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The Fading Number of Multiple-Input
Multiple-Output Fading Channels With Memory

Stefan M. Moser, Member, IEEE

Abstract—The fading number of a general (not necessarily
Gaussian) regular multiple-input multiple-output (MIMO) fading
channel with arbitrary temporal and spatial memory is derived.
The channel is assumed to be noncoherent, i.e., neither receiver
nor transmitter have knowledge about the channel state, but
they only know the probability law of the fading process. The
fading number is the second term in the asymptotic expansion of
channel capacity when the signal-to-noise ratio (SNR) tends to
infinity. It is related to the border of the high-SNR region with
double-logarithmic capacity growth.

It is shown that the fading number can be achieved by an input
that is the product of two independent processes: a stationary and
circularly symmetric direction- (or unit-) vector process whose dis-
tribution is chosen such that the fading number is maximized, and
a nonnegative magnitude process that is independent and identi-
cally distributed (i.i.d.) and escapes to infinity. Additionally, in the
more general context of an arbitrary stationary channel model sat-
isfying some weak conditions on the channel law, it is shown that
there exists an optimal input distribution that is stationary apart
from some edge effects.

Index Terms—Channel capacity, circular symmetry, escaping
to infinity, fading number, flat fading, high signal-to-noise ratio
(SNR), memory, multiple-input multiple-ouput (MIMO), nonco-
herent detection, stationary input distribution.

I. INTRODUCTION

A. General Background

F UTURE mobile communication systems will have to pro-
vide much higher data rates than what currently is avail-

able. To be able to design such systems we need to study wire-
less communication channels and try to understand how their
behavior depends on various parameters like the number of an-
tennas at the transmitter and receiver, the available power, feed-
back, or the implicitly available memory in the channel. An im-
portant parameter that is part of this theoretical understanding is
the so-called channel capacity. It describes the ultimate physical
limit on the maximum rate for which reliable information trans-
mission still is possible. Note that this parameter is theoretical in
the sense that we only assume limited power at the transmitter,
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but ignore other constraints of real systems like a maximum al-
lowed transmission delay or limited computing resources.

In the case of wireless communication channels, the channel
capacity is limited due to two main sources of transmission er-
rors. First, the receiver introduces thermal noise that can be well
modeled by an additive random noise process. Second, because
the signals are electromagnetic waves transmitted through air,
the received signals suffer from random fluctuations in the mag-
nitude and phase. This effect is known as fading and can be de-
scribed by a multiplicative random noise process.

While the additive noise can be well approximated by an in-
dependent and identically distributed (i.i.d.) complex Gaussian
process for almost all channels of interest, the detailed prop-
erties of the multiplicative noise depends on many parameters,
system-internal and -external, and should therefore be kept as
general as possible. Unfortunately, the analysis of the channel
capacity in such generality is very difficult so that commonly
the model is simplified in certain aspects.

One possible simplification is to assume that the receiver per-
fectly knows the fading realizations. This assumption is based
on the idea that the transmitter will first transmit some known
training symbols from which the receiver learns the current state
of the multiplicative noise process. The capacity is then com-
puted without taking into account the estimation scheme. It is
common to call this the coherent capacity of fading channels.
Such an approach will definitely lead to an overly optimistic ca-
pacity value because

• even with a large amount of training data the channel
knowledge will never be perfect, but only an estimate; and
because

• the data rate that is wasted for the training symbols is com-
pletely ignored.

In this paper we will not make this simplification, but stick
with noncoherent detection where the receiver has no additional
knowledge about the channel state. Note that the receiver is free
to do anything in its power to gain knowledge about the fading
based on the received signals.

Marzetta and Hochwald [2] simplify the noncoherent channel
model by assuming that during blocks consisting of several
symbol periods the fading remains constant, while the fading
coefficients corresponding to different blocks are assumed to
be independent. This model is generally known as block fading
model. Note that it is pessimistic to assume that the blocks are
independent of each other because memory provides additional
information about the current fading level which in general will
increase capacity. However, it is more problematic to conjec-
ture that the fading coefficients are perfectly constant during
one block. This means that for high enough signal-to-noise
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Fig. 1. An upper bound on the capacity of a Rician-fading channel as a function of the output SNR � � �� � ��� ���� for different values of the specular
component �. The dashed line corresponds to the situation of a Rayleigh-fading channel with a zero line-of-sight component � � 	. The dotted line depicts the
capacity of an additive Gaussian noise channel (without fading) of equal output SNR �, namely, 
���� � ��.

ratios (SNR) and for long enough blocks the receiver can get an
(almost) perfect estimate of the fading value within a block and
use this knowledge to decode the received signal similarly to
coherent detection. For larger SNR this seems to be overly op-
timistic. Indeed, as shown in [2] for single-input single-output
(SISO) Gaussian block fading and in [3] for multiple-input
multiple-output (MIMO) Gaussian block fading, the capacity
of the block-fading channel grows logarithmically in the SNR
at high SNR, i.e., the capacity has the same growth rate as the
coherent capacity (and, as a matter of fact, as the capacity of an
additive noise channel without fading, too).

In [4], Liang and Veeravalli generalize the SISO Gaussian
block fading model by allowing some temporal correlation be-
tween the different fading coefficients within one block. They
show that the rank of the block correlation matrix is crucial when
determining the high-SNR channel capacity: if we have a rank-
deficient correlation matrix, the effect of perfect predictability
comes into play again similar to the situation of Marzetta and
Hochwald [2]. This then again leads to a logarithmic growth of
capacity. For a full-rank correlation matrix this is not true any-
more. In this case, the channel model reduces to a special case
of the more general model described next.

The most general models only restrict the random noise
processes to be stationary and ergodic, with additional varia-
tions in the exact fading law, the number of antennas, and the
memory [5]–[13]. In [5], the authors investigate a memoryless
SISO Rayleigh-fading channel and derive some bounds. In [6],
it is shown that the capacity-achieving input distribution for

the memoryless SISO Rayleigh-fading channel is discrete. In
[7]–[9], the channel model is then generalized to MIMO and
to general non-Gaussian fading distributions (possibly with
memory) where the fading process is assumed to be regular,
i.e., its differential entropy rate is finite. The complementary
situation of nonregular fading processes has been studied in
[10]–[13].

It turns out that the capacity at high SNR is very sensitive to
the exact assumptions of the channel model, in particular to the
regularity assumption. If we assume a regular fading process,
then the capacity grows only double-logarithmically in the SNR
at high SNR [7, Theorem 4.2], [9, Theorem 6.10]. This means
that at high power such a channel becomes extremely power-in-
efficient in the sense that whenever the capacity shall be in-
creased by only one bit, the SNR needs to be squared or, on
a decibel scale, the SNR needs to be doubled! So the high-SNR
behavior is dramatically different from the optimistic models
mentioned above.

For nonregular Gaussian fading, the high-SNR behavior of
capacity depends on the specific power spectral density and can
be anything between the logarithmic and the double-logarithmic
growth [11].

However, it is interesting to observe that for low SNR, the
difference between the different models is relatively small.
Indeed, the capacity of regular fading channels usually shows
a very distinct turn at a certain SNR level where the growth
rate changes from logarithmic to double-logarithmic. As an
example, Fig. 1 shows the capacity of a noncoherent Ri-
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cian-fading channel with various values of the line-of-sight
component. One clearly sees that the capacity curve, while
growing logarithmically at lower SNR, suddenly has a sharp
bend at a certain threshold where its growth becomes very slow.
Moreover, one sees that this threshold depends strongly on the
channel law, i.e., on the line-of-sight component.

We conclude that at lower SNR, the exact choice of the
channel model has only a small impact on the capacity analysis,
i.e., the described simplifications (even the assumption of
coherent detection) are useful in that regime. However, at high
SNR, many simplifications seem to lose their validity. Based on
this observation we immediately ask ourselves whether we can
say something about the separation between these two regimes.
Particularly, in the situation of a regular fading model, we
would like to know more about the threshold between the effi-
cient low- to medium-SNR regime, where the capacity grows
logarithmically in the SNR and the highly inefficient high-SNR
regime with a double-logarithmic growth. The dependence
of this threshold on some system parameters like the number
of antennas, the memory in the channel, or the availability of
feedback might give valuable insight in good design criteria of
wireless and mobile communication systems.

B. The Fading Number

In an attempt to more precisely quantify the mentioned
threshold between the power-efficient and the power-inefficient
regime, [7, Sec. IV.C] and [9, Sec. 6.5.2], define the fading
number as the second term in the high-SNR asymptotic
expansion of capacity, i.e., at high SNR, the channel capacity
can be expressed as

(1)

Here, denotes some terms that tend to zero as .
Based on (1), we define the high-SNR regime to be the re-

gion where the -terms in (1) are negligible, i.e., we say
that a wireless communication system operates in the inefficient
high-SNR regime if its capacity can be well approximated by

(2)

The important point to notice is that due to the extremely slow
growth of , the fading number is usually
the dominant term in the lower range of the high-SNR regime.
In other words, is only much larger
than for extremely large values of SNR. An illustration of this
behavior is given in Fig. 2.

The fading number is therefore strongly connected to the
point where the bend of the capacity curve occurs. As an ex-
ample consider the following situation [13], [14]: assume for
the moment that the threshold lies somewhere between
30 and 80 dB (it can be shown that this is a reasonable assump-
tion for many channels that are encountered in practice). In this
case, the threshold capacity must be somewhere
in the following interval:

30 dB

80 dB (3)

Fig. 2. Illustration of the different regimes of a typical regular fading channel.
At low SNR, the ���� terms are dominant, in the lower range of the high-SNR
regime , the fading number � is dominant, and only at very high SNR, the
����� � ����� � �	
�� term takes the lead.

i.e.,

2.1 nats 3 nats (4)

Hence, even though we have assumed a wide range from 30 to
80 dB, the capacity changes only very little (this is because the

-term is growing extremely slowly). Hence, we get the
following rule of thumb.

