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t. g. Mclaughlin

Abstract. We prove that if P(x) is any first-order arithmetical predicate which
enumerates the family Fin of all r.e. classes of finite sets, then P(x) must reside in a
level of the Kleene hierarchy at least as high as II3—2§. (It is more easily established
that some of the predicates P{x) which enumerate Fin do lie in U°— S§.)

1. Introduction. It has been remarked by C. E. M. Yates, in a footnote on
p. 338 of [7], that the family Fin of all recursively enumerable classes of finite
subsets of TV (TV=the set of all natural numbers) is not a recursively enumerable
family. Since the family Fin is involved in many of the constructions which occur in
recursion theory, the exact location of its "level of enumerability" in the Kleene
hierarchy seems to us to be a natural and perhaps even useful undertaking. It is
trivial to show that Fin can be enumerated by a ?.% predicate; thus, since Yates'
remark amounts to the assertion that Fin cannot be enumerated by a EJ predicate,
it remains to consider the levels S2 and £$. We settle the matter by means of
Theorem 2 in §3, which implies: Fin cannot be enumerated by a Eg predicate. On
the other hand, it follows from a theorem of Rogers [6, p. 326, Theorem XV] that
the index set C(Fin), as defined below, is a complete fig set of numbers; in §2 we
shall prove a general assertion about index sets corresponding to families, from
which Rogers' theorem is readily derivable.

In the remainder of this introductory section, we set forth the notational and
terminological conventions which are to be in force in §§2, 3. TV denotes the set
{0, 1, 2,...} of natural numbers. Lower case Greek letters other than S and p
denote either subsets of TV or partial number-theoretic functions (i.e., functions
from a domain ß into TV, where ßcTVx • • • x TV (k times) for some k^ 1); context
will determine, in any particular case, whether a subset or a function is meant. For
each Ä:ä 1, let the predicate Tk(z, xlt.'.'.-, xk, y) be defined as in [4, §57]. Then with
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128 t. g. Mclaughlin [March

notation as in [4, §63], we obtain a recursive enumeration {<Pe}™=0 of the /c-place
partial recursive functions by means of the definition:

cplixj, ...,xk)~ U(p.yTk(e, xx,..., xk, y)).

It is easily seen from the definition of Tk that cpk= 0 for all k. If </> is a partial
number-theoretic function, we denote by S¡/> the domain of i/i and by p</> the range
of i/j. If c/s is a partial number-theoretic function of k variables, where k ä 2, and if
ax,...,ak-x are constants, then by oif>(ax,..., ak_j, x) we mean

{x | if>(ax,.. .,ak-x, x) is defined}.

For each e, we denote by We the set Sip*. Thus in our notation We = the eth re-
cursively enumerable set; we abbreviate "recursively enumerable" as "r.e.". For
each fcá 1, we denote by 2g the class of predicates P(x) such that, for some e,
P(x) o (3x:)(Vx2)- • (Qxk)T£(e, x, xx,..., xk), where the quantifiers alternate
between existential and universal and T¿* is either Tk or —¡Tk according as k is odd
or even (Q = 3 if A: is odd; Q = Vif k is even). We denote by Uk the class {R(x) | for
some P(x) eX° we have P(x) o —\R(x)}; i.e., the predicates in Tig are the nega-
tions of those in Eg. It is well known that the class S° includes all predicates expres-
sible in the form (3xx)(Vx2)- • (Qxk)R(x, Xj,..., xk) where R(x, xx,..., xk) is a
recursive predicate. We shall denote by S[fe; e] the set

{x I (3xx)Cix2) ■ ■ ■ (Qxk)T£(e, x,xu..., xk)},       fc £ L

(Note that S[l ;e]=We for all e.) A predicate P(x) in Eg (in ITg) is called complete
o [for every predicate S'(x) in Eg (in ng) there exists a recursive function ^s such
that S(x) o P(c/)s(x))]. Let /3 = {x | F(x) is true}; then ß is complete (for Sg or
n°)oF(x) ¡s complete (for Sg or ng, correspondingly). For each a: ̂ 2, let -rrk
denote a fixed recursive "fc-tupling" function: -nk maps Ax • • • x N(k times) one-
one onto A. Let t\, ..,, t% he the (recursive) "converses" of -nk, i.e.,

