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The Fading Number of Single-Input Multiple-Output
Fading Channels With Memory
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Abstract—We derive the fading number of stationary and
ergodic (not necessarily Gaussian) single-input multiple-output
(SIMO) fading channels with memory. This is the second term,
after the double-logarithmic term, of the high signal-to-noise ratio
(SNR) expansion of channel capacity. The transmitter and receiver
are assumed to be cognizant of the probability law governing the
fading but not of its realization.

It is demonstrated that the fading number is achieved by in-
dependent and identically distributed (i.i.d.) circularly symmetric
inputs of squared magnitude whose logarithm is uniformly dis-
tributed over an SNR-dependent interval. The upper limit of the
interval is the logarithm of the allowed transmit power, and the
lower limit tends to infinity sublogarithmically in the SNR. The
converse relies inter alia on a new observation regarding input dis-
tributions that escape to infinity.

Lower and upper bounds on the fading number for Gaussian
fading are also presented. These are related to the mean squared-
errors of the one-step predictor and the one-gap interpolator of
the fading process respectively. The bounds are computed explicitly
for stationary th-order autoregressive AR( ) Gaussian fading
processes.

Index Terms—Autoregressive process, channel capacity, fading,
fading number, high signal-to-noise ratio (SNR), memory, multiple
antenna, single-input multiple-output (SIMO).

I. INTRODUCTION

I T has been recently shown in [1] that, whenever the ma-
trix-valued fading process is of finite differential entropy

rate, the capacity of multiple-input multiple-output (MIMO)
fading channels typically grows only double logarithmically in
the signal-to-noise ratio (SNR). To quantify the rates at which
this poor power efficiency begins, [1] introduced the fading
number as the second term in the high-SNR asymptotic expan-
sion of channel capacity. Explicit expressions for the fading
number were then given for a number of memoryless fading
models. For channels with memory, only the fading number of
single-input single-output (SISO) channels was derived.
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In this paper, we extend the results of [1] and derive the fading
number for single-input multiple-output (SIMO) fading chan-
nels with memory.

What makes SIMO channels difficult to analyze is the fact
that even at asymptotically high SNR, the capacity achieving
output distribution is not memoryless. This makes it critical in
the direct part to utilize future outputs even if the channel inputs
associated with them are unknown. In the converse things are
even more complicated because a naive application of the chain
rule yields an upper bound that is not tight. One must first argue
that capacity can be achieved by “almost” stationary channel
inputs, and one must then use a new result about input distribu-
tions that escape to infinity. This result is not specific to fading
channels and finds application also in the asymptotic analysis of
the capacity of the phase-noise channel [2], [3], the direct-detec-
tion Poisson channel [4], [5], the free-space optical channel [6],
and the input-dependent noise optical channel [6].

The paper is structured as follows. After concluding this
introductory section with some notes on notation, we proceed
in Section II to introduce the channel model and to define
the fading number. Section III discusses the validity of the
model and the utility of the fading number in studying practical
communication systems. Section IV summarizes some relevant
known results, while Section V provides the main new result,
i.e., the fading number of a general SIMO fading channel with
memory. The special case of Gaussian fading is then discussed
in Section VI, which also includes the example of stationary

th-order autoregressive AR Gaussian fading processes.
Section VII contains the proof of the main result. The new ob-
servation regarding “input distributions that escape to infinity”
can be found in Section VII-C3, which is essentially self-con-
tained. Section VIII concludes the paper with a summary, a
discussion, and an open problem.

Throughout the paper, denotes a complex random variable
that is uniformly distributed over the unit circle

uniform on (1)

When it appears in formulas with other random variables, is
always assumed to be independent of these other variables. Sim-
ilarly, we use to denote an independent and identically dis-
tributed (i.i.d.) sequence of complex random variables, each of
which is uniformly distributed on the set . In
any expression involving this sequence of random variables it is
assumed that the sequence is independent of any other variables
appearing with it.

We generally try to denote random variables and random vec-
tors by upper case letters and to denote their realization as well
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as deterministic constants by lower case letters. An exception
is the signal-to-noise ratio SNR, which we capitalize and the
energy-per-symbol, which we denote by . Both are determin-
istic. We use boldface fonts to denote vectors, e.g., for a de-
terministic vector and for a random vector. We use the short-
hand for . For more complicated ex-
pressions, such as , we use the
dummy variable to clarify notation: .

II. THE CHANNEL MODEL AND THE FADING NUMBER

We consider a SIMO fading channel whose time- output
is given by

(2)

where denotes the time- channel input; the random
vector denotes the time- fading vector; and where

denotes additive noise. Here denotes the complex field,
denotes the -dimensional complex Euclidean space, and

denotes the number of receive antennas. We assume that
the additive noise is a zero-mean temporally and spatially white
Gaussian process of covariance matrix , where
and where denotes the identity matrix. Thus,
is a zero-mean, circularly symmetric, stationary, multivariate,
Gaussian process such that is the zero matrix if

, and is for . Here denotes Hermitian
conjugation.

As for the multivariate fading process , we shall only
assume that it is stationary, ergodic, of finite second moment

(3)

and of finite differential entropy rate

(4)

Finally, we assume that the fading process and the ad-
ditive noise process are independent and of a joint law
that does not depend on the channel input .