Conjecture 1 ([13], [14]): A communication system over a
noncoherent regular fading channel1 that operates at rates appre-
ciably above 2 nats is in the high-SNR regime and therefore
extremely power-inefficient.

The fading number can therefore be regarded as quality at-
tribute of the channel: the larger the fading number is, the higher
is the maximum rate at which the channel can be used without
being extremely power-inefficient. It follows from this obser-
vation that a good system design will aim at achieving a large
fading number.

The rest of this paper will concentrate on the analysis of the
fading number of general MIMO fading channels with memory.

So far explicit expressions for the fading number are known
in the special situation of general SISO fading channels with
memory2 [7, Theorem 4.41], [9, Theorem 6.41]:

(5)

and of general single-input multiple-output (SIMO) fading
channels with memory [8, Theorem 1], [9, Theorem 6.44]

(6)

Here denotes the memoryless SIMO fading
number with partial side information at the receiver [7, Note
4.31], [9, eq. (6.194)]

(7)

1For more details about the exact assumptions made in this paper we refer to
Section III.

2For an explanation of the notation used in this paper we refer to Section II.
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The fading number of the multiple-input single-output
(MISO) fading channel has only been derived for the memory-
less case [7, Theorem 4.27], [9, Theorem 6.27]

(8)

This fading number is achievable by inputs that can be ex-
pressed as the product of a constant unit vector in and
a circularly symmetric, scalar, complex random variable of
the same law that achieves the memoryless SISO fading
number [7]. Hence, the asymptotic capacity of a memoryless
MISO fading channel is achieved by beam-forming where the
beam-direction is chosen not to maximize the SNR, but the
fading number.

For MISO fading with memory, some bounds have been
found [15]–[17]

(9)

and

(10)

The MIMO case has been solved recently in the memoryless
situation [18]

(11)

This paper generalizes these special cases to the most general
situation of MIMO fading channels with memory and specifies
the fading number exactly. We remark that the proofs are based
on several new preliminary results that are interesting by them-
selves. In particular, we prove a theorem which states that the
optimal input to a stationary channel may be assumed to be sta-
tionary.

C. Outline

The rest of this paper is organized as follows: after a section
about notation we will introduce the channel model in detail
in Section III. In Section IV, some preliminary results will be
given. In particular, we will present there a new theorem which
states that—apart from edge effects and some weak conditions
on the channel model—a stationary channel model has a ca-
pacity-achieving input distribution that is stationary. The corre-
sponding proofs are found in the Appendices.

Section V then presents the main result, i.e., the fading
number of a general MIMO fading channel with memory. We
will give an outline of the proof there. The details can be found
in Appendices D to I.

In Section VI, we will consider some interesting special
cases, in particular, the fading number of MISO fading with
memory which has been unknown so far. Note that in parallel

to this paper a second publication [19] will treat the important
special case of Gaussian MIMO fading channels in detail.

We conclude in Section VII.

II. NOTATION

As is by now fairly customary, we usually try to use upper
case letters for random quantities and lower case letters for their
realizations. This rule becomes awkward when dealing with ma-
trices because matrices are usually written in upper case even if
they are deterministic. To better differentiate between scalars,
vectors, and matrices, we have resorted to using different fonts
for the different quantities. Upper case letters such as are used
to denote scalar random variables taking value in the reals or
in the complex plane . Their realizations are typically written
in lower case, e.g., . Random vectors in the -dimensional
complex Euclidean space are described by bold-face capi-
tals, e.g., ; for their realizations we use bold lower case, e.g.,

. Deterministic matrices are denoted by upper case letters but
of a special font, e.g., ; and random matrices are denoted using
another special upper case font, e.g., .

However, there will be a few exceptions to these rules. Since
they are widely used in the literature, we will stick with the
common customary shape of the entropy of a discrete
random variable and of the mutual information functional .
Moreover, we have decided to use the capital to denote the
probability distribution of an input of a channel. In particular,

and denote the probability distribution of a random
variable and random vector , respectively. Given an al-
phabet we denote the set of all probability distributions over

by .
The capacity is denoted by , the energy per symbol by ,

and the signal-to-noise ratio is denoted by .
We use the shorthand for . For more

complicated expressions, such as

we use the dummy variable to clarify notation: .
The subscript is reserved to denote discrete time. Curly

brackets are used to distinguish between a random process and
its manifestation at time : is a discrete random process
over time, while is the random variable of this process at
time .

Hermitian conjugation is denoted by , and stands
for the transpose (without conjugation) of a matrix or vector.
We use to denote the Euclidean norm of vectors or the
Euclidean operator norm of matrices. That is

(12)

(13)

Thus, is the maximal singular value of the matrix .
The Frobenius norm of matrices is denoted by and is

given by the square root of the sum of the squared magnitudes
of the elements of the matrix, i.e.,

(14)
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where denotes the trace of a matrix. Note that for every
matrix

(15)

as can be verified by upper-bounding the squared magnitude
of each of the components of using the Cauchy–Schwarz
inequality.

We will often split a complex vector up into its
magnitude and its direction

(16)

where we reserve this notation exclusively for unit vectors, i.e.,
throughout the paper every vector carrying a hat, or , denotes
a (deterministic or random, respectively) vector of unit length

(17)

To be able to work with such direction vectors we shall need
a differential entropy-like quantity for random vectors that take
value on the unit sphere in . Note that with respect to a prob-
ability distribution over , the surface of the unit sphere in

has zero measure such that the corresponding differential
entropy is undefined. We therefore introduce a new probability
space that only lives on the surface of the unit sphere in and
denote its measure by . If a random vector takes value in the
unit sphere and has the density with respect to , then we
shall let

(18)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant

under translation, so is invariant under rotation. That is,
if is a deterministic unitary matrix, then

(19)

Also note that is maximized if is uniformly distributed
on the unit sphere, in which case

(20)

where denotes the surface area of the unit sphere in

(21)

The definition (18) can be easily extended to conditional en-
tropies: if is some random vector, and if conditional on

the random vector has density , then we can de-
fine

(22)

and we can define as the expectation (with respect
to ) of .

Based on these definitions we have the following lemma.

Lemma 2: Let be a complex random vector taking value
in and having differential entropy . Let denote its
norm and denotes its direction as in (16). Then

(23)

(24)

whenever all the quantities in (23) and (24), respectively, are
defined. Here is the differential entropy of when
viewed as a real (scalar) random variable.

Proof: This lemma follows from a change of variables. Let
denote the real random vector in that consists of the real

and imaginary parts of stacked on top of each other.
Then we define

and (25)

and note that the infinitesimal volume in the -dimen-
sional Euclidean space corresponds to where
denotes an infinitesimal area on the unit sphere in . Hence,
the joint probability densities can be written as

(26)

(27)

The result now follows from .

We shall write if is a circularly sym-
metric, zero-mean, complex Gaussian random vector of covari-
ance matrix . By we
denote a random variable that is uniformly distributed on the in-
terval .

Throughout the paper, denotes a complex random
process that is i.i.d. according to a uniform distribution over the
unit circle

i.i.d. uniform on (28)

When it appears in formulas with other random variables or pro-
cesses, is always to be understood as being independent
of these other processes.

All rates specified in this paper are in nats per channel use,
i.e., denotes the natural logarithmic function. The ab-
breviation RHS stands for right-hand side and LHS stands for
left-hand side.

III. THE CHANNEL MODEL

We consider a channel with transmit antennas and
receive antennas whose time- output is given by

(29)

Here denotes the time- channel input vector; the
random matrix denotes the time- fading ma-
trix; and the random vector denotes additive noise.
We assume that the fading process and the additive noise
process are independent and of a joint law that does not
depend on the channel input .

The random vector process is assumed to be a spatially
and temporally white, zero-mean, circularly symmetric, com-
plex Gaussian random process, i.e., is temporally i.i.d.

for some . Here denotes the
identity matrix.
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As for the multivariate fading process , we shall only
assume that it is stationary, ergodic, of finite second moment

(30)

and of finite differential entropy rate

(31)

(the regularity assumption). Hence, the components of are in
general correlated and depend on the past. Moreover, note that
we do not necessarily assume that is Gaussian, but allow
any distribution that satisfies the above assumptions, i.e., that is
stationary, ergodic, regular, and of finite second moment. The
important special case of Gaussian fading is analyzed in more
detail in a separate publication [19].

We would like to briefly comment on these assumptions. The
assumption of stationarity reflects our lack of knowledge about
the exact dependence of the fading law on time. Obviously, we
cannot assume stationarity for all time as the fading law will
change drastically if, e.g., we move from an urban to a rural area.
However, in a certain setting and for a reasonable time period,
stationarity seems a natural choice. Note that the block fading
model [2] is not stationary.

Ergodicity reflects our assumption that we are allowing very
large block lengths so that the channel “averages out.” For sys-
tems with strong delay constraints this assumption will not be
justified. Finally, by asking for a fading process that is regular
we ensure that the fading process is “fully random” in the (en-
gineering) sense that even if the past is perfectly known, the
present values of the fading cannot be predicted error-free.3 This
assumption will be appropriate in certain situations and will not
be in others. It seems therefore clear to us that both situations,
regular and nonregular fading, should be investigated. We would
like to emphasize once more that at high SNR this assumption
has a dramatic effect on the capacity behavior [11].