itiÁTÍÍx), ..., Tk(x)) = x,

for all x. Thus, for each k^2, irk(xj,..., xk) is a "Gödel number" of the ordered
Ä:-tuple <x1;..., xky = (,Tk(TTkixx,..., xk)),..., r^tr^u ..., xk))y. For each k^l,
fix a recursive enumeration cfk of the set «e, xt,..., xk,y') \ cpk(xj,..., xk)=y};
then denote by cpk-s the set {<xl5..., xk, yy \ (3/)tSs((i>k.(/) = <e, x1;..., xk, j»»}. We
denote by/»„ the 77th prime number in order of magnitude (starting the indexing
at/»0 = 2) and by F„ the set {prn \ r e N}; then (/77)n denotes, as usual, the power to
which pn divides m (with (0)n = 0 for all n). In addition to r.e. sets, we wish to con-
sider r.e. classes of r.e. sets and also families of r.e. classes of r.e. sets. By an r.e.
class we mean a class K of r.e. sets such that, for some e, K={IVX \ x e We). If
K= {Wx\ xe ¡Ve}, we refer to e as an index of K; and we define, for each e, Wf
= {WX I xe We). The letters K and L shall henceforth be used to denote classes
(whether r.e. or not) of r.e. sets. By an r.e. family we mean a family iF of r.e.
classes such that, for some e, ^ = {WX \ x e We). If^ = {Wx \ x e We}, we refer to
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1971] RECURSIVELY ENUMERABLE CLASSES OF FINITE SETS 129

e as an r.e. index of &; and we define, for each e, WF={W% \ xe We}. More
generally, by a Eg family (k^ 1) we mean a family J5" of r.e. classes such that, for
some e, ^ = {W% \ x eZ,[k;e}}. If &={W% \ x eE[/t; e]}, we refer to the pair
ilc, e> as a Eg index of J^; and we define, for each e, £[£; e}F={W£ \ x e £[&; e]}.
Capital script letter such as J5" and 'S are used to denote families (whether r.e. or
not) of r.e. classes. If J5" is any family of r.e. classes, the index set, G(^), corres-
ponding to J^ is defined by GL¥) = {e | Wf e J^}. It is easily seen that there exists a
recursive function £0 such that for all e we have

Wkc e WeF o (3/)(VA)[ Wh e Iff <> (3/)( Wh = S<p?o(e)(y, /, x))}.

Conversely, there is a recursive function £x such that for all e we have

»Í e WKFm o (3/)(V«)[^;i e Wg o (3l)(Wh = S^(A /, *))].

Thus, three-place partial recursive functions are effectively interchangeable with
collections Wl as descriptions of r.e. families. A three-place partial recursive
function cp3, regarded as a description of an r.e. family ¿F, shall be termed an
enumeration of ¿F; and we term cp3 a row-disjoint enumeration (of whatever family it
enumerates) if the following condition is satisfied:

(V/')(Vm)(V«)[«î # « => 8cp3(j, m, x) n 8cp3(j, n, x) = 0].

It will prove convenient in §3 to work with the class of special retracing functions,
i.e., those partial recursive functions which retrace at least one infinite subset of TV
and possess properties (3) and (4) of [2, p. 81]; we shall here add the requirement
that a special retracing function have only finitely many fixed points. Some use will
be made of the notation y*(x) (y an arbitrary one-place partial number-theoretic
function); the meaning of this notation is that prescribed in [2, p. 81]. For some of
the basic properties of special retracing functions and of the mapping y -> y*, the
reader may consult [1], [2], and [7]. For any partial recursive function y such that
x e 8y => y(x) £ x, we denote by KY the disjoint r.e. class {{« | n e 8y & y*(n)
= k} | k e TV}; and we denote by FR the family {Ky \ y is a finite-to-one special
retracing function}. Finally, we shall extend the notion of productive class (see [3])
in a natural way to the context offamilies of r.e. classes: for a given A:ä 1, a family
J^ of r.e. classes is l.k-productive o there exists a partial recursive function c/r such
that

(Ve)[2Z[k; e}F S & => (e e â«A & »&, e ,<F-Y\k; ef)\\

such a function ip is termed a I.k-productive function for J*". If </> is a Eg-productive
function for ¡F, we denote by {J5"; »V; ¡/»} the family {W#ie) \ ~L[k; e]F £ J^} (which
in the language of [3] would be called the ~Lk-productive center of & with respect
to-A).
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2. Classification of index sets corresponding to families.

