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Abstract

A cyclotomic polynomial Φn(x) is said to be ternary if n = pqr with
p, q and r distinct odd primes. Ternary cyclotomic polynomials are the
simplest ones for which the behaviour of the coefficients is not completely
understood. Here we establish some results and formulate some conjectures
regarding the coefficients appearing in the polynomial family Φpqr(x) with
p < q < r, p and q fixed and r a free prime.

1 Introduction

The n-th cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏

1≤j≤n
(j,n)=1

(x− ζjn) =
∞∑
k=0

an(k)xk,

with ζn a n-th primitive root of unity (one can take ζn = e2πi/n). It has degree
ϕ(n), with ϕ Euler’s totient function. We write A(n) = max{|an(k)| : k ≥ 0},
and this quantity is called the height of Φn(x). It is easy to see that A(n) = A(N),
with N =

∏
p|n, p>2 p the odd squarefree kernel. In deriving this, one uses the

observation that if n is odd, then A(2n) = A(n). If n has at most two distinct
odd prime factors, then A(n) = 1. If A(n) > 1, then we necessarily must have
that n has at least three distinct odd prime factors. Thus for n < 105 we have
A(n) = 1. It turns out that A(3 · 5 · 7) = 2 with a105(7) = −2. Thus the easiest
case where we can expect non-trivial behaviour of the coefficients of Φn(x) is the
ternary case, where n = pqr, with 2 < p < q < r odd primes. In this paper we
are concerned with the family of ternary cyclotomic polynomials

{Φpqr(x)|r > q}, (1)

where 2 < p < q are fixed primes and r is a ‘free prime’. Up to now in the
literature the above family was considered, but with also q free. The maximum
coefficient (in absolute value) that occurs in that family will be denoted by M(p),
thus M(p) = max{A(pqr) : p < q < r}, with p > 2 fixed. Similarly we define
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M(p; q) to be the maximum coefficient (in absolute value) that occurs in the
family (1), thus M(p; q) = max{A(pqr) : r > q}, with 2 < p < q fixed primes.
Example. Bang [5] proved that M(p) ≤ p− 1. Since a3·5·7(7) = −2 we infer that
M(3) = 2. Using a105(7) = −2 and M(3) = 2, we infer that M(3; 5) = 2.

Let A(p; q) = {apqr(k)|r > q, k ≥ 0} be the set of coefficients occurring in
the polynomial family (1).

Theorem 1 We have A(p; q) = [−M(p; q),M(p; q)] ∩ Z.

This shows the relevance of understanding M(p; q). Let us first recall some known
results concerning the related function M(p). Here we know thanks to Bachman
[1], who very slightly improved on an earlier result in [7], that M(p) ≤ 3p/4. In
1968 it was conjectured by Sister Marion Beiter [6] (see also [7]) that M(p) ≤
(p + 1)/2. She proved it for p ≤ 5. The first to show that Beiter’s conjecture
is false seems to have been Eli Leher (in his PhD thesis), who gave the counter-
example a17·29·41(4801) = −10, showing that M(17) ≥ 10 > 9 = (17 + 1)/2.
Gallot and Moree [13] provided infinitely many counter-examples for the case
p = 17 and in fact for every p ≥ 11. Moreover, they have shown that for every
ε > 0 and p sufficiently large M(p) > (2

3
− ε)p. They also proposed the Corrected

Beiter Conjecture: M(p) ≤ 2p/3. The implications of their work for M(p; q) are
described in Section 4.

Zhao and Zhang [21] showed that M(7) = 4, thus establishing the Beiter
Conjecture for p = 7. In a later paper they eastablished the Corrected Beiter
Conjecture:

Theorem 2 Zhao and Zhang [22]. We have M(p) ≤ 2p/3.

This result together with some computer computation allows on to extend the list
of exactly known values of M(p) (see Table 1). For a given prime p by ‘smallest
n’, we mean the smallest integer n satisfying A(n) = M(p) and with p as its
smallest prime divisor.

TABLE 1

p M(p) smallest n
3 2 3 · 5 · 7
5 3 5 · 7 · 11
7 4 7 · 17 · 23
11 7 11 · 19 · 601
13 8 13 · 73 · 307
19 12 19 · 53 · 859

It is not known whether there is a finite procedure to determine M(p). On the
other hand, it is not difficult to see that there is such a procedure for M(p; q).

Theorem 3 Given primes 2 < p < q, there is a finite procedure to determine
M(p; q).

A further question that arises is how often the maximum value M(p) is assumed.
Here we have the following theorem.
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Theorem 4 Given primes 2 < p < q, there exists a prime q0 with q0 ≡ q(mod p)
and an integer d such that M(p, q) ≤M(p, q0) = M(p, q′) for every prime q′ ≥ q0
satisfying q′ ≡ q0(mod d · p). In particular the set of primes q with M(p; q) =
M(p) has a subset having a positive natural density.

A weaker result in this direction, namely that for a fixed prime p ≥ 11, the set of
primes q such that M(p; q) > (p + 1)/2 has a subset of positive natural density,
follows from the work of Gallot and Moree [13] (recall that M(p) > (p+ 1)/2 for
p ≥ 11).

Unfortunately, the proof of Theorem 4 gives a lower bound for the density
that seems to be far removed from the true value. In this paper we present some
constructions that allow one to obtain much better bounds for the density for
small p.

Theorem 5 Let 2 < p ≤ 19 be a prime with p 6= 17. Then the set of primes q
such that M(p; q) = M(p) has a subset having natural density δ(p) as given in
the table below.

TABLE 2

p 3 5 7 11 13 19
δ(p) 1 1 1 2/5 1/12 1/9

Numerical experimentation suggests that the set of primes q such that M(p; q) =
M(p) has a natural density δ(p) as given in the above table, except when p = 13
in which case numerical experimentation suggests δ(13) = 1/3.

In order to prove Theorem 5, we will use the following theorem dealing with
2 < p ≤ 7.

Theorem 6 For 2 < p ≤ 7 and q > p we have M(p; q) = (p+ 1)/2, with as only
exception M(7; 13) = 3.

The fact that M(7; 13) = 3 can be explained. Indeed, it turns out that if ap+bq =
1 for small (in absolute value) integers a and b, thenM(p; q) is small. For example,
one has the following result.

Theorem 7 If p ≥ 5 and 2p− 1 is a prime, then M(p; 2p− 1) = 3.

This result and similar ones are established in Section 10.
Our main conjecture on M(p; q) is the following one.

Conjecture 1 Given a prime p, there exists an integer d and a function g :
(Z/dZ)∗ → Z>0 such that for some q0 > d we have for every prime q ≥ q0 that
M(p; q) = g(q), where 1 ≤ q < d satisfies q ≡ q(mod d). The function g is
symmetric, that is we have g(α) = g(d− α).

The smallest integer d with the above properties, if it exists, we call the ternary
conductor fp. The corresponding smallest choice of q0 (obtained on setting d = fp)
we call the ternary minimal prime. For p = 7 we obtain, e.g., f7 = 1 and q0 = 17
(by Theorem 6). Theorem 6 can be used to obtain the following observation
concerning the ternary conductor.
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Theorem 8 If 2 < p ≤ 7, then the ternary conductor exists and we have fp = 1.
If p ≥ 11 and fp exists, then p|fp.

While Theorem 4 only says that the set of primes q with M(p; q) = M(p) has a
subset having a positive natural density, Conjecture 1 implies that the set actually
has a natural denisty in Q>0 which can be easily explicitly computed assuming
that we know the function g explicitly. In order to establish this implication one
can invoke a quantitative form of Dirichlet’s prime number theorem to the effect
that, for (a, d) = 1, we have, as x tends to infinity,∑

p≤x, p≡a(mod d)

1 ∼ x

ϕ(d) log x
.

This result implies that asymptotically the primes are equidistributed over the
primitive congruence classes modulo d. (Recall that Dirichlet’s prime number
theorem, Dirichlet’s theorem for short, says that each primitive residue class
contains infinitely many primes.)

The main tool in this paper is Kaplan’s lemma and is presented in Section 6.
The material in that section (except for Lemma 8 which is new), is taken from
[14].

The above summary of results makes clear how limited presently our knowl-
edge of M(p; q) is. For the benefit of the interested reader we present a list of
open problems in the final section.

2 Proof of Theorem 4

In this section we define for coprime positive not necessary prime integers p, q, r
the polynomial

Φ′p,q,r(x) =
(xpqr − 1)(xp − 1)(xq − 1)(xr − 1)

(x− 1)(xpq − 1)(xpr − 1)(xqr − 1)
=
∞∑
k=0

a′p,q,r(k)xk.

Here we do not assume p < q < r. Hence we have the symmetry Φ′p,q,r = Φ′p,r,q.
Analogously to A(pqr) and M(p; q) we define the following quantities:

A′(p, q, r) = max{|a′p,q,r(k)| : k ≥ 0},M ′(p; q) = max{A′(p, q, r) : r ≥ 1}

and M ′(p) = max{M ′(p; q) : q ≥ 1}
We have Φpqr = Φ′p,q,r if p, q, r are primes with p < q < r. Hence we have
A(pqr) = A′(p, q, r) in this case.

Lemma 1 We have:

A′(p, q, r1) ≤ A′(p, q, r2) for r2 ≡ r1(mod pq) and r1 < r2

A′(p, q1, r) ≤ A′(p, q2, r) for q2 ≡ q1(mod pr) and q1 < q2

For the proof we merely refer to the first part of the proof of Theorem 2 in [15],
because in this part of the proof the assumption that q, r are primes with r > q
is not needed.
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Lemma 2 If p is a prime, then M ′(p) = M(p). If q is also a prime with q > p
then M ′(p; q) = M(p; q).

