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1 Introduction

String theory provides a natural explanation for the family replication observed in nature:

Kaluza-Klein compactification from ten to four dimensions generically leads to low-energy

multiplets appearing with a certain multiplicity which is governed by a topological number

associated to the compactification [1, 2]. Despite the mathematical beauty of this mecha-

nism and the qualitative solution of the family problem it provides, there is no immediate

prediction for the number of families. Different compactifications lead to different fam-

ily numbers and, although three families can be achieved by appropriate model building

choices, a wide range of values can be obtained.

In this paper, we would like to study the question of family number in string theory

in the context of heterotic line bundle models, a class of models introduced in refs. [3–5]

and further developed in refs. [6–13], see also the earlier studies [14, 15]. These models

are based on Calabi-Yau compactifications of the heterotic string and vector bundles with

Abelian structure group, that is, line bundle sums. As has been shown in refs. [3–5], these

models are very well under control from a model building point of view and large numbers of

quasi-realistic models with a standard model spectrum can be obtained. For these reasons,

heterotic line bundle models provide a useful setting to study the family number problem.

One observation, made in ref. [5], is of particular importance for this discussion. Based on

extensive computer scans, it was noted that, for a given Calabi-Yau threefold X, the class

of Abelian bundles which correspond to N = 1 supersymmetric vacua in the interior of the

Kähler cone and lead to three chiral families is finite.

In ref. [7], this finiteness result was shown analytically, based on two assumptions on

the Kähler moduli of the theory: the Kähler moduli have to be sufficiently away from
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the boundary of the Kähler cone and the Calabi-Yau volume is finite.1 The first of these

assumptions stems from the requirement that supergravity remains valid at the chosen locus

in moduli space and the second one is motivated by the finiteness of the four-dimensional

couplings constants. Interestingly, the proof of this statement does not require imposing

a fixed number of families - supersymmetry and anomaly cancellation together with the

aforementioned constraints on the Kähler moduli space are sufficient. This suggests that

the class of bundles that lead to consistent N = 1 heterotic vacua with an arbitrary number

of chiral families is also finite, in line with the conjecture made in ref. [16].

Provided this finiteness result holds, it is clear there exists an upper bound on the

number of families for a given Calabi-Yau manifold. What is more, this upper bound

depends on and monotonically increases with the Calabi-Yau volume. Roughly, the more

stringent the bound on the Calabi-Yau volume the fewer line bundle models can be super-

symmetric in the so-prescribed portion of Kähler moduli space and the lower the bound

on the number of families. This relation between the maximal number of families and the

Calabi-Yau volume is rather surprising and hints at a possible explanation of the family

problem: the number of families is small because the four-dimensional coupling constants

have sizeable, finite values which require a relatively small Calabi-Yau volume.

The aim of the present paper is to establish this connection between the Calabi-Yau

volume and the number of families for heterotic line bundle models in detail. We begin by

reviewing the basic model-building set-up in section 2 and by discussing coupling constants

in section 3. In section 4, we revisit the proof presented in ref. [7] and derive a semi-

analytical formula for the maximal number of families. Section 5 presents an explicit

construction of heterotic line bundle models with low-energy gauge group SU(5) and a

variable number of families and determines the maximal number of generations as a function

of the Calabi-Yau volume. We conclude in section 6.

2 Model building setup

Heterotic Calabi-Yau models with N = 1 supersymmetry are specified by a Calabi-Yau

three-fold, X, and a vector bundle V → X with structure group contained in E8 × E8.

For a consistent vacuum the bundle V needs to satisfy two further conditions: it needs

to obey the heterotic anomaly cancellation condition and, in order to preserve N = 1

supersymmetry, it needs to be poly-stable with slope zero. Since both conditions are

crucial for the subsequent discussion we would now like to briefly review them in turn.