As for the input, we consider two different constraints: a
peak-power constraint or an average-power constraint. We use

to denote the maximal allowed instantaneous power in the
former case, and to denote the allowed average power in the
latter case. For both cases we set

(32)

The capacity of the channel (29) is given by

(33)

where the supremum is over the set of all probability distribu-
tions on that satisfy the constraints, i.e.,

almost surely (34)

for a peak-power constraint, or

(35)

for an average-power constraint.

3Note that this is not a strictly mathematical explanation in general, but it is
precise in the special case of a spatially independent Gaussian fading process.

From [7, Theorem 4.2], [9, Theorem 6.10] we have

(36)

Note that [7, Theorem 4.2], [9, Theorem 6.10] is stated under
the assumption of an average-power constraint only. However,
since a peak-power constraint is more stringent than an average-
power constraint, (36) also holds in the situation of a peak-power
constraint.

The fading number is now defined as in [7, Definition 4.6],
[9, Definition 6.13] by

(37)

Prima facie the fading number depends on whether a peak-
power constraint (34) or an average-power constraint (35) is im-
posed on the input. However, it will turn out that the MIMO
fading number with memory is identical for both cases.

Finally, we remark that for an arbitrary constant nonsingular
matrix and an arbitrary constant nonsingular

matrix

(38)

see [7, Lemma 4.7], [9, Lemma 6.14].

IV. PRELIMINARY RESULTS

The proof of the main result relies on some observations that
hold in a more general context and are therefore interesting by
themselves. Some of these observations are known already and
are repeated here without proof for the sake of completeness
only, but some are new.

A. Capacity-Achieving Input Distributions and Stationarity

One of the main assumptions about our channel model is that
the fading process and the additive noise are stationary. From an
intuitive point of view it is clear that a stationary channel model
should have a capacity-achieving input distribution that is also
stationary. Unfortunately, we are not aware of a rigorous proof
of this claim.

In [8, Lemma 5], [9, Lemma B.1] it is proven that—apart from
edge effects—the optimum input distribution can be assumed to
have equal marginals. Here we will extend this statement and
prove that the capacity can be approached up to an by a
distribution that looks stationary apart from edge effects.

Theorem 3: Consider a channel model with input
and output . Assume that the channel is both sta-
tionary and unaffected by zero input vectors in the following
sense: for every choice of and , for some inte-
gers and , and for every distribution

we have

(39)

whenever both on the LHS and on the RHS have the
same distribution .
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Now fix some nonnegative integer and some power .
Then for every there corresponds some positive integer

and some distribution such
that for a block length sufficiently large there exists some input

satisfying the following conditions.
1) The input nearly achieves capacity in the sense that

(40)

2) For every integer with , every length-
block of adjacent vectors

(41)

taken from within the sequence

(42)

has the same joint distribution , where this distribu-
tion is given as the corresponding marginal distribu-
tion of .

3) In particular, all vectors in (42) have the same marginal
.

4) The marginal distribution gives rise to a second mo-
ment

(43)

5) The first vectors and the last vectors satisfy
the power constraint possibly strictly

(44)

Proof: The proof relies on a shift-and-mix argument based
on the fact that when using deterministic zeros at the input, the
corresponding output yields zero information. The details are
given in Appendix A.

Remark 4: Neglecting the edge effects for the moment, The-
orem 3 basically says that, for every , every block of

adjacent vectors has the same distribution independent of
the time shift. From this it immediately follows that the distri-
bution of every subset of (not necessarily adjacent) vectors of a

block does not change when the vectors are shifted in time
(simply marginalize those vectors out that are not members of
the subset). Hence, Theorem 3 almost proves that the capacity-
achieving input distribution is stationary: the only problem are
the edge effects. Note that can be chosen freely, but has to re-
main fixed until has been loosened to infinity. That is, to get
rid of the edge effects one needs to first let tend to infinity,
before one can let grow.

Throughout the paper, we will refer to and to a block
of vectors as quasi-stationary.

B. Capacity-Achieving Input Distributions and Circular
Symmetry

The next observation concerns circular symmetry. We say
that a random vector is circularly symmetric if

(45)

where is independent of and where stands
for equal in law. Note that being circularly symmetric is not
to be confused with isotropically distributed, which means that
a vector has equal probability to point in every direction. Cir-
cular symmetry only concerns the phase of the components of a
vector, not the vector’s direction.

In case of a random process we make the following definition.

Definition 5: A vector random process is said to be
circularly symmetric if

(46)

where the process is i.i.d. and independent
of .

Remark 6: Note some subtleties of this definition: a random
process being circularly symmetric does not only mean that for
every time the corresponding random vector is circularly
symmetric, but also that from past vectors one cannot
gain any knowledge about the present phase, i.e., the phase is
i.i.d. On the other hand, however, knowing the phase of one
component of in general does yield some knowledge about
the phase of some other components at the same time .

The following proposition says that for our channel model an
optimal input can be assumed to be circularly symmetric.

Proposition 7: Assume a channel as given in (29). Then
the capacity-achieving input process can be assumed to be
circularly symmetric, i.e., the input vectors can be re-
placed by , where the random process is i.i.d.

and independent of every other random quantity.
Proof: A proof is given in Appendix B.

Remark 8: Note that the Proof of Proposition 7 relies only on
the fact that the additive noise is assumed to be circularly sym-
metric. Hence, for this proposition to hold, the additive noise
process does not need to be Gaussian distributed and may even
have memory as long as it is circularly symmetric.

C. Capacity-Achieving Input Distributions and Escaping to
Infinity

Next we give a brief review about the concept of input distri-
butions that escape to infinity: a sequence of input distributions
parametrized by the allowed cost (in our case of fading chan-
nels the cost is the available power or SNR) is said to escape
to infinity if it assigns to every fixed compact set a probability
that tends to zero as the allowed cost tends to infinity. In other
words, this means that in the limit—when the allowed cost tends
to infinity—such a distribution does not use finite-cost symbols.



MOSER: THE FADING NUMBER OF MIMO FADING CHANNELS WITH MEMORY 2723

This notion is important because the asymptotic capacity of
many channels of interest can only be achieved by input dis-
tributions that escape to infinity. As a matter of fact, one can
show that every input distribution that only achieves a mutual
information of identical asymptotic growth rate as the capacity
must escape to infinity. Loosely speaking, for many channels it
is not favorable to use finite-cost input symbols whenever the
cost constraint is loosened completely.

In the following, we will only state this result specialized to
the situation at hand. For a more general description and for all
proofs we refer to [8, Sec. VII.C.3], [9, Sec. 2.6].

Definition 9: Let be a family of input distribu-
tions for the memoryless version of the fading channel (29), i.e.,
input distributions of the channel

(47)

with input . Let this family be parametrized by the
available average power such that

(48)

We say that the input distributions escape to infinity
if for every

(49)

We now have the following lemma.

Lemma 10: Let the memoryless MIMO fading channel be
given as in (47) and let be a family of distribu-
tions on the channel input that satisfy the power constraint (48).
Let denote the mutual information between input and
output of channel (47) when the input is distributed according
to the law . Assume that the family of input distributions

is such that the following condition is satisfied:

(50)

Then must escape to infinity.
Proof: A proof can be found in [8, Theorem 8, Remark 9],

[9, Corollary 2.8].

D. An Upper Bound on Channel Capacity

Since capacity is by definition a maximization of mutual in-
formation, it is implicitly difficult to find upper bounds on it.
The following upper bound has been derived based on a dual
expression of mutual information [7, Sec. V], [9, Sec. 2.3].

Lemma 11: Consider a memoryless channel with input
and output . Then for an arbitrary distribution on the

input the mutual information between input and output of the
channel is upper-bounded as follows:

(51)

where and are parameters that can be chosen
freely, but must not depend on the distribution of .

Proof: A proof can be found in [7, Sec. IV], [9, Sec. 2.4].

E. Generalized Entropy Rates

The main result will be presented in various different forms,
all containing some types of “entropy rates.” The original defini-
tion of the differential entropy rate of a stochastic process
is [20, Sec. 12.5]

(52)

if the limit exists. Moreover, it can be shown that for stationary
processes this limit always exists and is identical to

(53)

We will now extend this definition to conditional versions of en-
tropy rates and prove that the limit exists as long as the involved
processes are well-behaved (in particular, stationary). We will
show this only for one example that, however, is representative
for other forms as well.

Lemma 12: Let be stationary, ergodic, of finite energy
and regular. Let be a stationary unit-vector process. Then

1) the sequence is nonincreasing in
;

2) the sequence is nonin-
creasing in ;

3) for all we have

(54)

and
4) the limits exist and are equal

(55)

(56)

Proof: See Appendix C.

V. THE FADING NUMBER OF MIMO FADING CHANNELS

WITH MEMORY

A. Main Result

We are now ready to state the main result.

Theorem 13: Consider a MIMO fading channel with memory
(29) where the stationary and ergodic fading process
takes value in and satisfies and

. Then, irrespective of whether a peak-power
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constraint (34) or an average-power constraint (35) is imposed
on the input, the fading number is given by

(57)

Here the supremum is over all stochastic unit-vector processes
that are stationary and circularly symmetric.

Moreover, the fading number is achievable by a stationary
input that can be expressed as a product of two independent
processes

(58)

where is a stationary and circularly symmetric
unit-vector process with the distribution that achieves the max-
imum in (57), and is a scalar nonnegative i.i.d.
random process such that

(59)

Note that this input satisfies the peak-power constraint (34) (and
therefore also the average-power constraint (35)).

Proof: The proof is long and obscured by many technical
details. We will therefore provide here an outline emphasizing
the important key steps. For the details we refer to Appen-
dices D to I.

