a 99 

national network of farms are used to investigate the role of historical management in the 100 

evolution of resistance. We collated field management histories for up to 10 years on each farm, 101 

which allow us to measure real-world management where herbicide applications are commonly 102 

used alongside integrated management control methods. We describe the national distributions of 103 

the weed, demonstrating a large-scale cline in occurrence and confirming the role of resistance in 104 

driving densities. By linking densities and resistance status to management we are able to 105 

demonstrate how different management strategies have affected the evolution of resistance. 106 

Finally, we explore the wider consequences of evolved resistance, measuring the costs of 107 

management and showing how resistant weeds are driving losses in crop production. 108 

 109 

Results and Discussion 110 

Distribution and spread. The distribution of A. myosuroides is now extensive, with eighty-eight 111 

percent of 24 824 quadrats surveyed containing at least one blackgrass plant. Thirty-two percent of 112 

quadrats contained high or very high densities. We found that weed density varies geographically 113 

(Figures 1a and 1b) with significantly higher densities found in the southern regions of the study 114 
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(F=93.48, df = 564, p <0.001). For example, we recorded high and very high densities in 75% of 115 

quadrats in Buckinghamshire (Southern England), compared to only 20% in Yorkshire (Northern 116 

England). 117 

Changing herbicide usage suggests that A. myosuroides is becoming increasingly difficult 118 

to manage with chemicals: recent years have seen increases in the geographical range of 119 

Alopecurus myosuroides (Figure 1c) and concomitantly both the volume and diversity (Figure 1d) 120 

of herbicides used has increased with time as successive products become ineffective. Particularly 121 

evident is a dramatic increase in the use of Glyphosate (Figure 1d/e), a broad-spectrum herbicide 122 

that is used to manage problematic outbreaks.  123 

 124 

Is resistance driving high weed densities? Herbicide resistance was first reported in the 1950's 125 

[19] and, as of March 2017, is confirmed in 252 weed species globally, covering a broad range of 126 

herbicides [23]. Resistance is widespread in populations of A. myosuroides in the UK. The three 127 

herbicides tested caused <40% mortality (very high resistance) in 96% (FEN), 82% (ATL) and 128 

57% (CYC) of the 138 blackgrass populations, when applied at recommended field rates (see 129 

Experimental Procedures for details). Most populations were resistant to multiple herbicides 130 

(Figure 2): 79% of populations had high levels of resistance (defined as <80% mortality after 131 

exposure) to all three herbicides. This suggests two possibilities: firstly, that target-site resistance 132 

combined with extensive gene flow has led to the evolution of resistance to all three MOAs 133 

independently, or alternatively, evolution of resistance to one MOA confers cross resistance to the 134 

other MOAs (i.e. one that the plant is yet to meet), potentially through metabolic mechanisms. 135 

Our data indicate that resistance appears to be a key factor driving the abundance of A. 136 

myosuroides: we find a positive relationship between blackgrass density and herbicide resistance 137 

across all three herbicides tested (Figure 3a). The fraction of plants surviving herbicide treatment 138 

increased with blackgrass density in the source population, but the relationship differs between 139 
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herbicides (χ2 (3) = 128.13, p<0.001. Corrected R2=0.34; Figures 3a/b). The dry weight of 140 

blackgrass (per plant) after treatment with herbicides also increases with blackgrass density, and 141 

the relationship between weed density and biomass differs between herbicides (χ2 (3) =98.154, 142 

p<0.001. Corrected R2=0.52; SI: Figure S1). 143 

To further explore the relationship between herbicide resistance and black grass density we 144 

analysed the relationship between resistance and densities in successive winter wheat crops.  The 145 

significant relationship between herbicide resistance and density can be seen in Figure 4a, where 146 

fields with higher levels of resistance tended to have a higher mean density state in 2014 (F1,43 = 147 

12.9, P = 0.0009 ) and 2016 (F1,43 = 11.1, P = 0.0017).  As shown in Figure 4b, the relationship 148 

between resistance and density drives weed levels in the subsequent crops: there is a close 149 

relationship between densities in successive crops, correlated with resistance. Although there is 150 

slight evidence for increases in density between 2014 and 2016 (30 out of 45 populations 151 

increased in density, sign test P = 0.036) the closeness of the relationship between densities in 152 

2014 and 2016 (r =0.81, F1,43 = 83.1, P < 0.0001) emphasizes the importance of previous density 153 

and, hence historical resistance, in generating long-term infestations.  154 

 155 

How does previous management affect levels of resistance? From healthcare to agriculture a 156 

major objective of resistance management is to preserve the efficacy of existing chemicals by 157 

limiting or optimizing their use [2, 24]. Evidence suggests that resistance can evolve after as few 158 

as three years of consecutive use of a single xenobiotic [5] and that repeated application of 159 

chemicals with the same MOA has the greatest risk for evolution of herbicide resistance [25, 26]. 160 

