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1. INTRODUCTION

1.1. Motivation and summary. The algebraic K-theory and L-theory of group
rings has gained a lot of attention in the last decades, in particular since they play
a prominent role in the classification of manifolds. Computations are very hard
and here the Farrell-Jones Conjecture comes into play. It identifies the algebraic
K-theory and L-theory of group rings with the evaluation of an equivariant ho-
mology theory on the classifying space for the family of virtually cyclic subgroups.
This is the analogue of classical results in the representation theory of finite groups
such as the induction theorem of Artin or Brauer, where the value of a functor for
finite groups is computed in terms of its values on a smaller family, for instance
of cyclic or hyperelementary subgroups; in the Farrell-Jones setting the reduction
is to virtually cyclic groups. The point is that this equivariant homology theory
is much more accessible than the algebraic K- and L-groups themselves. Actually,
most of all computations for infinite groups in the literature use the Farrell-Jones
Conjecture and concentrate on the equivariant homology side.

The Farrell-Jones Conjecture is not only important for calculations, but also
gives structural insight, since the isomorphism occurring in its formulation has
also geometric interpretations. This has the consequence that the Farrell-Jones
Conjecture implies a variety of other well-known conjectures such as the ones due
to Bass, Borel, Kaplansky, Novikov, and Serre which concern character theory for
infinite groups, algebraic topology, the classification of manifolds, the ring struc-
ture of group rings, and group theory. We will discuss them in more detail in
Subsection

The main result of this paper is to prove the Farrell-Jones Conjecture for a
new prominent classes of groups, namely, cocompact lattices in almost connected
Lie groups. We mention that the operator theoretic analog of the Farrell-Jones
Conjecture, the Baum-Connes Conjecture, is known only for a few groups in this
class. With the exception of the Novikov Conjecture, the conjectures listed above
have not been known for this class so that our result presents also new contributions
to them. Since we address a general version of the Farrell-Jones Conjectures, where
one allows coefficients in additive categories, very powerful inheritance properties
are valid which we will describe in Subsection For instance, if this general
version of the Farrell-Jones Conjecture holds for a group, it holds automatically for
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all subgroups, and it passes to free and direct products and to colimits of directed
systems (with not necessarily injective) structure maps.

1.2. Statement of results. Next we give the precise formulation of our main
results, more technical explanations will follow in the main body of the text.

Theorem 1.1 (Virtually poly-Z-groups). Let G be a virtually poly-Z-group (see
Definition B11).

Then both the K-theoretic and the L-theoretic Farrell-Jones Conjectures with
additive categories as coefficients with respect to the family VCyc (see Definitions 2.1]
and 222)) hold for G.

This is the main new ingredient in proving the following results.

A virtually connected Lie group is a Lie group with finitely many path compo-
nents. A subgroup G C L of a Lie group L is called lattice if G is discrete and
L/G has finite volume and is called a cocompact lattice if G is discrete and L/G is
compact.

Theorem 1.2 (Cocompact lattices in virtually connected Lie groups). Let G be a
cocompact lattice in a virtually connected Lie group.

Then both the K-theoretic and the L-theoretic Farrell-Jones Conjectures with
additive categories as coefficients with respect to the family VCyc (see Definitions 2.1]
and 2221) hold for G.

An argument due to Roushon [35,[36] shows that the above results imply the
corresponding result for fundamental groups of 3-manifolds.

Corollary 1.3 (Fundamental groups of 3-manifolds). Let m be the fundamental
group of a 3-manifold (possibly non-compact, possibly non-orientable and possibly
with boundary).

Then both the K -theoretic and the L-theoretic Farrell-Jones Conjectures with
additive categories as coefficients with respect to the family VCyc (see Definitions 2.1]
and 2.2)) hold for .

We can also handle virtually weak strongly poly-surface groups (see Remark [7.2))
and virtually nilpotent groups (see Remark [2.13)).

Remark 1.4 (Finite wreath products). Actually, all the results above do hold for
the more general version of the Farrell-Jones Conjecture, where one allows finite
wreath products, i.e, the “with finite wreath product” version holds for a group G,
if the version above holds for the wreath product G F for any finite group F. The
“with finite wreath product” version has the extra feature that it holds for a group
G if it holds for some subgroup H C G of finite index.

The paper is organized as follows. We will briefly review the Farrell-Jones
Conjecture and its relevance in Section[2l In this section we also collect a number of
results about the Farrell-Jones Conjecture that will be used throughout this paper.
In Sections Blwe treat the case of virtual finitely generated abelian groups. Here we
follow an argument of Quinn [32] Sections 2 and 3.2] and extend it to our setting.
The main difference is that the present proof depends on a different control theory;
we use Theorem [ZT6] (which is proved in [7]) instead of results from [33]. The main
work of this paper is done in Section d] where we treat special affine groups. This
section builds on ideas from Farrell-Hsiang [20] and Farrell-Jones [22]. The proof of
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Theorem [T is given in Section Bl Theorem is proved in Section [l by reducing
it to Theorem [Tl and the main results from [6,39].

Fundamental groups of 3-manifolds are discussed in[d In Section [§ we reduce
the family of virtually cyclic subgroups to a smaller family extending previous
results of Quinn [32] for untwisted coefficients in rings to the more general setting
of coefficients in additive categories.

2. A BRIEF REVIEW OF THE FARRELL-JONES CONJECTURE WITH COEFFICIENTS

We briefly review the K-theoretic and L-theoretic Farrell-Jones Conjectures with
additive categories as coefficients.

2.1. The formulation of the Farrell-Jones Conjecture.

Definition 2.1 (K-theoretic Farrell-Jones Conjecture with additive categories as
coefficients). Let G be a group and let F be a family of subgroups. Then G satisfies
the K -theoretic Farrell-Jones Conjecture with additive categories as coefficients with
respect to F if for any additive G-category A the assembly map

asmb$: HY (Ex(G);Ka) — HS (pt;Ka) = Kn (/ A)
G

induced by the projection Ex(G) — pt is bijective for all n € Z.

Definition 2.2 (L-theoretic Farrell-Jones Conjecture with additive categories as
coefficients). Let G be a group and let F be a family of subgroups. Then G satisfies
the L-theoretic Farrell-Jones Conjecture with additive categories as coefficients with
respect to F if for any additive G-category with involution A the assembly map

asmbgAt HTCL;(E}_(G);L;—OG) — Hg(Pt;L:o&) = L§f°°> (/G A)

induced by the projection Ex(G) — pt is bijective for all n € Z.

Here are some explanations.

Given a group G, a family of subgroups F is a collection of subgroups of G such
that H € F,g € G implies gHg~* € F and for any H € F and any subgroup
K C H we have K € F.

For the notion of a classifying space Ex(G) for a family F we refer for instance
to the survey article [29].

The natural choice for F in the Farrell-Jones Conjecture is the family VCyc of
virtually cyclic subgroups but sometimes it is useful to consider in between other
families for technical reasons.

Notation 2.3 (Abbreviation FJC). In the sequel the abbreviation FJC stands for
“Farrell-Jones Conjecture with additive categories as coefficients with respect to
the family VCyc.”

Remark 2.4 (Relevance of the additive categories as coefficients). The versions of
the Farrell-Jones Conjecture appearing in Definition [Z1] and Definition are for-
mulated and analyzed in [5], [I2]. They encompass the versions for group rings
RG over arbitrary rings R, where one can build in a twisting into the group ring
or treat more generally crossed product rings R * G and one can allow orientation
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homomorphisms w: G — {£1} in the L-theory case. Moreover, inheritance prop-
erties are built in and one does not have to pass to fibered versions anymore as
explained in Subsection 23]

Example 2.5 (Torsionfree G and regular R). If R is regular and G is torsionfree,
then the Farrell-Jones Conjecture reduces to the claim that the classical assembly
maps

H,(BG;Kg) = Kn(RG);
H,(BG;L$; ™) = L) (RG),

are bijective for n € Z, where BG is the classifying space of BG and H, (—; KR)
and H*(—; Lgo@) are generalized homology theories with H,, (pt; KR) =~ K,(R)
and H, (pt; L;;OO>) = L$f°O>(R) for n € Z.

The original source for the (fibered) Farrell-Jones Conjecture is the paper by
Farrell-Jones [23] 1.6 on page 257 and 1.7 on page 262].

2.2. Applications. As remarked in the Introduction, the Farrell-Jones Conjecture
implies a number of other conjectures. For a detailed discussion of these applications
we refer to [I0] and the survey article [30]. Here we summarize these applications
as follows.

e Bass Conjecture
One version of the Bass Conjecture predicts the possible values of the
Hattori-Stallings rank of a finitely generated RG-module extending well-
known results for finite groups to infinite groups. If R is a field of charac-
teristic zero, it follows from the K-theoretic FJC.

e Borel Conjecture
The Borel Conjecture says that a closed aspherical topological manifold
N is topologically rigid, i.e, any homotopy equivalence M — N with a
closed topological manifold as source and N as target is homotopic to a
homeomorphism. The Borel Conjecture is known to be true in dimensions
<3. It holds in dimensions >5 if the fundamental group satisfies the
K-theoretic FJC and the L-theoretic FJC.

e Homotopy invariance of L%-torsion
There is the conjecture that for two homotopy equivalent finite connected
CW -complexes whose universal coverings are det-L?-acyclic the L?-torsion
of their universal coverings agree. This follows from the K-theoretic FJC.

o Kaplansky Conjecture
The Kaplansky Conjecture predicts for an integral domain R and a tor-
sionfree group G that 0 and 1 are the only idempotents in RG. If R is a
field of characteristic zero or if R is a skew field and G is sofic, it follows
from the K-theoretic FJC.

o Moody’s Induction Conjecture
If R is a regular ring with Q C R, e.g., a skew field of characteristic zero,
then Moody’s Induction Conjecture predicts that the map

o

colimor ., (¢) Ko(RH) — Ko(RG)
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is bijective. Here the colimit is taken over the full subcategory of the orbit
category whose objects are homogeneous spaces G/H with finite H. Tt
follows from the K-theoretic FJC.