Theorem 1. (i) If ß is complete at level ng, then {e \ We^ß) is also complete at
level ng.

(ii) lfiß is complete at level Eg, then {e \ IVe^ß} is complete at level Ilg + 1.

Proof. Routine manipulations (as in [6, §14.3]) show that the predicate Wx^ß
is in ng in case (i) and in ng + 1 in case (ii). Assume ß to be Eg complete, and let P(x)
be any ng + 1 predicate. Express P(x) in the form (Vy)Q(x, y), where Q(x, y) is a
Eg predicate of x and y. Since ß is complete for Eg predicates, there is a recursive
function </i of two variables such that (Vy)Q(x, y) o (Vy)[<p(x, y) e /?]. So let/be a
recursive function such that (Wx)[WHx) = pi/j(x, y)]. Then P(x) o Wf(x)C:ß, and (ii)
is proved. The proof of (i) is similar. I

Corollary. G(Fin) is ng complete.

Proof. Let ß = {x\ Wx is finite}. Then ß is Eg complete, as is shown in [3]. Hence,
by Theorem \,{e\ We^ß} is ng complete. But obviously {e \ We^ß} = G(Fin).  I

The above formulation of Theorem 1 was noted by Carl Jockusch, after its proof
had been applied by the author to some special cases.

It is perhaps worth remarking that the index set corresponding to a recursively
enumerable family of r.e. classes can reside at any of the following levels of the
arithmetical hierarchy: E° n Ux (i.e., recursive), complete E°, complete Ux, com-
plete Eg, complete ng, complete Eg, complete ng, complete S£, complete HI,
complete Eg. Thus the above corollary provides no clue as to the possibility of
Sg-enumerability of Fin for k^3.

3. Eg-productivity of Fin. We define Fin* = the family of all disjoint r.e. classes
of nonempty finite sets (the empty class not excluded), Fin| = the family of all
disjoint r.e. classes of finite sets (the empty class not excluded), Fin*00
= {K | F e Fin* & F is infinite}, and Fin*œ={F | Ke Fin* & F is infinite}. It is
easy to see that FR^Fin*x and Fin*co$FF; and in fact, by making minor changes
in [5, proof of Theorem 3], one can produce much narrower families than Fin*™
which properly include FR. Our first two lemmas serve as technical lubrication for
the proof of Lemma C.

Lemma A. There exists a recursive function £ such that
(1) We^Fin => (pf(e) is a row-disjoint enumeration of a subfamily of Fin*, and
(2) Wf e We n FR => the family enumerated by cp%(e) contains the class Wf.

Proof. Let £ be a recursive function such that (Ve)[<pç(e) is an enumeration of We].
We shall apply to each index e a suitable "disjointification" of the rows of the
enumeration <pç(e); our procedure is uniform in e (and results, in general, in some
alteration of the given family We). In order to "disjointify" rows in a way appro-
priate to proving part (2) of the lemma, we shall treat the functions <pj as candidates
for special retracing functions y whose associated classes Kr we strive to locate
among the rows of the enumeration <pf(e). In detail, we proceed as follows.
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1971 ] RECURSIVELY ENUMERABLE CLASSES OF FINITE SETS 131

Stage s. Let (s)0 = a, (s)i = b, (s)2 = c, (s)3 = d. We direct our attention to c»¿, to
cp^eAb, c, x), and to the numbers (if any) which <p\ retraces to a fixed point in a
minimum of d applications. Specifically, consider <p3(¡Ab, c, x) and cp^s. If cpa-s does
not have a nonempty subset of the form

«y, ri-s(y)>, <9a-s(y), vi-Wiy)», ■■■, «ri-TijO, [9>â-*]d+100>}

where (i) J» ?*•'()>)> ■ ■ ■ >[<pl-s}d(y), (») [<P1as}d(y)=[<P1as}d + 1(y), and (iii)

y e ScpfdAb, c, x), then we set Kes) = Kes"1} (k6s) = 0 if s = 0) and proceed to stage s+\.
Suppose, on the other hand, that such a subset of cpl,s does exist. Two cases arise.