To discuss poly-stability we introduce the slope

µ(F) =
c1(F) · J2

rk(F)
. (2.1)

of a coherent sheaf F , where J is the Kähler form of X. A bundle V with a simple

structure group is called slope-stable iff µ(F) < µ(V ) for all coherent sheafs F ⊂ V

1An infinite class of heterotic line bundle models has been constructed in a recent paper [12], by including

the boundary of the Kähler cone. In the present paper, the Kähler moduli are always constrained to the

interior of the Kähler cone, so we do not encounter such infinite families of models.
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with 0 < rk(F) < rk(V ). Further, a direct sum bundle V = V1 ⊕ · · · ⊕ Vn is called

poly-stable if all summands Vi are slope-stable and if they have the same slope, that is,

µ(V1) = · · · = µ(Vn) = µ(V ). In the present context we are interested in rank n line

bundle sums

V =
n⊕

a=1

La satisfying c1(V ) =
n∑

a=1

c1(La)
!

= 0 , (2.2)

which have a typical structure group S(U(1)n). Specifically, we will focus on rank five bun-

dles, so n = 5. In this case, the structure group can be embedded into E8 via the subgroup

chain S(U(1)5) ⊂ SU(5) ⊂ E8 which leads to a low-energy GUT group SU(5) × S(U(1)5).

The extra U(1) factors are generically Green-Schwarz anomalous and hence the associated

gauge bosons often acquire Stückelberg masses which are close to the compactification scale

in magnitude. Quasi-realistic standard models can be obtained from these GUT models

after dividing by a freely-acting discrete symmetry (in cases when X is simply-connected)

and including a suitable Wilson line.

Due to the constraint on the rank of the sub-sheaf F , line bundles are automatically

slope-stable. All we have to require for a supersymmetric line bundle sum is, therefore, the

vanishing of all slopes, that is

µ(La) = c1(La) · J2 !
= 0 (2.3)

for all a = 1, . . . , n. Note that, for fixed line bundles La, these are conditions on the Kähler

form, J , of the Calabi-Yau manifold X. In practice, we have to check if the slopes of all line

bundles can simultaneously vanish somewhere in (the interior of) the Kähler cone of X.

A slope poly-stable bundle V automatically satisfies a positivity condition on the

second Chern class [17] which is given by∫
X
c2(V ) ∧ J ≥ 0 , (2.4)

and is known as the Bogomolov bound. Here, J is any Kähler form for which V is poly-

stable. For a line bundle sum (2.2) the second Chern class is given by

c2(V ) = −1

2

n∑
a=1

c1(La)2 . (2.5)

In order to be able to satisfy the anomaly cancellation condition we require that

c2(TX)− c2(V ) ∈ Mori cone of X . (2.6)

Provided this condition is satisfied, we can always saturate the anomaly condition by

adding a suitable hidden sector of five-branes (or a suitable bundle in the other, hidden

E8 factor or a combination of five branes and hidden bundle). In practice, it will be useful

to introduce an integral basis Ci, where i = 1, . . . , h1,1(X), of holomorphic curves for the

second homology of X and a corresponding dual basis, Ji, of H1,1(X). Then, the Kähler

from can be expanded as

J =

h1,1(X)∑
i=1

tiJi , (2.7)
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where ti are the Kähler moduli. For our examples, the Kähler cone of X is simply char-

acterised by all ti > 0 and the holomorphic curves Ci generate the Mori cone. The latter

property means that the anomaly condition (2.6) can be re-written as

(c2(TX)− c2(V )) · Ji ≥ 0 , (2.8)

for all i = 1, . . . , h1,1(X).

Another crucial quantity for our discussion is the number of chiral families, given by

the index

Ngen = −ind(V ) =
1

2

∫
X
c3(V ) , (2.9)

where we have used c1(V ) = 0 in the last step.