The proof consists of two parts: first, we derive an upper
bound on the fading number assuming an average-power con-
straint (35) on the channel input (see Appendix D). The key in-
gredients for this part are the four concepts introduced in Sec-
tions IV-A to IV-D.

Second, we derive a lower bound on the fading number by
assuming one particular input distribution on the channel that
satisfies the peak-power constraint (34) (see Appendix G). We
then show that the fading number that is achieved by this choice
is identical to the upper bound on the fading number derived be-
fore. Since a peak-power constraint is more restrictive than the
corresponding average-power constraint, the theorem follows.

a) Outline of Upper Bound: To derive the upper bound
we consider the average-power constraint (35). Similarly to the
proof of the SIMO fading number with memory [8, Sec. VII],
[9, Sec. B.5.9], we use the chain rule to write

(60)

and would like to separate each term on the RHS into terms that
are memoryless and terms that take care of the memory. It is
shown in (169)–(176) that

(61)

(62)

which would nicely do the trick. Unfortunately, (62) is not tight
for two reasons. First, note that in the situation of only one
transmit antenna it is possible to get a good estimate of the
fading realizations by simply dividing the received vector
by the decoded value of

for

(63)

as the SNR gets large. This is not possible anymore once we
have multiple antennas at the transmitter as we cannot “divide
by a vector.” Instead we divide by the vector’s norm

for (64)

This estimation still depends on the direction of the input vector.
Hence, we cannot gain the full knowledge but only

.
The second reason why (62) is not tight is the term

that (similar to the SIMO situation) we must
not discard because it contains information about the past
fading values even if we do not know the corresponding inputs.
To see this note that from we can easily get

(65)

(66)

for (67)

which is an estimate for the “direction” of the fading. How-
ever, note that similarly to (64) and unlike to the SIMO case
we cannot gain full knowledge about because the fading
is a matrix-valued process.

So we get the following bound instead:

(68)

Note that we have jumped over many details here, in particular,
we need to rely on the observation of Lemma 10 that the ca-
pacity-achieving input distribution escapes to infinity

in order to be able to discard the noise.
The first term on the RHS of (68) corresponds to memoryless

MIMO fading. Hence, we might use the knowledge of the mem-
oryless MIMO fading number (11) or we could use the bounding
techniques known from [7, Sec. IV.A], [9, Sec. 2.4] to get an
upper bound on this term. Unfortunately, both approaches fail,
the former because the memoryless MIMO fading number con-
tains a maximization that will loosen the bound when introduced
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at this stage. The latter approach turns out to lead to an even less
tight bound.

Instead, we split up into a magnitude term and a
term that takes care of the direction

(69)

and show that

(70)

(where we again need to rely on the fact that the input distribu-
tion escapes to infinity).

The first term on the RHS of (69) almost looks like the mutual
information between input and output of a memoryless MISO
fading channel. We fix the problem that the output is nonneg-
ative by multiplying by an independent circularly sym-
metric phase . Because we assume that is independent
of all other random quantities, particularly of , this does not
change the mutual information.

The bound (68) then looks as follows:

(71)

This bound still depends on the unknown capacity-achieving
input distribution. In order to eliminate this dependence, we
need to maximize it over all joint distributions on
that satisfy the average-power constraint. Unfortunately, when
we only consider one fixed , this maximization will loosen
our bound. The reason lies in the third term on the RHS of
(71) which can be loosely upper-bounded by zero. This loose
upper bound can be achieved by the (obviously very bad) choice

.
So it seems that we cannot consider each term of the sum in

(60) separately. Fortunately, this is possible once we take The-
orem 3 and Proposition 7 into account. They allow us to restrict
ourselves to stationary and circularly symmetric input distribu-
tions. This excludes the mentioned bad choice and yields the
following bound:

(72)

where the supremum is over all stationary and circularly sym-
metric input processes.

Note that Theorem 3 has also allowed us to get rid of the
dependence on , i.e., we can let tend to infinity. Then we
are free to loosen the power constraint (i.e., let ) and to
use the definition of the fading number (37).

We might now be tempted to use our knowledge about mem-
oryless MISO fading. But again this approach fails due to the
maximization in the expression of the memoryless MISO fading
number (8). Instead, we rely on Lemma 11 to get an upper bound
on the first term on the RHS of (72). This bound will look very
similar to the memoryless MISO fading number, however, it
does not involve a local beam-forming maximization. To make
the expressions easier to read, we will use here the notation
to refer to this part of the bound.

Hence, we get the following:

(73)

We see that the upper bound consists of a term that corresponds
to the memoryless MISO fading number when the receiver only
considers the magnitude of the received vector, a term that takes
care of the contribution of the direction of the channel output,
and two terms take care of the contribution of the memory in the
channel.

Note that in the whole derivation we rely on the fact that the
input distribution does not take on any value smaller than an
arbitrary . However, Lemma 10 only guarantees this in the
limit when the power tends to infinity. In order to solve that
problem, we need to introduce the event and
condition everything on this event.

For more details we refer to Appendix D.
b) Outline of Lower Bound: To derive a lower bound

we choose a specific input distribution which naturally yields
a lower bound to channel capacity and hence to the fading
number. Let be of the form

(74)

Here is a sequence of random unit vectors forming a sto-
chastic process that is stationary and circularly symmetric, but
whose exact distribution will be specified later. The stochastic
process consists of random variables that are
i.i.d. with

(75)
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where we choose as

(76)

We assume that .
Note that this choice of satisfies the peak-power con-

straint (34) and therefore also the average-power constraint (35).
We then again start with the chain rule and write

(77)

where we would like to treat each term separately. Note that for
the same reason that we were not allowed to discard the term

in the derivation of the upper bound, we are not
allowed to discard the future outputs on the RHS of (77).

After some algebraic changes we get the following lower
bound:

(78)

Note that the first term is bounded and that the second term
corresponds to a memoryless MIMO fading channel with some
side information. To simplify notation let us denote this side
information by

(79)

Contrary to the derivation of the upper bound that has been
based on the memoryless MISO case, we will base the deriva-
tion of the lower bound on memoryless SIMO, i.e., we split the
second term on the RHS of (78) into the following two parts:

(80)

Now we have the problem that the second mutual information
term on the RHS of (80) does not correspond exactly to the
SIMO situation since the input of the channel is real instead of
complex. This is fixed by various arithmetic changes which at
the end yield the following expression:

(81)

(82)

where we have introduced to be i.i.d. uniformly dis-
tributed on , independent of all other random quantities.

Note that our choice of guarantees that
achieves the fading number of memoryless SIMO fading with
side information [7, Proposition 4.30], [9, Proposition 6.30].
Hence, we get from (78) and (82)

(83)

(84)

where we have used the expression of the fading number of
memoryless SIMO fading with side information (7).

Note that we have been cheating here since we have inter-
changed the order of the limits of and . To correct
this we will need to introduce a parameter , get rid of , and use
the stationarity of our channel model and our choice of .
Furthermore, we will have to discard the influence of the noise
process in various places which is possible once we let
because with probability .

The result now follows by showing that (84) is equivalent
to the upper bound. This will follow from some arithmetic
changes, from stationarity, and from the fact that we choose
the distribution of to achieve the supremum given in the
upper bound.

For more details we refer to Appendix G.

B. Alternative Expressions and an Upper Bound

In the following, we will state several equivalent expressions
for the fading number given in (57). Depending on the context
one particular form might be more convenient.

We start by defining a constrained memoryless MIMO fading
number given a fixed distribution on

(85)

This corresponds to the situation where we additionally con-
strain the transmitter to use a fixed (possibly suboptimal) distri-
bution on , i.e., the memoryless MIMO fading number is then
given as (see (11))

(86)

Note the difference to the memoryless fading number with par-
tial side information at the receiver

(87)

Here we assume that the realization of is known to the re-
ceiver which changes the problem from memoryless MIMO to
memoryless SIMO with side information.

From (85) we next define the following natural extension: the
constrained memoryless MIMO fading number with partial side
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information given a fixed distribution on is defined as
follows:

(88)

Using these definitions we get the following alternative expres-
sions.

Corollary 14: The MIMO fading number with memory can
be written in the following five equivalent forms:

(89)

(90)

(91)

(92)

(93)

Here denotes the th row of , and denotes the phase
of . Moreover, in (92) we have defined

(94)

(95)

and in (93)

(96)

(97)

(98)

Proof: A proof can be found in Appendix J.

Here the expression (92) is interesting because it expresses
the fading number without using the differential entropy-like
quantity .

Note that the various forms of entropy rates used in (89)–(98)
are all well-defined because the underlying processes are sta-
tionary. This has been proven in Lemma 12 for one particular
case that is representative for all other cases.

Since the evaluation of (57) is in general rather difficult, we
will next state two upper bounds to the MIMO fading number
that are usually easier to compute.

Corollary 15: The fading number of a MIMO fading channel
with memory as defined in Theorem 13 can be upper-bounded
as follows:
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(99)

(100)

where the infimum is over all nonsingular complex
matrices and nonsingular complex matrices .

Proof: Note that from conditioning that reduces entropy
and from (20) and (21)

(101)

where the latter upper bound is achieved with equality only if
is uniformly distributed on the sphere, i.e., isotropically

distributed.
We now get from Theorem 13 and from (38)

(102)

(103)

(104)

(105)

(106)

(107)

Here, (102) follows from (38); the subsequent inequality (103)
from (57) and (101); (104) holds due to linearity of expectation;

then in (105) we upper-bound the expectation by the supremum
over all possible values (this proves (99)); (106) is due to
conditioning that reduces entropy; and the final equality (107)
holds because conditional on , is independent of

.