Case 1. There is a number c'j^c such that for some y and some s' <s we have
(i') 9¿'s contains a subset of the form

Ky, 9l-s'(y)>, <9l-s'(y), riftäfW», ■ • .,<M?*ny), [9»i-*T+100>},

where (ii') y><ft<{y)> • • • > [^»TOO. 0"') [rí'sT(j) = [9^sT + 1(>0, (iV)
j» e Sao^Xè, c', x), and (v') <7r2(a, b), d, y, 0> e 4s''-

In this case we set »4S) = t¿¡ ~u and proceed to stage s +1.
Case 2. Case 1 does not hold. Let x0,..., x¡ be all those members m of

S<Pae)(b, c, x) for which there is a subset

{<W, <pM«2)>, (cpl-Am), cpl-Xcpl-Xm))},..., <[<pl-r(m), [ré'']¿+*(«)>}

of <pi's with w>rá-s(m)> ■ ■ • > [«p¿'s]d(m) and [ç>â"*]'l + 1(™) = fo»â,'jd('H)-
Set >4*)=j#"'u) U {(^z(a, b), d, m, 0> | m e {x0,..., x¡}}; then proceed to stage

s+l.
That completes our description of stage s in the construction of Ke, where

/ce = ljs Kesy; we must verify that Ke is a partial recursive function suitable for use as
cp|(e). Certainly Ke is a function, since the only number which ever occurs as a value
t|(«), « e »ce, is 0. But it is also plain that ks is an r.e. set of quadruples obtained in a
uniform effective way from e. Thus, Ke is a three-place partial recursive function
which we may represent as <p|(e), i a recursive function of e. We next assume that
We ̂ Fin, and show that Ke provides a row-disjoint enumeration of a subfamily of
Finf. Fix a number «, and consider the «th row enumerated by Ke. The wth set in
this row is given by 8kJji, m, x). Now, it is clear from the construction of Ke that if
S/ce(«, m, x) ^ 0 then there exists a number c0 such that S/ce(«, m, x) consists en-
tirely of elements of 8cpfieAT2(n), c0, x) which are retraced by cp^Hn) to a fixed point
in exactly m steps. But 8cp3M(T2(n), c0, x) is finite since Wf£ Fin; hence 8«e(«, «7, x)
is also finite. That Ke is a row-disjoint enumeration of the family which it enumerates
is clear from the fact, just cited, that all elements of 8kJji, m, x) have height ex-
actly = m under iterated application of <p*i(n).

It now remains to show that if Wf e Wl n FR, then some row of the enumera-
tion given by Ke precisely covers the membership of Wf. But if Wf e WJ/ n FR,
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then there is a special, finite-to-one retracing function cpa such that Wf=Ktc\;
moreover, some row cpf{e)(b, x, y) in the enumeration cpf(e) of Wf enumerates pre-
cisely the class Wf. It is clear from the construction of ks that these two facts imply
enumeration of Wf by the row Ke(-rr2(a, b), x, y).    I

Lemma B. There exists a recursive function /x such that {E[3; e]f<=Fin & x
eE[3; e]} => {q>llx) is a row-disjoint enumeration of a subfamily @ of Fin* such that
(Wx eFR => Wx is enumerated by some row of the enumeration cp%(x))}. (More
generally, and in virtue of the same proof, replace E[3; e] by an arbitrary set a of
natural numbers, and replace £[3; e]F by the family &' = {Wx \ x e a}.)

Proof. Let f be as in Lemma A, and let ß be a recursive function such that
Wß(x) = {x} holds for all x. Then it is easily deduced from the statement of Lemma A
that the function p. defined by p.(x) = i(ß(x)) has the required property.    I

Lemma C. There exists a recursive function i/> such that >ji is ^-productive for Fin
and {Fin; 3; >p}çFR.

Proof. We shall make use of a collection {A<ai,c>} of "markers", one for each
ordered triple <[a, b, c> of natural numbers. We impose an ordering on these
markers by the rule :

A<ai,i-i,c1>  "< A<a2,i,2,c2> <> *3(ûl, ¿1. Ci)  <  7T3(<?2, b2, C2).

Let p. he a recursive function as in Lemma B. The rough idea of our procedure is
this: We assume a Eg predicate (3w)(Vz)(3y)R(x, w, z, y) to be fixed, and we con-
sider a particular number a. A<a¡BC> is used to keep track, insofar as possible, of
events in the 6th row of the enumeration cpl(a) ; we move A<a_ ¡,_c> so as to contribute
to the production of a suitable class in FR. The movement of A<a „ c> is restricted by
the condition that we may move A<ai ¡,c> autonomously for the nth time only after
having verified that (Vz^n)(3y)R(a, c, z,y); an "autonomous" move of A<aiJjC>
is one which is not occasioned simply by the fact that some marker A<d¡eJ>
is moved where n3(d, e,f)<n3(a, b, c). We proceed now to the details of the con-
struction. For notational convenience, we shall abbreviate ^(k), T3(k), rg(/c)>
to (A:)"1, for all A".