Equations (2.2), (2.4) and (2.8) constrain the first and the second Chern classes of V ,

while eq. (2.3) guarantees the existence of points in the Kähler moduli space of X for

which V is poly-stable with zero slope. In the following we would like to provide evidence

that the class of line bundle models on a given Calabi-Yau manifold, subject to these con-

ditions on the first and second Chern classes is finite. Of course, this implies the existence

of an upper bound on Ngen for a given Calabi-Yau manifold. We will prove finiteness of the

class after excluding a finite neighbourhood at the boundary of the Kähler moduli space

and requiring the Calabi-Yau volume to be finite. These restrictions are motivated by the

validity of the supergravity approximation and the finiteness of the four-dimensional cou-

plings, as mentioned earlier. On the other hand, the results of our automated scans indicate

that the class remains finite even without these restrictions on the Kähler moduli space.

3 Kähler moduli space and low-energy coupling constants

For a supersymmetric line bundle sum, the slope zero conditions (2.3) must have a common

solution in the Kähler cone of the Calabi-Yau manifold X. However, from a physical point

of view, the acceptable locus in the Kähler cone is further restricted by the values of

low-energy coupling constants and the requirement that the supergravity approximation

be consistent. We would like to discuss the interplay between those physical restrictions

in Kähler moduli space and the slope zero conditions. Unification of gauge couplings,

including the gravitational coupling, in the heterotic string is most naturally realised in

the strong-coupling limit [18], described by 11-dimensional Horava-Witten theory [19]. For

this reason, we will be working in the 11-dimensional theory and measure all internal

volumes using the relevant part of the 11-dimensional metric.

The 11-dimensional Newton constant κ11 and the 11-dimensional Planck length l are

related by 4πκ11 = (2πl)9 and we also introduce the six-dimensional coordinate volume

v = (2πl)6. The dimensionless Kähler moduli ti and the triple intersection numbers are

defined by

ti =
1

(2πl)2

∫
Ci

J , dijk =
1

v

∫
X
Ji ∧ Jj ∧ Jk , (3.1)

where J is the Kähler form associated to the 11-dimensional metric. Hence, the Kähler

moduli ti measure the volume of the holomorphic cycles Ci in units of the 11-dimensional
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Planck length. As usual, we introduce the pre-potential

κ = 6V = dijkt
itjtk , (3.2)

where V is the volume in units of the coordinate volume v, so that the physical volume is

given by

Vphys =
1

3!

∫
X
J ∧ J ∧ J = vV . (3.3)

The four-dimensional GUT coupling constant can then be written as [18]

αGUT =
(2πl)6

2Vphys
=

1

2V
. (3.4)

We are now ready to discuss the relevant physical restrictions on the Kähler moduli

space. Validity of the supergravity approximation requires the volume of all cycles Ci to

be larger than one in 11-dimensional Planck units which implies restricting the Kähler

moduli as

ti
!
> 1 for all i = 1, . . . , h1,1(X) . (3.5)

Further, in order to match the GUT coupling constant we should require that the value

V =
1

6
dijk t

i tj tk
!' 1

2αGUT
' 12 (3.6)

can be realised in the restricted Kähler moduli space defined by eqs. (3.5) intersected with

the locus obtained by imposing the slope-zero conditions (2.3). If this intersection region is

non-empty, it is in fact unbounded, since the slope-zero conditions (2.3) are homogeneous

in the Kähler moduli ti and are, therefore, satisfied on rays (indicated by the red lines in

figure 1) in Kähler moduli space. Accordingly, the Calabi-Yau volume assumes arbitrarily

large values over this region, while being bounded from below. Thus, if the minimal

value attained by the Calabi-Yau volume is larger than the unification value, the model is

ruled out.

In practice, this means that we can search for models with realistic gauge couplings by

restricting the Kähler moduli such that V ≤ Vmax. From eq. (3.6), the physically relevant

value of Vmax should be approximately 12. However, later on we will allow a wider range

for Vmax values in order to study the dependence of the maximal number of generations

on the value of the gauge coupling. The situation in Kähler moduli space for two Kähler

moduli is schematically indicated in figure 1.