If F is a skew field of prime characteristic p, then Moody’s Induction
Conjecture predicts that the map

COlimOT}'in(G) Ko(FH)[l/p] i) Ko(RG)[l/p]

is bijective. This also follows from the K-theoretic FJC.

e Poincaré duality groups
Let G be a finitely presented Poincaré duality group of dimension n. Then
there is the conjecture that G is the fundamental group of a compact
ANR-homology manifold. This follows in dimension n > 6 if the fun-
damental group satisfies the K-theoretic FJC and the L-theoretic FJC
(see [11 Theorem 1.2]). In order to replace ANR-homology manifolds by
topological manifold, one has to deal with Quinn’s resolution obstruction
(see [15], [31]).

e Novikov Conjecture
The Novikov Conjecture predicts for a group G that the higher G-signatures
are homotopy invariants and follows from the L-theoretic FJC.

e Serre Conjecture
The Serre Conjecture predicts that a group G of type FP is of type FF. It
follows from the K-theoretic FJC.

e Vanishing of the reduced projective class group
Let G be a torsionfree group and R a regular ring. Then there is the
conjecture that the change of rings map Ky(R) — Ko(RG) is bijective. In
particular the reduced projective class group I?o (RG) vanishes if R is a
principal ideal domain. This follows from the K-theoretic FJC.

o Vanishing of the Whitehead group
There is the conjecture that the Whitehead group Wh(G) of a torsionfree
group G vanishes. This follows from the K-theoretic FJC.

2.3. Inheritance properties. The formulation of the Farrell-Jones Conjecture
with additive categories as coefficients has the advantage that the various inheri-
tance properties which led to and are guaranteed by the so called fibered versions
are automatically built in (see [5, Theorem 0.7]). This implies the following results
(see [B, Corollary 0.9, Corollary 0.10 and Corollary 0.11] and [6, Lemma 2.3]).

Theorem 2.6 (Directed colimits). Let {G; | i € I} be a directed system (with not
necessarily injective structure maps) and let G be its colimit colim;c; G;. Suppose
that G; satisfy the K -theoretic FJC for everyi € I. Then G satisfies the K -theoretic
FJC.

The same 1is true for the L-theoretic FJC.

Theorem 2.7 (Extensions). Let1 — K — G 2, Q — 1 be an extension of groups.
Suppose that the group @ and for any virtually cyclic subgroup V- C @ the group
p~ (V) satisfy the K-theoretic FJC. Then the group G satisfies the K -theoretic
FJC.

The same is true for the L-theoretic FJC.

Theorem 2.8 (Subgroups). If G satisfies the K -theoretic FJC, then any subgroup
H C G satisfies the K -theoretic FJC.
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The same is true for the L-theoretic FJC.

Theorem 2.9 (Free and direct products). If the groups G1 and Go satisfy the K-
theoretic FJC, then their free amalgamated product G1xGo and their direct product
G1 x G4 satisfy the K -theoretic FJC.

The same is true for the L-theoretic FJC.

Theorem [Z77] and Theorem [2:8 have also been proved in [24].

Theorem 2.10 (Transitivity Principle). Let F C G be two families of subgroups
of G. Assume that for every element H € G the group H satisfies the K-theoretic
Farrell-Jones Conjecture with additive categories as coefficients for the family
Flu={K CH|Keg}.

Then the relative assembly map

asmbff’g : Hf (E;(G); KA) — Hf (Eg(G); KA)

induced by the up to G-homotopy uniqgue G-map Ex(G) — Eg(G) is an isomor-
phism for any additive G-category A and all n € 7Z.

In particular, G satisfies the K-theoretic Farrell-Jones Conjecture with additive
categories as coefficients for the family G if and only if G satisfies the K -theoretic
Farrell-Jones Conjecture with additive categories as coefficients for the family F

The same is true for the L-theoretic FJC.

Proof. Given an additive G-category A with involution, one obtains in the obvi-
ous way a homology theory over the group G in the sense of [2, Definition 1.3
using [5, Lemma 9.5]. In Bartels-Echterhoff-Liick [2] Theorem 3.3] the Transitiv-
ity Principle is formulated for homology theories over a given group G. Its proof
is a slight variation of the proof for an equivariant homology theory in Bartels-
Liick [3] Theorem 2.4, Lemma 2.2] and it yields the claim. O

Corollary 2.11. Let 1 - K — G — Q — 1 be an exact sequence of groups.
Suppose that Q) satisfies the K-theoretic FJC and that K is finite. Then G satisfies
the K -theoretic FJC.

The same 1is true for the L-theoretic FJC.

We mention already here the following corollary of the Transitivity Principle 2.7]
Theorem [LT] and Lemma

Corollary 2.12. Let 1 - K —- G — Q — 1 be an exact sequence of groups.
Suppose that Q satisfies the K -theoretic FJC and that K is virtually poly-Z. Then
G satisfies the K-theoretic FJC.

The same 1is true for the L-theoretic FJC.

Remark 2.13 (Virtually nilpotent groups). The inheritance properties allow some-
times to prove the FJC for other interesting groups. For instance, we can show that
every virtually nilpotent group satisfies both the K-theoretic and the L-theoretic
FJC. This follows from the argument appearing in the proof of [I0, Lemma 2.13]
together with Theorem [[LT] Theorem 2.6, and Theorem 27

2.4. A strategy. In this subsection we present a general strategy to prove the
FJC. It is motivated by the paper of Farrell-Hsiang [20].

We call a simplicial G-action on a simplicial X cell preserving if the following
holds: If ¢ is a simplex with interior ¢° and g € G satisfy g - 0° N o® # (), then we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FARRELL-JONES CONJECTURE FOR COCOMPACT LATTICES 345

get g-x =z for all x € 0. If G acts simplicially on X, then the induced simplicial
G-action on the barycentric subdivision X’ is always cell preserving. The condition
cell preserving guarantees that X with the filtration by its skeletons coming from
the simplicial structure on X is a G-CW-complex structure on X.

Recall that a finite group H is called p-hyperelementary for a prime p, if there
is a short exact sequence

0—-C—H—-P—=0

with P a p-group and C a cyclic group of order prime to p. It is called hyperele-
mentary if it is hyperelementary for some prime p.
We recall the following definition from [7].

Definition 2.14 (Farrell-Hsiang group). Let F be a family of subgroups of the
finitely generated group G. We call G a Farrell-Hsiang group with respect to the
family F if the following holds for a fixed word metric dg:

There exists a natural number N such that for any R > 0, ¢ > 0 there is
a surjective homomorphism agr.: G = Fg, with Fr . a finite group such that
the following condition is satisfied. For any hyperelementary subgroup H of Fg
we set H := a}}}e(H ) and require that there exists a simplicial complex Eg of

dimension at most N with a cell preserving simplicial H-action whose stabilizers
belong to F, and an H-equivariant map fg: G — Epg such that dg(g,h) < R
implies dj, (f(g), f(h)) < € for all g,h € G, where dp,_ is the I'-metric on Ep.

Remark 2.15. We point out that the existence of H-equivariant maps fr: G — Eg
as in the above definition is invariant under conjugation: If K is conjugated to H in
Fp then there is v € G such that K = ap (7 ')Har (7). Set Ex := Ey. There
is an action of K = v~ ' H~ on this simplicial complex where k € K acts as yky~!.
Finally, define fx: G — Ex by fx(9) := fu(yg); this map is K-equivariant and
has the appropriate contracting property because g — g is an isometry of G.

The next result is proved in [7].

Theorem 2.16 (Farrell-Hsiang groups and the Farrell-Jones-Conjecture). Let G be
a Farrell-Hsiang group with respect to the family F in the sense of Definition 214l

Then G satisfies the K-theoretic and the L-theoretic Farrell-Jones Conjectures
with additive categories as coefficients with respect to the family F (see
Definition 211 and Definition [2.2)).

3. VIRTUALLY FINITELY GENERATED ABELIAN GROUPS

In this section we prove the K-theoretic and the L-theoretic Farrell-Jones Conjec-
tures with additive categories as coeflicients with respect to the family VCyc (see
Definition 21] and Definition 2] for virtually finitely generated abelian groups.
This will be one ingredient in proving the K-theoretic and the L-theoretic FJC for
virtually poly-Z groups.

Theorem 3.1 (Virtually finitely generated abelian groups). Both the K -theoretic
and the L-theoretic FJC hold for virtually finitely generated abelian groups.

