
ARTICLE

The family based association test method: strategies for
studying general genotype±phenotype associations

Steve Horvath*,1,2,3, Xin Xu4 and Nan M Laird5

1Institute for Medical Statistics & Genetic Epidemiology, University of Bonn, Bonn, Germany; 2Department of
Human Genetics, University of California at Los Angeles, Los Angeles, California, USA; 3Department of
Biostatistics, University of California at Los Angeles, Los Angeles, California, USA; 4Program for Population
Genetics, Harvard School of Public Health, Boston, Masachusetts, USA; 5Department of Biostatistics, Harvard
School of Public Health, Boston, Massachusetts, USA

With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to

evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary

function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive

expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no

linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies

for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset).

We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative.

We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to

generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the

resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available. European Journal of

Human Genetics (2001) 9, 301 ± 306.
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Introduction
The transmission/disequilibrium test (TDT),1,2 has been

generalised by altering the TDT statistic, eg, to include

multiple alleles, different mode of inheritance models or

quantitative phenotypes. The study designs for the TDT have

also been altered; for example, by collecting unaffected

offspring to define family-based association tests that can

deal with missing parental genotype information. Recently,

Rabinowitz and Laird3 introduced a general approach to

family-based association tests that allows evaluation of many

of the generalised TDT statistics ± even when there are

missing parental genotypes ± by conceptualising transmis-

sion/disequilibrium type tests as a two stage procedure. In the

first stage, one specifies a statistic (of a general form described

below) to test for association between the trait locus and the

marker locus. In the second stage, one computes the

distribution of the genotyped marker data by treating the

offspring genotype data as random, and conditioning on

parts of the data as is described below. The first stage allows

flexibility in modeling ± we model test statistics which can

be expressed as the sum of products between an arbitrary

function of a subject's genotype with an arbitrary function of

the subject's trait. The second stage ensures correct false

positive rates regardless of population admixture, genetic

model misspecification or the ascertainment strategy. In this

paper we focus on the null hypothesis of no linkage between

the marker and a trait influencing locus.

Methods
The null distribution for complete parental data

In nuclear families with complete parental genotypes,

Rabinowitz and Laird3 define the null distribution of the

offspring marker data by conditioning on the observed traits

in all family members and the parental marker genotypes.4,5

European Journal of Human Genetics (2001) 9, 301 ± 306
ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00

www.nature.com/ejhg

*Correspondence: S Horvath, UCLA Department of Human Genetics,

Gonda Neuroscience & Genetics Research Center, 695 Charles E Young

Dr. South, Suite 6506, Los Angeles, CA 90095-7088, USA.

Tel: +1 310 825 9299; Fax: +1 810 277 7453;

E-mail: shorvath@mednet.ucla.edu

Received 6 December 2000; accepted 18 December 2000



Let Pi(gj=g) be the conditional probability under the null

hypothesis that the genotype of the jth offspring in the ith

family equals g (conditional on the observed traits in all

familymembers, and conditional on the parental genotypes).

For example, in case of a simplex family (labelled by 3) with

both parental genotypes known and one affected child

(labelled by 1), the conditional distribution of an AB6AB

mating is given by the usual Mendelian transmission

probabilities: P3(g1=AA)=1/4, P3(g1=AB)=1/2, P3(g1=BB)=1/4.

Let Pi(gj=g gk=gÄ) be the conditional probability under the null

hypothesis that in family i, the jth child has genotype g and

the kth (j=k child) has genotype gÄ. We simplify our notation

by dropping indices, eg, P(g gÄ)=Pi(gj=g gk=gÄ). When both

parents are known, one can easily show that P(g gÄ)=P(g)P(gÄ)

under the null hypothesis of no linkage.

The general offspring genotype distribution

In nuclear families with incomplete parental genotypes,

Rabinowitz and Laird3 define the offspring genotype null

distribution by conditioning on the observed traits, the

partially observed parental genotypes and on the offspring

genotype configuration (which is defined as the set of

offspring genotypes). Technically speaking, the partially

observed parental genotypes and the offspring genotype

configuration are sufficient statistics for the missing parental

genotypes. In the technical report accompanying the FBAT

software, we present explicit formulas for these conditional

probabilities.