Proof. Let p < q be primes. Assume M ′(p; q) = A′(p, q, r), where r is not
necessary a prime. By Dirichlet’s theorem we can find a prime r′ satisfying
r′ ≡ r(mod pq) and r′ > max(q, r). Therefore we have by Lemma 1:

M ′(p; q) = A′(p, q, r) ≤ A′(p, q, r′) = A(p, q, r′) ≤M(p; q).

Since M(p; q) ≤ M ′(p; q) is trivial, we have M ′(p; q) = M(p; q). Now let only
p be a prime. Assume M ′(p) = A′(p, q, r), where q and r are not necessary
primes. Again by Dirichlet’s theorem we find a prime q′ with q′ ≡ q(mod pr) and
q′ > max(p, q). Using Lemma 1 we have:

M ′(p) = A′(p, q, r) ≤ A′(p, q′, r) ≤M ′(p, q′) = M(p, q′) ≤M(p).

Since M(p) ≤M ′(p) is trivial, we have M ′(p) = M(p). 2

Proof of Theorem 4. We set q1 := q. Let ri be a positive integer satisfying
M ′(p; qi) = A′(p, qi, ri). Using Lemma 1 we deduce:

M ′(p; q1) = A′(p, q1, r1) ≤ A′(p, q2, r1) ≤ A′(p, q2, r2) = M ′(p, q2),

where q2 = q1 + pr1. By the same argument the sequence q1, q2, q3, . . . with
qi+1 = qi + pri satisfies:

M ′(p; q1) ≤M ′(p; q2) ≤M ′(p; q3) ≤ . . .

Since M ′(p; q) ≤ M ′(p) = M(p) and M(p) is finite, as was known already in the
19th century, there are only finitely many different values for M ′(p; q). Hence
there is an index k such that M ′(p; qk) = M ′(p; qk+i) for all i ≥ 0. That means:

M ′(p; qk) = A′(p, qk, rk) = A′(p, qk+1, rk) = A′(p, qk+1, rk+1) = M ′(p, qk+1),

and by induction A′(p, qk+i, rk) = A′(p, qk+i, rk+i). Therefore we can assume
rk+i = rk for i ≥ 0. Then we have qk+i = qk + i · prk. We set q0 := qk and d := rk.
Certainly we have q0 ≡ q(mod p). Let q′ ≥ q0 be a prime with q′ ≡ q0(mod d · p).
There must be an integer m such that q′ = qk+m. Since M ′(p; q) = M(p; q) by
Lemma 2 we have:

M(p; q1) ≤M(p; q0) = M(p; q′).

Applying this to M(p; q1) with M(p; q1) = M(p), we get infinitely many primes
of the form qi = q1 + i · pr1 satisfying M(p; qi) = M(p). 2

3 The bounds of Bachman and Bzdȩga

Let q∗ and r∗, 0 < q∗, r∗ < p be the inverses of q and r modulo p respectively. Set
a = min(q∗, r∗, p − q∗, p − r∗). Put b = max(min(q∗, p − q∗),min(r∗, p − r∗)). In
the sequel we will use repeatedly that b ≥ a. Bachman in 2003 [1] showed that

A(pqr) ≤ min(
p− 1

2
+ a, p− b). (2)
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This was more recently improved by Bzdȩga [10] who showed that

A(pqr) ≤ min(2a+ b, p− b). (3)

It is not difficult to show that min(2a + b, p − b) ≤ min(p−1
2

+ a, p − b) and
thus Bzdȩga’s bound is never worse than Bachman’s and in practice often strict
inequality holds.

Note that if q ≡ ±1(mod p), then (2) implies that A(pqr) ≤ (p+1)/2, a result
due to Sister Beiter [6] and, independently, Bloom [9].

We like to remark that Bachman and Bzdȩga define b as follows:

b = min(b1, p− b1), ab1qr ≡ 1(mod p), 0 < b1 < p.

It is an easy exercise to see that our definition is equivalent with this one.
Both (2) and (3) give rise to the same upper bound f(q∗) for M(p; q) as we

will show. Write q∗ ≡ j(mod p), r∗ ≡ k(mod p) with 1 ≤ j, k ≤ p− 1. Thus the
right hand side of both (2) and (3) are functions of j and k, which we denote by
GB(j, k), respectively BB(j, k).

Lemma 3 Let 1 ≤ j ≤ p− 1. We have

max
1≤k≤p−1

GB(j, k) = max
1≤k≤p−1

BB(j, k) = f(j), with

f(j) =


(p− 1)/2 + j if j < p/4;

p− j if p/4 < j ≤ (p− 1)/2;

f(p− j) if j > (p− 1)/2.

Proof. Since the problem is symmetric under replacing j by p − j, w.l.o.g. we
may assume that j ≤ (p− 1)/2. If j < p/4, then

GB(j, k) ≤ p− 1

2
+ a ≤ p− 1

2
+ j = GB(j, j) = f(j).

If j > p/4, then

GB(j, k) ≤ p− b ≤ p− a ≤ p− j = GB(j, j) = f(j).

Note that

f(j) =

{
BB(j, p+1

2
− j) if j < p/4;

BB(j, j) if j > p/4.

Since BB(j, k) ≤ GB(j, k) ≤ f(j) we are done. 2

Theorem 9 Let 2 < p < q. Then M(p; q) ≤ f(q∗).

Proof. By (3) and the definition of BB(j, k) we have

M(p; q) ≤ max
1≤k≤p−1

BB(q∗, k) = f(q∗),

completing the proof. 2

Lemma 3 shows that using either (2) or (3), we cannot improve on the upper
bound given in Theorem 9. Note that

M(p) ≤ max
1≤j≤p−1

max
1≤k≤p−1

GB(j, k) = max
1≤j≤p−1

f(j) <
3

4
p.
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4 Earlier work on M(p; q)

Implicit in the literature are various results on M(p; q) (although we are the
first to explicitly study M(p; q)). Most of these are mentioned in the rest of
this paper. Here we rewrite the main result of Gallot and Moree [13] in terms
of M(p; q) and use it for p = 11 and p = 13 (to deal with q ≡ 4(mod 11),
respectively q ≡ 5(mod 13)).

Theorem 10 Let p ≥ 11 be a prime. Given an 1 ≤ β ≤ p − 1 we let β∗ be the
unique integer 1 ≤ β∗ ≤ p − 1 with ββ∗ ≡ 1(mod p). Let B−(p) be the set of
integers satisfying

1 ≤ β ≤ p− 3

2
, p ≤ β + 2β∗ + 1, β > β∗.

Let B+(p) be the set of integers satisfying

1 ≤ β ≤ p− 3

2
, β + β∗ ≥ p, β∗ ≤ 2β.

The set B(p) = B−(p) ∪ B+(p) is non-empty (it contains at least β = (p− 3)/2).
Let q ≡ β(mod p) be a prime satisfying q > p. Suppose that the inequality
q > q−(p) = p(p− β∗)(p− β∗ − 2)/(2β) holds if β ∈ B−(p) and

q > q+(p) =
p(p− 1− β)

γ(p− 1− β)− p+ 1 + 2β
,

with γ = min((p− β∗)/(p− β), (β∗ − β)/β∗) if β ∈ B+(p). Then

M(p; q) ≥ p− β > p+ 1

2

and hence M(p) ≥ p−min{B(p)}.

We have B(11) = {4},B(13) = {5},B(17) = {7} and B(19) = {8}. In general
one can show [11] using Kloosterman sum techniques that∣∣∣|B(p)| − p

16

∣∣∣ ≤ 8
√
p(log p+ 2)3.

The lower bound for M(p) resulting from this theorem, p − min{B(p)}, never
exceeds 2p/3 and this together with extensive numerical experimentation led
Gallot and Moree [13] to propose the corrected Beiter conjecture, now proved by
Zhao and Zhang (Theorem 2).

In a rather small subset of cases using Theorem 10 one can exactly compute
M(p; q) on combining the latter theorem with Theorem 9.

Theorem 11 Let p ≥ 13 with p ≡ 1(mod 4).be a prime. Let x0 be the smallest
positive integer such that x20 + 1 ≡ 0(mod p). If x0 > p/3, q ≥ q+(p) (with
β = x0) and q ≡ x0(mod p), then M(p; q) = p−x0. The set of primes p satisfying
p ≡ 1(mod 4) and x0 > p/3 (13, 29, 53, 73, 89, 173, · · · ) has natural density 1/6.

7



Proof. Some easy computations show that if p − β = f(β∗) and β ∈ B(p), we
must have

1 ≤ β ≤ p− 3

2
, β + β∗ = p, β∗ ≤ 2β,

p− 1

2
< β∗ <

3

4
p, β ∈ B+(p). (4)

Note that β + β∗ = p, p ≥ 13, has a solution with β < p/2 iff p ≡ 1(mod 4) and
β = x0 (and hence β∗ = p−x0) with x0 the smallest solution of x20+1 ≡ 0(mod p).
If x0 > p/3, then β = x0 satisfies (4). Since by assumption q ≥ q+(p) and
q ≡ x0(mod p), we have M(p; q) ≥ p − x0 by Theorem 10. On the other hand,
by Theorem 9, we have M(p; q) ≤ f(p − x0) = f(x0) = p − x0. Duke et al. [12]
proved that if f is a quadratic polynomial with complex roots and 0 ≤ α < γ ≤ 1
are prescribed real numbers, then as x tends to infinity,

#{(p, v) : p ≤ x, f(v) ≡ 0(mod p), α ≤ v

p
< γ} ∼ (γ − α)π(x),

using which the result is completed on taking γ = 1/2 and α = 1/3. 2

Remark. Note that a priori the estimate p − β > f(β∗) with β ∈ B(p) cannot
have a solution. A posteriori one checks that indeed it does not have a solution.