Reducing the rate of evolution of resistance requires the minimization of both the survival and 161 

reproduction of resistant individuals. Integrated weed management (IWM), where herbicide 162 

strategies [18] are combined with cultural control methods such as crop rotation and soil 163 

cultivation [27] are the most common approach to achieve this. These strategies impose mortality 164 
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or reduce rates of population increase through mechanisms unconnected with susceptibility or 165 

resistance to xenobiotics.  166 

Contrary to previous literature, industry recommendations and common agricultural sector 167 

practice [9, 28, 29], we found that herbicide diversity does not appear to reduce the likelihood of 168 

herbicide resistance evolving (Table 1). Note that in our farm management data high herbicide 169 

diversity could be achieved through combinations (different MOA applied together on the same 170 

date) or temporal cycling (different MOA applied on different dates within a year), and both 171 

strategies were frequently employed simultaneously. Instead, we found that higher levels of 172 

herbicide resistance are associated with greater intensity (frequency) of herbicide applications. We 173 

split the management data into two time periods to allow us disentangle the effects of earlier 174 

management (2004-2009), from those of more recent management (2010 – 2014). The results 175 

were essentially the same for both, although herbicide intensity only had a significant effect on 176 

survival (and not dry-weight) for the more recent time period (Table 1).  177 

Herbicide diversity (mean number of MOA applied within a crop year) is correlated with 178 

herbicide intensity (mean number of herbicide application dates within a crop year) (2004 – 2009: 179 

rho= 0.874; 2010 – 2014: rho= 0.827). To assess the effect of this correlation we fit models with 180 

either herbicide diversity or herbicide intensity. Although there was a relationship between 181 

herbicide diversity and resistance, when compared in the same model herbicide diversity was 182 

always a weaker predictor of resistance than herbicide intensity, and so was not retained in any of 183 

the final models. The intensity of herbicide applications (number of applications within a growing 184 

season), irrespective of the type of herbicide, is thus the most important management variable 185 

correlated with the evolution of resistance.  186 

We considered the directionality of the relationship between herbicide usage and 187 

resistance. One possibility is that the relationship between volume of herbicide applied and 188 

resistance could reflect recent increases in herbicide use in response to high weed densities 189 
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resulting from resistance. Crucially three findings render this interpretation unlikely. First, as 190 

shown in Table 1, the relationships are robust whether we consider management in the past (2004-191 

2009) or recently (2010-2014). Second,  these relationships remained when we analysed data on 192 

resistance to the most recently introduced product to the market, Atlantis, separately 193 

(Supplemental Information: Table S2). Atlantis was only introduced in 2005, however the 194 

correlates of resistance remain the same. Thirdly, we found no relationship between weed density 195 

and volume of herbicide used either recently (2010-2014) or in the past (2004-2009) indicating 196 

that weed density is not a driver of herbicide usage, notwithstanding the correlation of both 197 

volume of herbicide and weed density with resistance (See Supplemental Information: Table S3). 198 

Taken both individually and together these three results do not support the interpretation that 199 

resistance is driving herbicide usage rather than vice versa.  200 

Our results suggest that using multiple MOAs (either in combination or cycles) may be 201 

ineffective as a reactive strategy for managing resistance that has already evolved. In addition, our 202 

analysis that focused solely on Atlantis suggests that use of multiple MOAs may also fail when 203 

new products appear on the market and are introduced to a combination or cycle comprised of 204 

older MOAs where resistance has already evolved. Given how infrequently herbicides with novel 205 

MOAs are introduced [5] this is likely to be a common scenario in weed control. 206 

A recent study in Germany found no relationship between number of MOA used and 207 

resistance status of A. myosuroides [30]. Alongside our finding that the intensity of herbicide 208 

application was a stronger predictor, we found the widespread occurrence of resistance to multiple 209 

herbicides in our dataset (Figure 2). This suggests a significant role for multiple herbicide 210 

resistance driven by metabolic mechanisms. Multiple herbicide resistance driven by metabolic 211 

mechanisms is a significant threat to the sustainability of chemical management because evolution 212 

or resistance under selection by one herbicide can lead to resistance to others, including those that 213 
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populations have not yet been exposed to. Thus, future options for management are constrained if 214 

multiple herbicide resistance is widespread.  215 

Another study to find that volume (intensity) of applications is a very important factor in 216 

the evolution of resistance, did, however, also find that combining MOAs may delay the evolution 217 

or resistance in systems with no evidence of metabolic resistance [31]. This highlights that the best 218 

management strategy may often be context dependent in terms of the previous history of herbicide 219 

management. The authors note that the major challenge for the future of crop production is 220 

identifying effective mixes against weeds that have already evolved resistance to many of the 221 

previously effective herbicide options [31]. This will remain to be the case even when crops are 222 

genetically engineered to contain traits conferring tolerance to multiple herbicides.  223 

Despite widely repeated recommendations that diversity of crop rotation, changes in 224 

cultivation and ploughing regimes should be adopted to reduce A. myosuroides infestations [32, 225 

33], our results fail to detect an effect of cultivation intensity, frequency of ploughing or crop type 226 

(PCA axis 1: combining frequency of winter wheat, cereal and autumn sown cropping) on the 227 

evolution of herbicide resistance (Table 1). Thus, although such techniques are expected to have 228 

demonstrable impacts on population sizes [33], at least in the medium-term, impacts on resistance 229 

are undetectable in our dataset.  230 

 231 

Measuring the impacts of evolved resistance and its management. Since its widespread 232 

emergence, herbicide resistance has become a major threat to global food security [34]. Herbicide 233 

resistant weeds are one of the biggest threats to crop yields. Weeds cause average yield losses of 234 

35%, worldwide [35], this figure could be much higher without effective herbicides [10]. Yield 235 

losses incurred by A. myosurorides infestations are thought to make it the most economically 236 

important weed in Western Europe [32]; our dataset offers a unique resource to estimate these 237 

costs from field to regional scales.       238 
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At the field scale, our data show total yield losses to range from 0.2% to 12.8% and overall 239 

yield decreased significantly with increased weed density (F1,8=5.643, p=0.045). Within fields, A. 240 

myosuroides only begins to impact wheat yields when it occurs at high densities (Figure 5a). 241 