As for the input, we consider two different constraints: a
peak-power constraint and an average-power constraint. We
use to denote the maximal allowed instantaneous power in
the former case, and to denote the allowed average power in the
latter case. For both cases we set

SNR

The capacity SNR of the channel (2) is given by

SNR

where the supremum is over the set of all probability distribu-
tions on satisfying the constraints, i.e.,

almost surely (5)

for a peak constraint, or

(6)

for an average constraint.
Specializing [1, Theorem 4.2] to SIMO fading, we have

SNR SNR (7)

The fading number is now defined as in [1, Definition 4.6] by

SNR SNR (8)

Prima facie the fading number depends on whether a peak-
power constraint (5) or an average-power constraint (6) is im-
posed on the input. However, as we shall see, for SIMO fading
channels the two constraints lead to identical fading numbers.

III. MOTIVATION

Before proceeding with a presentation of the known and new
results on the fading number, we pause here to discuss the va-
lidity of the channel model and the applicability of the fading
number in the analysis of practical communication schemes. We
shall also present some further motivation for this study.

A. On the Channel Model

There are four core assumptions at the heart of our channel
model: that time is discrete, that the fading is stationary, that it
is ergodic, and that it is regular in the sense that it is of finite
entropy rate.

The assumption that time is discrete is very difficult to jus-
tify. Unlike the additive Gaussian noise channel [7], it is not
at all clear that, using some Karhunen–Loève type expansion,
one can reduce the channel to discrete time without any loss of
optimality. Indeed, even the sampling theorem cannot quite jus-
tify this model because the multiplicative nature of the fading
causes the channel output to be of larger bandwidth than the
input. Thus, one should either analyze a model where the output
is sampled faster than the input, or one where both are sampled
at the higher rate. But in the latter case one has to account for
the bandwidth constraint on the input. Neither of the above ap-
proaches has, so far, led to channel models that are amenable to
an information-theoretic analysis. In this sense, the present work
(and other information-theoretic analyses of fading channels) is
just a step in the long journey toward an analysis of the contin-
uous-time model. There is, however, one additional redeeming
justification for the discrete-time model. The systems being built
today often (suboptimally) reduce the channel at some point to
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discrete time by employing some form of quadrature amplitude
modulation (QAM) and a matched filter. The capacity results for
the discrete-time model can thus be interpreted as results on the
ultimate limit on reliable communication using such systems.

The second assumption in our model is stationarity. It is a
reflection of our state of knowledge about the system. It is not
that we believe that the fading law on the weekend (when we are
more likely to be in the suburbs) is identical to the law during
the week (when we are more likely to be in the office), it is just
that we are ignorant of the dependence of the fading on time.
(Perhaps we can also argue that the channel is “essentially” sta-
tionary for the duration of our codeword, though this is problem-
atic when we let the block length tend to infinity.) Stationarity is
at the heart of many models, e.g., Jakes’s model [8]. Neverthe-
less, a number of models analyzed by information theorists are
not stationary [9]–[11]. These block-fading models are only cy-
clostationary. While they can be stationarized by random time
jitters, this can only be achieved at the cost of making the fading
non-Gaussian. Such models can be justified for frequency hop-
ping systems or by mathematical convenience.

It should be emphasized that the reason the block-constant
fading model [9], [10] leads to optimistic high-SNR capacity
estimates (logarithmic growth versus the double logarithmic
of [1]) is not in its inherent assumption that the fading in
the different blocks are independent [12]. This assumption is
pessimistic and any stationary fading can be made to appear
to behave in this manner using interleaving, which is a special
type of coding. These models lead to optimistic high-SNR
capacity estimates because they assume that the fading within
each fading block is rank deficient [11]. This assumption allows
at high SNR for near-perfect estimation of the fading in a given
fading block using a finite number of pilot tones sent in a subset
of the block.

The ergodicity assumption we make reflects the assumption
that we are allowing for the use of block codes of very large
block lengths so that during the transmission of a codeword the
channel “averages out.” For low delay systems, this assumption
may not be justified and more complicated models may be called
for.

Finally, we address our assumption that the fading is regular,
i.e., of finite entropy rate. As shown in [12], [13], the asymp-
totic behavior of channel capacity depends heavily on this as-
sumption. For SISO Gaussian fading this assumption is equiv-
alent to the assumption that the present fading cannot be per-
fectly predicted from the past fading. Indeed, it is the residual
error in this prediction that causes capacity to grow only double
logarithmically in the SNR. For SISO Gaussian fading, if this
assumption is dropped capacity can, for example, grow double
logarithmically, logarithmically, or as a fractional power thereof
[12], [13]. In fact, if the set of harmonics in which the fading
power spectral density is zero is of positive Lebesgue measure
(e.g., if the fading is bandlimited) capacity grows logarithmi-
cally with a pre-log that was found in [12], [13].

For Gaussian fading channels, the finite entropy rate assump-
tion reflects the intuition that nature is not fully predictable and
that the fading therefore cannot be perfectly predicted. On the
other hand, Jakes’s model, albeit in continuous time, suggests a
predictable model. It is felt that both the predictable and the non-

predictable models are of interest. Ultimately, it is the precise
dependence of the noisy prediction error on the noise variance
in the SNR of interest that will determine which assumption is
more useful [12], [13].

We draw the reader’s attention to the fact that the fading pro-
cesses we analyze are general in the sense that we do not as-
sume that the fading is Gaussian. This is not merely done for
the sake of generality. It allows for a robustness analysis of
the results with respect to the Gaussian assumption. Moreover,
it turns out that the results for general (non-Gaussian) SIMO
fading are much needed in the derivation of lower bounds on
the fading number of MIMO fading channels [14, Theorem 4].
Nevertheless, the Gaussian case is certainly of great interest and
Section VI specializes the general results to this case.