5 Computation of M(3; q)

Note that for all primes q and r with 1 < q < r, we have r = (kq + 1)/h, or
r = (kq − 1)/h with h ≤ (q − 1)/2. If n ≡ 0(mod 3) is ternary, then either
A(n) = 1 or A(n) = 2 as M(3) = 2. The following result due to Sister Beiter [8]
allows one to compute A(n) in this case.

Theorem 12 Let n ≡ 0(mod 3) be ternary.
If h = 1, then A(n) = 1 iff k ≡ 0(mod 3).
If h > 1, then A(n) = 1 iff one of the following conditions holds:
(a) k ≡ 0(mod 3) and h+ q ≡ 0(mod 3).
(b) k ≡ 0(mod 3) and h+ r ≡ 0(mod 3).

We have seen that M(3; 5) = 2. The next result extends this.

Theorem 13 Let q > 3 be a prime. We have M(3; q) = 2.

Proof. In case q ≡ 1(mod 3), then let r be a prime such that r ≡ 1 + q(mod 3q).
Since (1 + q, 3q) = 1, there are in fact infinitely many such primes (by Dirichlet’s
theorem). In case q ≡ 2(mod 3), then let r be a prime such that r ≡ 1 +
2q(mod 3q). Since (1 + 2q, 3q) = 1, there are infinitely many such primes. The
prime r was chosen so to ensure that h = 1 and 3 - k. Using Theorem 12 it then
follows that A(3qr) = 2 and hence M(3; q) = 2. 2

6 Kaplan’s lemma reconsidered

Our main tool will be the following recent result due to Kaplan [15], the proof of
which uses the identity

Φpqr(x) = (1 + xpq + x2pq + · · · )(1 + x+ · · ·+ xp−1 − xq − · · · − xq+p−1)Φpq(x
r).
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Lemma 4 (Nathan Kaplan, 2007). Let 2 < p < q < r be primes and k ≥ 0 be
an integer. Put

bi =

{
apq(i) if ri ≤ k;

0 otherwise.

We have

apqr(k) =

p−1∑
m=0

(bf(m) − bf(m+q)), (5)

where f(m) is the unique integer such that f(m) ≡ r−1(k − m)(mod pq) and
0 ≤ f(m) < pq.

(If we need to stress the k-dependence of f(m), we will write fk(m) instead of
f(m), see e.g. Lemma 8 and its proof.) This lemma reduces the computation
of apqr(k) to that of apq(i) for various i. These binary cyclotomic polynomial
coefficients are computed in the following lemma. For a proof see e.g. Lam and
Leung [16] or Thangadurai [20].

Lemma 5 Let p < q be odd primes. Let ρ and σ be the (unique) non-negative
integers for which 1 + pq = (ρ + 1)p + (σ + 1)q. Let 0 ≤ m < pq. Then either
m = α1p + β1q or m = α1p + β1q − pq with 0 ≤ α1 ≤ q − 1 the unique integer
such that α1p ≡ m(mod q) and 0 ≤ β1 ≤ p − 1 the unique integer such that
β1q ≡ m(mod p). The cyclotomic coefficient apq(m) equals

1 if m = α1p+ β1q with 0 ≤ α1 ≤ ρ, 0 ≤ β1 ≤ σ;

−1 if m = α1p+ β1q − pq with ρ+ 1 ≤ α1 ≤ q − 1, σ + 1 ≤ β1 ≤ p− 1;

0 otherwise.

We say that [m]p = α1 is the p-part of m and [m]q = β1 is the q-part of m. It is
easy to see that

m =


[m]pp+ [m]qq if [m]p ≤ ρ and [m]q ≤ σ;

[m]pp+ [m]qq − pq if [m]p > ρ and [m]q > σ;

[m]pp+ [m]qq − δmpq otherwise,

with δm ∈ {0, 1}. Using this observation we find that, for i < pq,

bi =


1 if [i]p ≤ ρ, [i]q ≤ σ and [i]pp+ [i]qq ≤ k/r;

−1 if [i]p > ρ, [i]q > σ and [i]pp+ [i]qq − pq ≤ k/r;

0 otherwise.

Thus in order to evaluate apqr(n) using Kaplan’s lemma, it is not necessary to
compute f(m) and f(m + q) (as we did in [13]), it suffices to compute [f(m)]p,
[f(m)]q, [f(m + q)]p and [f(m + q)]q (which is easier). Indeed, as [f(m)]p =
[f(m+ q)]p, it suffices to compute [f(m)]p, [f(m)]q, and [f(m+ q)]q.

For future reference we provide a version of Kaplan’s lemma in which the
computation of bi has been made explicit, and thus is self-contained.
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Lemma 6 Let 2 < p < q < r be primes and k ≥ 0 be an integer. We put
ρ = [(p− 1)(q − 1)]p and σ = [(p− 1)(q − 1)]q. Furthermore, we put

bi =


1 if [i]p ≤ ρ, [i]q ≤ σ and [i]pp+ [i]qq ≤ k/r;

−1 if [i]p > ρ, [i]q > σ and [i]pp+ [i]qq − pq ≤ k/r;

0 otherwise.

We have

apqr(k) =

p−1∑
m=0

(bf(m) − bf(m+q)), (6)

where f(m) is the unique integer such that f(m) ≡ r−1(k − m)(mod pq) and
0 ≤ f(m) < pq.

Note that if i and j have the same p-part, then bibj 6= −1, that is bi and bj cannot
be of opposite sign. From this it follows that |bf(m) − bf(m+q)| ≤ 1, and thus we
infer from Kaplan’s lemma that |apqr(k)| ≤ p and hence M(p) ≤ p.

Using the mutual coprimality of p, q and r we arrive at the following trivial,
but useful, lemma.

Lemma 7 We have {[f(m)]q : 0 ≤ m ≤ p − 1} = {0, 1, 2, . . . , p − 1} and
|{[f(m)]p : 0 ≤ m ≤ p − 1}| = p. The same conclusions hold if we replace
[f(m)]q and [f(m)]p by [f(m+ q)]q, respectively [f(m+ q)]p.

On working with Kaplan’s lemma one first computes apq(f(m)) and then bf(m).
As a check on the correctness of the computations we note that the following
identity should be satisfied.

Lemma 8 We have
p−1∑
m=0

apq(fk(m)) =

p−1∑
m=0

apq(fk(m+ q)).

Proof. Choose an integer k1 ≡ k(mod pq) such that k1 > pqr. Then apqr(k1) = 0.
By Lemma 4 we find that

0 = apqr(k1) =

p−1∑
m=0

[apq(fk1(m))− apq(fk1(m+ q))].

Since fk(m) only depends on the congruence class of k modulo pq, fk1(m) = fk(m)
and the result follows. 2

6.1 Working with Kaplan’s lemma: examples

In this section we carry out four sample computations using Kaplan’s lemma. As
an application we are able to determine M(5; q) (Theorem 15). For more involved
examples the reader is referred to [13].

We remark that the result that an(k) = (p + 1)/2 in Lemma 9 is due to
Herbert Möller [18]. The reproof we give is rather different. The foundation for
Möller’s result is due to Emma Lehmer [17], who already in 1936 had shown that
an(1

2
(p − 3)(qr + 1)) = (p − 1)/2 with p, q, r and n satisfying the conditions of

Lemma 9.
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Lemma 9 Let p < q < r be primes satisfying

p > 3, q ≡ 2(mod p), r ≡ p− 1

2
(mod p), r ≡ q − 1

2
(mod q).

For k = (p− 1)(qr + 1)/2 we have apqr(k) = (p+ 1)/2.

Proof (taken from [14].) Using that q ≡ 2(mod p), we infer from 1+pq = (ρ+1)p+
(σ+1)q that σ = p−1

2
and (ρ+1)p = 1+(p−1

2
)q (and hence ρ = (p−1)(q−2)/(2p)).

On invoking the Chinese remainder theorem one checks that

−r−1 ≡ 2 ≡ −(
q − 2

p
)p+ q(mod pq). (7)

Furthermore, writing f(0) as a linear combination of p and q we see that

f(0) ≡ k

r
≡ (

p− 1

2
)q +

p− 1

2r
≡ (

p− 1

2
)q + 1− p ≡ ρp(mod pq). (8)

From (7) and (8) we infer that, for 0 ≤ m ≤ (p − 1)/2, we have [f(m)]p =
ρ−m(q− 2)/p ≤ ρ and [f(m)]q = m ≤ σ. On noting that [f(m)]pp+ [f(m)]qq =
ρp+ 2m ≤ ρp+ p− 1 = [k/r], we infer that apq(f(m)) = bf(m) = 1 in this range
(see also Table 3).

TABLE 3

m [f(m)]p [f(m)]q f(m) apq(f(m)) bf(m)

0 ρ 0 ρp 1 1
1 ρ− (q − 2)/p 1 ρp+ 2 1 1
. . . . . . . . . . . . 1 1
j ρ− j(q − 2)/p j ρp+ 2j 1 1
. . . . . . . . . . . . 1 1

(p− 1)/2 0 (p− 1)/2 (p− 1)q/2 1 1

Note that f(m) ≡ f(0) − m/r ≡ ρp + 2m(mod pq), from which one easily
infers that f(m) = ρp+ 2m for 0 ≤ m ≤ p− 1 (as ρp+ 2m ≤ ρp+ 2(p− 1) < pq).
In the range p+1

2
≤ m ≤ p− 1 we have f(m) ≥ ρp+ p+ 1 = (p− 1)q/2 + 2 > k/r,

and hence bf(m) = 0.
On noting that f(m+ q) ≡ f(m)− q/r ≡ f(m) + 2q ≡ ρp+ 2m+ 2q(mod pq),

one easily finds, for 0 ≤ m ≤ p − 1, that f(m + q) = ρp + 2m + 2q > k/r and
hence bf(m+q) = 0.