Remark 3.2. Since a virtually finitely generated abelian group possesses an epi-
morphism with a finite kernel onto a crystallographic group (see for instance [32]
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Lemma 4.2.1]), it suffices to prove Theorem Bl for crystallographic groups because
of Corollary 2111

A crystallographic group is obviously a CAT(0)-group. Hence it satisfies the
K- and L-theoretic Farrell Jones Conjectures with additive categories as coefficients
with respect to VCyc by [6, Theorem B] and [39]. Nevertheless we give a proof using
different methods in this section, because this proof for virtually finitely generated
abelian groups is a good model for the proof for virtually poly-Z-groups in Sections[l
and

In this section we follow Quinn’s proof of the Farrell-Jones Conjecture for virtu-
ally finitely generated abelian groups and untwisted group rings RG over commu-
tative rings [32] Theorem 1.2.2 and Corollary 1.2.3].

3.1. Review of crystallographic groups. In this subsection we briefly collect
some basic facts about crystallographic groups.

A crystallographic group A of rank n is a discrete subgroup of the group of
isometries of R™ such that the induced isometric group action A x R® — R" is
proper and cocompact. The translations in A form a normal subgroup isomorphic
to Z™ which is called the translation subgroup and will be denoted by A = Aa.
It is equal to its own centralizer. The quotient Fa := A/An is called the holonomy
group and is a finite group.

A group G is called an abstract crystallographic group of rank n if it contains
a normal subgroup A which is isomorphic to Z"™, has finite index, and is equal to
its own centralizer in GG. Such a subgroup A is unique by the following argument.
The centralizer in G of any subgroup B of A, which has finite index in A, is A,
since any automorphism of A which induces the identity on B is itself the identity.
Suppose that A’ is another normal subgroup which is isomorphic to Z™, has finite
index, and is equal to its own centralizer in G. Then AN A’ is a normal subgroup
of A and of A’ of finite index. Hence A = A’, as both A and A’ coincide with the
centralizer of A N A’. In particular A is a characteristic subgroup of G, i.e., any
group automorphism of G sends A to A.

Every abstract crystallographic group G of rank n is a crystallographic group
of rank n whose group of translations is A and vice versa (see [I6, Definition 1.9
and Proposition 1.12]). The rank of a crystallographic group is equal to its virtual
cohomological dimension.

Notation 3.3. Let A be an abelian group and s be an integer. We denote by sA or
s - A the subgroup of A given the image of the map s-ids: A — A and by A, the
quotient A/sA.

Definition 3.4 (Expansive map). Let A be a crystallographic group and s be an
integer different from zero. A group homomorphism ¢: A — A is called s-ezpansive
if it fits into the following commutative diagram:

pr

1 Ax —“ 5 A Fa 1
\s-id [¢ \id
1 Ap — 5 APy 1

Given an abelian group A, let A x_;qZ/2 be the semidirect product with respect
to the automorphism —id: A — A.
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Lemma 3.5. Let A be a crystallographic group. Let s # 0 be an integer.

(i) There exists an s-expansive map ¢: A — A provided that s =1 mod |Fal;
(ii) For every s-expansive map ¢: A — A there exists u € R™ such that the
affine map
asy: R" = R", z—s-z+u

s ¢-equivariant;
(iii) Suppose that A is Z"™ or the semidirect product Z™ x_;q Z/2. Let H C A
be a subgroup with H N Z"™ C sZ™.

Then there exists an s-expansive map ¢: A — A and an element v € R
such that H C im(¢) and the map a: R® — R", x + s-x + v is ¢-
equivariant.

Proof. Consider Ap as Z[Fa]-module by the conjugation action of Fa on
Ap. Since Ap is abelian, isomorphism classes of extensions with Aa as a normal
subgroup and Fa as a quotient are in one to one correspondence with elements
in H2(Fa;Aa) (see [14, Theorem 3.12 in Chapter IV on page 93]). Let © be the
class associated to the extension 1 — Ax — A — Fa — 1. Since Fa is finite,
H?(Fa; Ap) is annihilated by multiplication with |Fa| (see [14, Corollary 10.2
in Chapter III on page 84]). Hence multiplication with s induces the identity
on H%(Fa;Aa) because of s = 1 mod |Fa|. Therefore H?(Fa;s -ida,) = s -
idg2(pa;a,) sends © to ©, and the claim follows.
Since Fj is finite, H* (FA;AA Rz R) is trivial. Now one proceeds as in the
(more difficult) proof of Lemma
In the case A = Z" just take ¢ = s-idz» and v = 0. It remains to treat the
case A =Z" X_iq Z/2.

Let t be the generator of Z/2. We write the multiplication in Z/2 multiplica-
tively and in Z™ additively. For an element v € Z"™ we define an injective group
homomorphism

(3.6) Gu: A= A

by ¢u(t) = ut and ¢,(x) = s-x for & € Z". This is well defined as the following
calculation shows for x € Z™:

bu(t)? = utut = utut=! = u + (—u) = 0;
and

Gu(t) ()P ()™ = ut(s - ) (ut)™F = ut(s - x)t ™ (—u)
=u+(—=s-2)+ (—u) = —s5 -z = pu(—x) = Py (tat™").

Obviously ¢, is s-expansive.

Let pr: A — Z/2 be the projection. If pr(H) is trivial, we can choose ¢.
Suppose that pr(H) is non-trivial. Then there is u € Z" with ut € H. Consider
any element € H NZ". Then by assumption we can find y € Z" with z = s -y
and hence ¢,(y) = x. Consider any element of the form xt which lies in H. Then
(zt) - (ut) = z — u lies in H NZ" and hence in im(¢,,). Since ut and (wt) - (ut) lie
in the image of ¢,,, the same is true for zt. We have shown H C im(¢,).

One easily checks that the map a: R™ — R", =+ sz + u/2 is ¢,-equivariant.
This finishes the proof of Lemma O
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3.2. The Farrell-Jones Conjecture for certain crystallographic groups of
rank two. We will handle the general case of a virtually finitely generated abelian
group by induction over its virtual cohomological dimension. For this purpose we
have to handle in Lemmas and two special low-dimensional cases first.

The following elementary lemma is taken from [32] Lemma 3.3.2] (see also [21]
Lemma 4.3]). Denote by d°"° the Euclidean metric on R™.

Lemma 3.7. Let p be a prime and C C (Z/p)? be a non-trivial cyclic subgroup.
Then there is a homomorphism
r 72?17
such that the kernel of the map (Z/p)* — Z/p given by its reduction modulo p is C
and the induced map
mR=r@zR:R*=7Z’0,R>R=Z®;R

satisfies
dcuc(rR(zl),rR(zg)) <\2p-d®(z1, 22)
for all x1, 29 € R2.

Lemma 3.8. Both the K-theoretic and the L-theoretic FJC hold for Z? and Z>x_iq
Z)2.

Proof. Because of Theorem 2.8 applied to Z? C Z? x_;qZ/2 it suffices to prove the
claim for Z? x _;qZ/2. Because of Theorem 2.16]it suffices to show that Z? x;4Z is a
Farrell-Hsiang group with respect to the family VCyc in the sense of Definition 2.14]

In the sequel we abbreviate A := Z2 x_;q Z/2. We have the obvious short exact
sequence

1-225A%72/251.
Fix a word metric da on A. The map
ev: A —» R?

given by the evaluation of the obvious isometric proper cocompact A-action on R? is
by the Svarc-Milnor Lemma (see [I3, Proposition 8.19 in Chapter 1.8 on page 140])
a quasi-isometry if we equip R™ with the Euclidean metric d°"°. Hence we can find
constants C; and Cy such that for all g1, g2 € A we have

(3.9) d(ev(g1),ev(g2)) < Ci-dalgi,g2) + Co.
Consider positive real numbers R and e. Choose two different odd prime numbers
p and ¢ satisfying

8- (Cy- R+ Cy)?
2

(3.10) <p,q.

€
For a natural number s define A, to be A/sZ?2. We have the obvious exact sequence

1= 72/s7% = (Z)s)? = A, 25 7/2 > 1.

The canonical projection apq: A — A, will play the role of the map ar . appearing
in Definition 2141

Let H C A,, be a [-hyperelementary subgroup for some prime [. Since p and ¢
are different, we can assume without loss of generality I # p. Then the canonical
projection 7: A,y — A, sends H NZ?/pgZ? to a cyclic subgroup C of Z?/pZ?. Let
r: Z?> — Z be the homomorphism appearing in Lemma B if C is non-trivial and
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to be the projection on the first factor if C is trivial. Let H be the preimage of H
under the projection ap,: A — A,,. In all cases we get for 1,22 € R?

(3.11) dee (’I“R(l‘l ’I“R T2 ) \/7 dcuc .Tl,J?Q
and
(3.12) r(HNZ?) C pZ.

The homomorphism r extends to a group homomorphism
Ti=1Xiqldze: A=7Z*X_1qZ/2 = Do =Z X _iq Z/2.

We conclude 7(H) NZ = r(H NZ*) C pZ from BI2). Because of Lemma
we can find a p-expansive map

¢: Doy — Do
and an affine map
apu: R—=R, z—=p-2+u
such that ap, is ¢-equivariant and
(3.13) 7(H) C im(¢).
Let Ey be the simplicial complex with underlying space R whose set of zero-
simplices is {n/2 | n € Z}. Equip R with the standard D..-action given by transla-

tion with integers and —idg. Then the D.,-action on Fy = R is a cell preserving
simplicial action. If d" is the I'-metric on FEy, we get for all y1,y2 in By

(3.14) d" (y1,y2) < 2-d(y1, ).