The Kähler cone corresponds to the positive quadrant and the blue region indicates

the physically allowed region, which is detached from the boundaries of the Kähler cone

due to the eqs. (3.5) and is bounded2 due to the condition V ≤ Vmax. The rays defined

by the slope-zero conditions (2.3) are indicated by the red lines in figure 1. A given line

bundle model is supersymmetric and consistent with the physical restrictions on the Kähler

moduli space if the corresponding ray intersects the blue region in figure 1. In the next

section we will show that this class of supersymmetric, physical line bundle sums is finite.

2A finite volume may not necessarily bound the Kähler moduli space if some intersection numbers are

negative. Here we assume that the region in Kähler moduli space is indeed bounded by the finite volume

requirement. This is certainly the case if all intersection numbers are positive as will be the case for our

examples.
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Figure 1. Sketch of the allowed region in Kähler moduli space. The slope-zero equations are

invariant under a change ti → a ti, hence a line bundle sum which is consistent at some point, is

consistent along the entire ray containing that point.

4 A semi-analytic bound

We write the line bundles in eq. (2.2) as La = OX(ka), so that their first Chern class is

given by c1(La) = kiaJi. The integers kia are constrained by the conditions

n∑
a=1

kia = 0 (4.1)

for all i = 1, . . . , h1,1(X) which are equivalent to c1(V ) = 0. Further, from eq. (2.5), the

second Chern class is given by

c2(V ) = −1

2

n∑
a=1

dijk k
i
a k

j
a , (4.2)

and in order to be able to satisfy the anomaly cancellation condition we require that

c2i(V ) ≤ c2i(TX) , (4.3)

in accordance with eq. (2.8). The slope zero conditions (2.3) take the form

dijk k
i
a t

j tk = 0 , (4.4)

for i = 1, . . . , h1,1(X), and these equations have to be simultaneously satisfied in the interior

of the Kähler cone (here taken to be characterised by ti > 0 for all i). The question we

would like to address is whether line bundle sums V on a given Calabi-Yau manifold X,

subject to the c1(V ) = 0 constraint (4.1), the anomaly constraint (4.3) and the slope zero

conditions (4.4) constitute a finite class. If they do, the number of generations

Ngen = −ind(V ) = −1

6
dijk

n∑
a=1

kia k
j
a k

k
a . (4.5)
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for this class will also be finite and we are more specifically interested in any bounds on

this number. The automated scans described in the next section indicate that the answer

is in the affirmative, although it seems difficult to provide a general proof and derive a

precise expression for the bound on Ngen.

However, we would like to provide an analytical finiteness argument under the as-

sumption that the slope conditions (4.4) are satisfied in the physical part of Kähler moduli

space (as discussed in the previous section). First, we recall that the Kähler moduli space

is equipped with a positive-definite metric [20]

Gij =
1

2vV

∫
X
Ji ∧ ?Jj = −3

(
κij
κ
− 2κiκj

3κ2

)
, (4.6)

where κi = dijk t
j tk and κij = dijk t

k. Due to the slope zero conditions (4.4), which can

also be written as κik
i
a = 0, we obtain

0 <
∑
a

kT
aGka = −3

κ
dijk

∑
a

kia k
j
a t

k =
6

κ
ti c2i(V ) ≤ 6

κ
ti c2i(TX) ≤ 6

κ
|t||c2(TX)| . (4.7)

Introducing the modified moduli space metric G̃ = κG/(6|t|) (which is homogeneous of

degree zero in ti) this means that∑
a

kT
a G̃ka ≤ |c2i(TX)| . (4.8)

Since G̃ is positive definite in the (interior of the) Kähler cone, eq. (4.8) seems to imply

the existence of a bound on |ka|, and hence a bound on Ngen. However, the Kähler metric

can degenerate on the boundary of the Kähler cone which means that, in the interior of

the Kähler cone, the eigenvalues of G̃ cannot be bounded from below by a strictly positive

number. Hence, if we allow solutions in the entire interior of the Kähler cone, eq. (4.8)

does not provide an argument for finiteness.