B. On the Fading Number

The fading number (8) was introduced in [1] as the second-
order term in the high-SNR expansion of channel capacity in
order to assess the rates above which capacity begins to grow
double logarithmically. Here, we would like to discuss the extent
to which may be of use in the analysis of practical systems
operating at finite SNRs. We will argue that, while no single
number can characterize the entire capacity versus SNR curve,
the fading number can give an indication of the maximal rate
at which power-efficient communication is feasible. Moreover,
we shall argue that, though it is defined as SNR , it can be
of relevance at moderate SNRs.

If the limsup in (8) is actually a limit, then above some
threshold SNR

SNR SNR SNR SNR
(9)

The precise value of SNR depends on how good we insist that
the approximation (9) be. Roughly speaking, we shall say that
the system is operating at “high SNR” if the approximation
(9) is valid. We refer to SNR as the threshold delineating the
high-SNR regime. At SNRs above SNR , each additional in-
crease of channel capacity by 1 bit requires squaring the SNR,
i.e., doubling the decibel value of the SNR. In this sense, the
high-SNR regime corresponds to power-inefficient communica-
tion, and should thus best be avoided by most system designers.
How can we identify this regime?

One approach is to estimate SNR . This approach requires a
finer analysis of channel capacity and was performed in [12],
[13] for Gaussian SISO channels. It was suggested that for such
systems SNR satisfies

SNR (10)

where is the prediction error in predicting the present
fading from past values of the fading contaminated by i.i.d.
Gaussian noise of variance .

A different approach to characterizing the high-SNR regime
is via the rates rather than via the SNR. That is, instead of esti-
mating SNR we estimate SNR . To that end, let us attempt
to pull ourselves by our bootstraps and assume that

30 dB SNR 80 dB (11)

or equivalently

SNR (12)
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in nats. In this case, we can substitute SNR for SNR in (9) to
obtain roughly that

SNR (13)

thus obtaining the rule of thumb that a system operating at
rates that appreciably exceed is probably operating in
the high-SNR regime and is thus extremely power inefficient.
No system is likely to be designed to operate at rates exceeding

nats.
Of course, one can construct pathological fading laws where

(11) is violated. For such fading laws, the rule of thumb may not
be applicable. (Hence “rule of thumb” as opposed to “theorem.”)

This brings us to the issue of the relevance of , which is
defined as SNR , to finite SNRs. We contend that is
relevant whenever

SNR SNR (14)

Even for very slowly varying channels this has recently been
shown to hold at moderate SNRs in the range of 30–50 dB [14].

A point that must be emphasized is that in (14) either of the
two terms on the right-hand side (RHS) can be the dominating
term. For example, for memoryless SISO Rayleigh fading, the
fading number is negative and is thus dominated by the double-
logarithmic term at all SNRs. On the other hand, for slowly
varying channels, is often the dominant term in all but the ex-
tremely high SNRs. Indeed, the double-logarithmic term domi-
nates only for SNRs larger than

which can be formidable for a system with large fading num-
bers, e.g., memoryless Rician-fading channels of large specular
components or for slowly varying channels.

We emphasize that even for systems, such as those on slowly
varying channels, for which the double-logarithmic term only
dominates the fading number at extremely high SNRs, the ap-
proximation (9) may still hold at relatively moderate SNRs [14].
Indeed, while Etkin and Tse in [15], [16] did show that for
slowly varying channels it may require extremely high SNRs for
the approximation SNR SNR to hold,
they did not argue that such extremely high SNRs are required
for (9) (where is added to the RHS) to hold. And, indeed, this
is not the case [14].

We have glanced over the issue of whether the limsup in (8) is
indeed a limit. For SISO systems this is, indeed, the case [1], and
our present contribution demonstrates that this is also the case
for SIMO systems; see Theorem 1. Whether the limit holds for
general MIMO channels is still open. Note, however, that since
we defined as a limsup and not as a liminf our rule of thumb
would still be plausible even if it turned out that the limit does
not exist for general MIMO fading.

IV. PREVIOUS RESULTS

Among the fading numbers computed in [1] are the fading
numbers of SISO fading channels with memory [1, Theorem
4.41]

(15)

and the fading number for memoryless SIMO fading [1, Propo-
sition 4.30]

(16)
where is defined in (1), and where . Alterna-
tively, can be expressed as

(17)

where is the differential entropy on the sphere, so that if
a random vector takes value on the unit sphere and has the
density with respect to the surface-area measure , then

The above is extended in [1, Note 4.31] to the case where the
receiver has access to some side information such that
are independent of , the joint law of does not depend
on the input, and the mutual information is finite

(18)

In this case

(19)
Here should be interpreted as the expectation over

of , where is the differential
entropy on the sphere of the conditional law of given .
That is, if takes value on the unit sphere and if conditional on

it has the density with respect to the surface-
area measure on the sphere, then

(20)

and

(21)

It is further shown in [1, Sec. IV-D.8] that for the case of
MIMO fading where the random fading matrix is of
the form

where is a deterministic matrix and is a random
matrix of i.i.d. components, the fading

number can be bounded as [1, eqs. (124) and (128)]

(22)

(23)

where denotes the matrix operator norm; denotes the
exponential integral function

(24)

denotes the Gamma function so that ;
and the term is understood to take on the value

at . (Here denotes Euler’s constant.) This
specializes for the SIMO case to

(25)
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(26)

where the components of are i.i.d. . More
generally, if is a multivariate circularly symmetric complex
Gaussian of mean and covariance

where has eigenvalues , then

(27)

(28)

where is unitary and diagonalizes :

This follows because, by [1, Lemma 4.7], for any nonsingular
deterministic matrix

The choice

leads to a fading vector with components that are i.i.d.
, to which the above results can be applied.