Herbicide treatments targeted at control of A. myosuroides cost between £105/ha to £176/ha, but 242 

there is no relationship between costs of herbicides applied/ha and weed density 243 

(F1,8=1.061,p=0.33) (Figure 5b). This suggests that farmers do not vary their management 244 

approaches with respect to weed density. Combined costs (herbicides + yield loss) ranged from 245 

£115/ha to £320/ha, accounting for profit losses of between 4% and 12% (see SI: Table S5). Total 246 

cost of A. myosuroides (herbicide costs/ha + yield loss) increased significantly with weed density 247 

(F1,8 =6.631, p=0.033) (Figure 5c), where an increase in average A. myosuroides density, at the 248 

field level, to the next density state results in a 2.5% loss in profit. The distribution of A. 249 

myosuroides within a field tends to be clumped, and so average densities were often increased by a 250 

larger area of a field developing high density infestations, and yield losses in those areas could be 251 

very high (Fig 5). Increasing blackgrass density state explained 34% of the reduction in yield and 252 

39% of the increase in total management cost.  253 

 254 

Conclusions. Resistance to herbicides, pesticides and antibiotics creates enormous costs in terms 255 

of reduced health and lost food production worldwide. We demonstrate a case using a spatially 256 

extensive dataset where there is no evidence that using a diversity of MOAs reduces selection for 257 

resistance, contrary to current industry advice and scientific literature [13, 14, 16, 17]. These 258 

findings raise a strong caution that temporal cycling, or combinations of MOAs might not be 259 

enough to combat resistance at landscape scales, particularly where resistance to some MOAs has 260 

already evolved. This could equally be the case in pesticide and antibiotic resistance. It is a matter 261 

of urgency to test this hypothesis in these important systems.  262 
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We also find that populations of A. myosuroides only have substantial economic impacts 263 

when they reach high densities. This, combined with our finding that it is the number of 264 

applications that drives the evolution of herbicide resistance, suggest that in the long-term 265 

balancing herbicide usage and economic impacts against the likelihood of selecting for resistance 266 

will be a possible route for developing sustainable management regimes. Previous papers that 267 

have promoted similar ideas, for instance based on thresholds [36, 37], have made similar 268 

arguments. The results we present here are an empirical demonstration that reliance on herbicides 269 

has led to wide-scale evolution of resistance. Managing to reduce weed density is not the same 270 

objective as minimizing resistance. Future management should more explicitly address the 271 

question of how to minimize resistance and maximize the efficacy of herbicides.   272 

There is a belief that new compounds will continue to become available in the future [38, 273 

39], and so there is no need to change the way we use these valuable chemical tools. The lessons 274 

learned from case studies such as this are vital to ensure that the value of any new product is 275 

maximized. With resistance evolving over short timescales [4, 5] it is inevitable that any new 276 

products will become ineffective if application strategies do not change. A major imminent threat 277 

to food production is the growing reliance on glyphosate as a weed management tool (Figure 278 

1d/e). Resistance to glyphosate is already present in eight different countries [40]. How long until 279 

resistance to glyphosate becomes near universal is uncertain, but in evolutionary terms it is 280 

inevitable unless standard management practices change. 281 
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Figure legends 304 

Figure 1 a, Field level density of A. myosuroides in fields surveyed in 2014. Colours relate to mean 305 

weed density measured on ordinal scale from 0 (absent) to 4 (very high); green colours represent 306 

low weed densities, red colours represent high weed densities. b, Relationship between blackgrass 307 

density and latitude captured through the 2015 rapid assessment survey data (see Supplemental 308 

Experimental Procedures: Rapid Assessments for methodology). c, Historical distribution of 309 

Alopecurus myosuroides in the UK derived from Botanical Society of Britain and Ireland atlas data. 310 

Green dots represent records appearing in the 1960s atlas [41]. Orange dots represent new records 311 

appearing in the 1990s atlas [42]. Red dots represent new records from 2015/16 surveys. d, 312 

Herbicide usage records for Great Britain for three target-site herbicides and one broad-spectrum 313 

herbicide (Glyphosate), lines represent total area treated (ha) across all crops, data extracted from 314 

the Pesticide Usage Survey (https://secure.fera.defra.gov.uk/pusstats/) e, Total herbicide usage for 315 

Great Britain, line represents total area treated (ha) across all crops, data extracted from the Pesticide 316 

Usage Survey.  317 

 318 

Figure 2 Percentage of fields tested for resistance to three herbicides, where resistance has been 319 

confirmed and is highly likely to reduce herbicide effectiveness. 79% of fields were resistant to all 320 

three herbicides; 1% of fields were not resistant to any of the herbicides tested. Resistance refers to 321 

<80% mortality when herbicide applied at recommended field rate – see Experimental Procedures 322 

for details. 323 

 324 

Figure 3 a, Relationship between mean blackgrass density state measured on ordinal scale from 0 325 

(absent) to 4 (very high) and percentage survival of plants after treatment with each herbicide. 326 

Plotted lines represent predicted survival of weeds after treatment with herbicide for differing 327 

blackgrass densities; models are mixed effect models with mean blackgrass density state and 328 
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herbicide as fixed effects and farm name as a random effect. b, Heat maps showing percentage 329 

survival of plants (as a measure of herbicide resistance) to each of three herbicides. Red colours 330 

show high survival rates (i.e. low herbicide effectiveness), green colours show low survival rates 331 