Define a map

fai AR R 2D B R

The map ev: A — R? is A-equivariant. The map rg: R? — Ris7: Z? x_ ;9 Z/2 —
Do = 7 x_iq Z/2-equivariant. Because of (3.I3) we can define an H-action on R
by requiring that h € H acts s by multiplication with the element u € Do, which
is uniquely determined by 7(h) = ¢(u ). With respect to this H-action and the
obvious H-action on A the map fy is H-equivariant. All isotropy groups of the
H-action on E are virtually cyclic. We estimate for g1, g» € A with da(g1,92) < R

using (3.9), (10), BII), and (E.14)
dll(fH(91)7fH(92)) <2-d™(fu ( 1), fr(g2))

—9. deuc( orRoev(g1), p}lorRoev(m))
2
— 2. geue (TJR oev(gy), R © eV(QQ))

“/2p-d®(ev(g1),ev(g2))

<

N BINT

sz,

IN

(Cr-da(g1,92) + C2)

>

IN

g;

-(C1-R+Cy)

IN
la)
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We conclude that A is a Farrell-Hsiang group in the sense of Definition 2.14] with
respect to the family VCyc. Hence Lemma B.8] follows from Theorem O

Lemma 3.15. Let A be a crystallographic group of rank two which possesses a
normal infinite cyclic subgroup. Then both the K -theoretic and the L-theoretic FJC
hold for A.

Proof. We will use induction over the order of F' = Fa. If F is trivial, then A = Z?
and the claim follows from Lemma The induction step for |F'| > 2 is done as
follows.

Because of Lemma [3.8] we can assume in the sequel that A is different from
72 x_;q7Z/2. Let F be the family of subgroups K C A which are virtually cyclic
or satisfy prp (K) # Fa for the projection pra: A — Fa. Because of the induction
hypothesis, the Transitivity Principle 210, and Theorem it suffices to show
that A is a Farrell-Hsiang group with respect to the family F in the sense of
Definition 2.14]

We have the canonical exact sequence associated to a crystallographic group

15 A=A S AR P = Fy 1.

Next we analyze the conjugation action p: F' — aut(A). Since A is crystallographic,
p: F — aut(A) is injective. By assumption A 2 Z? and we can find a normal infinite
cyclic subgroup C' C A.

Next we show that A contains precisely two maximal infinite cyclic subgroups
which are F-invariant.

By rationalizing we obtain a two-dimensional rational representation Ag := A®z
Q of F. It contains a one-dimensional F-invariant Q-subspace, namely Cg :=
(CNA)®z Q. Hence Ag is a direct summand of two one-dimensional rational
representations V3 @ Va. For each V; there must be a homomorphism o;: F' — {£1}
such that f € F acts on V; by multiplication with o;(f). Hence we can find
two elements x; and x5 € A such that x; and x5 are Z-linearly independent and
the cyclic subgroups generated by them are F-invariant. Let C; be the unique
maximal infinite cyclic subgroups of A which contains z;. Then C; and Cs are
F-invariant and

A=Cr a0,

The F-action on Cj is given by the homomorphism o;: F — {£1}. Since p: F —
aut(A) is injective and A is not isomorphic to Z? x_iq Z/2, the homomorphisms o4
and o3 from F to {£1} must be different and F is isomorphic to Z/2 or Z/2® Z/2.

It remains to show that any maximal infinite cyclic subgroup D which is F-
invariant is equal to Cy or C3. Given such D, we obtain an F-invariant Q-subspace
Dg C Ag. Since (4, Cz, and D are maximal infinite cyclic subgroups of A, it
suffices to show Dg = (C;)q for some ¢ € {1,2}. Suppose the contrary. Then for
i = 1,2 the projection Ag — (C;)g induces an isomorphism Dg — (C;)g. Hence
(C1)g and (C2)g are isomorphic. This implies o7 = 03, a contradiction. Hence we
have shown that A contains precisely two maximal infinite cyclic subgroups which
are F-invariant.

If C C A is a maximal infinite cyclic subgroup which is invariant under the
F-action, then it is normal in A and we can consider the projection

ot A= AJC.
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We obtain a commutative diagram

1 A—" AP o F 1
l&c lgc lid
1 A)c a0 e 1

where the vertical maps are the obvious projections.

Since A/C is virtually abelian with virtual cohomological dimension one, we
can find an epimorphism fig: A/C — A} to a crystallographic group of rank one
whose kernel is finite. We obtain a commutative diagram

pro

1 AJC—— AJC F 1
lﬂc lﬁc l
1 Aa, AL, Fa, 1

The map pc is injective and Ay, is either Z or Doy = Z X_jq Z/2. Define homo-
morphisms

o = fic oot A — Ap;

Vo = ‘Ll,cofc: A— AA/C
Consider word metrics da and dA'c . Recall that D¢ is a surjective group ho-
momorphism and the quasi-isometry type of a word metric is independent of the
choice of a finite set of generators. Hence we can find constants C; and C5 such

that for every (of the finitely many) maximal infinite cyclic subgroups C C A which
are invariant under the F-action and for all g1, g2 € A we get

(3.16) dar, (Vo (91),Pc (1)) < C1-da(g1,92) + Ca.
Equip R with the standard action of Al,. Let E be the simplicial complex whose
underlying space is R and whose set of zero-simplices is {n/2 | n € Z}. The A}-

action above is a cell preserving simplicial action on E. If d" is the I'-metric on
E, we get for y1,y2 € R

1
(3.17) d" (y1,y2) < 2-d(y1, 92)-
Let the map

evo: Ar = R

be given by the evaluation of the isometric proper cocompact A -action on R. By
the Svarc-Milnor Lemma (see [I3, Proposition 8.19 in Chapter 1.8 on page 140]) we
can find constants C3 and C4 such that for every (of the finitely many) maximal
infinite cyclic subgroups C C A which are invariant under the F-action and all
g1, 92 € A we have
(3.18) d°**(eve(g1),eva(ge)) < Cs - dar,(91,92) + Ca.

We conclude from BI6), 3I7), and (3I8) that we can find constants Dy > 0
and Dy > 0 such that for every maximal infinite cyclic subgroup C' C A which is
invariant under the F-action and all g1,g2 € A we have

(319) dl1 (evc Oﬁc(gl), evgo O/V\C(gl)) < D- dA(gl,gg) + Ds.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



352 A. BARTELS, F. T. FARRELL, AND W. LUCK

Consider positive real numbers R and e. We can choose an odd prime p satisfying

(3.20) p> 2 DR+ Dy)

€

Put A, = A/pA and A, = A/pA. We obtain an exact sequence

1—>Ap—>Ap&>F—>1.

The projection a,: A — A, will play the role of the map ar. appearing in
Definition 2141

Let H C A, be a hyperelementary subgroup. If prp(H ) is not F, then H belongs
to F and we can take for fy the map A — {e}. Hence it remains to treat the case
pr,(H) = F.

Next show that A, N H is cyclic. Choose a prime ¢ and an exact sequence
1—- D — H — P — 1 for a g-group P and a cyclic group of order prime to
g. If p and ¢ are different, A, N H embeds into D and is hence cyclic. Suppose
that p = ¢. It suffices to show that A, N H is different from A,, or, equivalently,
H # A,. Suppose the contrary, i.e., H = A,. Because the order of F'is 2 or 4
and p is odd, this implies that the composite A, -+ H — P is an isomorphism.
Hence there is a retraction for the inclusion A, — A,. This implies that the
conjugation action of F' on A, is trivial. We have already explained that there are
homomorphisms o;: F — {£1} such that f € F acts on C; by multiplication with
0;(f) and that these two homomorphisms must be different. The induced F-action
on A, = (C1)p & (Cs), is analogous. Since p is odd, this leads to a contradiction.
Hence H N A, is cyclic.

Since prp(H ) = F, the cyclic subgroup H N A, is invariant under the F-action
on A, = (C1), ® (C2),. Hence A, N H must be contained in (C;), = a,(C;) for
some i € {1,2}. We put C' = C; and A" = Af, in the sequel.

Let H be the preimage of H under the projection ay,: A — A,,. Then we get for
the homomorphism &-: A — A/C

Ec(H N A) C p(A/C).

Since the map pc: A/C — Aas is injective, we conclude for the homomorphism
| 2o A— AA/

ve(HNA)N Axr C pAnar.

Because p is odd and |F| is 2 or 4, this implies that

Uo(H) N Axr C pAar.
Because of Lemma and we can find a p-expansive map

o A — A
and an affine map
apu: R—=R, z—=p-z+u,

such that ap ., is ¢-equivariant and

(3.21) ve(H) Cim(o).
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Let E'y be the simplicial complex whose underlying space is R and whose set
of zero-simplices is {n/2 | n € Z}. The standard Aj-action is a cell preserving
simplicial action on Ef. We define the map

—1
ev

fi: A2 A YR By =R

From @BI7), BI9), and B20) and we conclude for gi,g2 € A satisfying
da(g1,92) < R

d" (fu(91), fulgr)) =2 - d(fu(91), frr(g1))

=2 deuc(a;i oeveova(g1), a;i ocevo oﬁc(gl))

2 ~ ~
= = .d° ( eve olo(g1), eve oyc(gl))

p
2

< P (D1 - da(g1,92) + D2)
2

(D1 - R+ D
p

<

IN
la)

Because of (3.ZI) we can define an H-action on Ex by requiring that h € H acts
by the unique element g € A’ which is mapped under the injective homomorphism
¢: A" — A’ to vo(h). Then the map fr: A — E is H-equivariant and all isotropy
groups of the H-action on E are virtually cyclic.