On invoking Kaplan’s lemma one finds

apqr(k) =

p−1∑
m=0

bf(m) −
p−1∑
m=0

bf(m+q) =
p+ 1

2
− 0 =

p+ 1

2
.

This concludes the proof. 2

Lemma 10 Let 3 < p < q < r be primes satisfying

q ≡ −2(mod p), r−1 ≡ p− 2(mod pq) and q >
p2

2
.

For k = p+1
2

(1 + r(2− p+ q)) + r + q − rq we have apqr(k) = −(p+ 1)/2.

11



Remark. Numerical experimentation suggests that with this choice of k, a condi-
tion of the form q > p2c1, with c1 some absolute positive constant, is unavoidable.

Proof of Lemma 10. Using q ≡ −2(mod p) it follows from 1 + pq = (ρ + 1)p +
(σ + 1)q that

σ =
p− 3

2
and ρ =

1 + q p+1
2

p
− 1.

For k we have the congruences:

k ≡ −3(mod p), k ≡ r(mod q), k ≡ q +
p+ 1

2
(mod r).

These help us to compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ (−2)−1 · (−2) · (−3−m) ≡ −3−m(mod p)

[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ −1−m(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ (ρ+ 1)r−1r − p−1(p− 2)m

≡ (ρ+ 1)−m+ 2(ρ+ 1)m ≡ (ρ+ 1) +m
(2 + q

p
− 1
)

(mod q)

Recalling that 0 ≤ [i]q < p and 0 ≤ [i]p < q, we find:

[f(m)]q =

{
p− 3−m for 0 ≤ m ≤ p− 3

2p− 3−m for p− 2 ≤ m ≤ p− 1
(9)

[f(m+ q)]q = p− 1−m (10)

[f(m)]p =

{
(ρ+ 1) +m(2+q

p
− 1) for 0 ≤ m ≤ p−1

2

(ρ+ 1) +m(2+q
p
− 1)− q for p+1

2
≤ m ≤ p− 1,

(11)

where (9) and (10) are obvious. For (11) one has to do some work, and here the

assumption q > p2

2
will be needed. Now it is easy to see, that:

[f(m)]q

{
≤ σ for p−3

2
≤ m ≤ p− 3

> σ for 0 ≤ m ≤ p−5
2

or p− 2 ≤ m ≤ p− 1

[f(m+ q)]q

{
≤ σ for p+1

2
≤ m ≤ p− 1

> σ for 0 ≤ m ≤ p−1
2

[f(m)]p = [f(m+ q)]p

{
≤ ρ for p+1

2
≤ m ≤ p− 1

> ρ for 0 ≤ m ≤ p−1
2

Using Kaplan’s Lemma it remains to compute [f(m)]pp + [f(m)]qq, respectively
[f(m+ q)]pp+ [f(m+ q)]qq and to compare it with k/r.

• Case 1: [f(m)]q ≤ σ, [f(m)]p ≤ ρ. We have p+1
2
≤ m ≤ p− 3.

[f(m)]pp+ [f(m)]qq =
(
ρ+ 1 +m(

2 + q

p
− 1)− q

)
p+ (p− 3−m)q

=
p+ 1

2
q +m(2− p)− 3q + 1 <

p+ 1

2
(2− p+ q)− q + 1 +

p+1
2

+ q

r
=
k

r

12



• Case 2: [f(m)]q > σ, [f(m)]p > ρ. We have 0 ≤ m ≤ p−5
2

.

[f(m)]pp+ [f(m)]qq − pq =
(
ρ+ 1 +m(

2 + q

p
− 1)

)
p+ (p− 3−m)q − pq

=
p+ 1

2
q +m(2− p)− 3q + 1 <

p+ 1

2
(2− p+ q)− q + 1 +

p+1
2

+ q

r
=
k

r

• Case 3: [f(m+ q)]q ≤ σ, [f(m+ q)]p ≤ ρ. We have p+1
2
≤ m ≤ p− 1.

[f(m+ q)]pp+ [f(m+ q)]qq =
(
ρ+ 1 +m(

2 + q

p
− 1)− q

)
p+ (p− 1−m)q

=
p+ 1

2
q +m(2− p)− q + 1 <

p+ 1

2
(2− p+ q)− q + 1 +

p+1
2

+ q

r
=
k

r

• Case 4: [f(m+ q)]q > σ, [f(m+ q)]p > ρ. We have 0 ≤ m ≤ p−1
2

.

[f(m)]pp+ [f(m)]qq − pq =
(
ρ+ 1 +m(

2 + q

p
− 1)

)
p+ (p− 1−m)q − pq

=
p+ 1

2
q +m(2− p)− q + 1 >

p+ 1

2
(2− p+ q)− q + 1 +

p+1
2

+ q

r
=
k

r

Now we can compute apqr(k) by Kaplan’s Lemma:

apqr(k) =

(
p− 5

2
− p− 3

2

)
−
(
p− 1

2
− 0

)
= −(p+ 1)

2
.

Lemma 11 Let 3 < p < q < r be primes satisfying

q ≡ 1(mod p), r−1 ≡ p+ q

2
(mod pq).

For k = (p− 1)qr/2− pr + 2 we have apqr(k) = −min( q−1
p

+ 1, p+1
2

).

Proof. Let 0 ≤ m ≤ p− 1. We have:

ρ =
1 + q(p− 1)

p
− 1 and σ = 0,

k ≡ 1(mod p), k ≡ 0(mod q), k ≡ 2(mod r),

so that we can compute:

[f(m)]q ≡ q−1r−1(k −m) ≡ (1−m)/2(mod p)

[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ −m/2(mod p)

[f(m)]p = [f(m+ q)]p ≡ p−1r−1(k −m) ≡ −m/2(mod q)

This leads to:

[f(m)]q =


(p+ 1−m)/2 for m even

(2p+ 1−m)/2 for m odd and m 6= 1

0 for m = 1

13



[f(m+ q)]q =


(p−m)/2 for m odd

(2p−m)/2 for m even and m 6= 0

0 for m = 0

[f(m)]p = [f(m+ q)]p =


(q −m)/2 for m odd

(2q −m)/2 for m even and m 6= 0

0 for m = 0

We consider the following four cases:

• Case 1: [f(m)]q = σ = 0, [f(m)]p ≤ ρ = 1+q(p−1)
p

− 1. In this case m = 1.
Therefore:

[f(m)]pp+ [f(m)]qq =
p(q − 1)

2
>
k

r

• Case 2: [f(m)]q > σ = 0, [f(m)]p > ρ = 1+q(p−1)
p

− 1. This is the case, only
if m is even and m ≥ 2. We have:

[f(m)]pp+ [f(m)]qq − pq =
2q −m

2
p+

p+ 1−m
2

q − pq

=
q(p+ 1−m)−mp

2
≤ q(p− 1)

2
− p+

2

r
=
k

r

But in general this is not the case for all such values of m, since we have
2q−m

2
> 1+q(p−1)

p
−1. That means m

2
< q−1

p
+ 1 and by 0 < m

2
≤ p−1

2
we have

exactly min( q−1
p
, p−1

2
) different values of m in this case.

• Case 3: [f(m + q)]q = σ = 0, [f(m + q)]p ≤ ρ = 1+q(p−1)
p

− 1. In this case
we have m = 0. Therefore:

[f(m+ q)]pp+ [f(m+ q)]qq = 0 ≤ k

r

• Case 4: [f(m + q)]q > σ = 0, [f(m + q)]p > ρ = 1+q(p−1)
p

− 1. This is the
case, only if m is even and m ≥ 2. We find:

[f(m+ q)]pp+ [f(m+ q)]qq − pq =
2q −m

2
p+

2p−m
2

q − pq > k

r

Now we can compute apqr(k) by Kaplan’s Lemma:

apqr(k) =

(
0−min

(
q − 1

p
,
p− 1

2

))
− (1− 0) = −min

(
q − 1

p
+ 1,

p+ 1

2

)
.

Lemma 12 Let 3 < p < q < r be primes satisfying

q ≡ −1(mod p), r−1 ≡ p+ q

2
(mod pq) and q ≥ p2 − 2p.

For k = p(q − 1)r/2− rq + p− 1 we have apqr(k) = −(p+ 1)/2.
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Proof. We have

σ = p− 2 and ρ =
q + 1

p
− 1.

k ≡ p− 3(mod p), k ≡ p− 2(mod q), k ≡ p− 1(mod r),

so that we can compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ (p− 3−m)/2(mod p)

[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ (p− 2−m)/2(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ (p− 2−m)/2(mod q)

That leads to:

[f(m)]q =


(p− 3−m)/2 for m even and m 6= p− 1

(2p− 3−m)/2 for m odd

p− 1 for m = p− 1

[f(m+ q)]q =

{
(p− 2−m)/2 for m odd

(2p− 2−m)/2 for m even

[f(m)]p = [f(m+ q)]p =

{
(p− 2−m)/2 for m odd

(q + p− 2−m)/2 for m even.