(i.e. high herbicide effectiveness).  332 

 333 

Figure 4 Blackgrass density measured on ordinal scale from 0 (absent) to 4 (very high) and 334 

resistance status of each field that was in winter wheat in both 2015 and 2016. a, The relationship 335 

between density of blackgrass and resistance. Lines connect the same field across years. b, 336 

Relationship between densities in successive years. Point color indicates resistance to the most 337 

effective herbicide tested. The dashed line indicates equality in both years.  338 

 339 

Figure 5 Farm management impacts of blackgrass. a, The effect of density state on the yield for 340 

each 20m by 20m grid square (gray points), for 10 fields where high resolution yield data was 341 

available. Black points show the average effect of blackgrass density on yield, controlling for 342 

differences between fields. Black lines show 95% parametric bootstrapped confidence intervals. 343 

Relationship between; b, Costs of herbicides (£/ha), and c, total costs of blackgrass (yield loss + 344 

herbicide costs, £/ha), and mean density state of blackgrass for each field (each point represents 345 

one field). Costs were calculated at a wheat price of £115.10/t (source: Agriculture and 346 

Horticulture Development Board, Corn Returns). All costings were calculated at 2014 prices.!347 
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Table 1 Final models of herbicide resistance. Generalized linear mixed effects models (GLMM) 461 

were used to determine the effect of farm management histories on two measures of herbicide 462 

resistance (survival and dry weight) across two timeframes (old: 2004-2009 and recent: 2010 – 463 

2014). Mean black-grass density state, herbicide, soil type and herbicide parameters (mean number 464 

of herbicide application days per harvest year (herbicide intensity), mean number of herbicide 465 

MOAs applied within a harvest year (herbicide diversity)) were fitted as fixed effects in the models, 466 

and farm name was fitted as a random effect to describe the structure of the data. Observation-level 467 

random effects were used to account for over dispersion in the models. Here we present only the 468 

final models with significant predictor terms. A set of secondary analyses investigated the additional 469 

effect of crop type (derived from the proportion of years the field was in winter wheat/ an autumn 470 

sown crop/ a cereal crop), the proportion of years the field was ploughed and a mean cultivation 471 

intensity score. R-square values were calculated using MuMIN [39] and parametric bootstrap using 472 

Kenward Roger methods [40] (using the ‘pbkrtest’ package in R) were used for model comparison 473 

and calculation of p-values. 474 

 475 

OLD      RECENT     

                     

SURVIVAL   
Model 

fit  
   SURVIVAL   

Model 

fit  
  

Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 
 Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 

Black-grass 

Density 
24.311 0.001 0.281 0.353  

Black-grass 

Density 
23.380 0.001 0.275 0.351 

Herbicide 126.364 0.001    Herbicide 124.661 0.001   

Soil type 9.907 0.006    Soil type 9.634 0.006   

Herbicide intensity 17.099 0.002    
Herbicide 

intensity  
13.188 0.003   

+ Crop type 
  (PCA axis 1) 

2.244 0.168      
+ Crop type 
  (PCA axis 1) 

0.757 0.447     

+ Plough frequency  0.149 0.718    + Plough frequency  1.168 0.357   

+ Cultivation score 0.100 0.808    + Cultivation score 0.736 0.465   

           

                     

DRY WEIGHT   
Model 

fit  
   DRY WEIGHT   

Model 

fit  
  

Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 
 Model structure 

Effect 

size 

(Sum 

Sq) 

P 

value 

R2 

GLMM 

(m) 

R2 

GLMM 

(c ) 

Black-grass 

Density 
7.263 0.001 0.289 0.525  

Black-grass 

Density 
7.192 0.001 0.258 0.508 

Herbicide 49.117 0.001    Herbicide 49.117 0.001   

Soil type 2.992 0.023    Soil type 2.923 0.023   

Herbicide intensity 2.863 0.013         

+ Crop type 

  (PCA axis 1) 
0.221 0.513    

+ Crop type 

  (PCA axis 1) 0.433 0.394 
  

+ Plough frequency  0.127 0.622    + Plough frequency  0.087 0.647   

+ Cultivation score 1.197 0.100    + Cultivation score 0.003 1.000   

 476 

  477 
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Methods 478 

We surveyed 138 fields on 71 farms across England. Study sites were selected to cover a large 479 

geographic range, and to include a variety of farm sizes, crop rotations and management strategies 480 

within each region. Two fields were selected on each farm, one known to have large black-grass 481 

populations and one with a smaller weed population. For accurate comparison, all fields selected 482 

were cropped with winter wheat for harvest in 2014.  483 

 484 

Weed population surveys 485 

138 Fields with black-grass present were censused in a six week period from 1st of July 2014. 486 

Fields were divided into contiguous 20 x 20m grid squares and weed density was estimated in 487 

each grid square. The surveys followed a density-structured approach, recording density state of 488 

black-grass rather than numerical abundance. Each grid square was assigned to one of 5 density 489 

states that correspond to the number of plants per 20x20m square; 0 (absent), 1 (1-160 plants), 2 490 

(160-450 plants), 3 (450-1450 plants) and state 4 (1450+ plants). These density states have been 491 

shown to accurately capture the variation within field populations and the 20 x 20m grid size 492 

sufficient to be representative of 1m2 subplots where blackgrass plants were physically counted 493 