The general FBAT statistic

Recall that we assume there areN nuclear families indexed by

i, each having ni offspring, indexed by j=1 . . ., ni. Let Xij

denote some function of the ijth offspring's marker genotype

and let Tij denote some function of the ij offspring

phenotype. The standard choice which underlies tests such

as the TDT,1 the S-TDT,6 and the RC-TDT,7 is to let Xij count

the number of A alleles (possible values=0,1,2), and let Tij=1

denote an affected and Tij=0 denote an unaffected or

phenotype unknown individual. For the ith family, the FBAT

method determines the distribution of the following linear

combination of offspring genotypes and phenotypes:

Si �
Xni

j�1

XijTij �1�

One can easily verify that for the standard choice, Si counts

the number of A alleles in the affected offspring.

Let us briefly describe different ways of coding the marker

genotypes: a recessive coding is given by setting Xij=1 if the

ijth individual has genotype AA and zero otherwise. We have

implemented additive, dominant and recessive bi-allelic and

multi-allelic marker codings which are described in8 and in

the FBAT manual. In case of a multi-allelic coding, Xij is a

vector, eg, if there are three alleles A, B, C then the multi-

allelic, additive marker coding is defined by setting Xij=(2, 0,

0) for an individual with genotype AA, Xij=(1, 1, 0) for

genotype AB, Xij=(0, 0, 2) for genotype CC, etc. In the

definition of our data analysis strategies (see below), we

choose additive bi-allelic or multi-allelic marker codings

since this choice tends to perform well (see the discussion

surrounding Table 2).

Once the distributions of the Si are known, one can define

the score U=~i{Si7E(Si)}, the variance V=~iV(Si) and define a

Mantel-Haenszel type test statistic as w2=UTV7U. Under the

null hypothesis of no linkage between the marker and any

gene that influences the trait, w2 has a (central) w2 distribution

where the number of degrees of freedom equals the rank of V.

It remains to compute the mean and the variance of Si. Since

we condition on the trait, Tij is fixed. Thus the mean is given

by E(Si)=~jE(Xij)Tij where E(Xij)=~gX(g)Pi(gj=g)=~gX(g)P(g);~g

denotes the sum over all offspring genotypes that are possible

in the ith family.

In the technical report accompanying the software we

show that the variance of Si is given by

Var�Si� ��
X

j

Tij�
2
X

g

X

~g

fX�g��P �g~g� P �g�P �~g��X�~g�Tg

�
X

j

T 2

ij�
X

g

X�g�X�g�TP �g�
X

g

X

~g

X�g�P �g~g�X�~g�T �:

�2�

Different phenotype codings

We will now address different ways of recoding the

phenotype. Let Yij denote the original phenotype of the ijth

offspring. For example, when Yij is a quantitative trait, a

quantitative trait TDT9 can be defined by using the mean

centred trait Tij=Yij7m where m=YÅ is a (weighted) sample

mean of the Yij.

When dealing with a recoded trait of the form Tij=Yij7m,

there are different ways of determining the offset m. Some-

times m has an intuitive interpretation and can be estimated

from the data (see strategies Q1 and C1) or be determined on

the basis of prior knowledge about the disease. But if no such

prior knowledge exists, m can be determined as the value that

minimises the total null variance Var(S,m)=~iVar(Si); several

strategies are possible for dealing with nuisance parameters

in family based association test statistics.10 For strategy 2

presented below, we chose to determine the nuisance

parameter by minimising the null variance since this method

is fairly standard and straightforward. The FBAT software can

determine the minimum value of any nuisance parameter

which is a linear offset of the trait value (Tij=Yij7m) or which

is part of a `time to onset trait coding' defined by (Tij=Yij7dijm)

where dij=1 for affecteds and 0 for unaffecteds (see below).

Simple strategies for data analysis
The FBAT method allows great flexibility in choosing a test

statistic. To give some guidance on how to use it, we present

simple strategies (see Table 1) along which a data analysis
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may proceed. We look at three different phenotypes:

dichotomous (affection status), quantitative and censored

(eg, the age of onset). Within each phenotype category, we

present three strategies: the first strategy corresponds to a bi-

allelic, additive marker coding; the second strategy has the

same marker coding as the first strategy but its phenotype

coding involves an offset which is determined byminimising

the null variance; the third strategy has the same trait coding

as the first strategy but its marker is multi-allelic. So far our

method cannot fit models involving an offset and a multi-

allelic marker coding. The three strategies involve an additive

marker coding but the FBAT software allows one to fit

dominant and recessive marker coding as well (see the

section on the RC-TDT).