The situation improves when we strengthen our assumptions and demand a solution

in the physical region of Kähler moduli space, as defined in the previous section and

schematically indicated in figure 1. In this case, the eigenvalues of G̃ are bounded from

below by the minimal (but strictly positive) eigenvalue λmin > 0 of G̃ over this physical

region and the line bundle integers are bounded by∑
a

|ka|2 ≤
|c2(TX)|
λmin

. (4.9)

Note that the value of λmin depends on the topology of the Calabi-Yau manifold (notable on

the triple-intersection numbers) and the maximal volume Vmax used to define the physical

region. For a given Calabi-Yau manifold an upper bound on the volume, λmin can be

determined, although we do not have an explicit analytic formula. Given eq. (4.9) the line

bundle entries are bounded by a value |kmax| which satisfies

|kmax| ≤

√
1

2

(
|c2(TX)|
λmin

− (h1,1(X)− 1)

)
, (4.10)
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where we have taken into account the constraint c1(V ) = 0 and we have assumed that the

kia do not vanish for all a and a given i. Since ti > 1, we have kia < |kmax| ti and∑
a

dijk (kia + |kmax|ti) (kja + |kmax|tj) (kka + |kmax|tk) > 0 (4.11)

which, given the slope zero conditions (4.4), becomes

Ngen < |kmax|3 V − |kmax|c2i(V )ti . (4.12)

Given a finite volume V < Vmax, strict positivity of λmin over the physical part of Kähler

moduli space and the positivity condition (2.4), this does indeed provide an upper bound

for the number of generations on a given Calabi-Yau manifold.

5 Computer scan results

In this section we present the results of an automated scan performed on several different

Calabi-Yau three-folds for SU(5)-models with a variable number of generations.3 As we will

see, these results provide evidence for the finiteness of line bundle models with vanishing

slope in the interior of the Kähler cone and lead to an upper bound for the number of

generations. We impose the constraints (2.2), (2.3), (2.4) and (2.8) and, in addition, we

will require that, for each pair of indices a < b, ind(La ⊗ Lb) ≤ 0, a condition necessary in

order to project out all Higgs triplets after the inclusion of a Wilson line.

Moreover, it would be both interesting and important to use these results in order to

find all line bundle models with vanishing slope in the physical region of Kähler moduli

space, for varying Calabi-Yau volume V, and to determine an upper bound for the num-

ber of generations as a function of V. However, in general this is not an easy task, as

explained below.

Finding the locus where the line bundle sum is poly-stable corresponds to simulta-

neously solving the quadratic equations (4.4) in the ti variables. This makes the process

described above difficult to implement. However, things greatly simplify in the case in

which the locus defined by the slope zero conditions is a ray, which corresponds to having

the number of linearly independent ka vectors equal to h1,1(X)− 1, i.e.,

rank(kia) = h1,1(X)− 1 (5.1)

In this case, after finding an arbitrary non-trivial solution to the slope zero equations

(e.g. using the routine FindInstance in Mathematica), the minimal value assumed by the

Calabi-Yau volume in the region of interest in obtained by rescaling the solution such that

all the ti parameters are greater than or equal to 1.

For the tetra-quadric manifold discussed below most of the line bundle models are

such that the poly-stability locus is a single ray. Excluding the small number of models

which do not satisfy the condition (5.1) does not influence the qualitative conclusions of

our discussion.
3Frequency distributions of models with various numbers of generations have been performed within other

string contexts, such as orientifolds of Gepner models [21, 22], intersecting D-brane models [23], heterotic

constructions with free-fermions [24, 25], heterotic Calabi-Yau compactifications with monad bundles [26]

and heterotic orbifold constructions [27].
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5.1 The tetra-quadric manifold

Tetra-quadric manifolds are simply connected hypersurfaces in a product of four CP1

spaces, defined as the zero locus of a homogeneous polynomial that is quadratic in the

homogeneous coordinates of each CP1 space. Manifolds in this class have Euler number

η = −128 and Hodge numbers h1,1(X) = 4 and h2,1(X) = 68. This information is sum-

marised by the following configuration matrix:

X =

CP1

CP1

CP1

CP1


2

2

2

2


4,68

−128

(5.2)

The second cohomology is spanned by the four Kähler forms, Ji of the CP1 factors, pulled-

back to the tetra-quadric, and we also introduce a dual basis, νi of the fourth cohomology.