Stage 0. Attach A<0>-i to 0, set a<0) = {<0, 0>}, and proceed to stage 1.
Stage s, s>0. We assume it to have been arranged that, at the conclusion of

stages— 1, exactly the members of the initial segment A<0>-i, Aa>-i,..., A<s_1>-i
of markers are attached to numbers (that this assumption is allowable will be
manifest from our description of the remainder of the construction); and we shall
denote by Ay-1 the number to which Aw-i is attached at the end of stage s—1,
Oáy'^s—1. We shall assume further that a number e has been fixed, and deal
throughout the remainder of our description of stage s with the fixed predicate
(3w)(Vz)(3j)F3(e, x, w, z,y); once the procedure has been described in full, it will
be obvious that it is uniform in e. Now, we wish to move in a suitable way the least
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marker, if any, whose position is currently insecure; so we must explain what we
mean in saying that a marker position is currently (i.e., at stage s) insecure. In
our definition of insecurity, marker positions will be referred to as being as-
sociated with certain members of certain rows of certain recursive enumerations of
classes; how this association comes about will be clear from the main part of the
construction, following the definition. We remind the reader that p is as in
Lemma B.

Definition. Consider Xy1, where 0<j^s-l; and let tt3 1(_/) = <a, b, c>. Xy1 is
insecure if and only if the following conditions are satisfied :

(1) (Vzf¿r+l)(3y?ís)T3(e, a, c, z, y), where r = the number of previous auto-
nomous moves (i.e., autonomous moves during stages t<s) of A0>-i; and

(2) Xy1 is currently associated with a term tp^a)(b, t,-, x) such that

(3/ ^ j)(3n)[n e 893¿Ab, /,, x) & [(/ < j & Xy^ n) V (I = j & Af"x ̂  «)]].

The procedure now splits into cases, according as there does or does not exist an
insecure marker position.

Case I. For ally such that O^j^s— 1, Xy1 is not insecure. In this case, our only
concern is to attach A<s>-i in a suitable way. Let irä1(s) = (ax, blt cx>. Let ts be the
smallest number t with the following properties:

(i) (V/áí- 1)(V« e 89X0(bx, (t)o, x))(n> A?"1),
(ii) (V« e 8cp3faiAbx, (/)„, *))(«< (Oi). and

(iii) (t)x>ma\{m \ (3qes-l)(3u^s-l)(m = X9u)}.
(We remark that the function which maps s to

max{m \ (3q £ s-l)(3u g s-l)(m = XI)}

is recursive; this will be evident once our description of stage s is complete.) We
attach A<s>-i to (ts)x, associate (rs)i with the term cp3iaiAbi, (ts)0, x), set a(s)
= a(s-1) u {<(/s)i, Xssz\}}, and proceed to stage s+1.

Case II. There exists a number j, 0<jSs—l, such that Xy1 is insecure. Let
./0 = the least such F and let Tr3-1(j0) = <la2, b2, c2>. We take tJ0 to be the smallest
number t with the following properties:

GO (V/<F)(V« e ScpXJbz, Mo, x))(n> A?"1),
(ii') (V« e 8cp3dstt2Ab2, (t)0, x))(n<(t)x), and

(iii') (r)i>max{w | (3q^s-l)(3u<,s-l)(m = Xl)}.
If (3/<y0)(Af-1^« for some n e 8cp3u-¿2Ab2, z0, x)), where cp3{a2Ab2, z0, x) is the

term with which A*"1 was associated at the beginning of stage s, then we remove
A<y0>-i from AJ"1, reattach A<io>-i to (tJ0)x, associate (t}X with the term
S2(a2)(¿2, (r;o)o, x), and remove A<fc>-i from its present position A|_1 for all k such
that j0<k^s— 1. If no such /exists, then it must be the case that A*"1 g« for some
« e S<p¡^2)(¿>2, z0, x). In this event, we move A<io>-i as before, but associate its new
position (tJo)x with cp3{a2Ab2, z0, x) (i.e., with the same term to which A*"1 was
associated). The movement just imposed on A<io>-i counts as an autonomous move.
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We shall reattach A<7o + 1>-i,..., A<i_1)L-i (and, also, shall newly attach A<s>-i);
but their moves are not counted as autonomous.