Dealing with dichotomous traits

Strategy D1 (D for dichotomous) is the standard, TDT-type

way of dealing with dichotomous traits: it assigns Tij=1 to

affecteds and Tij=0 to unaffecteds or unknowns. Further, it

uses a bi-allelic (additive) marker coding. We use this

phenotype and marker coding since it forms the basis for

the TDT and many other tests, eg, the S-TDT, RC-TDT, etc.

Strategy D2 uses the same marker coding as strategy D1 but

assigns trait values Tij=17m to affecteds, Tij=7m to unaffec-

teds, and Tij=0 to unknowns. Setting m=0 leads to strategy D1

and is appropriate for rare diseases. With more common

diseases, including the unaffecteds by taking 05m51 can

increase the power of the test. One way would be to define m

as the proportion of affecteds in the sample (analogous to

strategies Q1 and C1) but we define strategy D2 to mean that

m is determined by minimising the null variance, which is a

standard option in the FBAT software. The usefulness of

strategy 2 depends on the structure (and ascertainment) of

the data. Note that if only affected offspring have been

genotyped, strategy 2 leads to a degenerate test statistic:

setting m=1 leads to a minimum variance of 0. Strategy D3 is

the extension of strategy D1 to a multi-allelic, additive

marker coding, ie, it effectively extends the RC-TDT to a

multi-allelic marker.

Dealing with a quantitative trait

Strategy Q1 (Q for quantitative) codes the traits as Tij=Yij7YÅ

where YÅ denotes the sample mean. Further, it uses a bi-allelic

(additive) marker coding. Thus, strategy Q1 generalizes a

quantitative trait TDT9 to the case of missing parental

genotypes. Strategy Q2 uses the same marker coding as

strategy Q1 but assigns as trait values Tij=Yij7m where the

offset m is determined by minimising the null variance. In

general, the minimising m differs from YÅ so that strategies Q1

and Q2 are different. Strategy Q3 extends strategy Q1 to a

multi-allelic marker coding, much in the same way as

strategy D3 extends strategy D1. For our analysis of the

Alzheimer data set, we treat the age of onset as a quantitative

trait by using the age of onset of affecteds while unaffecteds

are assigned a maximum age of onset (for the Alzheimer data

we chose Yij=100). The assignment of a maximum age of

onset is somewhat arbitrary and strategies C1 ±C3 improve

on it by making proper use of censoring (affection status)

information.

Dealing with a censored trait

Strategy C1 (C for censored) uses age of onset information

and takes proper account of the censoring information. Let

Yij be the age of onset if the ijth individual is affected; else if

the ijtj offspring is (was) affected, Yij is the age at

ascertainment or the age at death. Strategy C1 uses the

following `time to onset' coding: Tij=Yij7m for affecteds and

Tij=Yij for unaffecteds. In the following we motivate this

coding by showing that in this case, equation (1) takes on the

same form as the score equation of a proportional hazards

model with an exponential baseline hazard function (this

approach can also be generalised to the Cox proportional

hazards model.11 Score equations should merely be con-

sidered a (valid) device for coming up with test statistics, see

the Discussion.

With the exponential distribution, which is shifted by a

constant denoted by y0, the probability that the disease

onsets at age Yij is given by Fij(Yij7y0)=17e7lij(Yij7y0). With the

proportional hazard assumption, the parameter lij is a

function of the genetic exposure Xij:lij=e
bXij/m. The log-

likelihood contribution of the ith family is given by:

ln�Li� �
X

j

f�ijln��ije
�ij�Yij y0�� �1 �ij��ij�Y ij y0�g: �3�

where dij=1 if Yij is age-of-onset and dij=0 if Yij is censored

(unaffected). Since we are testing whether the genetic

exposure Xij has an effect, it is natural to derive the score

test for testing the null hypothesis b=0: differentiating

equation (3) with respect to b, setting b=0, leads to a statistic

Table 1 Different strategies of the FBAT method applied
to the NIMH Alzheimer disease data. The bi-allelic tests
focus on allele 4 of APOE and allele 2 of A2M