[45]. Areas within fields that were sprayed off or cut early were classified as state 4, to reflect 494 

management for very high levels of black-grass infestation. 495 

 496 

Resistance testing 497 

We quantified resistance to three herbicides that have been commonly used for grass weed control 498 

in arable crops: fenoxaprop (‘FEN’: inhibitor of ACCase; Aryloxyphenoxypropionates (FOPs), 499 

introduced to Europe in 1989), cycloxydim (‘CYC’: inhibitor of ACCase; Cyclohexanediones 500 

(DIMs) introduced to Europe in 1989) and mesosulfuron-methyl, henceforth referred by its UK 501 

trade name Atlantis (‘ATL’: inhibitor of acetolactate synthase [ALS] introduced to Europe 2001). 502 
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We quantify resistance in two ways: a) survival and b) dry weight of biomass, three weeks after 503 

exposure to herbicide. 504 

Black-grass seeds were collected from ten different locations within each field surveyed in 505 

2014, using a semi-random seed collection strategy (See Supplemental Experimental Procedures: 506 

Seed Collection for further details). A. myosuroides seedlings were germinated and allowed to 507 

grow for 18-21 days until reaching the three leaf stage before spraying with herbicide. We tested 508 

for resistance to three herbicides at the following rates: 'Atlantis' (Mesosulfuron + Iodosulfuron at 509 

300 g ha-1), 'Cheetah' (Fenoxaprop at 1.25 L ha-1), and 'Laser' (Cycloxydim at 0.75 L ha-1). These 510 

application rates were chosen as previous experimentation has shown them to provide the best 511 

approximation of field rate doses under glasshouse conditions and were applied with a track 512 

sprayer. Plants remained in the glasshouse for three weeks following herbicide treatment, at which 513 

point plant mortality was recorded before harvesting aboveground biomass from each pot. Plant 514 

material was dried at 80°C for 48 hours before weighing (See Supplemental Experimental 515 

Procedures: Resistance Testing for more details). 516 

 517 

Field Management Data 518 

Historical field management data was requested for each of the 138 fields that we surveyed for 519 

weed density. Data were available for 96 fields and up to 10 years data were collated for each 520 

field. For each year we recorded the following: crop, first cultivation type and herbicide 521 

applications (product name and date of application). From this we derived herbicide intensity 522 

(average number of herbicide application days per year) and herbicide diversity (average number 523 

of modes of action applied per year). We also derived cropping patterns (e.g. autumn or spring 524 

sown, cereal or non-cereal). Cultivation types were recorded and scored on a scale of intensity 525 

from 0-4 (where direct drilling = 0, to ploughing = 4) (See Supplemental Experimental 526 

Procedures: Cultivation Intensity Scores for more detail). Soil type for each field was extracted 527 
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from the National Soil Resources Institute, NATMAP1000 database and classified into two groups 528 

(clays, non-clays) after [46, 47]. Where available, yield maps were obtained for fields that we 529 

surveyed to enable direct comparison of within field black-grass density and crop yield. See 530 

Supplemental Information: Table S1 for outlines of chemical/ cultural control techniques and 531 

corresponding model input variables. 532 

 533 

Statistical analyses 534 

Does resistance drive weed abundance and the role of diversity of management in the evolution 535 

of resistance? 536 

We used R (v 3.2.2) and lme4 [48] to perform linear mixed effects analyses of the relationship 537 

between herbicide resistance, black-grass density and farm management parameters. Herbicide 538 

resistance was classified in two ways; firstly, as a binary parameter of plant survival three weeks 539 

after herbicide application (number that survived and number that died), and secondly, as dry 540 

weight of above ground plant material three weeks after herbicide application. We modeled the 541 

survival measure of resistance using a binomial error term and the dry weight measure of 542 

resistance using a normal error distribution.  543 

Models were created for both measures of resistance using both older (2004 to 2009) and 544 

more recent (2010 to 2014) management records, so that a total of four models were built (Table 545 

1). Field management histories were split into two time-frames to assess whether management had 546 

changed over the preceding 10 years. In all models mean weed density state and herbicide were 547 

entered as fixed effects, along with management predictors; herbicide intensity (mean number of 548 

herbicide application days per harvest year), herbicide diversity (mean number of herbicide MOAs 549 

applied within a harvest year), a measure of crop rotation (PCA axis 1 that describes crop choice, 550 

Table S1), proportion of years the field was ploughed, and mean cultivation intensity score.  Soil 551 

type was also included in the models (Table 1, SI: Tables S2 and S3). 552 
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Farm was used as a random effect to account for multiple fields within a farm. We used a 553 

hierarchical approach, putting the most important terms into the model first (i.e. black-grass 554 

density state and herbicide). Observation-level random effects were used to account for over 555 

dispersion in the survival model [49]. Visual inspection of residual plots did not reveal any 556 

obvious deviations from homoscedasticity or normality. 557 

  Marginal and conditional R-squared values were calculated for resulting models using the 558 