We have to distinguish four cases:

• Case 1: [f(m)]q ≤ σ = p − 2, [f(m)]p ≤ ρ = q+1
p
− 1. In this case m must

be odd, but then we have:

[f(m)]pp+ [f(m)]qq =
(p− 2−m)

2
p+

(2p− 3−m)

2
q

≥ p

2
+
pq

2
>
p(q − 1)

2
− q +

p− 1

r
=
k

r

• Case 2: [f(m)]q > σ = p − 2, [f(m)]p > ρ = q+1
p
− 1. This is the case, if

and only if m = p− 1. Therefore we have:

[f(m)]pp+ [f(m)]qq − pq =
(q + p− 2− (p− 1))

2
p+ (p− 1)q − pq

=
p(q − 1)

2
− q < p(q − 1)

2
− q +

p− 1

r
=
k

r

• Case 3: [f(m+ q)]q ≤ σ = p−2, [f(m+ q)]p ≤ ρ = q+1
p
−1. By assumption

q ≥ p2 − 2p and hence q ≥ p(p − 1)/2 − 1 this is the case if and only if m
is odd. Then we have:

[f(m+ q)]pp+ [f(m+ q)]qq =
p− 2−m

2
p+

p− 2−m
2

q

≤ (
p− 3

2
)(p+ q) ≤ p(q − 1)− 2q

2
<
k

r
,

where we used that q ≥ p2 − 2p in order to derive the latter inequality.

15



• Case 4: [f(m + q)]q > σ = p − 2, [f(m + q)]p > ρ = q+1
p
− 1. In this case

we must have m = 0 and hence

[f(m+ q)]pp+ [f(m+ q)]qq − pq =
(q + p− 2)

2
p+ (p− 1)q − pq

=
p(q + p− 2)

2
− q > p(q − 1)

2
− q +

p− 1

r
=
k

r

Now we can compute apqr(k) by Kaplan’s lemma:

apqr(k) = (0− 1)−
(
p− 1

2
− 0

)
= −(p+ 1)

2
,

and the proof is completed. 2

The results from this section together with those from Section 3 allow one to
establish the following theorem.

Theorem 14 Let 2 < p < q be primes.
(a) If q ≡ 2(mod p), then M(p; q) = (p+ 1)/2.
(b) If q ≡ −2(mod p) and q > p2/2, then M(p; q) = (p+ 1)/2.
(c) If q ≡ 1(mod p) and q ≥ (p− 1)p/2 + 1, then M(p; q) = (p+ 1)/2.
(d) If q ≡ −1(mod p) and q ≥ p2 − 2p, then M(p; q) = (p+ 1)/2.

Proof. By Theorem 13 we have M(3; q) = 2 = (3 + 1)/2, so assume p > 3.
(a) We have M(p; q) ≥ (p + 1)/2 by Lemma 9, and M(p; q) ≤ f(2∗) = f((p +
1)/2) = (p+ 1)/2 by Theorem 9.
(b)+(c)+(d) Similar to that of part (a). Note that f((−2)∗) = f((p − 1)/2) =
(p+ 1)/2 and f(1) = f(p− 1) = (p+ 1)/2. 2

In Section 10 we will discuss the sharpness of the lower bounds for q in the
latter theorem.

Using Theorem 14 it is easy to establish the following result.

Theorem 15 Let q > 5 be a prime. Then M(5; q) = 3.

Proof. The proof is most compactly given by Table 4.
TABLE 4

q q0 M(5; q) result
1 31 3 Theorem 14 (c)
2 7 3 Theorem 14 (a)
3 13 3 Theorem 14 (b)
4 29 3 Theorem 14 (d)

The table should be read as follows. From, e.g. the third row we read that for
q ≡ 3(mod 5), q ≥ 13, we have that M(5; q) = 3 by Theorem 14 (b). Since
M(5; 11) = M(5; 19) = 3 (the only cases not covered by Table 4), the proof is
then completed. 2

16



7 Computation of M(7; q)

Theorem 14 in addition with the following two lemmas allows one to com-
pute M(7; q). These lemmas concern the computation of M(p; q) with q ≡
(p± 1)/2(mod p).

Lemma 13 Let p ≥ 5 be a prime. Let q ≥ max(3p, p(p + 1)/4) be a prime
satisfying q ≡ p−1

2
(mod p). Let r > q be a prime satisfying

r−1 ≡ p+ 1

2
(mod p), r−1 ≡ p(mod q).

For k = p− 1 + r(1 + q(p− 1)/2− p(p+ 1)/2) we have apqr(k) = (p+ 1)/2.

Proof. We have

σ = p− 3 and ρ =
2q + 1

p
− 1,

k ≡ p+ 3

2
(mod p), k ≡ p− 3

2
+

2q + 1

p
(mod q), k ≡ p− 1(mod r),

so that we can compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ m− p+ 3

2
(mod p)

[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ m− 2(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ p− 3

2
+

2q + 1

p
−m(mod q)

That leads to:

[f(m)]q =

{
m+ p−3

2
for 0 ≤ m ≤ p+1

2

m− p+3
2

for p+3
2
≤ m ≤ p− 1

[f(m+ q)]q =

{
p− 2 +m for 0 ≤ m ≤ 1

m− 2 for 2 ≤ m ≤ p− 1

and, by the assumption q ≥ p(p+ 1)/4,:

[f(m)]p = [f(m+ q)]p =
p− 3

2
+

2q + 1

p
−m

We have to distinguish four cases:

• Case 1: [f(m)]q ≤ σ = p − 3, [f(m)]p ≤ ρ = 2q+1
p
− 1. This is the case if

and only if p+3
2
≤ m ≤ p− 1. Therefore we have:

[f(m)]qq + [f(m)]pp =

(
m− p− 1

2

)
q −

(
m− p− 3

2

)
p+ 1 ≤ k

r

• Case 2: [f(m)]q > σ = p− 3, [f(m)]p > ρ = 2q+1
p
− 1. There is no value of

m satisfying these conditions.
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• Case 3: [f(m + q)]q ≤ σ = p− 3, [f(m + q)]p ≤ ρ = 2q+1
p
− 1. In this case

we have p−1
2
≤ m ≤ p− 1, but then we have:

[f(m+ q)]qq + [f(m+ q)]pp = mq −
(
m− p− 3

2

)
p+ 1 >

k

r

• Case 4: [f(m+q)]q > σ = p−3, [f(m+q)]p > ρ = 2q+1
p
−1. This is the case

if and only if 0 ≤ m ≤ 1. Therefore we have, by the assumption q ≥ 3p,:

[f(m+ q)]qq + [f(m+ q)]pp− pq = mq +

(
p− 3

2
−m

)
p+ 1 ≤ k

r

Now we can compute apqr(k) by Kaplan’s lemma:

apqr(k) =

(
p− 3

2
− 0

)
− (0− 2) =

p+ 1

2
.

Lemma 14 Let p ≥ 5 be a prime. Let q ≥ max(3p, p(p − 1)/4 + 1) be a prime
satisfying q ≡ p+1

2
(mod p). Let r > q be a prime satisfying

r−1 ≡ p− 1

2
(mod p), r−1 ≡ p(mod q).

For k = q + p− 1 + r(q(p− 1)/2− p(p+ 1)/2) we have apqr(k) = (p+ 1)/2.

Proof. We have

σ = 1 and ρ =
q(p− 2) + 1

p
− 1.

k ≡ 0(mod p), k ≡ p− 3

2
(mod q), k ≡ q + p− 1(mod r),

so that we can compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ m(mod p)

[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ m+
p+ 1

2
(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ p− 3

2
−m(mod q)

That leads to:
[f(m)]q = m

[f(m+ q)]q =

{
m+ p+1

2
for 0 ≤ m ≤ p−3

2

m− p−1
2

for p−1
2
≤ m ≤ p− 1

[f(m)]p = [f(m+ q)]p =

{
p−3
2
−m for 0 ≤ m ≤ p−3

2

q + p−3
2
−m for p−1

2
≤ m ≤ p− 1

We have to distinguish four cases:
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• Case 1: [f(m)]q ≤ σ = 1, [f(m)]p ≤ ρ = q(p−2)+1
p

− 1. This is the case if
and only if 0 ≤ m ≤ 1. Therefore we have by assumption q ≥ 3p:

[f(m)]qq + [f(m)]pp = mq +

(
p− 3

2
−m

)
p ≤ k

r

• Case 2: [f(m)]q > σ = 1, [f(m)]p > ρ = q(p−2)+1
p

− 1. In this case we have
p−1
2
≤ m ≤ p− 1, but then we have:

[f(m)]qq + [f(m)]pp− pq = mq −
(
m− p− 3

2

)
p >

k

r

• Case 3: [f(m + q)]q ≤ σ = 1, [f(m + q)]p ≤ ρ = q(p−2)+1
p

− 1. There is no
value of m satisfying these conditions.

• Case 4: [f(m + q)]q > σ = 1, [f(m + q)]p > ρ = q(p−2)+1
p

− 1. By the

assumption q ≥ p(p−1)
4

+ 1 this is the case if and only if p+3
2
≤ m ≤ p − 1.

Therefore we have:

[f(m+ q)]qq + [f(m+ q)]pp− pq =

(
m− p− 1

2

)
q −

(
m− p− 3

2

)
p ≤ k

r

Now we can compute apqr(k) by Kaplan’s lemma:

apqr(k) = (2− 0)−
(

0− p− 3

2

)
=
p+ 1

2
,

concluding the proof. 2

Theorem 16
(a) Let q ≥ max(3p, p(p + 1)/4) be a prime satisfying q ≡ p−1

2
(mod p), then

(p+ 1)/2 ≤M(p; q) ≤ (p+ 3)/2.
(b) Let q ≥ max(3p, p(p− 1)/4 + 1) be a prime satisfying q ≡ p+1

2
(mod p), then

(p+ 1)/2 ≤M(p; q) ≤ (p+ 3)/2.