We conclude that A is a Farrell-Hsiang group in the sense of Definition 2.14] with
respect to the family VCyc. Hence Lemma follows from Theorem O

Lemma 3.22. Let 1 -V —- G — Q — 1 be an exact sequence of groups. Suppose
that Q satisfies the K -theoretic FJC and that'V is virtually cyclic. Then G satisfies
the K-theoretic FJC

The same is true for the for the L-theoretic FJC.

Proof. By the Transitivity Principle 210 it suffices to show that G satisfies the
K-theoretic FJC in the special case that @ is virtually cyclic. Since this is obvious
for finite V, we can assume that V is infinite. Let C” be an infinite cyclic subgroup
of V. Let C be the intersection (7,c,, 1) ¢(V). Since V' contains only finitely
many subgroups of a given index, this is a finite intersection and hence C is a
characteristic subgroup of V' which is infinite cyclic and has finite index. Hence
C is a normal infinite cyclic subgroup of the virtually finitely generated abelian
group G and the virtual cohomological dimension of G is two. There exists a
homomorphism with a finite kernel onto a crystallographic group G — G’ (see for
instance [32] Lemma 4.2.1]). The rank of G’ is two and G’ contains a normal infinite
cyclic subgroup. Hence G satisfies the K-theoretic FJC because of Corollary 211
and Lemma O

3.3. The Farrell-Jones Conjecture for virtually finitely generated abelian
groups. In this subsection we finish the proof of Theorem [B.11

Proof of Theorem Bl We use induction over the virtual cohomological dimension
n of the virtually finitely generated abelian group A and subinduction over the
minimum of the orders of finite groups F' for which there exists an exact sequence
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1—2" - A — F — 1. The induction beginning n < 1 is trivial since then A is
virtually cyclic.

In the induction step we can assume that A is a crystallographic group of rank
n because of Corollary 2.I1] since a virtually finitely generated abelian group pos-
sesses an epimorphism with a finite kernel onto a crystallographic group (see for
instance [32, Lemma 4.2.1]). Hence we have to prove that a crystallographic group
A of rank n > 2 satisfies both the K- and L-theoretic FJC provided that every
virtually finitely generated abelian group A’ satisfies both the K- and L-theoretic
FJIC if ved(A’) < n or if there exists an extension 1 — Z" — A’ - F — 1 for a
finite group F with |F| < |Fal.

Because of the induction hypothesis and Lemma we can assume from now
on that A does not contain a normal infinite cyclic subgroup C.

Let F be the family of subgroups of A which contains all subgroups A’ C A such
that ved(A’) < ved(A) holds or that both ved(A’) = ved(A) and |Fas| < |Fa| hold.
By the induction hypothesis, the Transitivity Principle 210, and Theorem it
suffices to show that A is a Farrell-Hsiang group in the sense of Definition for
the family F.

Fix a word metric da on A. Let the map

ev: A — R"

be given by the evaluation of the cocompact proper isometric A-operation on R™. Tt
is by the Svarc-Milnor Lemma (see [I3, Proposition 8.19 in Chapter 1.8 on page 140])
a quasi-isometry if we equip R™ with the Euclidean metric d°"°. Hence we can find
constants C; and C5 such that for all g1, go € Z? we have

(3.23) d**(ev(g1),ev(g2)) < C1 - dalgr, g2) + Co.

Consider real numbers R > 0 and € > 0. Since A acts properly, smoothly and
cocompactly on R™, we can equip R” with the structure of a simplicial complex such
that the A-action is cell preserving and simplicial. Denote this simplicial complex
by E. The induced ['-metric d" and the Euclidean metric d®*° induce the same
topology since E is bounded locally finite. Hence we can find § > 0 such that

(3.24) A (y1,2) <6 = d (y1,92)) < e

holds for all y1, yo.

We can write |Fa| = 2% -1 for some odd natural number [ and non-negative
integer k. By Dirichlet’s Theorem (see [37, Lemma 3 in I11.2.2 on page 25]) there
exist infinitely many primes which are congruent to —1 modulo 4/. Hence we can
choose a prime number p satisfying

Ci-R+C
p> % and p=-1 mod 4.
Now choose 7 such that
p" =1 mod |Fal.

Since A = Ap is a characteristic subgroup of A, also p” - A is characteristic and
hence a normal subgroup of A. Define groups

Apr = A/(p" - A);
Ay = A/(p" - A).
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Let pr: A — Fa and pr,.: Apr — Fa be the canonical projections. Let the
epimorphism

Ofprz A — Apr

be the canonical projection. It will play the role of the map ar . appearing in
Definition 2141

Consider a hyperelementary subgroup H C A,-. Let H be the preimage of H
under ayr: A — Ay, Suppose that pr,.(H) # Fa. Then H is a crystallographic
group with ved(H) = ved(A) and |F| < Fa. By induction hypothesis H satisfies
both the K- and L-theoretic FJC and hence belongs to F. Therefore we can take
as the desired H-map in this case the projection to the one-point-space

fH: ﬁ—) EH = {0}

It remains to consider the case, where pr, (H) = Fa. We conclude from [32]
Proposition 2.4.2] that H N A,» = {0} since A contains no infinite normal cyclic
subgroup and the prime number p satisfies p =3 mod 4 and p %21 mod ¢ for any
odd prime ¢ dividing |Fa| and hence .

Since p" =1 mod |Fa| we can choose by Lemma a p"-expansive homo-
morphism ¢: A — A. Consider the composite o, 0¢p: A — A, Its restriction to
A = Aj is trivial. Hence there is a map ¢: Fa — A, satisfying

G 06 = Fopr

pry- op = idp, .

Hence ¢ is a splitting of the exact sequence 1 — Apr = Apr = Fao — 1. The
homomorphism pr,. [g: H — Fa is an isomorphism and hence defines a sec-
ond splitting. Since the order of the finite group A, and the order of Fa are
prime, H! (FA; Apr) vanishes (see [14, Corollary 10.2 in Chapter III on page 84]).
Hence the subgroups H and im(a,- o ¢) = im(¢) are conjugated in A, (see [14]
Corollary 3.13 in Chapter IV on page 93]). Because of Remark 215 we can assume
without loss of generality that H = im(a,r o ¢). Next we show for H := a;rl(H )

(3.25) T = im(g).

Because of H = im(ayr 0 ¢) it suffices to prove az}l (im(ayr 09)) C im(¢). Consider
g€ oz;,»l (im(ayr 0¢)). Choose go € A with ayr(g9) = ayr (¢(g0)). We conclude that
opr (g . qb(go)’l) is trivial. Hence we can find a € A with ¢(a) = p"-a = g-¢(go) .
This implies g = ¢(a - go). Hence 325 is true.

By Lemma there exists an element u € R such that the affine map

apry: R" = R", z—=p -y+u,
is ¢-linear. Consider the composite

(‘%ﬂ',u)il

fa: A SR By =R

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



356 A. BARTELS, F. T. FARRELL, AND W. LUCK

We get from ([B.23) for g1, g2 € A with da(g1,92) < R
d (fu(g1), fr(g2)) = d*((apru) " 0 ev(gn), (apru) ' 0 ev(g2))

= }% -d®(ev(g1), ev(g2))
< }% (C1-dalg1,92) + C2)
s%-(OI-sz)-

Our choice of p guarantees
F-(C’l - R+ Cy) <94,

where 4 is the number appearing in ([B:24]). We conclude from (3:24)) for all g1, g2 € A

da(g1,92) < R = dll(fH(Ql)afH(Qﬁ) <e

Because of (3.25) we can define a cell preserving simplicial H-action on the sim-
plicial complex Ep by requiring that the action of h € H is given by the action of
g € A for the element uniquely determined by ¢(g) = h. The isotropy groups of
this H-action on F are all finite and hence belong to F. The map fg: A — Fy is
H-equivariant.

We conclude that A is a Farrell-Hsiang group in the sense of Definition 2214 with
respect to the family F. Now Theorem B follows from Theorem |

4. IRREDUCIBLE SPECIAL AFFINE GROUPS

In this section we prove the K-theoretic and the L-theoretic Farrell-Jones
Conjectures with additive categories as coefficients with respect to VCyc for ir-
reducible special affine groups. This will be the key ingredient and step in proving
the K-theoretic and the L-theoretic Farrell-Jones Conjectures with coefficients in
an additive category with respect to VCyc for virtually poly-Z-groups.

The irreducible special affine groups will play in the proof for virtually poly-Z-
groups the analogous role as the crystallographic groups of rank two which contain
a normal infinite cyclic subgroup played in the proof for virtually finitely generated
abelian groups. The general structure of the proof for virtual poly-Z-group is
similar but technically much more sophisticated and complicated than in the case
of virtually finitely generated abelian groups. It relies on the fact that we do
know the claim already for virtually finitely generated abelian groups. Our proof
is inspired by the one appearing in Farrell-Hsiang [20] and Farrell-Jones [22].

4.1. Review of (irreducible) special affine groups. In this subsection we
briefly collect some basic facts about (irreducible) special affine groups. We will
denote by ved the virtual cohomological dimension of a group (see [14, Section 11
in Chapter VIII]). The following definition is equivalent to Definition 4.7 in [23].