In particular, if is diagonal

then by (27) and (28)

(29)

(30)

V. MAIN RESULT

Theorem 1: Consider a SIMO fading channel with memory
(2) where the stationary and ergodic fading process takes
value in and satisfies and

. Then, irrespective of whether a peak-power constraint (5)
or an average-power constraint (6) is imposed on the input, the
limsup in (8) is in fact a limit, and the fading number
is given by

(31)

Here is given in (19), the random process is
independent of and constitutes of i.i.d. random variables
that are uniformly distributed over the complex sphere, i.e.,

uniform on

and is defined as

Equivalently, the fading number is given by

(32)

where is defined in (17).
Moreover, this asymptotic behavior is achievable at high SNR

by i.i.d. circularly symmetric inputs such that

(33)

Proof: See Section VII.

Corollary 2: From Theorem 1 it follows that

(34)

Remark 3: We can always lower-bound the capacity of a
SIMO fading channel with memory (even with correlation be-
tween the antennas) by linearly combining the outputs of the
receive antennas and by then lower-bounding the capacity of the
resulting SISO channel. In this way, we can use the expression
for the fading number of SISO channels with memory (15) to
obtain a lower bound on the fading number of a SIMO system

(35)

where and where the supremum is over
all linear combiners, i.e., over all that fulfill

. This bound is generally not tight.

VI. GAUSSIAN FADING WITH MEMORY

Since it is difficult to evaluate analytically the fading number
(31) even for Gaussian fading, we shall next use the bounds (34)
to approximate it. We shall only treat here the case of “spatially
independent fading,” i.e., the case where the fading processes
experienced by the different links between the transmit antenna
and the different receive antennas are statistically independent.
That is, the processes

are independent.1

Let then denote the mean vector of the stationary
vector-valued fading process , and assume that

is a stationary circularly symmetric vector-valued Gaussian
process with a diagonal spectral distribution matrix

Thus, the components of the vector-valued process
are independent, and for each the process

1In the more general case one may still resort to (35) which is, however, not
tight.
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is a stationary circularly symmetric scalar
Gaussian process of spectral distribution so that

Denote the derivative of by .
To evaluate the lower bound of (34) on the fading number

we shall need the conditional law of the present fading given its
past. To this end, we recall that the optimum prediction error
in estimating from its infinite past is the op-
timum linear prediction error which is given by (see, e.g., [17],
[18])

(36)

Moreover, conditional on , the distribution

of is Gaussian of mean

and of variance . Unconditionally, is Gaussian of
mean and of variance

Similarly, to evaluate the upper bound of (34) on the fading
number we shall need the conditional law of the present fading
given its past and future. To this end, we recall that the optimum
interpolation error in estimating from its infinite past and
future

is the optimum linear interpolation error given by (see [18, Sec.
37.2]–[20])

(37)

Moreover, conditional on

the distribution of is Gaussian of mean

and of variance . Unconditionally, is Gaussian of
mean and of variance

Since we have assumed that the components of are inde-
pendent, we can use (29) and (30) to further bound the expres-
sions in (34). We start with the upper bound

(38)

Here, the first inequality is due to (34); the second inequality fol-
lows from (30); and the third inequality follows from Jensen’s
inequality.

For the lower bound we get

(39)

where the first inequality is due to (34); the second inequality
follows from (29); and where the last inequality follows from
Jensen’s inequality. The analytic computation of the RHS of
(39) is greatly simplified if each component process of
the vector-valued fading process is of an identical law,
which in our case means that

(40)

for a scalar spectral distribution function , and

(41)

for a mean . In that case (using the expectation of the logarithm
of a noncentral -distribution [1, Appendix X]) we obtain
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(42)

where is defined as [1]

(43)

(Here, as before, the term should be interpreted
as minus Euler’s constant at .)

Note that the simplifying assumptions (40) and (41) are not
necessary if one resorts to the weaker lower bound described in
Remark 3.

Example 4: Suppose that the fading process is spa-
tially i.i.d. so that the processes

are independent of each other and of identical (not necessarily
temporally i.i.d.) law. Suppose that under this law, is
a stationary, unit-variance, zero-mean, circularly symmetric,

th-order autoregressive AR Gaussian process. That is,
for all

(44)

Here is temporally i.i.d. , where denotes
the innovation variance; the coefficients satisfy the
stability condition [21]

(45)

and and are such that

(46)

Then [21]

(47)

(48)

(49)

(50)

which yields

(51)

(52)

Fig. 1. The bounds (51) and (53) on the fading number for spatially white
first-order Gauss–Markov fading laws of various innovation variances and for
different numbers of receiver antennas. For the SISO case (n = 1) the exact
fading number is also depicted.

Fig. 2. Upper and lower bounds on the fading number � for a zero-mean
SIMO Gauss–Markov fading channel with memory 1 (AR(1)) and two receive
antennas plotted as functions of the prediction error " . The components of the
fading vectorHHH are assumed to be independent and identically distributed with
variance 1.

where denotes Euler’s psi function

and denotes Euler’s constant.
For the case of Gauss–Markov fading ( ,

), the lower bound (51) is unchanged and the upper
bound (52) becomes

(53)

See Fig. 1 for a plot of the bounds (51) and (53) for various
values of the innovation variance of the Gauss–Markov
process and for various numbers of receiver antennas . Fig. 2
depicts these bounds as functions of the innovation variance

of the Gauss–Markov process for two receiver antennas
.