Proof. Follows on combining Lemmas 13 and 14 with Theorem 9. 2

Theorem 17 We have M(7; 11) = 4, M(7; 13) = 3 and for q ≥ 17 a prime,
M(7; q) = 4.

Proof. The proof is most compactly given by a table (Table 5). Recall that Zhao
and Zhang [21] proved that M(7) ≤ 4.
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TABLE 5

q q0 M(7; q) result
1 29 4 Theorem 14 (c)
2 23 4 Theorem 14 (a)
3 31 4 Theorem 16 (a) +M(7) ≤ 4
4 53 4 Theorem 16 (b) +M(7) ≤ 4
5 47 4 Theorem 14 (b)
6 41 4 Theorem14 (d)

Since M(7; 11) = M(7; 17) = M(7; 19) = 4 and M(7; 13) = 3 (the only cases not
covered in Table 5), the proof is completed. 2

8 Computation of M(11; q)

We have M(11; q) ≤M(11) = 7. From [13] we recall the following result.

Theorem 18 Let q < r be primes such that q ≡ 4(mod 11) and r ≡ −3(mod 11).
Let 1 ≤ α ≤ q − 1 be the unique integer such that 11rα ≡ 1(mod q). Suppose
that q/33 < α ≤ (3q − 1)/77, then a11qr(10 + (6q − 77α)r) = −7.

Lemma 15 Let q be a prime such that q ≡ 4(mod 11). Then M(11; 37) = 6
and, for q > 37, M(11; q) = 7.

Proof. By computation one finds that M(11; 37) = 6. Now assume q > 37.
Notice that it is enough to show that M(11; q) ≥ 7. For q ≥ 367 the interval
I(q) := (q/33, (3q − 1)/77] has length exceeding 1 and so contains at least one
integer α1. Then by the Chinese remainder theorem and Dirichlet’s theorem we
can find a prime r1 such that both r1 ≡ −3(mod 11) and 11r1α1 ≡ 1(mod q).
Then we invoke Theorem 18 with r = r1 and α = α1. It remains to deal with the
primes 59 and 191. One checks that the interval I(59) and I(191) both contain
an integer and so we can proceed as in the case q ≥ 367 to conclude the proof. 2

Lemma 16 Let p = 11.
(a) For q > 113, q ≡ 3(mod 11), r−1 ≡ q−19

2
(mod pq) and k = q + 7r (q−19)

2
we

have apqr(k) = 7.
(b) For q ≡ 7(mod 11), r−1 ≡ q+7

2
(mod pq) and k = 6qr+4 we have apqr(k) = 7.

(c) For q ≡ 8(mod 11), r−1 ≡ q−3
2

(mod pq) and k = 6qr+ 4 we have apqr(k) = 7.

Proof.

(a) We have

σ = 3 and ρ =
7q − 10

11

k ≡ 10(mod p), k ≡ 7(mod q), k ≡ q(mod r),

so that we can compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ 10−m(mod p)
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[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ 7−m(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ 19 + q

22
(m− 7)(mod q)

That leads to:
[f(m)]q = 10−m

[f(m+ q)]q =

{
7−m for 0 ≤ m ≤ 7

18−m for 8 ≤ m ≤ 10

[f(m)]p = [f(m+ q)]p =

{
q + 19+q

22
(m− 7) for 0 ≤ m ≤ 6

19+q
22

(m− 7) for 7 ≤ m ≤ 10

We have to distinguish four cases:

• Case 1: [f(m)]q ≤ σ = 3, [f(m)]p ≤ ρ = 7q−10
11

. This is the case if and
only if 7 ≤ m ≤ 10. By the assumption q > 113 we have:

[f(m)]qq + [f(m)]pp =
(13−m)q + 19(m− 7)

2
≤ k

r

• Case 2: [f(m)]q > σ = 3, [f(m)]p > ρ = 7q−10
11

. In this case we have
0 ≤ m ≤ 6, but then we have:

[f(m)]qq + [f(m)]pp− pq =
(13−m)q + 19(m− 7)

2
>
k

r

• Case 3: [f(m + q)]q ≤ σ = 3, [f(m + q)]p ≤ ρ = 7q−10
11

. This is the case
if and only if m = 7. Therefore we have:

[f(m+ q)]qq + [f(m+ q)]pp = 0 ≤ k

r

• Case 4: [f(m+q)]q > σ = 3, [f(m+q)]p > ρ = 7q−10
11

. By the assumption
q > 113 this is the case if and only if 0 ≤ m ≤ 3. Therefore we have:

[f(m+ q)]qq + [f(m+ q)]pp− pq =
(7−m)q − 19(7−m)

2
≤ k

r

Now we can compute apqr(k) by Kaplan’s lemma:

apqr(k) = (4− 0)− (1− 4) = 7.

(b) We have

σ = 7 and ρ =
3q − 10

11

k ≡ 10(mod p), k ≡ 4(mod q), k ≡ 4(mod r),

so that we can compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ 10−m(mod p)
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[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ 3−m(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ q − 7

22
(m− 4)(mod q)

That leads to:
[f(m)]q = 10−m

[f(m+ q)]q =

{
3−m for 0 ≤ m ≤ 3

14−m for 4 ≤ m ≤ 10

[f(m)]p = [f(m+ q)]p =

{
q + q−7

22
(m− 4) for 0 ≤ m ≤ 3

q−7
22

(m− 4) for 4 ≤ m ≤ 10

We have to distinguish four cases:

• Case 1: [f(m)]q ≤ σ = 7, [f(m)]p ≤ ρ = 3q−10
11

. This is the case if and
only if 4 ≤ m ≤ 10. Therefore we have:

[f(m)]qq + [f(m)]pp =
(16−m)q − 7(m− 4)

2
≤ k

r

• Case 2: [f(m)]q > σ = 7, [f(m)]p > ρ = 3q−10
11

. In this case we have
0 ≤ m ≤ 2, but then we have:

[f(m)]qq + [f(m)]pp− pq =
(16−m)q + 7(4−m)

2
>
k

r

• Case 3: [f(m + q)]q ≤ σ = 7, [f(m + q)]p ≤ ρ = 3q−10
11

. In this case we
have 7 ≤ m ≤ 10. By q ≡ 7(mod 11) we have q ≥ 29. It follows:

[f(m+ q)]qq + [f(m+ q)]pp =
(24−m)q − 7(m− 4)

2
>
k

r

• Case 4: [f(m+ q)]q > σ = 7, [f(m+ q)]p > ρ = 3q−10
11

. There is no value
of m satisfying these conditions.

Now we can compute apqr(k) by Kaplan’s lemma:

apqr(k) = (7− 0)− (0− 0) = 7.

(c) We have

σ = 6 and ρ =
4q − 10

11

k ≡ 10(mod p), k ≡ 4(mod q), k ≡ 4(mod r),

so that we can compute [f(m)]q, [f(m+ q)]q and [f(m)]p = [f(m+ q)]p:

[f(m)]q ≡ q−1r−1(k −m) ≡ 10−m(mod p)

[f(m+ q)]q ≡ q−1r−1(k −m− q) ≡ 2−m(mod p)

[f(m)]p ≡ [f(m+ q)]p ≡ p−1r−1(k −m) ≡ q + 3

22
(m− 4)(mod q)
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That leads to:
[f(m)]q = 10−m

[f(m+ q)]q =

{
2−m for 0 ≤ m ≤ 2

13−m for 3 ≤ m ≤ 10

[f(m)]p = [f(m+ q)]p =

{
q + q+3

22
(m− 4) for 0 ≤ m ≤ 3

q+3
22

(m− 4) for 4 ≤ m ≤ 10

We have to distinguish four cases:

• Case 1: [f(m)]q ≤ σ = 6, [f(m)]p ≤ ρ = 4q−10
11

. This is the case if and
only if 4 ≤ m ≤ 10. Therefore we have:

[f(m)]qq + [f(m)]pp =
(16−m)q + 3(m− 4)

2
≤ k

r

• Case 2: [f(m)]q > σ = 6, [f(m)]p > ρ = 4q−10
11

. In this case we have
0 ≤ m ≤ 3, but then we have:

[f(m)]qq + [f(m)]pp− pq =
(16−m)q + 3(m− 4)

2
>
k

r

• Case 3: [f(m + q)]q ≤ σ = 6, [f(m + q)]p ≤ ρ = 4q−10
11

. In this case we
have 7 ≤ m ≤ 10, but then we have:

[f(m+ q)]qq + [f(m+ q)]pp =
(22−m)q + 3(m− 4)

2
>
k

r

• Case 4: [f(m + q)]q > σ = 6, [f(m + q)]p > ρ = 4q−10
11

. This is the case
if and only if m = 3. Therefore we have:

[f(m+ q)]qq + [f(m+ q)]pp− pq = 10q − q + 3

2
>
k

r

Now we can compute apqr(k) by Kaplan’s lemma:

apqr(k) = (7− 0)− (0− 0) = 7.

Theorem 19 For q ≥ 13 we have

q(mod 11) 1 2 3 4 5 6 7 8 9 10
M(11; q) 6 6 7 7 6,7 6,7 7 7 6 6

with as only exceptions M(11; 17) = 5, M(11; 23) = 3, M(11; 37) = 6, M(11; 43) =
5 and M(11; 47) = 6.

Remark 1. If q ≡ ±5(mod 11) and q ≥ 61, then M(p, q) ∈ {6, 7}. We believe
that M(p; q) = 6.
Remark 2. By Corollary 1 and 2 below, one infers thatM(11; 17) ≤ 5, M(11; 23) ≤
3 and M(11; 43) ≤ 5.