‘MuMIN’ package [39]. Parametric bootstrapping was used for mixed model comparison and to 559 

calculate p-values for each predictor in the final models (using the ‘pbkrtest’ package [42]). Model 560 

residuals were plotted against farm name. Moran’s I (using R package ‘lctools’ [50]) was used to 561 

test for spatial autocorrelation. 562 

To test the relationship between resistance and black grass density we used a linear model 563 

to predict Ln(mean density state) for each field in winter wheat. We use resistance to the most 564 

effective herbicide as a measure of resistance because most farmers applied multiple herbicides 565 

and resistance was correlated across herbicides (Figure 2). Under these conditions the efficacy of 566 

the most effective herbicide will determine overall efficacy. Densities in successive years were 567 

compared with resistance and with each other using simple linear models.  568 

 569 

What impact does a black-grass infestation have on yield? 570 

For ten fields where high resolution wheat yield data were available black-grass density data were 571 

overlaid onto yield maps (in ArcGIS 10.1). Mean yield (t/ha) was extracted for each 20x20m grid 572 

square in which black-grass density had been estimated. For each field, details of products applied 573 

for control of A. myosuroides were obtained within that crop year (product name, date applied, rate 574 

applied). Herbicide product prices were obtained from industry sources and prices per hectare 575 

were calculated for the application of each herbicide. We assume a wheat price of £115.10/t 576 
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(source: Agriculture and Horticulture Development Board, Corn Returns). All costings were 577 

calculated at 2014 prices, in line with the time of data collection and weed surveys. 578 

We used the linear model yield ~ density state + (density state | field) to predict yield at the 579 

20m by 20m grid square level (fit using lmer() in the 'lme4' package) for the ten fields with high 580 

resolution yield data. Density state was treated as categorical to allow a non-linear effect of 581 

density on yield, and field was used as a random effect to control for differences between fields. 582 

Linear regressions were performed on field scale relationships between weed density and 583 

herbicide costs/ha, and weed density and total costs of A. myosuroides (herbicide costs + yield 584 

loss) for these same ten fields.  585 

  586 
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The factors driving evolved herbicide resistance at a 1	

national scale: Supplementary Information 2	

 3	

Helen L. Hicks1, David Comont², Shaun R. Coutts1, Laura Crook², Richard Hull², Ken 4	

Norris3, Paul Neve², Dylan Z. Childs1, Robert P. Freckleton1*   5	

  6	
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 7	

 8	
Supplementary Figure 1 a) Relationship between mean black-grass density state and dry weight of plant material 9	

after treatment with each herbicide. Plotted lines represent predicted dry weight of weeds after treatment with 10	

herbicide for differing black-grass densities; models are mixed effect models with mean black-grass density state and 11	

herbicide as fixed effects and farm name as a random effect. (b) Heat maps showing dry weight of plant material (as a 12	

measure of herbicide resistance) after treatment with each of three herbicides. Red colours show larger amounts of 13	

plant material (i.e. low herbicide effectiveness), green colours show lower amounts of plant material (i.e. high 14	

herbicide effectiveness).   15	
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Supplementary Table 1 Outline of chemical and cultural control measures for managing resistance. Both herbicide 16	

intensity and herbicide diversity were higher in more recent years, while cultivation intensity decreased alongside the 17	

proportion of years in which a field was ploughed. Nineteen percent of fields were not ploughed at all in the period of 18	

study, seven percent were ploughed every year Two fields had been in continuous winter wheat for at least 10 years 19	

prior to the survey, the remainder had a rotation of crops (an average of 4 crops in a rotation, up to a maximum of 20	

eight crops). A third of fields had been in continuous autumn crops for the 10 years prior to the survey, but all 21	

remaining fields had some variation in autumn and spring cropping. Seven fields had been in cereals for the 10 years 22	

preceding the study. 23	

 24	

Mechanisms 

to reduce 

resistance 

Management 

measures 

Farm management 

Predictor variable(s) 

included in models 

Prediction Summary statistics 

Chemical Temporal 

cycling 

(treatments 

vary over 

time and not 

space) 

Herbicide diversity: 

# MOAs applied in 

single harvest year 

 

Herbicide intensity: 

# herbicide application 

days in a single harvest 

year 

Negative 

correlation 

with 

resistance 

Herbicide diversity 

2004 – 2009: Range = 1.0 – 6.3; mean = 3.4 

2010 – 2014: Range = 1.4 – 6.2; mean = 4.3 

 

Herbicide intensity 

2004 – 2009: Range = 1.0 - 4.6; mean = 2.6 

2010 – 2014: Range = 1.2 – 6; mean = 3.3 

Mosaics 

(treatments 

vary 

spatially, but 

not 

temporally) 

Not assessed NA  NA 

Combination 

(treatments 

vary over 

time and 

space; 

multiple 

MOAs 

applied at 

once) 

See temporal cycling Negative 

correlation 

with 

resistance 

See temporal cycling 

Cultural Tillage • Cultivation 

intensity score 

 

• Plough frequency 

Studies 

show results 

to be 

variable 

depending 

on 

combination 

of frequency 

and depth of 

cultivation 

Cultivations 

Mean cultivation intensity scores: 

2004 – 2009: Range = 0.5 - 4; mean = 2.95 

2010 – 2014: Range = 0 - 4; mean = 2.82 

 

Proportion of years field ploughed: 

2004 – 2009: Range = 0 - 1; mean = 0.44 

2010 – 2014: Range = 0 - 1; mean = 0.32 

 

 

Crop type PCA axis based on 

proportion of years 

field in winter wheat/ 

autumn sown cereal / 

cereal crop 

Negative 

correlation 

with 

resistance 

Crop Type 

Proportion years in autumn crop: 

2004 – 2009: Range = 0.17 - 1; mean = 0.86 

2010 – 2014: Range = 0.4 - 1; mean = 0.89 

 

Proportion years in cereal crop: 

2004 – 2009: Range = 0.17 - 1; mean = 0.63 

2010 – 2014: Range = 0.4 - 1; mean = 0.70 

 

Proportion years in winter wheat: 