Note that for very slowly varying channels, i.e., for ,
one obtains from (51) and (53) the asymptotic bounds

(54)

(55)

where tends to zero as tends to zero.
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VII. PROOF OF THEOREM 1

A. Proof Outline

The proof of Theorem 1 has three components. The first is an
achievability result (“direct part”) (Section VII-B) which pro-
vides a lower bound on channel capacity and hence a lower
bound on the fading number. This lower bound is the RHS of
(31). The second component is a “converse” (Section VII-C),
which provides an upper bound on channel capacity, and hence
an upper bound on the fading number. This upper bound is
the RHS of (32). Finally, the last component (Appendix I) is
a demonstration that the lower and upper bounds are in fact
identical.

The inputs that are used to demonstrate the achievability
of the RHS of (31) are peak-limited, whereas the converse is
proved under an average-power constraint. Thus, the result
for the fading number does not depend on the type of power
constraint that is imposed.

B. The Direct Part

1) An Overview: The lower bound is based on choosing the
input symbols to be i.i.d., circularly symmetric, with

where we choose as2

The motivation for using i.i.d. inputs is that it greatly simpli-
fies the analysis and that our intuition (gained from the study
of additive colored Gaussian noise channels [7] and from the
study of SISO fading channels with memory [1]) is that at high
SNR very little is to be gained from introducing memory into
the input. In fact, we suspect that this is the case also for MIMO
fading, but we have no proof of that.

The choice of the marginal distribution is motivated by two
nice properties that it possesses. The first is that—irrespective
of the partial side information at the receiver (assumed of finite
mutual information with the fading)—this input distribution has
been shown [1] to achieve the fading number of the memoryless
SIMO fading channel. The second property has to do with “iden-
tification.” Because with probability one and be-
cause tends to infinity (albeit slowly), it follows that at very
high SNR we can identify the time- fading vector with great ac-
curacy by observing the time- input and the time- output

. Indeed, in this regime, an excellent estimator for is the
estimator . The other “identification” that this input dis-
tribution allows has to do with inference on based on the
channel output alone, i.e., when we know the channel output
but not the corresponding input. In this scenario, our chosen
input distribution allows us (at high SNR) to accurately estimate
the “direction” of , namely, , to within a multiple
by a scalar complex random variable of unit magnitude and uni-
form phase. For this identification the estimator is
most suitable. Indeed, while the circular symmetry of the input

2In fact, any choice of x = x (E ) such that x (E ) ! 1 as
E ! 1 and such that log x (E )= log E ! 0 as E ! 1 would work.

renders the phase information in useless, the fact that
is, with probability one, very large guarantees that the ad-

ditive noise has hardly any detrimental effect on the estimator,
and the direction of is—to within a random phase—almost
identical to the direction of .

The proof of the lower bound thus proceeds heuristically as
follows: since the inputs are i.i.d., it follows from the chain rule
that

We now analyze the individual terms in the sum

which has the general form of a memoryless SIMO fading
channel with side information consisting of the past fading vec-
tors and the future fading “directions” corrupted by a random
phase. The key here is the above approximation, which hinges
on estimating the past fading from the past inputs and
outputs , and on estimating the future “direc-
tions” based on the available future outputs

(without their corresponding inputs). Note that if we
were to ignore these future outputs we would not attain the
fading number.

2) Proof of the Lower Bound: In this subsection, we derive
a lower bound to capacity and use it to show that the RHS of
(31) is a lower bound to the fading number. Let be i.i.d.
circularly symmetric random variables with

uniform on (56)

where

(57)

Fix some (large) positive integer and use the chain rule and
the nonnegativity of mutual information to obtain

(58)

(59)

Then for any , we can use the fact
that are i.i.d. and circularly symmetric to lower-bound

as follows:

(60)

(61)
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(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

Here the first equality follows because is chosen to be
i.i.d.; in the subsequent inequality we have dropped some ar-
guments which reduces the mutual information; next we have
used the chain rule; in (63) we lower-bound the second term
by that—as shown in Appendix II—depends only
on and and tends to zero as ; in the sub-
sequent equality, we used and in order to extract

from and then we dropped
since given it is independent of the other random vari-
ables; the subsequent three steps are analogous to (62)–(64),
where again it is shown in Appendix II that depends
only on and and tends to zero as ; in (69)

denotes ; and the equality before last follows from
stationarity.

From (72) and (59) we obtain

(73)

Letting tend to infinity we obtain

SNR

(74)

where the first term can be viewed as mutual information across
a memoryless SIMO fading channel in the presence of the side
information .

We next let the power grow to infinity . Since the cir-
cularly symmetric law (56) achieves the fading number of i.i.d.
SIMO fading with side information [1, Note 4.31] and since our
choice (57) guarantees that and tend to
zero as (see Appendix II) we obtain the bound

(75)

Upon letting in the above tend to infinity we obtain the
desired result, i.e., that the RHS of (31) is a lower bound to

.

C. The Converse

Before presenting the derivation of the upper bound we begin
with an overview of the proof.