No
Gene Strategy Trait Modeb Offset famsa w2 df P value

APOE4 D1 dichot bi n 71 13.1 1 0.000298
D2 bi y 71 17.0 1 0.000037
D3 multi n 71 23.5 2 0.000008
Q1 quant bi n 72 23.1 1 0.000002
Q2 bi y 72 23.2 1 0.000001
Q3 multi n 72 30.6 2 0.0000002
C1 cens bi n 72 18.2 1 0.000020
C2 bi y 72 8.6 1 0.003450
C3 multi n 72 26.8 2 0.000001

A2M2 D1,D3 dichot bi n 47 7.4 1 0.006455
D2 bi y 47 7.9 1 0.004885
Q1,Q3 quant bi n 47 7.8 1 0.005223
Q2 bi y 47 7.8 1 0.005143
C1,C3 cens bi n 47 7.8 1 0.005233
C2 bi y 47 8.6 1 0.538295

a Number of informative families.b Since A2M is a bi-allelic marker,
the multi-allelic test equals the bi-allelic test.
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of the general form defined in equation (1) with the `time to

onset' trait coding:

Tij � �Yij y0� ��ij: �4�

For the exponential model, m is the average age of onset.

Strategies C1 ±C3 differ by how they determine the nuisance

parameter m. Strategy C1 uses the maximum likelihood

estimate from the exponential model: solving Si=0 leads the

maximum likelihood estimate m=~i~jYij/awhere a is the total

number of affected offspring. Strategy C2 determines m by

minimising the null variance, which is a standard option in

the FBAT software. Strategy C3 generalises strategy C1 to a

multi-allelic marker coding.

Applying the simple strategies to NIMH Alzheimer

disease data

As an application, we analysed data by the NIMH Alzheimer

Disease Genetics Initiative (see the Acknowledgements). For

Alzheimer's disease we focused on two genes: the apolipo-

protein E (APOE) gene with three alleles, and the alpha-2

macroglobulin gene (A2M) with two alleles. The 4 (E4) allele

of APOE has been consistently found to be over-represented

in cases of AD.12 There is also some evidence for an

association between the A2M mutation and Alzheimer

disease.13 We restricted our analysis to those data analysed

in13 for which age-of-onset information was available: 110

sibships (408 individuals), no parental genotypes were

available. The quantitative trait is defined as the age of onset

for affecteds and (arbitrarily) as 100 for unaffecteds.

Table 1 presents the results of our analysis. We observe that

for the APOE locus, the multi-allelic analyses are much better

than the bi-allelic (univariate) tests. Probably this is due to

the fact that other analyses (not shown) indicate that the 2

allele is protective beyond the effect of merely counter-

balancing the predisposing effect of the 4 allele. Further, we

observe that for bi-allelic test statistics, it can be worthwhile

to use an offset parameter, which is estimated by minimising

the null variance, eg, for the APOE4 gene this is true when

using a dichotomous or a quantitative trait but not for the

censored (time to onset) trait. For the A2M2 allele, using an

offset parameter leads to (slightly) better results for the

dichotomous and quantitative trait, but strategy C2 leads to

an insignificant P value. For the APOE locus the quantitative

trait leads to the most significant finding and the censored

trait is more significant than the dichotomous trait. For both

loci, strategy C2 performs poorly.

The RC-TDT is a special case of FBAT
We will argue here that the RC-TDT7 is essentially equivalent

to the test described in strategy D1.

Let us briefly review the RC-TDT: the test is based on

reconstructing missing parental genotypes and correcting for

the biases involved in this reconstruction by conditioning

the test statistic on parental genotype reconstructability.

When parental information is available, the RC-TDT equals

the TDT. When it is not possible to reconstruct missing

information, the RC-TDT equals the S-TDT.6 The original RC-

TDT is a bi-allelic test, which focuses on one allele at a time,

and uses an additive marker coding. As part of this paper, we

have generalised the RC-TDT to different marker codings.

For each family where the offspring genotypes allow the

unique reconstruction of the missing parental genotypes, the

RC-TDT is identical to the statistic in strategy D1 (contact the

first author for a mathematical proof). When the parental

genotypes are not reconstructable the two tests can differ, eg,

if there is at least one parent missing and the offspring

genotype configuration is {AB,BC}, the RC-TDT (which

equals the S-TDT in this case) differs from the test in strategy

D1. For practical purposes, the differences between the RC-

TDT and the FBAT are negligible, as can be seen from the

simulation studies described in the next section.