2004 – 2009: Range = 0 - 1; mean = 0.56 

2010 – 2014: Range = 0.2 - 1; mean = 0.62 

 25	

  26	
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Supplementary Table 2 Additional models of herbicide resistance using data for only one herbicide: Atlantis. 27	

Generalized linear mixed effects models (GLMM) were used to determine the effect of farm management histories on 28	

two measures of herbicide resistance (survival and dry weight) across two timeframes (old: 2004-2009 and recent: 29	

2010 – 2014). Mean black-grass density state, herbicide, soil type and herbicide parameters (mean number of 30	

herbicide application days per harvest year (herbicide intensity), mean number of herbicide MOAs applied within a 31	

harvest year (herbicide diversity)) were fitted as fixed effects in the models, and farm name was fitted as a random 32	

effect to describe the structure of the data. Observation-level random effects were used to account for over dispersion 33	

in the models. Here we present only the final models (black font) with significant predictor terms. A set of secondary 34	

analyses (grey font) investigated the additional effect of crop type (derived from the proportion of years the field was 35	

in winter wheat/ an autumn sown crop/ a cereal crop), the proportion of years the field was ploughed and a mean 36	

cultivation intensity score. R-square values were calculated using MuMIN [39] and parametric bootstrap using 37	

Kenward Roger methods [40] (using the ‘pbkrtest’ package in R) were used for model comparison and calculation of 38	

p-values. 39	

	40	

	 	 	 	 	 	 	 	 	 	 	

		 		 		 		 		 	 		 		 		 		 		

	 	 	 	 		 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

- 	 30.42	 0.001	 0.134	 0.164	 	 - 	 29.60	 0.001	 0.128	 0.161	
	 9.41	 0.01	 	 	 	 	 9.16	 0.01	 	 	

	 16.80	 0.001	 	 	 	 	 13.30	 0.002	 	 	

+	Crop	type	(PCA	axis	1)	 1.92	 0.175	 		 		 	 +	Crop	type	(PCA	axis	1)	 1.10	 0.371	 		 		
+	Plough	frequency		 0.10	 0.761	 	 	 	 +	Plough	frequency		 1.76	 0.239	 	 	

+	Cultivation	score	 0.01	 0.946	 	 	 	 +	Cultivation	score	 1.06	 0.379	 	 	

	 	 	 	 	 	 	 	 	 	 	

		 		 		 		 		 	 		 		 		 		 		

	 	 	 	 		 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

- 	 9.22	 0.003	 0.126	 0.320	 	 - 	 9.08	 0.003	 0.096	 0.303	
	 5.05	 0.017	 	 	 	 	 4.89	 0.017	 	 	

	 3.34	 0.030	 	 	 	 	 	 	 	 	

+	Crop	type	(PCA	axis	1)	 0.19	 0.624	 	 	 	 +	Crop	type	(PCA	axis	1)	 0.46	 0.445	 	 	

+	Plough	frequency		 0.20	 0.593	 	 	 	 +	Plough	frequency		 0.24	 0.530	 	 	

+	Cultivation	score	 1.38	 0.163	 	 	 	 +	Cultivation	score	 0.001	 1.000	 	 	

	 	41	
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Supplementary Table 3 Model relating weed density to herbicide usage. Weed density was the response variable, 42	

and farm entered as a random effect. The number of herbicide applications was used as the predictor, separately for 43	

recent and old periods. The significance of these was assessed both using Kenward-Rogers and parametric bootstrap 44	

methods: these yielded identical results.  45	

 46	

 47	

 48	

	 	 	

	 	
	

–	 - 	 1.92	 0.065	

–	 04- 	 0.30	 0.475	

  49	
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Supplementary Table 4 Herbicide resistance differs between soil types. Numbers represent mean values ± standard 50	

error for populations originating from clay and non-clay soils, for each of the herbicides tested. Note also that there is 51	

a significant difference in dry weight between populations from different soil types when zero herbicide has been 52	

applied (i.e. control plants from all three experiments). 53	

 54	

 Herbicide Clay Non-clay Anova 

S
u

r
v

iv
a

l 

ATL 84.97±3.63 72.93±4.61 (F(94,1) = 4.250, p = 0.042)* 

CYC 69.35±3.7 52.81±4.32 (F(94,1) = 8.512, p = 0.004)** 

FEN 93.38±1.41 90.66±1.61 (F(94,1) = 1.608, p = 0.208) 

     
 Herbicide Clay Non-clay  

D
r
y

 W
e
ig

h
t ATL 146.45±6.01 127.62±7.62 (F(94,1) = 3.801, p = 0.054) 

CYC 137.16±6.18 100.33±6.83 (F(94,1) = 16.04, p < 0.001)*** 

FEN 184.44±6.18 158.09±7.14 (F(94,1) = 7.826, p = 0.006)* 

No Herbicide 190.17±3.19 176.63±3.49 (F(283,1) = 8.208, p=0.004)** 

  55	
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Supplementary Table 5 Yield loss resulting from black-grass infestations assuming a wheat price of £115.10/ t 56	

(source: Agriculture and Horticulture Development Board, Corn Returns) 57	

	58	

	

Percentage	of	field	in	black-grass	

density	state	 	

Mean	ww	yield	within	patches	of	

density	state	(t/ha)	 	 	 	 Economic	costs	

Field	 absent	 low	 med	 high	

very	

high	 	 absent	 low	 med	 high	

very	

high	 	

Total	

Yield	

Loss	

(%)	 	