Definition 4.1 ((Irreducible) special affine group). A group T is called a special
affine group of rank (n + 1) if there exists a short exact sequence

1-A—-T—=D—1
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and an action p': T' x R® — R"” by affine motions of R™ satisfying:
(i) D is either the infinite cyclic group Z or the infinite dihedral group De;
(ii) The restriction of p’ to A is a cocompact isometric proper action of A.
We call a special affine group irreducible if for any epimorphism I' — I onto a
virtually finitely generated abelian group IV we have ved(I”) < 1.

Notice that the group A appearing in Definition Bl is a crystallographic group
of rank n. Let
P/ DXxR—=R

be the isometric cocompact proper standard action which is given by translations
with integers and —id. We will consider the action

(4.2) p: T x R*1 5 R !

given by the diagonal action for the I'-action p’ on R™ and the I'-action on R coming
from the epimorphism I' — D and the D-action p” on R. This I'-action p is a proper
cocompact action by affine motions and is not necessarily an isometric action.

4.2. Some homological computations. Let A = Ax be the unique and hence
characteristic subgroup of A which is abelian, normal, and equal to its own cen-
tralizer in A. Since it is a characteristic subgroup, it is normal in both A and T'.

Define
Q:=T/A.
Then we obtain exact sequences
(4.3) 1-A-TE Q-1
(4.4) 1—-Fa—=Q5 D1,

where Fa is the finite group A/A. In particular @ is an infinite virtually cyclic
group.

Lemma 4.5. Let I' be a special affine group. Consider A as ZQ-module by the
conjugation action associated to the exact sequence [E3). Then
(i) T is irreducible if and only if for any subgroup Ty C T of finite index
rkz(H1(Tg)) < 1 holds;
(ii) The order of H?(Q; A) is finite;
(iii) If T is irreducible, then the order of H*(Q; A) is finite.
Proof. “=" Let I'y C I' be a subgroup of finite index. We have to show
rkz(H1(Tp)) < 1, provided that T' is irreducible. We can find a normal sub-
group I'y C T" with [I' : T4] < oo and I';y C I'y. Since the image of the map
H,(T'1) = H;(Ty) induced by the inclusion has a finite cokernel, it suffices to
show rkz(H,(T'1)) < 1. Since [I'1,T] is a characteristic subgroup of T'; and
I'y is a normal subgroup of T', the subgroup [I';,T'1] of T is normal in T'. Let
f:T' -V :=T/['1,T1] be the projection. Its restriction to I'; factorizes over the
projection f1: I'y — H;(I'1) to a homomorphism ¢: H1(I'1) — V. One easily checks
that 7 is an injection whose image has finite index in V. Hence V is virtually finitely
generated abelian. Since I' is by assumption irreducible, the virtual cohomological
dimension of V" and hence of H;(T'1) is at most one. This implies rkyz(H;(Tg)) < 1.

“«<=" Consider an epimorphism f: I' — V to a virtually finitely generated abelian
group V. Put n = ved(V). Choose a subgroup Vo C V with Vj = Z" and
[V : Vh] < 0. Let Ty C T be the preimage of Vo under f and denote by fo: Ty — Vj

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



358 A. BARTELS, F. T. FARRELL, AND W. LUCK

the restriction of f to I'y. Then fy is an epimorphism and I'g is a subgroup of I"
with [[' : Tg] < oco. The map fy factorizes over the projection I'y — H;(T'o) to
an epimorphism fo: Hy (o) — Vp. Hence n < rkz(H;(I'p)). Since by assumption
rkz(H1(Tp)) < 1, we conclude ved(V) < 1. Hence T is irreducible.

Since @ is infinite and virtually cyclic, there exists an exact sequence 1 — Z —
@ — F — 1 for some finite group F. Recall that the cohomology group of finite
groups is finite for any coefficient module in dimensions > 1 (see [14], Corollary 10.2
in Chapter III on page 84]). Obviously the cohomology of Z vanishes for any coef-
ficient module in dimensions > 2. Now the claim follows from the Hochschild-Serre
spectral sequence (see [I4] Section 6 in Chapter VII]) applied to the exact sequence
above.

Because of the Hochschild-Serre spectral sequence (see [14], Section 6 in Chap-
ter VII]) applied to the exact sequence above, it suffices to prove that H'(Z; A) is
finite. This is equivalent to the statement that Hy(Z; A) is finite since H'(Z; A) =
Hy(Z; A). Let T'g be the preimage of Z C @ under the projection pr: I' — Q. It
is a normal subgroup of finite index in I" and fits into an exact sequence 1 — A —
I'o — Z — 0. From the Hochschild-Serre spectral sequence we obtain a short exact
sequence

Hence it remains to show that the rank of the finitely generated abelian group
H;(T) is at most one. This follows from assertion O

4.3. Finding the appropriate finite quotient groups. Fix a special affine
group I' of rank (n + 1). For any positive integer s the subgroup sA C A is
characteristic and hence is normal in both A and I". Put

As = AJsA;

I, :=T/sA.
Then A, is isomorphic to (Z/s)™ and we obtain an exact sequence
(4.6) 15 A, =T, 25 Q — 1.
Let

ps: ' =T

be the canonical projection.

Definition 4.7 (Pseudo s-expansive homomorphism). Let s be an integer. We call
a group homomorphism ¢: I' — I' pseudo s-expansive if it fits into the commutative

diagram
1 A 259 1
Js-id ld’ lid
1 A r—25Q 1

where both the upper and the lower horizontal exact sequence is the one of (3]
Recall that |[H?(Q; A)| is finite by Lemma

Lemma 4.8.

(i) For any integer s with s = 1 mod |H?(Q; A)| there exists a pseudo s-
expansive homomorphism ¢: I' — T';
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(ii) For any integer s with s = 1 mod |H?(Q; A)| the exact sequence 1 —
A, =T, 250 51 of @A) splits.
Proof. Since A is abelian, isomorphism classes of extensions with A as normal
subgroup and ) as quotient are in one to one correspondence with elements in
H?(Q; A) (see [14, Theorem 3.12 in Chapter IV on page 93]). Let © be the class
associated to the extension ([@3J]). Since by assumption s =1 mod |H?(Q; A)|, the
homomorphism

H3(Qss+ida) = s - idia(guay: HA(Q3 A) > H*(Q; A)
is the identity and sends © to ©, and the claim follows.

Let ¢: I' = I be a pseudo s-expansive map. The composite pso¢: I' — I's sends
A to the trivial group and hence factorizes through pr: I' — @ to a homomorphism

¢: @ = I's whose composite with pr,: I'y = @ is the identity. |

The group Q is virtually cyclic. Hence we can choose a normal infinite cyclic
subgroup C' C Q. Fix an integer s satisfying s = 1 mod |H?(Q; A)| and a positive
integer r such that the order of aut(A;) = GL,(Z/s) divides r. Put

Q. =Q/rC.
Let
ps: Q — aut(A4y)

be the group homomorphism given by the conjugation action associated to the exact
sequence (LH). It factorizes through the projection @ — @, to a homomorphism

Prst Qr — aut(Ay).
By Lemma [L8][(ii)| we can choose a splitting
o:Q — Ty

of the projection pr,: I's — . It yields an explicit isomorphism I’y =N As ¥, Q.
Its composition with the group homomorphism A, x,, Q@ — A %, . Q,, which
comes from the identity on As and the projection Q — @.., is denoted by

QT,S: Fs — AS va-,s Qr-
We obtain a commutative diagram

pr,

1 A, Iy Q 1

[

1—>ASL>AS X, Qr — Q. ——1

where the upper exact sequence is the one of (), the lower exact sequence is
the obvious one associated to a split extension, and the right vertical arrow is the
canonical projection Q — Q..

Define an epimorphism of groups by the composite

(4.9) Qs r p;> I qr—s> A Xp s Qr-

It will play the role of the map apg . appearing in Definition 2141
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4.4. Hyperelementary subgroups and index estimates. This subsection is
devoted to the proof of the following proposition. Recall that pr: I' — @ and
m: Q — D are the canonical projections and that we consider A as a Z@Q-module
by the conjugation action coming from the exact sequence ([@3).

Proposition 4.10. Let T' be an irreducible special affine group. Consider any
natural number 7. Then we can find natural numbers s and v with the following
properties:
(i) s=1 mod |H*(Q; A)|;
(ii) The order of aut(As) divides r;
(ili) For every hyperelementary subgroup H C Ay, Q, one of the following
two statements is true if H is the preimage of H under the epimorphism
s I'— Ag 3, Q:
(a) The homology groups H'(pr(H); A) and H*(pr(H); A) are finite and
there exists a natural number k satisfying

k divides s;
k=1 mod |[H*(Q;A);

|
k=1 mod |[H'(pr(H);A)[;
k=1 mod |H?(pr(H);A)|;
k>
HNACEA;

(b) [D:mopr(H)| > 7.

It will provide us with the necessary index estimates when we later show that '
is a Farrell-Hsiang group in the sense of Definition 2.14]

In order to prove Proposition .10 we first reduce from special affine groups of
rank (n + 1) to the special case of semidirect products Z™ x4 Z. Notice that every
special affine group of rank (n + 1) contains a subgroup of finite index which is
isomorphic to Z" x4 Z.