1) An Overview: To upper-bound capacity we use the chain
rule

(76)

and upper-bound each term on the RHS of the above by

(77)

Here, the first equality follows from the chain rule; the second
because we prohibit feedback; the subsequent inequality from
the inclusion of the additional random variables in the
mutual information term; the subsequent equality because, con-
ditional on the past fading and on the present input ,
the past inputs and outputs are independent of
the present output ; the subsequent equality by the chain rule;
the subsequent equality from the independence of the inputs and
the fading; the subsequent inequality from the inclusion of the
random vector in the mutual information term; the subse-
quent equality because conditional on the present fading, the
past fading is independent of the present input and output

; and the final inequality from the stationarity of the
fading.

A trivial upper bound can be now obtained from (77) by
lower-bounding by zero. This bound is, however,
not tight. The main difficulty in the proof is that if we fix some
and maximize over all joint distribu-
tions on (satisfying the average-power constraint),
then this nontight bound would be achievable. For example, we
could choose to be deterministically zero so that

and choose to maximize
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, i.e., to achieve the i.i.d. capacity. (The resulting av-
erage mutual information would, of course, be
very low but the single term would achieve
this nontight bound.)

It would thus seem that to obtain an asymptotically tight
upper bound on channel capacity we cannot upper-bound each
of the individual terms in (76) in isolation. There is, however,
a way to do just that. The trick is to consider only joint distri-
butions on that are stationary. In fact, it suffices
to limit ourselves to joint distributions under which the random
variables all have the same law. The first step in
the proof will thus be to show that one can approach capacity
arbitrarily closely using such inputs. This is done in Lemma 5
ahead. (Actually, the inputs we use will not quite have equal
marginals. Only will have equal marginals,
where is a fixed integer that depends on the SNR and on the
required gap between capacity and mutual information but not
on the block length . The edge effects will wash out when we
let with held fixed.)

Assume now that, except for some edge effects, we can get
to within arbitrary of capacity using inputs of mar-
ginal (where the law depends on the SNR and on the gap
to capacity , but not on ). Let denote when

is distributed according to . Thus, for such inputs

(78)

By (76) and (77) we also have for such inputs

(79)

where the approximation results from ignoring the edge effects,
i.e., from ignoring the fact that only are of
marginal . In fact, as we let tend to infinity the edge effects
wash out and we obtain that for such marginal- inputs

(80)

The choice of (the distribution of ) affects the RHS of
(79) and (80) in two different ways. It determines but it
also influences the terms . There is thus a tension
between choosing to maximize (i.e., to make close
to the i.i.d. channel capacity) and choosing to minimize the

terms. It is important to note that at high SNR
the relative importance of these conflicting objectives are vastly
different. From stems the double-logarithmic growth of
channel capacity, whereas the sum on the RHS of (79) and (80)
merely influences the fading number. No matter how we choose

, this sum cannot be smaller than zero.

We next study the input marginals . We note that for the
marginal- input to satisfy (78) we must have

SNR
(81)

This can be argued as follows. Because , it follows
by (7) that

SNR

On the other hand, from (80) and the nonnegativity of mutual
information we obtain that for the marginal- input to
satisfy (78) the marginal law must satisfy

(82)

which combines with

SNR (83)

(where the term is bounded in the SNR) to imply

SNR

Here, the lower bound (83) follows, for example, from [1,
Theorem 4.41], e.g., by considering the SISO channel that
results when the signals in all but one of the receive antennas
are ignored.

The next step in the proof of the converse is to show that (81)
implies that “escapes to infinity,” i.e., that

for any fixed

(84)
This is proved in greater generality for general cost-constrained
channels in Section VII-C.3, where we also discuss how this
result relates to the notion of “capacity achieving input distribu-
tions that escape to infinity” of [1].

It is thus seen that at high SNR, the marginal guarantees
that with very high probability only very large inputs are used.
In fact, using the union bound we can infer that the probability
that a finite number of inputs will all exceed also tends to
one. The final step in the proof is then to show that if the inputs
are large with high probability, then

(85)

where are i.i.d. uniformly distributed on the complex unit
circle independently of the fading process (as described in (1)).

The intuition behind (85) is quite simple. If the inputs are
guaranteed to be very large with probability one, then we should
be able from the past outputs to learn the past “direc-
tion” (corrupted by random rotations) . Similarly,
there would be an almost deterministic relationship between the
present output and the present fading “direction” (again cor-
rupted by a random phase) .

Of course, the escape to infinity does not guarantee that the
inputs exceed with probability one but only with proba-
bility approaching one. To address this difficulty we introduce
the binary random variable in that part of the proof.
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2) Stationarity Considerations:
Lemma 5: Fix some power with corresponding SNR of

. Let SNR denote the corresponding channel capacity
under an average power constraint. Then for any there
corresponds some positive integer SNR and some
distribution SNR on such that for any block length

sufficiently large there exists some input satisfying the
following:

1) the input nearly achieves capacity in the sense that

SNR (86)

2) except for the first symbols and for at most
the last symbols the symbols

(87)

all have the same distribution ;
3) this marginal distribution gives rise to a second moment

(88)

4) and the first symbols and the last symbols
satisfy the power constraint possibly strictly

(89)

Proof: The proof is by a simple shift-and-mix argument.
Recalling that

SNR

where the supremum is over all joint distributions on the random
variables under which , we
conclude that there must exist some integer and some
joint distribution on such that if
then

(90)

and

SNR (91)

Let be the probability law on that is the mixture of the
different marginals of . That is, for any Borel set

(92)

By (90) we have

(93)

Let now be given. We shall next describe the required input
distribution as follows. Let

and let the infinite random sequence be defined by

so that

if
if
if .

Here

i.i.d.