23



Proof of Theorem 19. Is most compactly given in Table 6:

TABLE 6

q q0 M(11; q) result
1 67 6 Theorem 14 (c)
2 13 6 Theorem 14 (a)
3 157 7 Lemma 16 (a) +M(11) ≤ 7
4 59 7 Lemma 15
5 71 6,7 Theorem 16 (a) +M(11) ≤ 7
6 61 6,7 Theorem 16 (b) +M(11) ≤ 7
7 29 7 Lemma 16 (b) +M(11) ≤ 7
8 19 7 Lemma 16 (c) +M(11) ≤ 7
9 97 6 Theorem 14 (b)
10 109 6 Theorem 14 (d)

On directly computing the values of M(p; q) not covered by the table, the proof
is completed. 2

9 Computation for p = 19

By Theorem 2 we have M(19) ≤ 2 · 19/3 and hence M(19) ≤ 12. By Theorem
10 we find that M(19; q) ≥ 11 for every q ≡ 8(mod 19) and q ≥ 179 and hence
M(19) ≥ 11. On computing A(n) for the consecutive ternary n having 19 as a
smallest prime factor, it is seen that 19 · 53 · 859 is the smallest ternary n with
19|n such that A(n) = 12. It follows that M(19) = 12. The next result even
shows that M(19; q) = M(19) = 12 for a positive fraction of all primes q.

Theorem 20 We have M(19) = 12. Moreover, M(19, q) = 12 if q ≡ ±4(mod 19),
with q ≥ 29. Furthermore, M(19; 23) = 11.

The proof makes use of the following lemmata.

Lemma 17 Put p = 19 and let q ≡ 15(mod 19) be a prime. Suppose there exists
an integer a satysifying

qa ≡ −1(mod 3) and
q

6p
< a ≤ 5q − 18

6p
.

Let r > q be a prime satisfying r(q−ap) ≡ 3(mod pq). Then apqr(7qr+q) = −12.

Proof. We have σ = 13 and ρ = 5q−18
19

. Note that

−1

r
≡ ap− q

3
≡ (q + a)

3
p+ q

(p− 1)

3
(mod pq),

with (q + a)/3 and (p− 1)/3 = 6 integers. We leave it to the reader to check the
correctness of Table 7. Application of Kaplan’s lemma then gives

apqr(7qr + q) = −5− 7 = −12,

completing the proof. 2
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Table 7: Computation of a19qr(k) with q ≡ 15(mod 19), k = 7qr + q

m m [f(m)]p [f(m)]q cf(m) bf(m) cf(m+q) bf(m+q)

0 0 0 12 7 1 0 1 1
3 a 11 6 1 0 1 1
6 2a 10 5 1 0 1 1
9 3a 9 4 1 0 1 1
12 4a 8 3 1 0 1 1
15 5a 7 2 1 0 1 1
18 6a 6 1 1 0 1 1

1 1 (q + a)/3 18 13 -1 -1 0 0
4 (q + a)/3 + a 17 12 -1 -1 0 0
7 (q + a)/3 + 2a 16 11 -1 -1 0 0
10 (q + a)/3 + 3a 15 10 -1 -1 0 0
13 (q + a)/3 + 4a 14 9 -1 -1 0 0
16 (q + a)/3 + 5a 13 8 0 0 0 0

2 2 2(q + a)/3 5 0 0 0 0 0
5 2(q + a)/3 + a 4 18 0 0 -1 0
8 2(q + a)/3 + 2a 3 17 0 0 -1 0
11 2(q + a)/3 + 3a 2 16 0 0 -1 0
14 2(q + a)/3 + 4a 1 15 0 0 -1 0
17 2(q + a)/3 + 5a 0 0 14 0 -1 0

For reasons of space the fifth column could not be given an header. It has header
[f(m + q)]q. Also for reasons of space we have written cf(m) = apq(f(m)). Note
that [f(m + q)]p = [f(m)]p.Thus the final 4 columns can be computed from
columns 3-5. The same remarks apply to Table 8.

Lemma 18 Put p = 19 and let q ≡ 4(mod 19) be a prime. Suppose there exists
an integer a satysifying

qa ≡ −1(mod 3) and
q

6p
< a <

5q − 1

6p
.

Let r > q be a prime satisfying r(q−ap) ≡ 3(mod pq). Then we have a19qr(7qr+
r) = −12.

Proof. We have σ = 4 and ρ = 14q−18
19

. Note that

−1

r
≡ ap− q

3
≡ (q + a)

3
p+ q

(p− 1)

3
(mod pq),

with (q + a)/3 and (p − 1)/3 = 6 integers. Put k = 7qr + r. Note that
k
r

= 7q+ 1 ≡ (ρ+ 1)p+ (8 + σ)q(mod pq). We leave it to the reader to check the
correctness of the rest of Table 8, from which the result is established on invoking
Kaplan’s lemma. 2
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Table 8: Computation of a19qr(k) with q ≡ 4(mod 19), k = 7qr + r

m m [f(m)]p [f(m)]q cf(m) bf(m) cf(m+q) bf(m+q)

0 0 ρ+ 1 12 17 -1 -1 -1 0
3 ρ+ 1 + a 11 16 -1 -1 -1 0
6 ρ+ 1 + 2a 10 15 -1 -1 -1 0
9 ρ+ 1 + 3a 9 14 -1 -1 -1 0
12 ρ+ 1 + 4a 8 13 -1 -1 -1 0
15 ρ+ 1 + 5a 7 12 -1 -1 -1 0
18 ρ+ 1 + 6a 6 11 -1 -1 -1 0

1 1 ρ+ 1 + (q + a)/3− q 18 4 0 0 1 1
4 ρ+ 1 + a+ (q + a)/3− q 17 3 0 0 1 1
7 ρ+ 1 + 2a+ (q + a)/3− q 16 2 0 0 1 1
10 ρ+ 1 + 3a+ (q + a)/3− q 15 1 0 0 1 1
13 ρ+ 1 + 4a+ (q + a)/3− q 14 0 0 0 1 1
16 ρ+ 1 + 5a+ (q + a)/3− q 13 18 0 0 0 0

2 2 ρ+ 1 + 2(q + a)/3− q 5 10 0 0 0 0
5 ρ+ 1 + a+ 2(q + a)/3− q 4 9 1 0 0 0
8 ρ+ 1 + 2a+ 2(q + a)/3− q 3 8 1 0 0 0
11 ρ+ 1 + 3a+ 2(q + a)/3− q 2 7 1 0 0 0
14 ρ+ 1 + 4a+ 2(q + a)/3− q 1 6 1 0 0 0
17 ρ+ 1 + 5a+ 2(q + a)/3− q 0 5 1 0 0 0

10 When q is close to p

Typically if M(p; q) is constant for all q large enough with q ≡ a(mod d), then
M(p; q) assumes a smaller value for some small q in this progression. A (partial)
explanation of this phenomenon is provided in this section. The idea is that if
ap+ bq = 1 with a and b small in absolute value, then M(p; q) is small. Thus the
caption of this section is a bit imprecise (but short !)

Theorem 21 Let ρ and σ be the (unique) non-negative integers for which 1 +
pq = (ρ+ 1)p+ (σ + 1)q. Then

M(p; q) ≤

{
p+ ρ− σ if ρ ≤ σ;

q + σ − ρ if ρ > σ.

Corollary 1 Let k ≥ 2 be an integer and q = (kp− 1)/h a prime. If p ≥ k + h,
then M(p; q) ≤ k + h.

Corollary 2 Let k ≥ 2 be an integer and q = (kp+ 1)/h a prime. If p > h and
q > k + h, then M(p; q) ≤ k + h.

Proof of Theorem 21. Let us assume that ρ ≤ σ, the other case being similar.
Using Lemma 7 and Lemma 5 we infer that the number of 0 ≤ m ≤ p − 1 with
bf(m) = 1 is at most ρ+1. Likewise the number of m with bf(m+q) = −1 is at most
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p− 1−σ. By Kaplan’s lemma it then follows that apqr(k) ≤ ρ+ 1 + (p− 1−σ) =
p + ρ − σ. Since the number of 0 ≤ m ≤ p − 1 with bf(m) = −1 is at most
p − 1− σ and the number of m with bf(m+q) = 1 is at most ρ + 1, we infer that
apqr(k) ≥ −(p+ ρ− σ) and hence the result is proved. 2

Theorem 22 Let q ≡ 1(mod p). Them

M(p; q) = min
(q − 1

p
+ 1,

p+ 1

2

)
.

Proof. For p = 3 the result follows by Theorem 13, so assume p ≥ 5. Sis-
ter Beiter [6], and independently Bloom [9], proved that M(p; q) ≤ (p + 1)/2 if
q ≡ ±1(mod p) (alternatively we invoke Theorem 9). By Corollary 2 we have
M(p; q) ≤ (q − 1)/p+ 1. By Lemma 11 the proof is then completed. 2

Numerical experimentation suggests that in part b of Theorem 14 perhaps the
condition q > p2/2 can be dropped. By Theorem 22 the condition q ≥ (p −
1)p/2+1 in part c is optimal. In part d we need q ≥ (p−1)p/2−1, for otherwise
M(p; q) < (p+ 1)/2 by Corollary 1.

Lemma 19 Let p ≥ 7 be a prime such that q = 2p−1 is also a prime. Let r > q
be a prime such that (p + q)r ≡ −2(mod pq). Put k = rq(p − 1)/2 + 2p − pq.
Then apqr(k) = 3.

Proof. Since 2p− q = 1, we have ρ = 1 and σ = p− 2. Note that

2

r
≡ −(p+ q) ≡ −p = −(

q + 1

2
) ≡ q − 1

2
(mod q).