Definition 4.11. Consider M € GL,(Z). We will say that M is hyper-good if the
following holds: Given natural numbers o and v, there are natural numbers s and
r satisfying

(i) s=1 mod o;

(ii) The order of GL,(Z/s) divides r. In particular we can consider the group
(Z/s)™ xpp, Z)r, where M is the reduction of M modulo s. (We will con-
sider (Z/s)" as a subgroup of this group and denote by pr, , the canonical
projection from this group to Z/r.)

(iii) If H is a hyperelementary subgroup of (Z/s)™ X, Z/7, then at least one
of the following two statements is true:

(a) There exists a natural number k satisfying

k divides s;
k=1 mod o;
k> v;

HN (Z/s)" C k(Z/s)";
(b) [Z/r: pr, (H)] > v.
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In the sequel we will use the following elementary facts about indices of sub-
groups. Given a group G with two subgroups Gy and G of finite index, we get

[Go : (Go n G1)] < [G : Gl]
If f: G — G’ is an epimorphism with finite kernel K and Gy C G is a subgroup,
then
[G": f(Go)] < [G: Go] < [G": f(Go)] - |K].

Lemma 4.12. In order to prove Proposition 10 it suffices to show that any matrix
M € GL,(Z) is hyper-good.

Proof. Recall that we have already chosen a normal infinite cyclic subgroup C' C Q.
The index [Q : C] is finite. Let p: Q@ — aut(A) be the conjugation action associated
to the exact sequence 1 - A — T’ LN @ — 1 introduced in (£3). Fix a generator

t of C. Let
nA— A
be the automorphism given by p(t). Put
= pr ().

Then T is a normal subgroup in T' of finite index [ : T] = [@ : C] and fits into an
exact sequence

15A-T 2 C —1,
where pr is the restriction of pr to L.

Let 7 be any natural number. Let IV C T' be a subgroup of finite index. The
exact sequence 1 - A — I' 5 D — 1 appearing in Definition @1] yields an exact
sequence

1-T"NA-T —2(I")—>1
for subgroups IV N A C A and z(I'V) C D of finite index. Hence I" is again an

special affine group. We conclude from Lemma that I is irreducible. The
exact sequence ([3)) yields the exact sequence

1A =AnT ->T" > Q :=pr(I") > 1
for subgroups A’ C A and Q' C Q of finite index. Since A’ = Ar/na this is just the
version of ([@3) for I". Hence H'(Q'; A’) and H*(Q'; A’) are finite by Lemma ELE](i)]

and The obvious sequence of abelian groups 1 - A’ - A — A/A’ — 0 is an
exact sequence of Z(@)'-modules. It yields the long exact Bockstein sequence

o HNQA) o BN (QA) — HNQAJA) — HA(Q': )
= H*(Q A) » HX(Q AJA") — -+

Since A/A’ is finite, H'(Q'; A/A") and H*(Q'; A/A’) are finite. Since H(Q'; A")
and H?(Q'; A’) are finite, we conclude that H'(Q'; A) and H?(Q'; A) are finite.

In particular we get for any subgroup Q' C @ of finite index that H'(Q’; A) and
H?(Q'; A) are finite; just apply the argument above to the special case, where I" is
the preimage of ' under pr: I' — Q.

Let I be the set of subgroups Q' of @ of finite index such that [D : 7(Q’)] < 7.
We conclude for Q' € T

Q: Q< |Fal-[D:7(Q)] < |Fal-7
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from the exact sequence ([{4). Since @) contains only finitely many subgroups of
finite index bounded by |Fa| - 7, the set I is finite. Apply the assumption hyper-
good to the matrix M describing the automorphism 7 after identifying A = Z™ for
the constants

(4.13) v=r1-|Fal;
(4.14) o= [] (|H"(@;4)] |H*Q';A4)]).
QeI

Let r, s, and k be the resulting natural numbers.

Recall that we have chosen a splitting o: () — I's of the projection pr,: I's = Q.
Let v € T be any element which is mapped under ps: I' — T's to o(¢). Conjugation
with v induces on A just the automorphism 7: A — A since pr: I' = @ maps ~ to
t. The choice of 7 yields an explicit identification

T=A Xy C.
Put
C.=C/rC.

The epimorphism o s := grs0ps: I' = Ag X, @ restricted to T is the composite

of the inclusion A, %, |, Cr — Asx,,  Q, with the obvious projection &, ;: A X,

C — As %), Cr, where 75 Ay — A, is the automorphism induced by n: A — A.
Consider any hyperelementary subgroup H C A %, . Q.. Put

H:=Hn (A, %, C,).
This is a hyperelementary subgroup of A, %, C, and we get

a HH)NT =a, '(H);

af(H)NA=a, ((H)NA
pr(a; L(H))NC =pr(a,, '(H)).
Since the kernel of the epimorphism 7: Q — D is the finite group Fa, we get
Q: pr(oz_l(H))]
D:rmopr(a l(H >[ = ;
[ 1% ( T’,s( ))] = [FA|

(@ pr(ar ()] > [0 pr(ans ()]

This implies
o M HYNAC KA <= @, "(H)NAC kA;

. [C : ﬁ"(@_l(ﬁ))}
[D:mopr((o,:(H))] > BN

Since the projection C — C,. maps ﬁr(&?{l(ﬁ)) to prns(ﬁ), we get
s ((H)NACKA<— HNA, CkA,;
(Cspr(as ()] = ¢ prL ()]
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where pr,. ;1 As ¥, C. — C). is the canonical projection. We conclude

(4.15) afL(H)NAC kA<= HNA, CkA,;
C,: prns(ﬁ)
(4.16) [D: Wopr((a;;(H))] > %

Now we can show that one of two conditions appearing in assertion of
Proposition [£.10] holds with respect to the number k.

Suppose that {CT : prns(ﬁ)} > v. Then [D:wopr((a,i(H))|] > 7 by @IG)

and our choice of v in ([@I3]). Hence condition |(iii)b| appearing in Proposition .10
is true. Hence it remains to show that condition |(iii)a| in Proposition .10 holds

provided that [D imo pr((a;;(H))] < 7 holds. This implies [Cr : prrﬁs(ﬁ)} < v.
Recall that the number k satisfies

k divides s;

k=1 mod o;

k>

HNA, CEA,.

The group H := o L(H) has the property that pr(H) belongs to the set I appearing
in the definition of o in (£I4). Now condition appearing in Proposition .10l
follows from our choice of o in [@I4) and from ([4IZ). This finishes the proof of
Proposition O

Next we reduce the problem from hyperelementary groups to cyclic subgroups.

Definition 4.17. Let M € GL,(Z). We will say that M is cyclic-good if the
following holds: Given positive integers o and v, there are prime numbers p; and
po such that the following holds.
Set
s:=pip2 and r:=s-|GL,(Z/s)|.
In particular we can consider the group (Z/s)™ x . Z /1, where M is the reduction
of M modulo s. (We will consider (Z/s)™ as a subgroup of this group and denote
by pr, ; the canonical projection from this group to Z/r.) We require that
(i)

P17 P2;
p;=1 modo fori=1,2;
pi>v fori=1,2;
(ii) If C is a cyclic subgroup of (Z/s)™ xp, Z/r, then at least one of the

following two statements is true:

(a) CN(Z/s)" ={0};

(b) There is i € {1,2} such that p; divides both |C| and [Z/r : pr, ,(C)].

Lemma 4.18. Assume that M € GL,,(Z) is cyclic-good. Then M is hyper-good.

Proof. Suppose that M € GL,(Z) is cyclic-good. We want to show that it is
hyper-good. Let v > 0 be given. Pick p; and ps and put s = pyps and r =
s+|GL,(Z/s)| as in Definition LI71 Obviously conditions |(i)| and appearing
in Definition [Tl are satisfied for s and r. It remains to show that condition
appearing in Definition .17 implies condition appearing in Definition 1Tl
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Let H be a hyperelementary subgroup of (Z/s)™ i, Z/r. There is an exact

sequence 1 - C — H S L 1 where C'is a cyclic group and L is an [-group for
a prime ! not dividing the order of C. It follows that [(Z/s)* N H : (Z/s)" N C]
and [pr, ,(H) : pr, ,(C)] are both I-powers since ((Z/s)" N H)/((Z/s)" N C) is a
subgroup of L and pr, ((H)/ pr, ((C) is a quotient of L.

Suppose that condition appearing in Definition [£.17] is satisfied, i.e., C'N
(Z/s)" = {0}. Then HN(Z/s)" is an l-group. If HN(Z/s)" is trivial, condition [(iii)al
appearing in Definition L TTlis obviously satisfied for k = s. Suppose that HN(Z/s)™
is non-trivial. Since s = p;p2, the prime [ must be p; or ps. Let k be py if | = po,
and be py if | = p;. Then H N (Z/s)" C k- (Z/s)", i.e., condition [(iii)a] appearing
in Definition BTT] is satisfied.

Suppose that conditionappearing in Definition L 17]is satisfied, i.e., for some
i € {1,2} the prime p; divides both |C| and [Z/r : pr,. .(C)]. We have p > v. Since [
does not divide |C|, p; must be different from /. Since [pr,. ,(H) : pr,. ;(C')] is a power
of I, the prime p; divides [Z/r : pr, ((H)]. This implies v < p; < [Z/r : pr, ((H)].
Hence condition appearing in Definition EL.TT] is satisfied. |

Finally we show that every element in GL,(Z) is cyclic-good.