The triple intersection numbers have the following simple form

dijk =

∫
X
Ji ∧ Jj ∧ Jk =

{
2 if i 6= j, j 6= k

0 otherwise
(5.3)

and they lead to the pre-potential

κ = 6V = 12 (t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4) . (5.4)

The Kähler cone is characterised by all ti > 0 while the Mori cone corresponds to positive

linear combinations of the νi. The second Chern class of the tangent bundle of the tetra-

quadric, in the basis νi, is given by

c2(TX) = (24, 24, 24, 24) . (5.5)

The tetraquadric manifold admits smooth quotients by finite groups Γ of orders |Γ| = 2, 4, 8

and 16 (see [28]):

Γ = Z2, Z2 × Z2, Z4,Z2 × Z4, Z8, H, Z4 × Z4, Z4 o Z4, Z8 × Z2, Z8 o Z2, H× Z2 . (5.6)

The physical model with standard model group and three chiral families is defined on the

quotient manifold X/Γ (provided the bundle V → X descends to the quotient) while, in

practice, we calculate the chiral asymmetry for the model on X. The two chiral asymmetries

of upstairs and downstairs model are related by

Ngen(X/Γ) =
Ngen(X)

|Γ|
!

= 3 . (5.7)

Hence, three chiral families in the downstairs model require

Ngen(X) = 6, 12, 24, 48 (5.8)

families in the upstairs model, depending on which symmetry Γ is involved. Also, the value

imposed on the volume from eq. (3.6) should be considered in the downstairs model, hence

for the upstairs model we require V ' 12 |Γ|.
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Vmax = 10

Vmax = 100

Vmax = 1000

Vmax = 10000

Vmax = ¥

20 40 60 80 100
Ngen

10

20

30

40

50

60

Num Models

Figure 2. Plot of the number of SU(5) line bundle models on the tetra-quadric manifold as a

function of the number of generations, Ngen(X). Different colours correspond to different values of

Vmax. Note that the manifold does not admit any models with an odd number of generations, due

to the fact that all intersection numbers dijk are divisible by 2. However, smooth quotients of X

do admit models with an odd number of generations, in particular 3.

We have scanned over a large number (∼ 1035) of rank five line bundle sums and

have extracted all models which satisfy the anomaly condition (4.3) and the slope zero

conditions (4.4) in the interior of the Kähler cone. This has been done for increasing

sizes of the line bundle integers |kia|, until no further models could be found. In practice,

this means that we have found all consistent rank five line bundle models on the tretra-

quadric. Within this set, the generation number does not exceed the value Ngen = 126 and

the distribution of the generation number is shown in figure 2. We can further focus on

the sub-sets of these models which satisfy the slope zero condition in the physical region

of Kähler moduli space, corresponding to a certain maximal Calabi-Yau volume Vmax.

The distribution of the generation number for these sub-sets is indicated by the colour-

coding in figure 2. In particular, for the unification value V ' 12 |Γ| from eq. (3.6), it

can be seen from figure 3 that Ngen . 40 which is well in line with the required upstairs

values in eq. (5.8).

The condition that the bundle V → X descends to a bundle on the quotient manifold

X/Γ can be checked by ensuring that V admits an equivariant structure with respect to the

Γ-action in question. In general, this check will reduce the number of viable models.4 It

would be interesting to see how equivariance affects the distribution of models according to

the number of generations. For the case Γ = Zm, there are no obstructions to equivariance,

and hence all line bundle sums will descend to the quotient manifold [29].