Simulations involving strategy D1, the RC-TDT and the

S-TDT for different marker codings

We used simulations to compare the power of the RC-TDT

with the power of the FBAT test of strategy D1 for an

additive, recessive and dominant marker coding. The

original RC-TDT was only devised for an additive marker

coding but we generalised it to dominant and recessive

marker codings.

These simulations closely followed the approach taken by

Knapp.7,14 In brief, we studied a dichotomous trait (affecteds

and unaffecteds) which was affected by a disease locus that

possessed two alleles. The penetrance fDD for the disease-

predisposing genotype was varied: fDD=0.2, 0.5, or 0.8.

Dominant, additive, and recessive models were simulated;

for each model, a disease prevalence KP of 5% and an

attributable fraction of 50% were assumed. The marker with

six concomitant alleles (with frequencies 0.4, 0.2, 0.1, 0.1,

0.1, 0.1) was completely linked to the disease locus. The

haplotype frequencies were set to yield the relatively large

frequency difference of C=0.25 for the first marker allele

between randomly selected affected and unaffected indivi-

duals. For each genetic model, we simulated 75 families with

four children. R=500 replicate samples were generated andwe

chose a false positive level of a=0.001.

Table 2 lists the simulated power of the test of strategy D1,

the RC-TDT and the S-TDT when both parental genotype are

missing. Note that the different marker codings can have a

striking effect on the power. For example, if the underlying

disease model is additive or recessive it is usually best to use

the corresponding marker coding. Surprisingly, for the

dominant genetic models that we studied, it is also best to

use an additive marker coding. We have found a similar effect

in additional simulation studies (unpublished data): the

mode of inheritance at the disease locus does not necessarily

correspond to the optimal marker coding when the strength

of the LD (C) is low; for low LD, the additive marker coding

often performs best.
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Let us now compare the test of strategy D1 to the RC-TDT

for different marker codings. One can show that the test of

strategy D1 equals the RC-TDT (and also the S-TDT) on sibpair

data when both parental genotypes are missing. When there

are four sibs, the difference in power is less than 3%, ie, for

practical applications the test are equivalent.

For missing parental data, the S-TDT has been generalised

to different marker codings.15 For the genetic models

described above, our simulation studies show that the test

of strategy D1 (and the RC-TDT) can be significantly more

powerful than this generalised S-TDT.

Discussion
Statistics of the form (1) have been studied by several

authors8,10 in the context of complete parental data. The

theoretical reason why statistics of this form are attractive

is that they correspond to score statistics of a generalised

linear model that uses a canonical link function to relate

the mean phenotype to the marker alleles.16 We have

described elsewhere how to derive different FBAT statistics

as score statistics;17 this derivation should be considered

merely a device for obtaining a test statistic because it

requires making assumptions which may not be true; for

example the score tests assume that the phenotypes of the

siblings are independent conditionally on genotype. For-

tunately, the false positive rate of the test depends only on

how we construct the genotype distribution for the

offspring and not how we motivate the test statistic since

one conditions on the trait values. The rationale behind the

score test approach is that it offers the possibility of

constructing powerful tests statistics when the assumed

distribution for phenotype given genotype is at least

approximately true.

We have shown that the test of strategy D1, which counts

the number of a specific allele among the affecteds, is

practically identical to the RC-TDT.7 This result has three

benefits: First, it shows how to extend the RC-TDT to more

general, possibly multi-allelic, marker codings and to

different phenotypes. Second, by showing the equivalence

of two seemingly different approaches we bring some light

into the thicket of the many family-based association

methods that deal with missing parental information. Last

but not least, we can transfer all the nice intuition

surrounding the RC-TDT to interpret the relatively abstract

algorithm introduced by Rabinowitz and Laird;3 actually,

their approach can roughly be interpreted as generalising the

RC-TDT to the case when parental genotypes are not

uniquely reconstructable.

Software availability

We have implemented the FBAT method in a program called

FBAT. The program and its documentation can be down-

loaded from our website at: www.biostat.harvard.edu/fbat/

default.html.
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