VI. SOME SPECIAL CASES

In this section, we will now specialize the general result to
some important special situations. While some of them have
been known already, the case of MISO fading with memory has
not been solved before.

A. Memoryless Fading

We start with the situation where the fading process has no
temporal memory, i.e., is i.i.d. over time . In this situa-
tion, we will usually drop the time index and write .

The expression for the fading number of a memoryless
MIMO fading channel (11) can be derived from (57) as fol-
lows: first, note that only the first and the last terms in (57) are
influenced by memory. However, once we assume that there
is no memory in the fading process , the past can only
influence the present values via some memory in the input
process . Now note that the fourth term is conditioned
on the input of the past and of the present. Hence, the past has
no influence on this term either. Finally, note that the first term
can be upper-bounded by dropping the conditioning, and note
further that this upper bound can actually be achieved if the
input is chosen to be i.i.d. Hence, an optimum choice of
will be memoryless, and (11) follows.

All other memoryless situations follow directly from this. In
case of a SIMO fading channel, there is only one possible choice
for a circularly symmetric unit random variable , which
is therefore implicitly the optimum one

(108)

For the MISO case note that, independently of the distribution
of and , the distribution of

is identical to the distribution of . Hence

(109)

and the fading number becomes

(110)

(111)

(112)
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which can be achieved for a distribution of that with proba-
bility takes on the value that achieves the fading number in
(112) (beam forming).

Finally, the SISO case is a combination of the arguments of
the SIMO and MISO case, i.e.,

(113)

which yields

(114)

B. MISO Fading With Memory

Next we are going to study the special case of MISO fading
with memory for which the fading number has been unknown
so far. If we specialize Theorem 13 to the situation of only one
antenna at the receiver we get the following corollary.

Corollary 16: Consider a MISO fading channel with memory
where the stationary and ergodic fading process takes
value in and satisfies and

. Then, irrespective of whether a peak-power constraint (34)
or an average-power constraint (35) is imposed on the input, the
fading number is given by

(115)

where denote vectors of unit length, and where

the maximization is over all stochastic processes that are
stationary.

Moreover, the fading number is achievable by an input that
can be expressed as a product of three independent processes

(116)

Here, is a stationary unit-vector process with
the distribution that maximizes (115); is a scalar
nonnegative i.i.d. random process satisfying (59); and is
i.i.d. as defined in Definition 5.

Proof: This follows directly from Theorem 13 by the ob-
servation that independently of the distribution of and

, in the MISO case the distribution of

is identical to the distribution of and therefore

(117)

Note that the remaining terms do not depend on the phase
of .

Remark 17: We would like to point out that in the case of a
MISO fading process without memory the optimal input uses

beam forming with a deterministic direction that maximizes the
fading number (see (8)). Once the fading process has memory
this is not the case anymore. However, it is straightforward to
derive the upper bound (9) and the lower bound (10) that are
of beam-forming type [16]: the upper bound follows by upper-

bounding the expectation over by the supremum over
. For the lower bound, we choose the following stationary

and circularly symmetric distribution on :

(118)

where is the deterministic direction that achieves the max-
imum in (10).

C. SIMO and SISO Fading With Memory

In the case of only one antenna at the transmitter, the input
vector is reduced to a random variable and therefore the
input direction to a phase . Hence, the expression (57)
gets simplified considerably by the fact that there is only one
choice of a circularly symmetric distribution of

(119)

i.e., the supremum disappears.
The fading number of a SIMO fading channel with memory

follows then from (57) in a straightforward way from the fact
that

(120)

The expression (6) can be derived from the alternative form (91).
For the fading number of a SISO fading channel with memory

(5) we use

(121)

VII. CONCLUSION

We have derived the fading number of a general MIMO
fading channel with memory where the distribution of the
fading process is not restricted to be Gaussian, but may have
any stationary, ergodic, and regular distribution of finite energy.
In particular, we allow both temporal and spatial memory. The
channel is assumed to be noncoherent, i.e., neither receiver nor
transmitter know the realization of the fading process, but they
only know its probability distribution.

We have shown that the MIMO fading number is achiev-
able by an input that can be written as a product of two inde-
pendent processes: an i.i.d. nonnegative “magnitude” process
and a stationary and circularly symmetric “direction” process.
The former has the standard logarithmically uniform distribu-
tion (59) that has been used in earlier publications about the
fading number [7]–[9]. It escapes to infinity as guaranteed by
Lemma 10. The “direction” process depends on the particular
law of the fading process, i.e., it needs to be chosen such as to
maximize the fading number.
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Note that the fading number is not given in a completely
closed form but as an expression that still contains a maximiza-
tion. This is to be expected due to the generality of the result. Re-
call that the stationary and ergodic matrix-valued fading process

is only constrained4 to be regular (see (31)). It can contain
various types of temporal and spatial memory and have various
different distributions. In particular, we do not restrict it to be
Gaussian. We believe that it will be hardly possible to further
simply (57) without making more detailed assumptions about

.
Unfortunately, the evaluation of (57) is difficult even if we

specify the fading process in more detail. There are several rea-
sons for this. First, the fading number is not determined by
the fading process directly, but by the projection of the fading
process into using an optimal choice of the input “direc-
tion” process . Note that not only determines this
projection, but simultaneously also conveys information in it-
self.5 Hence, we should choose such as to find a good
projection and also to maximize the amount of information it
can convey. The optimal choice of the input therefore is
a tradeoff between these two—in general contradicting—objec-
tives.

Second, even though straightforward in theory, the evaluation
of the entropy with respect to the surface of the unit sphere
in might be cumbersome.

In spite of these difficulties the fading number offers very in-
teresting insights about the general behavior of capacity in the
high-SNR regime. We refer to the discussion about the fading
number in Section I-B, and also, as an example, to the special sit-
uation of Gaussian fading processes with memory where (57) al-
lows general statements about the dependence of the high-SNR
capacity on the memory and the number of transmit and receive
antennas. For more details about this important special case of
Gaussian fading we refer to a separate publication [19].

The proof of the main result is strongly based on a new the-
orem showing that the capacity-achieving input distribution of
a stationary channel model can (almost) be assumed to be sta-
tionary (see Theorem 3). Even though this result is very intu-
itive, we are not aware of any proof in the literature. We believe
this preliminary result to be of importance in many other situa-
tions as well.

We also have derived the MISO fading number with memory
and the already known SIMO and SISO fading numbers as spe-
cial cases from this general result. In the case of MISO fading
with memory, it is interesting to note that in contrast to the mem-
oryless situation the fading number is in general not achieved by
beam forming.

APPENDIX A
PROOF OF THEOREM 3

The proof follows the same lines as the proofs of [8, Lemma
5] and [9, Lemma B.1]. It is based on a shift-and-mix argument.

4Note that the restriction of having finite energy is obvious as otherwise the
capacity is unbounded.

5This is in stark contrast to the special case of memoryless MISO fading,
where the ���� is only used for beam forming without conveying information.

Fix some arbitrary and an integer .
Recalling that

(122)

where the supremum is over all joint distributions on
under which ,

we conclude that there must exist some integer
and some joint distribution such that if

then

(123)

and

(124)

Let be a random matrix whose distri-
bution consists of independent blocks that are
distributed according to . The distribution of can then be
written as the product of distributions

(125)

Let us next compute the marginal distribution of for a cer-
tain block of length . This marginal dis-
tribution depends on the particular choice of the starting point

of the block, however, note that different choices of will re-
sult in at most different marginal distributions. This follows
from the definition of in (125). Let be the probability
law on that is a mixture of these different block-
marginals of , i.e., for every Borel set

(126)

Note that in the situation when can alternatively
be written as

(127)

where we used to denote the set of all corresponding
submatrices of that are created by taking

only columns to of each matrix in .
Note further that from our definition it follows that is

quasi-stationary in the sense that if then every
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length- subblock has the same distribution
for all . The distribution can be computed
from as marginal distribution, .

In the theorem we have assumed that is given and suffi-
ciently large. In particular, we will assume that .
We shall next describe the required input distribution as follows:
let

(128)

and let the length- sequence of random -vectors
be defined by

(129)

so that
if
if
if

(130)

where is the zero -vector and where

are i.i.d. (131)

If we choose as input for our channel, then it follows from
the fact that zeros have no effect and from (124) that

(132)

Again, since the lead-in and trailing zeros are of no consequence
and since shifting does not change mutual information, this
same mutual information results if we shift by (provided
that and is large enough so that we do not lose
any nonzero input vector)

(133)

Consequently, if we define by the mixture of the
time shift of , i.e.,

(134)

where
(135)

is independent of , then by the concavity of mutual information
in the input distribution we obtain that

(136)

(137)
which exceeds for sufficiently large .

Except at the edges, the above mixture guarantees that every
block of vectors has the same distribution

(138)

for every and every Borel set ,
i.e., is (apart from the edges) quasi-stationary.

Note further that by (123) we have for

(139)

The power in the edges can be smaller than because of the
mixture with deterministic zero vectors.

APPENDIX B
PROOF OF PROPOSITION 7

Assume that are i.i.d. , independent of
every other random quantity. Then

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

Here (140) follows because is independent of every other
random quantity; (142) follows because is circularly sym-
metric; in (143) we define the new input ; and
(146) follows since conditioning reduces entropy.

Hence, a circularly symmetric input achieves a mutual infor-
mation that is at least as big as the original mutual information.

