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ABSTRACT

Automated assessment is becoming increasingly common in Computer

Science and with it automated plagiarism detection is also common.

However, little attention has been paid to SQL assessment where

submissions are much shorter and must be less varied than in

imperative languages. This brings the challenge of avoiding high

false-positive rates that require manual inspection and undermine

the usefulness of automated detection.

In this paper we investigate the false-positive rate of various

automated plagiarism detection algorithms. We find that there is a

significant false-positive rate of between 15% and 64%. These results

call into question the usefulness of automated detection for SQL

since they imply that a lot of manual inspection will still be needed.

However, our results suggest that the false-positive rate may

be restricted to shorter queries (e.g. under 200 characters). Further

research is needed because our datasets consist mostly of short

queries and the results for longer queries are based on a small

subset of the data.
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1 INTRODUCTION

Plagiarism is a significant and growing problem in Computer Science

education [2, 5, 13]. A lot of research effort has been invested into

trying to understand the causes of plagiarism and propose solutions

[3, 6, 9, 11, 16, 17]. Much of this effort has been directed towards
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automatically detecting plagiarism in submitted work, with a focus

on imperative languages such as C++ and Java (see [10] for a recent

systematic review of such tools).

Despite the increasing use of automated and online assessment

tools for SQL [1, 7, 8, 12], there has been relatively little research into

detecting plagiarism in SQL queries [14, 15]. Indeed, the systematic

review of automated detection tools from Novak et al. identifies 29

languages used in 131 articles and none of them are SQL [10].

There are two primary differences between imperative languages

and SQL for the purposes of automated detection. The first is that

SQL queries are much shorter than imperative code. The second is

that, for a given task, there are far fewer ways to write a correct SQL

answer than there are for imperative code. Both of these differences

limit the amount of variability between correct answers.

With longer, imperative language assignments, the challenge for

automated detection is to be effective despite the numerous ways

students can hide their plagiarism. Cosma and Joy identify 51 ways

in which students can hide copied code including changing variable

names, reordering code, swapping data structures etc [4].

Because SQL queries are shorter and more rigidly structured,

there are fewer opportunities to hide plagiarism. However, there

is a different problem: false-positives. Since there are fewer ways

to construct a correct answer, automated detection may flag a lot

of innocent submissions as having been plagiarised. If the false-

positive rate is too high then significant manual inspection is

requiredwhich undermines the usefulness of the automated detection

method.

Of course, a method that has a very high bar to flagging a

submission as plagiarised will also be ineffective because it won’t

flag genuine cases and can be easily fooled. There is therefore a

trade-off between effectiveness and usefulness. In this paper, we

investigate that trade-off by empirically testing different detection

algorithms. We compare the proportion of submissions flagged

as plagiarised across two datasets whose approximate rates of

plagiarism are known to us.

The first dataset, which we refer to as exam, is from an assessed

test taken under exam conditions, where no plagiarism could have

occurred. The second, called coursework, is from an assessed coursework

where students had ample opportunity to plagiarise and where such

plagiarism and collusion was observed.

An effective and useful detection method would have a very

low detection rate for the exam dataset and a high rate for the

coursework one. 1. Our results cast doubt on the possibility of such

a method existing. We find that using the strictest detection criteria

results in a lower than expected detection rate for the coursework

1By detection rate, we mean the proportion of correct submissions flagged by the
program as being plagiarised, regardless of whether or not that flagging is correct
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dataset while still producing a non-negligible false-positive rate

in the exam dataset. Relaxing the detection method to catch more

plagiarism in the coursework dataset causes a significant increase

in the false-positive rate to over 50%.

However, we also found that there is a strong relationship between

the length of the submitted query and the likelihood of it being

flagged incorrectly as plagiarised. In the exam dataset, 60% of

queries with fewer than 200 characters are flagged whereas only 5%

of those with 200 or more characters are flagged. In the coursework

dataset no such relationship is found and the detection rate is 80%

for shorter queries (under 200 characters) and 70% for the longer

ones.

This would seem to suggest that the detection algorithms are

effective for longer SQL queries. But further research is needed

because our datasets mostly consist of shorter queries. The average

query length is 108 characters (s.d. 58) for the exam dataset and 153

(s.d 100) for the coursework one. Only 9% of the queries in the exam

dataset are 200 characters or longer and so the lower detection rate

may be serendipitous as a result of having fewer queries to compare

to, rather than the detection algorithms being more effective with

longer queries.