Notice that since the lead-in and trailing zeros have no effect
on our channel, the unnormalized mutual information induced
by is lower-bounded by SNR . Again, since
the lead-in and trailing zeros are of no consequence, this same
mutual information results if we shift by (provided that

). Consequently, if we define by
the mixture of the time shift of , i.e.,

where

uniform on

is independent of , then by the concavity of mutual infor-
mation in the input distribution we obtain that the unnormal-
ized mutual information induced by is lower-bounded by

SNR , so that the normalized mutual information
satisfies

SNR

SNR

which exceeds SNR for sufficiently large .
Except at the edges, the above mixture guarantees that all

marginals are , and hence by (93) of average power . The
power in the edges can be smaller than because of the mixture
with deterministic zeros.

3) Input Distributions That Escape to Infinity Revisited: In
this subsection, we revisit the notion of “capacity achieving
input distributions that escape to infinity” that was introduced in
[1]. Under slightly more restrictive conditions on the asymptotic
behavior of channel capacity, we shall strengthen the results of
[1] in the following sense. When specialized to the problem at
hand, Theorem 4.13 of [1] demonstrates that the fading number
can be achieved by input distributions that escape to infinity.
That is, there exist input distributions satisfying the cost con-
straint and escaping to infinity that induce mutual informations
whose difference from capacity tends to zero. Our present result,
when specialized to the present setting, strengthens [1, Theorem
4.13] by showing that any sequence of input distributions sat-
isfying the cost constraint and inducing a mutual information
whose ratio to SNR tends to must escape to infinity.
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To see how the new result implies the old one we need to
demonstrate the existence of some sequence of input distribu-
tions satisfying the cost constraint; inducing mutual informa-
tions whose gap to capacity tends to zero; and escaping to in-
finity. But the new result demonstrates that any sequence of
input distributions satisfying the first two conditions must sat-
isfy the third, because if the difference between the mutual in-
formation and capacity tends to zero it follows that their ratios
to SNR must tend to one.

Surprisingly, the proof of the present statement is easier. It
should, however, be noted that while the new result—like [1,
Theorem 4.13]—extends to general cost-constrained channels,
the required assumptions on the functional form of the capacity-
cost function are somewhat more stringent.

As in [1], for the sake of greater generality, we shall con-
sider general memoryless channels over the input and output
alphabets and and general costs. As in [1], we shall as-
sume that the input and output alphabets and are sepa-
rable metric spaces, and that for any set the mapping

from to is Borel measurable. The cost
function is assumed measurable.

Recall the following standard definition of the capacity-cost
function.

Definition 6: Given a channel over the input alphabet
and the output alphabet and given some nonnegative cost

function , we define the capacity-cost function
by

(94)

Definition 7: Let be a family of input distri-
butions on parameterized by the cost such that

(95)

We say that the input distributions escape to in-
finity if for any

(96)

Theorem 8: Let the cost function and the channel
over the alphabets , be as above. Let the capacity-cost func-
tion be finite but unbounded. Let be a function of
the cost that captures the asymptotic behavior of the capacity-
cost function in the sense that

(97)

Assume that satisfies the growth condition

(98)

Let be a family of input distributions satisfying
(95) and

(99)

Then escape to infinity.

Remark 9: The growth condition (98) is related to the notion
of “slowly varying in the Karamata sense,” see [22, Sec.1.2].
Examples of functions that satisfy (98) include

for

and any positive multiple thereof. In this paper, we shall use this
theorem with .

Proof: In the following all expectations, probabilities, and
mutual informations are computed with respect to the input law

. Fix some and let

if
otherwise

(100)

(101)

Since is monotonically increasing and unbounded, it fol-
lows by (97) that

(102)

which combines with (99) to imply that

(103)

By (103), it follows that for all sufficiently large we must have
, because implies -almost surely

whence .
In the following, we shall thus assume that is indeed suffi-

ciently large so that . Then

(104)

Here, the first inequality follows because is a binary random
variable and because ; the following inequality
because conditional on the input satisfies
with probability one, so that ; and the final
inequality because

(105)

To show that assume by contradiction that there is some
sequence of costs with corresponding

such that converges to some . It then follows that
there exists some such that

sufficiently large (106)
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From (104) we now have

Here, the limiting behavior of the left-hand side (LHS) follows
from (99); the limiting value of fol-
lows by (102) because ; and the limiting behavior
of the term follows from (97)
because implies . Upon letting tend to
infinity we obtain the contradiction

Here the second inequality follows from (106) and the last in-
equality follows from (98).

4) Proof of Converse: Fix and set SNR .
Let the positive integer be arbitrary and let be also
arbitrary. Fix and let SNR and SNR
be the integer and the input distribution on whose existence is
guaranteed in Lemma 5. Let satisfy (86)–(89) of Lemma 5
so that, in particular

(107)

(108)

For and for we use
the crude bound

(109)

(110)

which is uniformly bounded in . Here, the first inequality fol-
lows from (77) and the second from (88) and (89). We conclude
that

(111)

(112)

This allows us to focus on epochs satisfying

and thus guaranteeing that and its predecessors
are all distributed according to . Any upper bound on

that does not depend on will result in an
upper bound on via (112).

For satisfying , we upper-bound
this term by

(113)

(114)

(115)

where we use to denote the mutual information
when is distributed according to the law . From (115) and
(112) we conclude that

(116)

We thus proceed to lower-bound for
. For such , define

if
otherwise.

(117)

Let

(118)

By the union of events bound

(119)

(120)

where we have used the fact that for in the range of interest
, the random variables

are all distributed according to . Consequently

(121)

where is given by

(122)

We now lower-bound for
by

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)
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(132)

where

(133)

is the binary entropy function. Note that

and that is monotonically nonincreasing so
that the last inequality follows from (121).