We infer that

f(0) ≡ k

r
≡ q(

p− 1

2
) +

2p

r
≡ q(

p− 1

2
) + (

q − 1

2
)p (mod pq).

Since

−1

r
≡ (

q + 1

2
)p+ (

p+ 1

2
)q (mod pq),

we find that f(1) ≡ f(0) − 1/r ≡ 0(mod pq) and f(2j + 1) ≡ f(1) − 2j/r ≡
j(p + q) (mod pq). Note that f(q + j) ≡ f(j) − q/r ≡ f(j) + (p−1

2
)q(mod pq).

Using this information we arrive at Table 9, however without the columns headed
bf(m) and bf(m+q). To establish the correctness of these columns it is enough, using
that f(0) < f(3) and f(q + 3) > f(q + 1), to show that
(a) f(q) ≤ k/r;
(b) f(q + 1) > k/r;
(c) f(3) ≤ k/r;
(d) f(p− 1) > k/r.
(a) We have

f(q) = (
q − 1

2
)p+ (p− 1)q − pq = (

q − 1

2
)p− q.

Since

(
q − 1

2
)p− q < q(

p− 1

2
)− q

2
< q(

p− 1

2
)− pq

r
<
k

r
,
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it follows that f(q) ≤ k/r.
(b) We have f(q + 1) = q(p− 1)/2 > k/r.
The inequalities c and d are left to the reader.

Using Table 9 and Kaplan’s lemma we find that

apqr(k) =

p−1∑
m=0

(bf(m) − bf(m+q)) = 2−−1 = 3,

finishing the proof. 2

Table 9: A large coefficient for q = 2p− 1

m m [f(m)]p [f(m)]q [f(m+ q)]q af(m) bf(m) af(m+q) bf(m+q)

0 0 (q − 1)/2 (p− 1)/2 p− 1 0 0 -1 -1
. . . . . . . . . . . . 0 0 0 0
2j (q − 1)/2 + j (p− 1)/2 + j j − 1 0 0 0 0
. . . . . . . . . . . . 0 0 0 0
p− 1 3(q − 1)/4 p− 1 (p− 3)/2 -1 0 0 0

1 1 0 0 (p− 1)/2 1 1 1 0
3 1 1 (p+ 1)/2 1 1 1 0
5 2 2 (p+ 3)/2 0 0 0 0

. . . . . . . . . . . . 0 0 0 0
2j + 1 j j (p− 1)/2 + j 0 0 0 0

. . . . . . . . . . . . 0 0 0 0
p− 2 (p− 3)/2 (p− 3)/2 p− 2 0 0 0 0

In the m = 0 part of the table, we have 1 ≤ j ≤ (p− 3)/2. In the m = 1 part of
the table, we have 3 ≤ j ≤ (p − 5)/2 if p > 7. If p = 7 there are only the 1, 3, 5
rows and no further ones.

On combining the latter lemma with Corollary 1, one deduces that M(p; 2p−1) =
3 if p ≥ 5 and 2p− 1 is a prime (that is we established Theorem 7).

11 Proofs of results announced in introduction

Proof of Theorem 1. By the definiton of M(p; q) we have

A(p; q) ⊆ [−M(p; q),M(p; q)] ∩ Z.

Let r > q be a prime such that A(pqr) = M(p; q) and suppose w.l.o.g. that
apqr(k) = M(p; q). Gallot and Moree [14] showed that we have |an(k) − an(k −
1)| ≤ 1 for ternary n (see Bachman [4] and Bzdȩga [10] for alternative proofs).
Since apqr(k) = 0 for every k large enough, it then follows that 0, 1, . . . ,M(p; q)
are in A(p; q). By a result of Kaplan [15] (see Zhao and Zhang [21] for a
reproof), we can find a prime s ≡ −r(mod pq) and an integer k1 such that
apqs(k1) = −M(p; q). By a similar arguments as above one then infers that
−M(p; q),−M(p; q) + 1, . . . ,−1, 0 are all in A(p; q). 2
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Proof of Theorem 2. See Zhao and Zhang [22].

Proof of Theorem 3. Let Rpq be a set of primes, all exceeding q such that every
primitive residue class modulo pq is represented. By [15, Theorem 2] we have
A(pqr) = A(pqs) if s ≡ r(mod pq) with s, r both primes exceeding q and hence

M(p; q) = max{A(pqr) : r ∈ Rpq}.

Since the computation of Rpq and A(pqr) is a finite one, the computation of
M(p; q) is also finite. 2

Proof of Theorem 4. See Section 2.

Proof of Theorem 6. Follows on combining Theorems 13, 15 and 17. 2

Proof of Theorem 5. By Theorem 10 and Dirichlet’s theorem the claim follows
for p = 13. Using Lemmas 15 and 16 the result follows for p = 11. On invoking
Theorems 6 and 20, the proof is then completed. 2

Proof of Theorem 7. See the last sentence of Section 10.

Proof of Theorem 8. The first assertion follows by Theorem 6, so assume p ≥ 11.
Suppose that p - fp. Let β ∈ B(p). By the Chinese remainder theorem and
Dirichlet’s theorem there are infinitely many primes q1 such that

q1 ≡ 2(mod p) and q1 ≡ 1(mod fp).

Further, there are infinitely many primes q2 such that

q2 ≡ β(mod p) and q2 ≡ 1(mod fp).

By Lemma 9 we have M(p; q1) = (p+ 1)/2. By Theorem 10, we have M(p; q2) >
(p+ 1)/2 for all q2 large enough. By the definition of fp we must have M(p; q1) =
M(p; q2) for all qi large enough. Contradiction. 2

12 Conjectures, questions, problems

The open problem that we think is the most interesting is Conjecture 1. Note
that if one could prove Conjecture 1 and getting an effective upper bound for
the ternary conductor fp (say 16p) and an effective upper bound for the minimal
ternary prime (say p3), then one has a finite procedure to compute M(p).

Problem 1 Bachman [4] introduced inclusion-exclusion polynomials. The inclusion-
exclusion ternary polynomials generalize the ternary cyclotomic polynomials. Study
M(p; q) in this setting (here p and q can be any coprime natural numbers).

Problem 2 The analogue of M(p; q) for inverse cyclotomic polynomials, see [19],
can be defined. Study it.
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Question 1 Can one compute the average value of M(p; q), that is does the limit

lim
x→∞

1

π(x)

∑
p<q≤x

M(p; q)

exist and if yes, what is its value ?

Question 2 Is Theorem 5 still true if we put δ(13) = 1/3 and cross out the
words ‘a subset having’ ?

Question 3 If q > p is prime and q ≡ −2(mod p), then M(p; q) = (p+ 1)/2 ?

Question 4 Suppose that p > 11 is a prime.
If 6p− 1 is prime, then M(p, 6p− 1) = 7 ?
If (5p− 1)/2 is prime, then M(p, (5p− 1)/2) = 7 ?
If (5p+ 1)/2 is prime then M(p, (5p+ 1)/2) = 7 ?
Find more similar results.

Question 5 Given an integer k ≥ 1, does there exist p0(k) and a function gk(p)
such that if q ≡ 2/(2k + 1)(mod p), then M(p; q) = (p+ 2k + 1)/2 ?

Question 6 Is it true that M(11; q) = 6 for all large enough q satisfying q ≡
±5(mod 6) ? If so one can finish the computation of M(11; q).

Question 7 Is it true that for q sufficiently large the values of M(13; q), M(17; q),
M(19; q) and M(23; q) are given by the following tables ?

q(mod 13) 1 2 3 4 5 6 7 8 9 10 11 12
M(13; q) 7 7 7 8 8 7 7 8 8 7 7 7

q(mod 17) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(17; q) 9 9 9 10 10 9 10 9 9 10 9 10 10 9 9 9

q(mod 19) 1 2 3 4 5 6 7 8 9
M(19; q) 10 10 10 12 11 9 11 11 10

q(mod 19) 10 11 12 13 14 15 16 17 18
M(19; q) 10 11 11 9 11 12 10 10 10

q(mod 23) 1 2 3 4 5 6 7 8 9 10 11
M(23; q) 12 12 12 14 14 11 13 11 14 13 12

q(mod 23) 12 13 14 15 16 17 18 19 20 21 22
M(23; q) 12 13 14 11 13 11 14 14 12 12 12
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2008) N. Baghina, C. Budde, B. Jüttner and D. Sullivan for their (computer)
assistance in computing Tables 7 and 8. However, the bulk of the paper was
written whilst the third author was during two months in 2010 an intern at
MPIM under the guidance of the second author. The third author would like to
thank the MPIM for the possibility to do an internship and for the nice research
atmosphere. He also thanks the second author for his mentoring and for having
a sympathetic ear for any questions.

30



References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Num-
ber Theory 100 (2003), 104–116.

[2] G. Bachman, Ternary cyclotomic polynomials with an optimally large set of
coefficients, Proc. Amer. Math. Soc. 132 (2004), 1943–1950.

[3] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math.
Soc. 38 (2006), 53–60.

[4] G. Bachman, On ternary inclusion-exclusion polynomials, submitted for
publication.

[5] A.S. Bang, Om Ligningen ϕn(x) = 0, Nyt Tidsskrift for Mathematik (B) 6
(1895), 6–12.

[6] M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial
Fpqr (x), Amer. Math. Monthly 75 (1968), 370–372.

[7] M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial Fpqr.
II, Duke Math. J. 38 (1971), 591–594.

[8] M. Beiter, Coefficients of the cyclotomic polynomial F3qr(x), Fibonacci
Quart. 16 (1978), 302–306.

[9] D.M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math.
Monthly 75 (1968), 372–377.
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