2 SQL PLAGIARISM DETECTION
ALGORITHMS

Stringmatching is themost common type of algorithm for automated

detection [10] and the typewe consider in this paper. Othermethods

have been proposed for longer programswhere direct string comparisons

may take too long or where there are toomany obfuscationmethods

available to students. These problems do not manifest in SQL and

so string matching is easily applicable.

Russell and Cumming describe an online assessment system for

SQL which includes plagiarism detection [14]. They explain their

motivation forwanting to apply automated detection as the desire to

save time, łat least to filter out clearly non-matching submissionsž.

Their detection tool involves three independent algorithms whose

results are reported to the user. The user can thenmake a judgement

call based on the three algorithms.

The first algorithm is called equality which performs simple

string matching. This algorithm returns a score between 10 and

4 depending on how similar the strings are. That is, a score of

10 indicates that the two submissions match exactly without any

changes being made and a score of 4 indicates that two submissions

match if case, non-essential white space and brackets are ignored.

They do not define the intermediate scores.

The authors noted that this algorithm alone is sufficient to łcatch

most studentsž since plagiarists attempt to hide their plagiarism

by changing cases or introducing line breaks in the middle of an

answer.

The second algorithm they propose is called shuffle and is designed

to detect situations in which plagiarism is hidden by reordering of

lines of code. For example, a WHERE clause with two predicates

ANDed together can be made to look different by changing the

order of the predicates. For the purposes of this algorithm, a line

of code is defined in terms of SQL keywords such as WHERE and

AND.

Name Exam Coursework

Plagiarism Level None High

Number of Submissions 753 810

Number of Students 97 63

Number of Questions 80 15

Average Submissions per Question 9 54

Table 1: A summary of the key features of the datasets used

in this paper.

Other re-orderings include swapping the order of equality comparisons

(i.e. a.b = c.d could be written as c.d = a.b), and joins can be

put in a different order as well. Shuffle returns a score giving the

number of lines that have to be moved around in order to make

two submissions match.

Finally, a third algorithm is proposed called histogram which

is not designed primarily as a detection method but as a way of

giving evidence that plagiarism was not accidental. The algorithm

looks for words or patterns that appear only in the two submissions

that have been flagged as being copies of each other. For example,

it may be that only these two submissions have used a particular

alias, or that only these two submissions have two spaces after each

operator, then that is evidence of plagiarism.

To validate these algorithms, the authors applied their university’s

plagiarism procedures to those students who had more than one

answer flagged. All of the students that were flagged in this way

were confirmed to have plagiarised through the university’s procedures.

As a second validation, they also applied their algorithm between

cohorts and found that no cases of cross-cohort plagiarism were

detected out of over 1,000 students.

Scerbakov et al. propose algorithms for a slightly different problem

[15]. In their work, students are asked to design a database system

of their choice and submit queries for their designed system. This

increased flexibility makes it much easier to hide plagiarism by

changing names such as table or attribute names. They therefore

propose an algorithm that detects plagiarism by first replacing all

names with tokens and then calculating a distance metric between

the tokenised submissions.

3 EXPERIMENTAL SETUP

In this paper, we compare the performance of different detection

algorithms on two datasets whose plagiarism rates are approximately

known.

The first dataset, which we refer to as exam, is taken from an

automated assessed test taken under exam conditions using the

tool described by Kleerekoper and Schofield [7]. Students were not

able to see the questions in advance and could not communicate

with each other during the test. Each student was presented with

a random set of questions drawn from a pool meaning that it is

very unlikely that neighbouring students had the same questions

as each other. We are confident that no plagiarism exists in this

dataset.

The second dataset, which we refer to as coursework, is from an

assessed coursework in which students were given portfolios to

complete in their own time without supervision. All students were

given the same questions and had many weeks to complete the

work. We observed students working together or asking for help



The False-Positive Rate of Automated Plagiarism Detection for SQL AssessmentsUKICER, September 5–6, 2019, Canterbury, United Kingdom

from other students. We are confident that plagiarism occurred at

a very high rate in this dataset.

A summary of the key features of the datasets is given in Table

1.