APPENDIX C
PROOF OF LEMMA 12

We start with the proof of the second statement which follows
directly from the fact that conditioning cannot increase differ-
ential entropy

(148)
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(149)

where the last equality follows from stationarity.
We next use the second statement to prove the third

(150)

(151)

(152)

(153)

where (150) follows from the chain rule; (151) from the fact that

conditional on is independent of all other random
variables in the expression; and (152) follows from the second
statement.

Next, we prove the first statement

(154)

(155)

(156)

(157)

where (154) follows from the chain rule; where (155) follows
from the second statement and from the fact that given the
random vector is independent of , and where
(156) follows from the third statement.

Finally, to prove the fourth statement we note that for an ar-
bitrary

(158)

(159)

(160)

(161)

(162)

Here, in (158) and (159) we use the chain rule; (160) follows

from the fact that conditional on are independent of
all other random variables in the expression; and (161) follows
from the second statement. Hence

(163)

Letting tend to infinity we then get

(164)

which combined with the third statement proves the fourth state-
ment.

APPENDIX D
DERIVATION OF AN UPPER BOUND FOR THEOREM 13

Fix some power , and let be arbitrary. Let
be a positive integer whose existence is guaran-

teed in Theorem 3. Fix a nonnegative integer , and let
be the block-input distribution whose existence

is guaranteed in Theorem 3. Let block length and input
satisfy (40)–(44) so that

(165)

(166)

For and for we use
the crude bound

(167)

(168)

where denotes the capacity of the memoryless MIMO
fading channel as given in (47) with an available average power
of at most as guaranteed in (43) and (44). The first inequality
can be derived as follows:

(169)

(170)
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(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

Here, (169) follows from the chain rule; (170) follows because
we prohibit feedback; (171) from the inclusion of the additional
random vectors in the mutual information term; (172) fol-
lows because, conditional on the past fading and the present
input, the past inputs and outputs are independent of the present
output; (173) follows from the chain rule; in (174) we use the
chain rule and note that ; the following two
steps (175)–(176) are analogous to (171)–(172); (177) follows
once more from the inclusion of additional random vectors in
the mutual information and from stationarity; and the final in-
equality (178) from the nonnegativity of mutual information.

Note that (168) is uniformly bounded in . So we conclude
that

(179)

(180)

This allows us to focus on for which
Theorem 3 guarantees that every -block
has the same distribution .

We now continue by further upper-bounding
for such

(181)

(182)

(183)

(184)

(185)

(186)

(187)

Here the first two steps (181)–(182) are identical to (169)–(170);
(183) follows from the inclusion of the additional random ma-
trices and the random vectors in the
mutual information term; (184) follows because, conditional on

, the past outputs and
the past inputs are independent of the present output

; then (185) follows from the chain rule; (186) from the inde-
pendence of the past inputs and the present output when condi-
tioning on the present input; and in (187) we use the following
lemma.

Lemma 18: Let be quasi-stationary as defined in The-
orem 3 and Remark 4. Then

(188)

where does neither depend on nor on the input
and tends to zero as tends to infinity.

Proof: See Appendix E.

We continue as follows:

(189)

(190)

(191)

(192)

(193)

(194)
Here (189) follows from the inclusion of the random vector

in the mutual information term; (190) from chain rule;
(191) follows because the additive noise is independent of
the fading ; in (192) we introduce ; (193)
follows from dividing each term by the magnitude of the input

vectors and from the fact that given is in-
dependent of ; and in the final inequality (194) we
drop some arguments in the negative mutual information term.
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Note that (194) only depends on which, according to
Theorem 3, has a distribution . Hence, using stationarity
and combining (194) with (180) we find

(195)

(196)

(197)

(198)

Here, in (197) we shift all to which is possible due
to the stationarity of and due to the fact that for all

the distribution of is
given in Theorem 3.

To ease readability and to prevent the need of carrying
throughout the rest of the proof, we will introduce here a slight
misuse in notation: for pure notational convenience we will as-
sume from now on that , i.e., that from now on

is quasi-stationary. Note that this is a notational choice
and therefore does not contradict the edge-effects of Theorem
3! Hence, we rewrite (198) as follows:

(199)

Before we continue bounding (199) note that Lemma 10 guar-
antees that must escape to infinity as defined in Definition
9, i.e., for an arbitrary

(200)

So fix and define an indicator random variable as follows:

if
otherwise.

(201)

Let

(202)

and note that by the union bound

(203)

(204)

(205)

i.e.,

(206)

Hence, from Lemma 10 then follows that

(207)

Finally, in order to simplify notation, we will write for
, i.e., we have .

We start with the second term on the RHS of (199) and derive
the following lower bound:

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)

(216)
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where

(217)

denotes the binary entropy function. Here the first two equal-
ities (208) and (209) follow from the chain rule; in (210) we
drop a nonnegative mutual information term; (211) and (212)
follow from the definition of mutual information and the fact
that entropy is nonnegative (note that since is a binary random
variable we deal with discrete entropies and not differential en-
tropies at this point); in (213) we then drop some conditioning
which increases entropy; and in (216) we again drop some non-
negative mutual information terms.

We now proceed as follows:

(218)

(219)

(220)

(221)

(222)

(223)

(224)

where we have used the following lemma.

Lemma 19: Let be the event that for
all . Then

(225)

(226)

where and are independent of and de-
pend on such that

(227)

(228)

Proof: See Appendix F.

We continue by splitting into magnitude and direction

(229)

(230)

(231)

Hence, we get

(232)

(233)

(234)

where the inequality (232) follows from dropping some argu-
ments of mutual information. Note that even though
by definition, it still might depend on because we are not al-
lowed to assume that and are independent. At
this stage of the proof, we only know that where

is defined in Theorem 3 and does depend on .
We lower-bound the first term in (234) by

(235)

(236)
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(237)

and upper-bound the second term in (234) by

(238)

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)

Here (238) follows from adding additional arguments to mutual
information; (239) holds because conditional on ,
is deterministic; in (240) we use the definition of mutual infor-
mation; (241) follows from the fact that conditioning reduces
entropy; in (242) we drop because given and

it is independent of . In (243), we rely on the fact
that of all random vectors of given marginals differential en-
tropy is maximized by the one whose components are indepen-
dent [20], on the fact that of all complex random variables of
a given second-moment differential entropy is maximized by
the circularly symmetric Gaussian distribution, and by the con-
cavity (in the variance) of the differential entropy of a circu-
larly symmetric complex Gaussian. The inequality (244) fol-
lows from Cauchy–Schwarz; and (245) from the fact that
is a unit vector. Note that

(247)

because our assumption implies by (15) that
and because our assumption

implies by a conditional version of [7, Lemma 6.6], [9, Lem-
ma A.14] that

(248)

Plugging (246) and (237) into (234), (224), and then into
(199) we get

(249)

Before we continue to bound the first term on the RHS of
(249), we define another indicator random variable

if
otherwise

(250)

and let

(251)

From Lemma 10 then follows that

(252)

Similarly to (208)–(216), we get

(253)

(254)

(255)

(256)

(257)

(258)

Here, in (253) we add to the argument of mutual information;
(254) and (255) follow from the chain rule and the definition
of mutual information (note again that is a binary random
variable, i.e., we need entropy instead of differential entropy);
in (256) we lower-bound an entropy term by zero; and in the
last inequality (258) we upper-bound and interpret the
second mutual information term as mutual information between
input and output of a memoryless MIMO fading channel (see
(47)) under the constraint that the maximum available average
power is . Hence, we can upper-bound this term by the mem-
oryless capacity .

We remark that we do not know an analytic expression for
. However, we know that it is finite (bounded) and

independent of so that from (252) we have

(259)
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Using (231) we continue with the mutual information term in
(258) as follows:

(260)

(261)

(262)

(263)

(264)

(265)

Here, (260) follows from adding an additional random vector
to the argument of the mutual information; (261) from sub-

tracting the known vector from and from the indepen-
dence between the noise and all other random quantities; then
in (262) we split into magnitude and direction vector (see
(231)); (263) follows from the chain rule again; in (264) we use
the chain rule and introduce that is independent of all the
other random quantities and that is uniformly distributed on the
complex unit circle; and the last equality (265) follows from the
independence of from all other random quantities.

Next we apply Lemma 11 to the first term in (265), i.e., we
choose and . Note that we need to
condition everything on the event

(266)

where and can be chosen freely, but must not
depend on .

Note that from a conditional version of Lemma 2 with
follows that

(267)

(268)

where we have used that is independent of all other random
quantities and uniformly distributed on the unit circle. Taking
the expectation over conditional on and noting that
by the law of total expectation

(269)

we then get

(270)

(271)

(272)

(273)

where (271) follows from the definition of ; where
(272) follows from the scaling property of entropy with a real
argument; and where (273) follows because given
is independent of .

We assume such that . Then we define

(274)

such that

(275)

(276)

(277)

(278)

Note that in (276) we use our knowledge , i.e., .
Finally, we bound

(279)

(280)

(281)
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where we use Cauchy–Schwarz in (279), then in (280) split the
expectation of a product into a product of expectations because

and are independent, and finally in (281) use the fact that
needs to satisfy the average-power constraint (35) to get the

following bound:

(282)

(283)

(284)

Plugging (281), (278), and (273) into (266) yields

(285)

Next we continue with the second term in (265)

(286)

(287)

(288)

Here, (287) follows because given and , the term
does not depend on ; and (288) follows be-

cause conditioning cannot increase entropy.
Hence, using (288) and (285) in (265) we get

(289)

(290)

(291)

(292)

Here, (290) follows from a conditional version of Lemma 2 sim-
ilar to (267)–(273) which allows us to combine the second and
the last term in (289); in (291) we arithmetically rearrange the
terms; and (292) follows from the following bound:

(293)

(294)

(295)

where the last line should be read as definition for . Notice
that

(296)

as can be argued as follows: the lower bound on follows from
[7, Lemma 6.7f)], [9, Lemma A.15f)] because
and . The upper bound on can be verified
using the concavity of the logarithm function and Jensen’s in-
equality.