4We would like to thank our referee for suggesting this line of investigation.
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Figure 3. Plot of the number of SU(5) line bundle models on the tetra-quadric manifold as a

function of the number of generations, Ngen(X). Different colours correspond to different values

of Vmax.
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After imposing equivariance

5 10 15 20 25
Ngen

10

20

30

40

50

60

Num Models

Figure 4. Plot of the number of SU(5) line bundle models on the Z2 × Z2-quotient of the tetra-

quadric manifold as a function of the number of generations, Ngen(X), before and after imposing

equivariance.

A non-trivial situation arises when, e.g. Γ = Z2×Z2, see figure 4. As the figure shows,

equivariance rules out a number of models. It is interesting to note that the peak of the

distribution shifts to a lower value of Ngen, incidentally 3 for the case in consideration.
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Figure 5. Plot of the number of SU(5) line bundle models on the manifold (5.9) as a function

of the number of generations, Ngen(X). The manifold does not admit line bundle models with an

odd number of generations, since all its intersection numbers are divisible by 2.

5.2 Manifolds with h1,1(X) = 5

It is interesting to study the distribution of generation numbers for manifolds with different

values for h1,1(X). In this section we present the results for two complete intersection

Calabi-Yau manifolds with h1,1(X) = 5. However, we will not be able to carry out the

dependence of the upper bound for the number of generations on the Calabi-Yau volume,

due to the technical difficulty of the problem, as explained above.

The first manifold is defined by the following configuration matrix:

X =

CP1

CP1

CP1

CP1

CP3


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

1 1 1 1



5,37

−64

(5.9)

For this manifold the upper bound on the number of generations is Ngen . 90, with the

distribution peaking in the range 5 − 25 generations. Since the manifold admits quotients

by finite groups of orders 2, 4, 8 and 16, the distributions for the corresponding quotients

peak at considerably lower values, consistent with Ngen = 3.
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Figure 6. Plot of the number of SU(5) line bundle models on the manifold (5.10) as a function

of the number of generations, Ngen(X).

The second manifold is defined by the following configuration matrix:

X =

CP1

CP1

CP1

CP4

CP4


1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

1 0 1 0 1 0 1 1

0 1 0 1 0 1 1 1



5,37

−64

(5.10)

The distribution of models as a function of the number of generations is presented in

figure 6. The manifold admits a quotient by Z2, with Hodge numbers h1,1(X) = 4 and

h2,1(X) = 20 (see [30] for the computation of the Hodge numbers).

6 Conclusions

In this note, we have provided evidence for the existence of an upper bound on the num-

ber of low-energy fermion generations resulting from Calabi-Yau compactifications of the

heterotic string with Abelian bundles. Line bundle sums V lead to consistent models pro-

vided c1(V ) = 0 (to allow for an embedding of the structure group into E8), the anomaly

condition c2(V ) ≤ c2(TX) is satisfied and the slope zero conditions for all line bundles in

V have a common solution in Kähler moduli space. We have formulated two versions of

the last condition. In the first, mathematical, version all slope zero conditions have to be

satisfied in the interior of the Kähler cone. In the second, physical, version all slope zero

conditions have to be satisfied in the “physical” region of Kähler moduli space. By this we
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mean a region away from the boundaries of the Kähler cone (so that the supergravity ap-

proximation is valid) and consistent with a finite Calabi-Yau volume V, in order to account

for the value of the low-energy gauge couplings.

For the second, physical, version of the slope zero condition, we have shown semi-

analytically that the number of consistent line-bundle models on a given Calabi-Yau man-

ifold must be finite. In particular, this means that the number of generations, Ngen, is

finite and is subject to an upper bound which depends on the Calabi-Yau manifold and the

maximum value of the volume V. This suggests a possible correlation between the observed

number of generations and the value of the gauge coupling constants: the sizeable value of

the GUT coupling constant implies a relatively small Calabi-Yau volume which, in turn,

leads to a stringent constraint from the zero-slope conditions and, hence, to a tight upper

bound on the number of families.