The algorithms we consider were implemented by the authors in

Python using Jupyter Notebooks. For each algorithm we calculate

the proportion of submissions that the algorithm flags as being

plagiarised and the proportion of students with at least two answers

flagged. For reproducibility the implementation is available on

github though the datasets are not as they contain the answers to

an assessed test used regularly2.

4 EQUALITY ALGORITHM RESULTS

The first detection algorithm we test is the equality algorithm used

by Russell and Cumming [14]. This algorithm uses string matching

with variations. In Russel and Cumming’s implementation, the

algorithm returns a score between 10 and 4 depending on how

closely the submissions matched. For this paper modify this slightly

by dividing the variations into individual algorithms that either

flag the submissions as plagiarised or not.

We consider the following variations:

(1) No relaxation (i.e. exact match as submitted)

(2) Ignore case

(3) Ignore whitespace

(4) Ignore quotation marks

(5) Ignore brackets

(6) Ignore all (case, whitespace, quotation marks and brackets)

It should be noted that line breaks are always ignored (replaced

with single spaces) because, in the exam dataset, all line breaks are

replaced with spaces by the assessment system.

The results of applying the equality method to the datasets is

shown in Table 2. The Table shows the proportion of submissions

that were flagged for plagiarism aswell as the proportion of students

who had at least two submissions flagged as being plagiarised.

The results for the coursework dataset are consistent with our

belief that this dataset includes a very high rate of plagiarism. Even

using the most strict comparison method, 58% of submitted answers

were flagged as plagiarism and over 85% of students were flagged as

having copied at least two answers. With the most relaxed variant,

77% of submissions are flagged with over 98% of students flagged for

copying two or more answers. These results show that the equality

algorithm is effective at identifying plagiarism.

Looking at the exam dataset, the results are cause for concern.

We know that there was no (or virtually no) plagiarism in this

dataset and yet over 50% of answers were flagged for plagiarism

using the most relaxed detection method. Even using the very

strictest method, almost 1 in 6 answers were flagged as being copied.

Moreover, 50% of students were flagged as having copied at least

two answers even using the strictest method and this rises to 99%

with the most relaxed version. These results suggest that the false

positive rate is very high and that automated detection is not useful

because it cannot properly rule out cases where no plagiarism

occurred.

2github.com/kleerekoper/SQLPlagiarismDetector

5 SHUFFLE ALGORITHM RESULTS

The second algorithm we consider in this paper is a version of

the shuffle algorithm described by Russell and Cumming [14]. In

their implementation, the shuffle algorithm returned the number

of flips needed to make two submissions match. For our purposes,

we implement the algorithm such that it flags a submission as

plagiarised if it can be made equal to another by shuffling.

Because shuffle is designed to detect plagiarism even when there

has been an attempt to hide it, our implementation ignores case,

whitespace, quotes and brackets as well as checking for other

obfuscation methods.

We consider the following variations:

(1) Removing Alias Names

(2) Swapping Equality Comparison Operands

(3) Shuffling Comparison Predicates

(4) All Variations (all of the above)

5.1 Removing Alias Names

Changing alias names (or introducing ones) is a simple way for

students to try to avoid detection by string matching. In some

cases, a question may not ask for an alias or leave it up to the

students to choose their own and cheating students can change

the alias, or leave it out or add one in to make their answer appear

different. Indeed, we have observed submissions which are certainly

plagiarised but where the students have changed the alias names.

By removing alias names from the submissions before testing for

plagiarism, we can increase the ability to detect plagiarism.

Applying this method resulted in a large increase in detection

rate for the exam dateset, going from 56.5% to 63.4%. In the coursework

dataset, the increase was smaller, going from 77.4% to 80.1%.

At first this result is surprising because the SQL assessment

tool used for the exam dataset requires specific column names

for an answer to be correct (see [7]). We would therefore expect

that removing alias names would make no difference. However,

upon inspection we found that students had used different ways of

creating the alias (some using the AS keyword and some not), and

that some students had created aliases where none were needed

(e.g. SELECT city as city).

By contrast, in the coursework dataset, students were never

asked for specific column names. Therefore far fewer submissions

contained them and removing them made far less of a difference.

5.2 Swapping Equality Comparison Operands

Swapping the order of comparison operands is another simple

technique to make two identical queries look different. For example,

a query written with a comparison of the form a.b = c.d can be

rewritten as c.d = a.b and would therefore appear different when

applying string matching. Equality comparisons are the easiest

types to swap because no change is required in the operands but

all operators could be swapped in theory. Here we limit ourselves

to equality operators because they are very common and easy to

swap.