Hence, plugging (292) and (258) into (249) we get the fol-
lowing bound on capacity:
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(297)

(298)

This bound still depends on the distribution which is
guaranteed to exist by Theorem 3, but whose exact form is not
known. In order to get around this problem we will now further
upper-bound this expression by maximizing it over all possible
choices of that are quasi-stationary and
circularly symmetric6

(299)

6Note that by Proposition 7 we know that � is circularly symmetric.

(300)

where (300) follows from the definition of mutual information.
As mentioned, the supremum is over all distributions of blocks
of unit vectors

(301)

that are quasi-stationary in the sense of Theorem 3 and that are
circularly symmetric as guaranteed by Proposition 7. That is, for
every integer with , every block of vectors

has the same distribution, and the vectors
are circularly symmetric according to Definition 5.

Note that from (299) the alternative expression (90) can be
derived.

We next use this upper bound on capacity to get an upper
bound on the fading number (37)

(302)

(303)
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(304)

(305)

Here, (304) follows from the fact that , and
are independent of and, therefore, independent

of (this is shown in Appendices E and F), and from the fact
that the four terms in the supremum do not depend on either.
Moreover, we have added and subtracted a term . In (305),
we have used that and both tend to as tends to infinity
(see (207) and (259)) and we have made the following choices
on the free parameters and :

(306)

(307)

Note that for this choice

(308)

(309)

(310)

(311)

(Compare with [7, Appendix VII], [9, Sec. B.5.9].)
In a next step, we let go to zero. Note that as

as can be seen from (274). Note further that

(312)

Therefore, we get

(313)

Next, let tend to infinity. Then it is shown in Appendix F that
and .

Finally, we let tend to infinity and recall that by Lemma 18
when . Moreover, below we will show uniform

convergence which guarantees that we are allowed to swap the
supremum over and the limit of tending to infinity. The
result then follows because is arbitrary.

So it only remains to prove uniform convergence of the ex-
pression inside the supremum in (313) for . To that goal
we define

(314)

(315)

where stands for the stationary and circularly symmetric dis-
tribution of . From the lower bound derived in Appendix G
and from Theorem 3 we know that we can restrict to the set

of distributions that will achieve the fading number
up to an

(316)

Moreover, below we will show that is a lower
bound to the restricted fading number when the
receiver only takes into account the memory up to a length of

, but ignores all further past

(317)

We hence have

(318)

(319)

(320)

Here, in (318) we maximize over and use (316); in
(319) we use (317); and in the last inequality (320) we rely on
the fact that restricting the memory in the receiver cannot in-
crease the fading number.
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On the other hand, using the definitions (314) and (315) we
have

(321)

(322)

(323)

(324)

where (322) follows because mutual information is nonnegative
and because we add to the arguments of the first mutual
information; where in (323) we drop since it is a

deterministic function of and ; and where (324)
follows from the derivation (343)–(365) given in Appendix E.
Note that does not depend on and tends monotonically
to as tends to infinity.

Hence, for every we can find a such that for all
we have

(325)

for all . This proves uniform convergence, i.e.,

(326)

We are left to prove (317). Assuming that the receiver only takes
into account the past terms of the received signal, and using
an input distribution as used in Appendix G we get

(327)

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)

(336)

Here, (327) follows by dropping the supremum (we assume
as input distribution the stationary distribution given in Ap-
pendix G) and some nonnegative terms in the sum; in (328),
we drop some more terms and make use of the assumption that
the receiver ignores the memory beyond ; (329) follows
from stationarity; in (332) we use a derivation very similar to
(366)–(378), and in (334) a derivation according to (380)–(392)
in Appendix F, with the definition of and given there.

The bound (317) now follows from [18, eq. (192)] and by
letting tend to infinity.

APPENDIX E
PROOF OF LEMMA 18

We assume that is distributed according to the quasi-
stationary distribution . We bound as follows:

(337)

(338)

(339)

(340)

(341)

Here, in (337) we split the vectors up into magnitude and di-
rection; in (338) we add the additional term to the argu-
ment of mutual information; in (339) we drop because given

it is independent of the other random quantities; then in
(340) we remove the conditioning on because it does not
provide any useful information; and in the last step (341) we
made use of the stationarity of .

Similar to the derivation of the upper bound, in the following

we will again introduce a shorthand notation and rename

by . Note that since the upper bound that is derived in this
appendix will not depend on , we lose the dependence on

in the end anyway.
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Hence, letting , we rewrite (341) as follows:

(342)

(343)

(344)

(345)

Here, in (343) we add more terms to the argument of mutual
information; and (345) follows from the third statement of
Lemma 12.

Now note that for being quasi-stationary and for all
we have

(346)

(347)

(348)

(349)

(350)

where (346) follows from the stationarity of and the quasi-

stationarity of (note that so that ); in (347)

we add which, conditional on , is independent of
the other random quantities; then in (348) we add to
the conditioning which does not change anything as it is a func-
tion of the given terms and ; and the inequality (349)
then follows by dropping which cannot reduce entropy.

Therefore

(351)

(352)

(353)

(354)

Here, (351) follows from the chain rule; in (352) we drop

because conditioned on they are independent of the other
random quantities; and in (353) we apply (350) several times to
each term of the sum.

Hence, we have

(355)

Using this in (345) and (341) we finally get

(356)

(357)

(358)

(359)

(360)

(361)

(362)

(363)

(364)

(365)

Here, (358) follows because is independent of ;
in (359) we add to the argument of mutual information;

in (360) we drop because conditional on
it is independent of ; and (363) follows from sta-

tionarity.
Note that does neither depend on nor on the input

and that—due to the stationarity of —it monotoni-
cally tends to zero as tends to infinity.

APPENDIX F
PROOF OF LEMMA 19

We start with the first bound

(366)

(367)
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(368)

(369)

(370)

(371)

(372)

(373)

(374)

(375)

(376)

(377)

(378)

Here, (367) follows from conditioning that reduces entropy; in
(368) we drop since given it is independent of the other
random variables; in (369) and (370) we upper-bound the terms
by choosing the smallest value for which is and we
condition the first entropy on random variables that are inde-
pendent of the noise; in (373), we upper-bound the expectation
by a supremum; in (374) we introduce a random matrix
process that is i.i.d. with components that are independent

so that ; and (376) follows
from the data processing inequality.

From [7, Lemma 6.11], [9, Lemma A.19] we conclude that
for every realization of and for any the expression

(379)

converges monotonically in to . By the
Monotone Convergence Theorem (MCT) [21] this is also true
when we average over .

Similarly, we find

(380)

(381)

(382)

(383)

(384)

(385)

(386)

(387)

(388)

(389)

(390)

(391)

(392)

where (390) again follows from the data processing inequality.
From [7, Lemma 6.11], [9, Lemma A.19] we conclude that

for every realization of the expression

(393)

converges monotonically in to . By
MCT [21] this is also true when we average over .

APPENDIX G
DERIVATION OF A LOWER BOUND FOR THEOREM 13

To derive a lower bound we choose a specific input distribu-
tion which naturally yields a lower bound to channel capacity.
Let be of the form

(394)
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Here, is a sequence of random unit vectors forming a sto-
chastic process that is stationary and circularly symmetric, but
whose exact distribution will be specified later. The stochastic
process is chosen to be independent of and to con-
sist of random variables that are i.i.d. with

(395)

where we choose as

(396)

Note that this choice of satisfies the peak-power constraint
(34) and therefore also the average-power constraint (35).

Fix some (large) positive integer and use the chain rule and
the nonnegativity of mutual information to obtain

(397)

(398)

Then, for every , we can use the fact that
is i.i.d. and that is stationary and circularly symmetric to
lower-bound as follows:

(399)

(400)

(401)

(402)

(403)

(404)

(405)

(406)

(407)

(408)

Here, (399) and (400) follow from the chain rule; (401) follows
from dropping some random quantities in the argument of the
first mutual information term and from the following bound:

(409)

(410)

(411)

(412)

(413)

(414)

(415)

(416)

where the last equality should be read as definition of .
Here, (409) follows from stationarity of ; in (410), we split

into magnitude and direction; (411) follows because
and are independent; in (412) we use the fact that
is i.i.d.; (413) follows from adding terms to mutual information;
and (415) from the definition of entropy rate and from station-
arity. Note that while does depend on the distribution of

, it is independent of and and tends to zero as tends
to infinity.

Then, (402) and (403) follow again from the chain rule, and
(404) follows from the following lemma.

Lemma 20: Let be as specified in (394)–(396). Then

(417)

where is independent of and the distribution of
, and tends to zero as .

Proof: See Appendix H.

In (405), we firstly extract from using the
noise and then drop because it is independent
of when conditioned on ; in (406) we split

into magnitude and direction as in (231) and divide
by for ; in (407) we drop the arguments

; and (408) follows from the fact that
is i.i.d. and independent of .
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We continue with the mutual information term in (408) as
follows:

(418)

(419)

(420)

(421)

Here, (418) follows from the chain rule; in (419), we split
into and and drop in the first argument of the first
mutual information term because it is independent of every-

thing else; (420) follows because conditional on and
are independent; and (421) follows again from

the chain rule.