Inequalities (132) and (116) combine to yield

(134)

and we now proceed to lower-bound (for
)

(135)

(136)

(137)

where is an upper bound

(138)

that is derived in Appendix III. Note that depends
only on and (and not on or on the SNR) and that

(139)

Continuing with the chain of inequalities we have

(140)

(141)

(142)

(143)

where is an upper bound

(144)

that is also derived in Appendix III. It too depends only on
and and satisfies

(145)

To continue the chain of inequalities, let us define
to be i.i.d. complex random variables that are uniformly dis-

tributed on and independent of .
Let be similarly distributed. Then

(146)

(147)

(148)

(149)

(150)

(151)

Here, the first two inequalities follow from the data processing
inequality; (149) follows because the law of is identical

to the law of (because the phase of is uniformly distributed
over and independent of the phase of ); and the final
equality follows from stationarity.

From (151) and (134), we now have

(152)

Note that at this point, all dependence on has disappeared. The
bound depends only on the SNR, on , on , on , and on .

We shall next study the limiting behavior of the RHS of (152)
as the SNR tends to infinity. We shall begin by showing that

(153)

To this end it suffices, by (122), to show that

(154)

But this follows from Theorem 8 because by (7) and (83)

SNR
SNR

(155)

and because by (152) and the trivial bound

SNR SNR (156)

it follows that

SNR
(157)
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Applying the bound SNR to (152) and using
(153) we obtain

SNR SNR

(158)

But since can be chosen arbitrarily small and can be
taken arbitrarily large, it follows from from the above and from
(139) and (145) that

SNR SNR

(159)

Upon now letting tend to infinity, we obtain

(160)

as we had set out to prove.

VIII. CONCLUSION

This paper provides the fading number for SIMO commu-
nication over regular stationary and ergodic fading channels.
It demonstrates that, irrespective of the fading law, the fading
number is achievable by circularly symmetric inputs of log
squared magnitudes that are uniformly distributed over an
SNR-dependent interval (33). The fact that this input distribu-
tion achieves the fading number for all fading laws has been
recently used to derive a lower bound on the fading number
of MIMO systems [14, Theorem 4]. As in the scalar case,
the fading number does not depend on whether a peak-power
constraint or an average-power constraint is imposed on the
input. It remains an open problem to determine whether this is
the case for MIMO systems as well.

We have also derived upper and lower bounds to the fading
number (34) that can be significantly easier to compute than
the precise fading number (31). It remains an open problem to
determine whether the upper bound in (34) continues to hold
also for MIMO systems.

A topic under current investigation is the relationship be-
tween the number of degrees of freedom in a MIMO system
and its fading number. The number of degrees of freedom is
defined as the minimum between the number of transmit an-
tennas and the number of receive antennas. It is conjectured
that for very slowly varying systems, where the entries in the
fading matrix are i.i.d. stationary Gaussian processes (“spatially
white Gaussian fading with memory”), the fading number is
roughly proportional to the number of degrees of freedom. The
direct part of this statement has been recently proved in [14],
but the converse has only been established for the case where
the number of transmit antennas is no smaller than the number
of receive antennas. The present paper, however, shows that this
is also the case for AR SIMO systems. Indeed, comparing
(51) and (52) demonstrates that for very slowly varying chan-
nels ( ) the the dominant term in the fading number is

irrespective of the number of receive antennas. The
coefficient of is thus equal to the number of degrees

of freedom (which for SIMO channels is one). This conjecture
agrees with the results of Etkin and Tse [15], [16], who have
shown that for systems operating at SNRs in which the term

SNR is small over spatially white very slowly
varying first-order Gauss–Markov fading, capacity is roughly
proportional to the number of degrees of freedom.

APPENDIX I
EQUIVALENCE OF (31) AND (32)

The equivalence of (31) and (32) can be proved as follows.
Using stationarity, (19), and(17) we get

(161)

where the last equality should be read as the definition of :

(162)

for by stationarity (163)

In (162) we have used

which follows by stationarity and in (163) we have used

APPENDIX II
APPENDIX FOR THE PROOF OF THE LOWER BOUND

In the derivation of the lower bound it remains to derive the
upper bounds and to
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and

respectively, and to show that both bounds do not depend on
and tend to zero as tends to infinity.

We start with the former

(164)

(165)

(166)

Here (164) follows from conditioning that reduces entropy; and
in the subsequent equality we used and in order to
extract from , and then we dropped

since given it is independent of the other random
variables.

From [1, Lemma 6.11] we conclude that for any realization
of the expression

converges monotonically in to .
By the Monotone Convergence Theorem this is also true when
we average over .

Similarly, we get for

(167)

from which the results follows analogously to (165).

APPENDIX III
APPENDIX FOR THE PROOF OF THE UPPER BOUND

In the derivation of the upper bound, it remains to derive
upper bounds to

and to

that depend only on and not on or the SNR and that tend
to zero as .

We start with the bound on :

(168)

where the last step follows from stationarity.
From [1, Lemma 6.11], we conclude that for any realization

of , the expression
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converges monotonically in to . By
the Monotone Convergence Theorem this is also true when we
average over .

Similarly, we bound

(169)

where the last step follows from stationarity.
Again, from [1, Lemma 6.11], we conclude that for any real-

ization of the expression

converges monotonically in to . By
the Monotone Convergence Theorem this is also true when we
average over .
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