Checking for this avoidance method causes a negligible increase

in the detection rate. For the exam dataset the rate increases from

56.5% to 57.3% and for the coursework dataset it is from 77.4% to

78.1%. These results show that students, at the moment at least,

github.com/kleerekoper/SQLPlagiarismDetector
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Exam Dataset

(no plagiarism)

Coursework Dataset

(high plagiarism)

Flagged Submissions Flagged Students Flagged Submissions Flagged Students

No Relaxation 15.8% 49.3% 57.6% 87.0%

Ignore Case 34.6% 83.8% 61.9% 94.4%

Ignore Whitespace 23.0% 60.6% 69.1% 91.4%

Ignore Quotes 20.0% 56.2% 58.5% 90.1%

Ignore Brackets 16.0% 49.3% 57.9% 88.3%

Ignore All 56.5% 98.9% 77.4% 98.2%

Table 2: Proportion of submissions flagged and students with at least two submissions flagged as plagiarised using the equality

algorithm.

do not regularly swap the operands of equality comparisons. This

is not a surprising result because when one of the operands is a

constant there is a very strong convention for the constant to be

placed after the equals sign and students are unlikely to break that

convention. As a way of avoiding plagiarism it is a poor tactic since,

by virtue of being so unusual, it acts as a flag that something is

unusual about that submission.

The other common use of the equality comparison is in join

conditions. Here the convention is to refer to the first table first.

For example, it would be more usual to see FROM tblA JOIN tblB

ON A.col1 = B.col2 than FROM tblA JOIN tblB ON B.col2 =

A.col1. Therefore, when trying to detect this type of copying we

would need to swap tblA and tblB as well.

We implemented this algorithm to include swapping the first

two tables joined together as well as equality operands. However,

there was no difference at all in the detection rates compared to

just swapping the operands.

These results show that testing for swapped operands has no

significant effect on the false-positive rate and is therefore likely to

be safe to use in the future. On the other hand, the reason it appears

safe is that it seems to have no impact on detection so may not help

detect plagiarism.

5.3 Shuffling Comparison Predicates

A third method that students may be able to use with ease to avoid

detection by string matching is to change the order of the predicates

in the WHERE clause. This is most common and simplest in cases

where all predicates are ANDed together so that their order can be

shuffled without consequence.

Our results showed that testing for this kind of avoidance had

no effect at all on the false positive rate for the exam dataset. For

the coursework dataset, the increase is from 77.4% to 78.1% which

is negligible.

Unfortunately, these results are inconclusive because very few

of the questions posed for either dataset required more than one

WHERE clause predicate.

5.4 All Variations

Combining all the variations of the shuffle algorithm gives a detection

rate of 64.4% for the exam dataset and 80.6% for the coursework

dataset. This is an increase of almost 8% in the false-positive rate

for the exam dataset which is a cause for concern. If the equality

algorithm becomes widespread and students try to avoid detection

using the simple methods we have tested for, then automated

detection may become infeasible because our results suggest that

almost 2 in 3 submissions would be flagged as plagiarised even if no

plagiarism took place. At best this requires the manual examination

of a large majority of the submissions which defeats the purpose of

automated detection. In the worst-case, students may be incorrectly

accused of cheating.

6 VARIATION WITH ANSWER LENGTH

In the previous sections we have shown that the equality and

shuffle algorithms result in a significant false-positive detection

rate by finding many cases of plagiarism in a dataset where nothing

was plagiarised. This would suggest that automated detection of

plagiarism is not helpful for SQL assessments because the high

false-positive rate requires manual inspection anyway.

However, as noted earlier, the length of an answer is likely to

have a big impact on the success or failure of a detection algorithm.

In this section, therefore, we consider the relationship between

the length of answers and whether they are flagged as plagiarised.

For simplicity, in this section we only consider the strict equality

algorithm, the most relaxed equality algorithm (i.e. ignoring case,

whitespace, quotes and brackets) and the shuffle algorithm combining

all variants (i.e. removing alias names and shuffling operands and

predicates).