Next we reattach A<J0 + 1>-i (unless jQ = s— 1). Let 7r¿" 1(y04- l) = <a3, b3, c3>; and
let tJ0 + j be the smallest number t with the following properties:

(i") (V/<y0)(V n e lcp\^(b3, (t)0, x))(n > Af" *) & (V n e Scp^Jb,, (Oo, x))(n > Afc

(ii") (V« e 8<plia3)(b3, (Oo, x))(n<(t)j), and
(in") (Oi>max{m | (3qSs-l)(3u^s-l)[m = X«v m = (tJC))j]}.
We attach A</o + 1>-i to (tfo + j)j and associate (iy0 + i)i with the term

9l(ajf>3, (00 + i)o. *)•

(Our assumption here is that y0 < s — 1.) In general, let us suppose that we have
accomplished the reattachment of A<io+1>-i,..., A<io+p>-i,/»^ l,y0+/?+ l<s— 1.
Let us designate by AJ, AJ,..., AJ0> Aj0+lJ..., AJ0+„ the numbers to which
A<o>-1, A<1>-i,..., AO0>-i, A<i0 + 1>-i,..., A<i0 + p>-i are attached following this
process of reattachment. Let tr31ij0+p+i) = <{al, b<j, c4>; and let tJ0 + p + x be the
smallest number / with the properties:

(i-) Ç4IZj0+pWn e S<^4)(F4, (Oo, x))in> Af),
(ii") (Vn e S<^4,(Z>4, (Oo, *))(«< (Oi), and
(in*) (/)1>max{w | (3^.y-l)(3M^.y-l)(m = A2)v(3w^yo+/?)(w = A*)}.
We attach A<yo + JJ + 1>-i to (r,0+ „ + ,), and associate itio + p + x)x with the term

flcajfii, itj0 + P + 1)o, x). We then designate itJ0 + p + x)x as Xsio + p + x.
This procedure continues until all of A<3o>-i,..., A<s_1>-i are present in their

new positions; it then remains only to attach A<s>-i. To attach A<s>-i, we proceed
(apart from extending a) exactly as in Case I, but of course using the numbers
Af, l^s— 1, in place of the "old" numbers Af-1. Finally, we make our extension of
a as follows :

„(S) = „(s-D u {<Aso> Aso_iX <Afo+i; Afo>j..., <As_1, A*_2>, <A*, xi_xy}.

We then proceed to stage s+1.
That completes our description of stage s.
It remains to see that our construction has the desired effect. We shall first argue

that if E[3; e]fçFin then, for all k, lim,;-.«, Xsk exists; i.e., all markers achieve final
positions. Assume, then, that E[e; 3]fçFin. To begin with, it is obvious from the
descriptions given of stages 0 and s>0 that A<0>-i, after being attached to 0 at
stage 0, never moves; hence A0 = lirns-.„ A0 exists and = 0. Now assume that
Ay = lims^œ AJ exists for allyáA:, and consider A<lc + 1>-i. Let t he a stage ^A"+l
(so that A£ + 1 is defined for all wäi) such that Xtj~1 = Xj for ally'aA:. Thus, A<fc + 1>-i
can only move autonomously at stages «a/. So it suffices to show that A" + 1 cannot
be insecure at more than finitely many stages u^t. Now, if A^+1 is insecure at
Uj ä / (indeed, at any stage Uj), then, in particular,

(Vz :S r+ l)(3j ^ ux+\)T3(e, a, c, z, y),
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where <a, b, c} = Tr31(k + 1) for some b and where r = the number of previous
autonomous moves of A(ttl)-1 (note that r^the number ofs<Ui for which Xk + i is
insecure). So, if there are infinitely many u^t for which A" + 1 is insecure, then, since
A^ + i)-1 must move autonomously at all such u, we have that (Vz)(3y)T3(e,
a, c, z, y). Thus (3w){iz)(3y)T3(e, a, w, z, y); so <ze£[3;e]. Hence, by Lemma
B, <plw is a row-disjoint enumeration of a family of classes offinite sets. By the row-
disjointedness of <p3{a), finitely many moves of A<fc+1>-i will lead to a position
A^+1 such that Xk\ t is associated with a term q>llaAb, t, x) for which it is the case
that

(V/)(V«)(V«j)[(/ ú k & « e 8ç»2(0)(ô, m, x) & m £ /) =*• A, < «].