Cost	of	

yield	

loss/	

ha	(£)	

Cost	of	BG	

herbicides/	

ha	(£)	

Total	

cost	of	

BG/	ha	

(£)	

A	 69.7	 27.9	 2.4	 0.0	 0.0	 	 12.1	 12.0	 12.0	 -	 -	 	 0.2	 	 25.62	 173.89	 199.51	

B	 64.4	 35.6	 0.0	 0.0	 0.0	 	 11.3	 11.2	 -	 -	 -	 	 0.5	 	 145.65	 173.89	 319.55	

C	 0.0	 65.3	 22.4	 6.6	 5.6	 	 -	 12.3	 11.8	 11.9	 10.7	 	 1.8	 	 29.26	 132.03	 161.29	

D	 0.0	 20.4	 40.7	 30.5	 8.4	 	 -	 9.7	 9.8	 9.4	 8.3	 	 2.6	 	 148.69	 129.88	 278.56	

E	 3.2	 57.2	 34.8	 4.8	 0.0	 	 11.6	 11.3	 11.9	 11.1	 -	 	 3.5	 	 47.55	 105.35	 152.90	

F	 0.0	 2.1	 18.3	 52.1	 27.5	 	 -	 10.2	 10.4	 9.8	 8.5	 	 7.9	 	 94.46	 176.18	 270.64	

G	 0.7	 60.7	 19.7	 6.9	 12.1	 	 11.1	 11.9	 11.9	 8.1	 6.4	 	 8.0	 	 109.51	 106.96	 216.47	

H	 50.0	 48.8	 1.2	 0.0	 0.0	 	 10.6	 10.6	 11.8	 -	 -	 	 9.8	 	 2.72	 160.62	 163.33	

I	 0.0	 11.7	 32.0	 39.8	 16.5	 	 -	 12.5	 11.5	 11.2	 10.0	 	 10.1	 	 133.78	 108.83	 242.61	

J	 0.0	 0.0	 4.2	 13.4	 82.4	 	 -	 -	 10.1	 9.1	 8.7	 	 12.8	 	 6.89	 108.83	 115.71	

	59	

  60	
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 61	

 62	

Rapid Assessment of Alopecurus myosuroides range 63	

In addition to the detailed 20x20m grid field surveys undertaken in 2014, we undertook rapid assessment exercise in 64	

2015 and 2016 to give overall field scale density estimates for a large number of cereal fields across a more 65	

widespread geographic area than the detailed density surveys. The location, crop and an estimate of field-scale black-66	

grass density were recorded from the side of each field. 67	

 68	

Seed collection 69	

Each field was divided into ten linear sections based around the field tram-lines. A single position along each section 70	

was chosen at random, and the stand of black-grass nearest to this point was sampled for seeds. At each point, twenty 71	

handfuls of black-grass heads were gently shaken into a polythene bag allowing only mature seeds to be collected. 72	

The twenty handfuls of heads were gathered over an approximate 5-10 metre area around the sample point, ensuring 73	

that multiple black-grass plants were sampled. This design avoids the potential for preferentially sampling only high 74	

abundance patches of black-grass, whilst ensuring that samples were collected from a large number of black-grass 75	

individuals across the spatial extent of black-grass within each field. 76	

 77	

Seeds were air-dried at room temperature for two weeks, before being cleaned using an air-column seed cleaner to 78	

remove unfilled seeds and chaff. The ten cleaned and dried seed samples per field were weighed and combined into a 79	

single seed bulk per field. These field scale seed bulks were used to represent each field population of black-grass 80	

throughout the subsequent resistance testing. 81	

 82	

Resistance testing 83	

Dried seeds were maintained in an incubator in the dark at 30°C for three weeks to break any remaining seed 84	

dormancy before experimentation. Seeds were geminated in petri-dishes on Whatman No. 1 filter papers soaked in 20 85	

mmol L
-1

 KNO3, and incubated for seven days at 17/11°C over a 14/10 hour day/night cycle. Germinated seedlings 86	

were transplanted into 3.5 inch pots containing a loam soil pre-mixed with 2 kg m
-2

 osmocote fertiliser. Six pots were 87	

sown for each field population of black-grass, with six seedlings sown per pot in an equally spaced ring. Pots were 88	

assigned to either control or herbicide treatments (n=3), and arranged over three glasshouse compartments in a 89	

randomised block design. Glasshouses were set to 18/12 °C day/night temperatures over 14/10 hours, with 90	

supplementary lighting provided by sodium lamps whenever ambient daytime PAR was low. 91	

 92	

This experiment was repeated three times over autumn 2014 - spring 2015 to test three herbicides; the ALS inhibitor 93	

'Atlantis' (Mesosulfuron + Iodosulfuron), the 'fop' ACCase inhibitor 'Cheetah' (Fenoxaprop), and the 'dim' ACCase 94	

inhibitor 'Laser' (Cycloxydim). 95	

 96	

Cultivation intensity scores 97	

Cultivation type was recorded and classified as one of the following: direct drill (i.e. no cultivation), minimum tillage 98	

(including drag and scuffle), light cultivation (including discs and tines), deep cultivation (including subsoiling) or 99	

plough (inversion tillage and ploughing). These were converted to a numerical scale according to cultivation intensity 100	

(where direct drilling = 0, minimum tillage = 1, light cultivation = 2, deep cultivation = 3, ploughing =4) to allow 101	

calculation of a mean cultivation intensity scores (on a scale of 0 – 4). 102	