Figure 1 shows the distribution of the lengths of the answers

for the two datasets split according to whether the answer was

flagged as plagiarised or not. For the exam dataset (Figs. 1a, 1c, 1e)

the pattern is that the flagged answers tend to be shorter and the

longer answers tend to be unflagged. For the coursework dataset

(Figs. 1b, 1d, 1f) there is no such difference in the distributions.

These results suggest that the high false-positive rate is only

observed for shorter SQL queries. There is no definite cut-off point

below which the algorithms are not effective and above which

they are. However, in our datasets we can give approximate cut-off

points. These points are different for the different algorithms.

For the strict equality algorithm 120 characters appears to be

a good choice. 23.1% of queries with 120 characters or fewer are

flagged as plagiarised compared to just 2.7% of those with 120 or

more. For the relaxed equality algorithm 200 characters offers a

better cut-off point, with 60.2% of queries with under 200 characters

flagged but only 5.4% of those with 200 or more.



The False-Positive Rate of Automated Plagiarism Detection for SQL AssessmentsUKICER, September 5–6, 2019, Canterbury, United Kingdom

(a) Strict Equality Algorithm, Exam Dataset (b) Strict Equality Algorithm, Coursework Dataset

(c) Relaxed Equality Algorithm, Exam Dataset (d) Relaxed Equality Algorithm, Coursework Dataset

(e) Shuffle Algorithm, Exam Dataset (f) Shuffle Algorithm, Coursework Dataset

Figure 1: The distribution of answer lengths according to whether the answer was flagged as plagiarised or not.
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For the shuffle algorithm the best cut-off point seems to also be

200 characters but with this algorithm there remains a relatively

significant false positive rate even with longer queries. The rate

for queries with 200 or fewer characters is 68.3% whereas for the

longer queries it is 13.5%, which is not negligible.

In the coursework dataset there is less of a difference between the

shorter and longer queries. Using a cut-off point of 300 characters,

the detection rates are 58.1% and 55.4% for short and long queries

respectively for the strict equality algorithm, 78.8% and 66.2% for

the relaxed equality algorithm and 81.7% and 66.2% for the shuffle

algorithm.

However, these results are not conclusive because in the exam

dataset there are far more shorter queries than longer ones. The

average length of each submission is 108 characters (s.d of 58) and

only 9% of the submissions have 200 or more characters. Therefore,

the lower detection rates observed for the longer queries may

not be because the false-positive rates of those algorithms are

lower for longer queries. It may simply be that there are far fewer

other submissions for a submission to be incorrectly matched

to. Therefore, further research is needed using other datasets to

determine whether the false-positive rate does indeed fall with

longer queries.

7 CONCLUSION

Automated assessment of SQL is becoming more widespread but

automated detection of plagiarism in SQL has been only lightly

studied. Automatically detecting plagiarism in SQL presents a unique

challenge because the submissions tend to be much shorter and

more rigidly structured than in imperative language assessments.

In this paper, we empirically examined the performance of various

detection algorithms using two datasets with known plagiarism

rates. Our results show that even with strict requirements for

flagging submissions as plagiarised, there is a significant false-

positive rate. With the absolutely strictest method (two submissions

must match precisely as submitted), 15% of submissions are falsely

flagged. Relaxing the criteria leads to more than 60% false positives.

In our datasets, this result only holds for the shorter of the SQL

queries (e.g. under 120 characters for the strict algorithm and under

200 for the relaxed one). For longer queries, the false-positive rate

is much lower.

These results suggest that automated detection of plagiarism

is possible for SQL with longer queries. However, we note that

our datasets tend towards shorter queries and therefore the low

false-positive rate for longer queries may be due to a lack of other

submissions to match to. Further research is needed with datasets

containing longer queries.

As a concluding thought we note that no detection method can

ever be 100% effective and catch every case of plagiarism.We believe

this creates an ethical problem with using the detect-and-discipline

approach to discourage plagiarism. Focusing on this approach to

discouraging plagiarism leaves in place the temptation, and often

the opportunity, to cheat. If relatively few cheaters are caught and

punished, then plagiarism becomes increasingly attractive which

is to the detriment of the cheaters as well as the non-cheaters. As

Fraser has argued, this approach must be complemented with other

approaches [5]. We suggest that more effort be directed towards

designing plagiarism-proof assessments than designing detection

algorithms. By removing the possibility of cheating, assessments

become fairer and encourage more student learning.
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