To make our life easier, we introduce the following shorthand
notation:

(422)

Note that does not contain any term at time , but only past
and future terms. Then we get from (421) and (408)

(423)

To continue, we introduce a new stochastic process which
is assumed to be independent of every other random quantity
and i.i.d. . The third mutual information term in
(423) can then be written as

(424)

(425)

where (425) follows from the chain rule. The last two terms in
(425) can be rearranged as follows:

(426)

(427)

(428)

Here (427) follows because is independent of everything
else so that we can add it to the conditioning part of the entropy
without changing its values, and because differential entropy
remains unchanged if its argument is multiplied by a constant
complex number of magnitude .

Putting this into (425) yields

(429)

(430)
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(431)

where the last equality holds because from , the random
variables and can be gained back.

Hence, plugging this into (423) we get the following bound:

(432)

We continue with bounding the second term on the RHS of (432)

(433)

(434)

(435)

(436)

(437)

Here (433) follows from the chain rule and (434) from the fol-
lowing lemma.

Lemma 21: Let be as specified in (394)–(396). Then

(438)

where is independent of and , and tends to
zero as .

Proof: See Appendix I.

In (435), we use in order to extract from and
then drop and since given they are independent
of the other random variables; in (436) we split up into
magnitude and direction as in (231); and (437) follows again
from the chain rule.

Next we bound the fourth term on the RHS of (432)

(439)

(440)

(441)

(442)

(443)

(444)

Here, (439) follows from adding a term to mutual information;
in (440) we extract from ; then in (441) we
use the chain rule; (442) holds because the noise is circularly
symmetric and independent of all other random quantities so
that the phase is destroyed; in (443) we split up
into magnitude and direction similar to (231); and (444) follows
again from the chain rule.

We plug (444) and (437) into (432) and get

(445)

We continue by bounding the third and the sixth terms on the
RHS of (445)

(446)
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(447)

(448)

(449)

(450)

(451)

Here, (447) follows because is independent of all other
random quantities; (449) follows from conditioning that reduces
entropy; and (450) holds because we have assumed to be cir-
cularly symmetric. Note that since we have dropped the condi-
tioning on in the second differential entropy term, we cannot
recover the phase of and that therefore the uniform

phase of “destroys” the phase of ; see also Definition 5
and Remark 6.

Next we bound the second and fifth terms on the RHS of (445)

(452)

(453)

(454)

where (453) follows from (19) with a choice
and from the fact that is independent of all other random
quantities.

Plugging (454) and (451) into (445) leaves us with the fol-
lowing bound:

(455)

Hence, using this in (398) we get

(456)

(457)
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(458)

where (457) follows from stationarity, and (458) from defining
a new complex random variable . Note that we
have changed our shorthand (422) accordingly to

(459)

Letting tend to infinity we obtain

(460)

where the second term on the RHS can be viewed as mutual
information across a memoryless SIMO fading channel with
fading vector in the presence of the side informa-
tion .

We next let the power grow to infinity and use the
definition of the fading number. Note that the distribution of
(the product of (395) with the circularly symmetric law from

) achieves the fading number of i.i.d. SIMO fading with
side information [7, Proposition 4.23], [9, Proposition 6.23].
Moreover, our choice (396) guarantees that and

tend to zero as (see Appendices H and I).
Therefore, we obtain the following bound:

(461)

(462)

(463)

(464)

(465)

(466)

Here, (461) follows by definition (see (37)); in (462) we use
(460) and note that apart from two terms all other terms do not
depend on ; (463) follows because achieves the memory-
less SIMO fading number with side information; in (464) we
then replace this fading number by its expression (7); and in
(466) we have expanded the shorthand notation .

Notice that from (466) the alternative expression (91) can be
derived.

Finally, we need to show that (466) is identical to the upper
bound that we have derived above. To that goal note that
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(467)

(468)

(469)

(470)

(471)

(472)

(473)

(474)

(475)

Here, (467) and (468) follow from the definition of mutual in-
formation; for (469) we combine the second and fifth terms of
(468) using the chain rule; (470) follows from the definition of
mutual information applied to the second term in (469) and the
chain rule applied to the last term; then in (471) and (472) we
use the definition of mutual information again; (473) follows
from the chain rule which shows that the first, the second, and
the fourth terms in (472) cancel each other; in (474) we use the
definition of mutual information twice; and (475) follows from
stationarity and from the chain rule.

Next, using the definition of mutual information several times
more, we get the following chain of equalities:

(476)
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(477)

(478)

(479)

Hence, plugging (479) and (475) into (466) we have

(480)

Finally, we let go to infinity. The result now follows from
the fact that tends to zero as (see (416)), from
stationarity of the input and the fading process which makes sure
that the two mutual information terms cancel, and by choosing
the distribution of such as to maximize this lower bound
under the constraints that the distribution needs to be stationary
and circularly symmetric.7

APPENDIX H
PROOF OF LEMMA 20

We derive the following bound:

(481)

(482)

(483)

7Note that originally we have chosen these constraints, i.e., we do not neces-
sarily have to use such inputs. However, during the derivation we have relied on
this choice several times, so that at this stage we cannot change it anymore.

(484)

(485)

(486)

(487)

(488)

(489)

(490)

(491)

(492)

(493)

(494)

(495)

Here, (481) follows from adding to the arguments of the
mutual information; (483) follows from conditioning that re-
duces entropy; in (484), we split into direction and mag-
nitude; in (485), we replace the expectation over by a
corresponding minimization; for (486) we note that the min-
imum is achieved for the smallest value of which is ;
(488) follows because is independent of ; in (489)
we again replace an expectation by an optimization; (490) fol-
lows from stationarity; in (491) we introduce a random
matrix process that is i.i.d. with components that are in-
dependent so that ; and (493)
follows from the data processing inequality.

From [7, Lemma 6.11], [9, Lemma A.19] we conclude that
the expression

(496)

converges monotonically in to .
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This bound is derived similarly to the derivation of Lemma 20
in the preceding appendix.

(497)

(498)

(499)

(500)

(501)

(502)

(503)

(504)

(505)

(506)

(507)

(508)

(509)

(510)

Here, (498) follows again from conditioning that re-
duces entropy; (499) from the fact that conditional on

, the pair is independent of
; and the remaining steps (500)–(510) are identical to

(485)–(495). Note that we introduce a random matrix
with components that are independent so that

.
From [7, Lemma 6.11], [9, Lemma A.19] we conclude that

for every realization of the expression

(511)

converges monotonically in to

By the MCT [21] this is also true when we average over
.

APPENDIX J
PROOF OF COROLLARY 14

We first need an extension of Lemma 2.

Lemma 22: Let be complex random vec-
tors taking value in and having differential entropy

. Let denote the norm of , and its
direction

(512)

Then

(513)

(514)

whenever all the quantities in (513) and (514), respectively, are
defined.

Proof: The proof is based on a repetitive use of the chain
rule and a conditional version of Lemma 2. The details are
omitted.

The equivalence of (89) and (90) can be proven based on
(299). Similarly, we rely on (466) to prove that (89) and (91)
are equivalent. The details are omitted.

In the following we will prove the equivalence of (90), (92),
and (93).

A. Proof of Equivalence of (90) and (92)

We start with the equivalence of (90) and (92).
Fix the distribution of for the moment and write

(515)

where we have used stationarity of and and Lemma
12 to write

(516)

and
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(517)

Next we rely on Lemma 22 with and (i.e.,
) to write

(518)

(519)

where (519) follows from stationarity. Together with (85) and
(515) this yields

(520)

(521)

which proves the equivalence of (90) and (92).

B. Proof of Equivalence of (92) and (93)

In the following, denotes the th row of (written as
column vector), and denotes the phase of . We
start with an observation: if every component of the unit vector

is divided by the first component, one gets the following
vector:

(522)

Hence, using the fact that conditioning cannot increase entropy,
we get the following inequality:

(523)

(524)

On the other hand, we can prove that the knowledge of the fol-
lowing expressions is equivalent:

(525)

(526)

(527)

(528)

(529)

Here, the first equivalence (525) is obvious as we have not
changed anything. To derive the equivalence (526) note that

... (530)



MOSER: THE FADING NUMBER OF MIMO FADING CHANNELS WITH MEMORY 2753

and that

(531)

such that

(532)

(533)

(534)

(535)

(536)

(537)

where (532) and (533) follow from algebraic rearrangements;
(534) from (531); and the rest again from rearranging the terms.

Hence, from (525) we can compute .

In (527), we multiply all but the first components by

and recall that denotes the phase of . And (528)
and (529) are again trivial rearrangements.

Hence, we get

(538)

(539)

(540)

(541)

(542)

Here, (538) follows from (529); in (539) we add
where we assume that is i.i.d. uniformly distributed on

and independent of any other random quantity in the
expression; (540) relies on the fact that conditioning cannot
increase entropy; then in (541) we introduce
which is still independent and i.i.d. ; and (542)
follows since we know that is circularly symmetric, i.e.,
the law of is identical to the distribution of .

So, since by (524)

(543)

and by (542)

(544)

it follows that

(545)

Using this observation we now continue with some arithmetic
changes

(546)
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(547)

(548)

(549)

(550)

Here (546) follows from (545); in (547) we use (531); (548)
follows from the scaling property of scalar differential entropy;
(549) follows from stationarity; and (550) again from (531).

Next we look at the following mutual information term:

(551)

(552)

(553)

where (551) follows from writing the vectors component-wise
and divide the components by the first component and where
(552) follows from the chain rule.

We continue with the second term in (553) and use a condi-
tional version of Lemma 22 with and to write

(554)

(555)

where the last equality follows from stationarity and by noting
that

is equivalent to

We are now able to show the equivalence of (92) and (93). We
start with (92) and incorporate the expressions (550), (553), and
(555)
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(556)

(557)

which corresponds to (93).
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