Using computer scans, we have explicitly analysed this relation for two Calabi-Yau

manifolds: the tetra-quadric Calabi-Yau manifold with h1,1(X) = 4 and a couple of other

complete intersection Calabi-Yau manifolds with h1,1(X) = 5. In both cases we have found

that the number of models is finite even when the weaker, mathematical version of the slope

zero conditions is used. In the context of the stronger, physical version of the slope zero

conditions, we have also determined the maximal number of generations as a function of

the maximal volume. In agreement with general expectations, a small Calabi-Yau volume,

V ' 12, as required to account for the physical value of the GUT gauge coupling, implies a

stringent bound of Ngen . 40 for the tetra-quadric , with peaks of the relevant distributions

at significantly lower values. These numbers still have to be divided by the order of freely-

acting symmetries to obtain the physical number of generations and are, therefore, easily

consistent with three generations.
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[19] P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary,

Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].

[20] P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355

(1991) 455 [INSPIRE].

[21] T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model

spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [INSPIRE].

– 15 –

http://dx.doi.org/10.1103/PhysRevD.84.106005
http://arxiv.org/abs/1106.4804
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4804
http://dx.doi.org/10.1007/JHEP06(2012)113
http://dx.doi.org/10.1007/JHEP06(2012)113
http://arxiv.org/abs/1202.1757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1757
http://dx.doi.org/10.1007/JHEP01(2014)047
http://arxiv.org/abs/1307.4787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4787
http://dx.doi.org/10.1007/JHEP06(2014)077
http://arxiv.org/abs/1309.0223
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0223
http://dx.doi.org/10.1007/JHEP03(2014)025
http://arxiv.org/abs/1311.1941
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1941
http://dx.doi.org/10.1007/JHEP06(2014)100
http://arxiv.org/abs/1404.2767
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2767
http://dx.doi.org/10.1016/j.physletb.2015.07.012
http://arxiv.org/abs/1409.2412
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.2412
http://dx.doi.org/10.1103/PhysRevD.91.046008
http://arxiv.org/abs/1411.0034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0034
http://dx.doi.org/10.1103/PhysRevD.91.046010
http://dx.doi.org/10.1103/PhysRevD.91.046010
http://arxiv.org/abs/1412.8696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8696
http://dx.doi.org/10.1103/PhysRevD.92.046002
http://arxiv.org/abs/1506.00879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00879
http://dx.doi.org/10.1002/prop.201500041
http://arxiv.org/abs/1507.07559
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07559
http://dx.doi.org/10.1016/0550-3213(88)90619-0
http://dx.doi.org/10.1016/0550-3213(88)90619-0
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B304,1"
http://dx.doi.org/10.1088/1126-6708/2005/06/020
http://arxiv.org/abs/hep-th/0504232
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504232
http://arxiv.org/abs/math/0604597
http://inspirehep.net/search?p=find+EPRINT+math/0604597
http://dx.doi.org/10.1016/0550-3213(96)00190-3
http://dx.doi.org/10.1016/0550-3213(96)00190-3
http://arxiv.org/abs/hep-th/9602070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602070
http://dx.doi.org/10.1016/0550-3213(96)00308-2
http://arxiv.org/abs/hep-th/9603142
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603142
http://dx.doi.org/10.1016/0550-3213(91)90122-E
http://dx.doi.org/10.1016/0550-3213(91)90122-E
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B355,455"
http://dx.doi.org/10.1016/j.nuclphysb.2004.12.032
http://arxiv.org/abs/hep-th/0411129
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411129


J
H
E
P
0
3
(
2
0
1
6
)
1
7
3

[22] B. Gato-Rivera and A.N. Schellekens, Non-supersymmetric Orientifolds of Gepner Models,

Phys. Lett. B 671 (2009) 105 [arXiv:0810.2267] [INSPIRE].

[23] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, One in a billion:
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