But then, having reached such a stage id, we see from our description of the general
stage of the construction that if A<fc + I>-» moves after stage Ui it does not thereby
undergo any further change in the associate of its position. Hence, by the finiteness
of the sets in the rows enumerated by <p;|(a), some finite number of moves of
A<fc + i>-1 subsequent to stage u± will bring it to a position A"2+1 such that q^u2
» A£ + i is not insecure (and, hence, q^u2 => A£ + i = lims_00A£ + 1). So we see that in
fact there cannot be an infinite number of distinct values for A£ + 1; i.e., Iim^» Afc + 1
exists. By induction on q, we thus have that Aa = lims-.00AJ exists for all q.

Next, still under the assumption that E[3; e]F^ Fin, we shall argue that the class
Ka = {{x | a*(x) is defined and=«} | « e TV} is a member of FR. It is clear from the
construction that a = {Jsa'-s) is a partial recursive function with the unique fixed
point 0; and it is, moreover, plain from the construction of a that paÇ=Sa, that
a(«) á « for « e 8a, and that, for each «, {x \ a*(x) is defined and =«} = the set of all
numbers of the form A£, s=0,1,2,_Since, as was proven above, these latter
sets are finite, and since they are plainly nonempty and disjoint by the construction,
with <An + 1, An> e cc for all «, we see that a is a finite-to-one special retracing func-
tion which in particular retraces the sequence A0, Aj, A2,... of final marker posi-
tions. So Ka e FR.

Now, if £[3; e]fç£Fin then we cannot assert that KaeFR; however, Ka is in
every case an r.e. class of disjoint nonempty sets. Moreover, the construction of a
is obviously uniform in the sense that an index of Ka is effectively obtainable from
e; i.e., there is a recursive function i/j such that, for every e, W^(e) = Ka where a is
the function constructed relative to that particular e. As we have just argued,
W£(e) is in FR provided E[3;e]fçFin; so if we can show that E[3;e]f£Fin
^^.Ke)^ Wa for any a such that a eS[3; e], then we will have shown that </> is
a Eij-productive function for Fin with {Fin; 3; cb}^FR, as required. Supposing,
then, that E[3; e]f£Fin and that a eE[3; e] & Wfce)= Wf, we see from Lemma B
(using the fact that W£(e) e FR) that W£(e) is (for some b) equal to the class of
terms enumerated by the ¿>th row, <pw(a)(¿», z, x), of the row-disjoint enumeration
<P«(a) (which we recall enumerates a family ^ç=Fin|). Since aeE[3;e], there
exists a number c such that (Vz)(3j)F3(e, a, c, z, y). Therefore, the marker A<m>-i,
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where tt3 1(m) = <a, b, c>, can make as many autonomous moves as are required to
insure that its final position, Am, has the following property:

(V/ < m)(Vn)[n e 8cp3Malb, t(m), x) => A, < ri] &
(Vrt)[n e 8cp3Ma)(b, t(m), x) => n < Xm],

where cpl(a)(b, t(m), x) is the term with which Am is associated. (There is no loss of
generality in assuming m /O.) Since it is plain from the construction that
q>m => A,> Am, we thus see that the term 8cpl(a)(b, t(m), x) does not contain any
number of the form A¡, ;' = 0, 1,2,.... But hence 8cp^a)(b, t(m), x) is not one of the
members of W^(e), and we have a contradiction. This completes the proof of
Lemma C.    I

Theorem 2. Let & be any family such that FF s ^ç Fin. Then fS is 2Z%-productive
and hence, in particular, is not Eg enumerable.

Proof. Let >/> be as in Lemma C; then the theorem follows at once, since
{Fin; 3; #g FR.    I

We conclude by remarking that the argument used in proving Theorem 2 seems
to be tailored rather snugly to the collection of finite sets and to the class of Eg
predicates. We lack at present a general procedure wherewith to attack the level-
of-enumerability problem for other families. However, by suitably modifying the
techniques of this paper, we are able to show that the family Cofin of all r.e. classes
of cofinite subsets of A is E4-productive. (By an application of our Theorem 1 to a
theorem of Mostowski and Rogers, G(Cofin) is W\ complete.) We conjecture, but
have no notion how to prove, that the same classification as in the case of Cofin
applies to the family of all r.e. classes of recursive sets.
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