Lemma 4.19. Let M € GL,(Z). Let s be any natural number. Let r be a multiple
of the order of the reduction My € GL,(Z/s) of M. Lett € Z/r be the generator.
Then for any v € (Z/s)™ and r',s',j € Z and j we have

()" =95 € (Z)s)" 3, Z)r
provided that s'v =0 € (Z/s)" and MI" =id € GL,(Z/s).
Proof. We have

s'r'—1
() = > (M)w | 7
=0
and
s'r’'—1 s'—1r'—1 s'—1r'—1
ORLITED DB STALELT b VAN
=0 k=0 [=0 k=0 [=0
r'—1 r'—1
=5 (MHly= Z (MH)s'v = 0. O
1=0 =0

Lemma 4.20. Let M € GL,(Z). Let s be any natural number. Let v’ be a multiple
of the order of My € GL,(Z/s). Letr := r's. Let C be a cyclic subgroup of
(Z/s)™ xp, Z)r that has a non-trivial intersection with (Z/s)™.
Then there is a prime power p™ (N > 1) such that
(i) pV divides r = 1's;
(ii) pN does not divide | pr,. ,(C)|;
(iii) p divides |C' N (Z/s)"|.

Proof. Let t € Z/r be the generator. Let vt/ be a generator of C. Clearly v # 0 and
w = (vt7) P (Ol is a non-trivial element of CN(Z/s)™ (otherwise CN(Z/s)™ would
be trivial). Let s’ be the order of w € (Z/s)™. Lemma implies that (vt/)s" is
a power of t. If K is any integer with (K,s') = 1, then Kw = (vt7)/Prrs(ON-K
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0€ CnN(Z/s)" and hence Kw is not a power of t. Using Lemma .19 again, this
implies that s'r’" does not divide | pr, ((C)| - K for any integer K with (K,s’) = 1.
Therefore there is a prime p dividing s’ and a number N > 1 such that p” divides
s'r’, but not | pr, ((C)|. Clearly s’ divides |CN(Z/s)"|. Thus p divides [CN(Z/s)"|.
Because s’ divides s, p»V divides r = 7's. O

Lemma 4.21. All M € GL,,(Z) are cyclic-good.

Proof. Let o and v be any positive integers. By Dirichlet’s Theorem (see [37,
Lemma 3 in II1.2.2 on page 25]) there exists infinitely many primes which are
congruent 1 modulo o. Hence we can find primes p; and ps satisfying condition |(i)|
appearing in Definition LT7l It remains to show that condition appearing in
Definition 17 holds.

Let C be a cyclic subgroup of (Z/s)" x g, Z/r. We have to show condition [(ii)b]
appearing in Definition ELT7] holds, provided that C N (Z/s)™ # 0. We can apply
Lemma (20 with v’ = | GL,,(Z/s)|. Thus there is a prime p and a number N such
that

(i) p" divides r = | GL,(Z/s)| - s
(i) pV does not divide | pr, ,(C)|;
(iii) p divides |C' N (Z/s)™.
We deduce from [(i)| and that p divides [Z/r : pr, ((C)]. We deduce from |(iii)
that p divides |C| and s. Because s = py - py it follows that p is either p; or po
Therefore condition appearing in Definition 17 holds. |

Now Proposition I follows from Lemma [£12] Lemma (.18 and Lemma [£2T]

4.5. Contracting maps for irreducible special affine groups.

Proposition 4.22. Let I' be an irreducible special affine group. Fix a finite set
of generators of I' and let dr be the associated word metric on I'. Then there is a
natural number N and such that for any given real numbers R > 0 and € > 0 there
exists a sequence of real numbers (&,)m>1 and a natural number p such that the
following is true:

(i) Let H C T be any subgroup of finite index such that ’Hl (pr(ﬁ);A)‘ and
|H2 (pr(ﬁ); A)‘ are finite. Suppose that there exists an integer k satisfying

k= g[D:Tropr(ﬁ)];

k=1 mod |[H*(Q;A);
k=1 mod |[H'(pr(H);A)[;
k=1 mod |H?(pr(H); A)|;
ANH C kA.

Then there is a simplicial complex E of dimension < N with a simplicial
cell preserving the H-action whose isotropy groups are virtually cyclic, and
an H-equivariant map f: ' — E satisfying

dr(m,72) SR = d' (f(m), f(r)) < e

f07”_’Ylv Y2 € F; o

(ii) If H C T is any subgroup such that [D : wopr(H)] > u, then there exists
a one-dimensional simplicial complex E with a simplicial cell preserving
H-action such that for every e € E the isotropy group H,. satisfies A C H,
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and [H. : A] < oo and is in particular a virtually finitely generated abelian
subgroup of I', and an H -equivariant map f: I' — E satisfying

dr(y1,72) <R = d" (f(n), f(n)) <e
for v1,v2 €.

The proposition above will provide us with the necessary contracting maps when
we later show that I' is a Farrell-Hsiang group in the sense of Definition 214l Its
proof needs some preparation.

Lemma 4.23. Let k be a natural number and H CT be a subgroup with AN HC
kA. Assume that k = 1 mod |Hi(pr(ﬁ);A)} fori=1,2. Let : T — T be a
pseudo k-expansive map.

Then H is subconjugated to im(¢).

Proof. Recall that p: I’ — I'y, := I'/kA is the canonical projection. As explained
in the proof of Lemma Im the composite py o ¢: I' — T'y, factorizes through
the projection pr: I' — @ to a homomorphism ¢: Q — I';, whose composite with
the projection pry: I'y, — Q is the identity. Let H’ be the image of H under the
projection pg: I' — T'y. The exact sequence 1 — Ay := A/kA — Ty P9 -1
yields by restriction the exact sequence

1— A, — prgl(prk(H’)) Plk, pri(H') — 1.

The section ¢ of pry, restricts to a section 5/ s prp(H') — pr,;1 (prk(H’)) of prj.. The
restriction of prj, to H' yields an isomorphism H’' — pr(H’) since H' N Ay = {1}.

Hence its inverse defines a second section of prj,. Since pr(H) = pr,(H’), we get
by assumption for ¢ = 1,2

k=1 mod Hi(prk(H’);A).

Hence multiplication with k induces isomorphisms on H? (prk(H "), A) for i = 1,2.
The Bockstein sequence associated to the exact sequence 0 — A LECNG/RN A —0
of Z[pr(H')]-modules implies H'(pr;,(H'); Ay) = 0. Hence any two sections of pr},
are conjugated (see [14] Proposition 2.3 in Chapter IV on page 89]). This implies
that H' and im(a/) are conjugated in pry ' (pr,(H’)). Hence H' and im@/) are
conjugated in T'. o

In order to show that H is subconjugated to im(¢) it suffices to show that p, ' (H)

is subconjugated to im(¢) since obviously H C pgl(H’). Choose an element v € T’

N _ _ _ _
such that py.(v)H'p(7) ™" = im(¢). Since yp; " (H') v~ = pi* (pe()H'pe() 1),
we can assume without loss of generality that H' C irn(al)7 otherwise replace H'
by pr(v)(H")p(y)~!. This implies H' C im(¢). It remains to show

ppt(H') C im().

Consider vy € py'(H'). Because of H' C im(¢) we can find 7, € T such that
P (Y0) = pr © #(71). Hence there is a € kA with 79 = ¢(71) - a since ker(py) = kA.
Since ¢ induces k -id on A, the element a lies in the image of ¢ and hence ~q lies
in the image of ¢. |

Lemma 4.24. Let I' be an irreducible special affine group. Let ¢: ' — T be a
pseudo s-expansive group homomorphism.
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Then there ezists u € R™ such that the affine diffeomorphism
f:R”iﬂR”, T s-Tr+u
is ¢-equivariant.
Proof. Given an element v € I', let M, : R™ — R"™ be the linear automorphism and
vy € R™ uniquely determined by the property that ~ is the affine map R” — R"
sending = to M, (x) + v,. One easily checks that M,,,, = M,, o M, and v,,, =
vy, + M., (vy,) hold for all 41,72 in I" and M, = id and v, = a hold for a € A.

Consider v € T. Then there exists a € A such that a - ¢(y) = 7 holds in I'. This
implies that for all x € R™ we have

M) () + @+ vg(7) = Mag(y) (%) + Va.g(y) = My (2) + 0y
We conclude
My = M)
Consider the function
d: T = R", v vh4) — 50y

It factorizes through the projection pr: I' = @ to a function d: Q — R™, since for
any a € A and v € I' we have

Up(an) = 8" Vary = V(a)-6(7) — 8 Vary = $(a) + Vg(7) = 8- (a+vy)
=5+ Vg(y) = 8- (a+0y) = Vg(y) =5y
The conjugation action of v € I' on A is given by M., by the following calculations:
M,go1 = My o My 0 My = My oidoM,—1 = M, = M; = id
and
Vyay—1 = Uy + My (Vgy-1) = vy + My (Vg +vy-1) = vy + My (vy) + My (vy-1)
= M, (va) + vy + My (vy-1) = My(a) + vyy1 = M, (a).

This action extends to an action on R" = A®R and is used in the following calcu-
lation, that shows that d is a derivation.

a(pr(%) pr(’72)) =d(m2)
= Vp(nyz) = 5 Uiy
= Vp(y1)d(r2) = 5" Uyime
= V(1) T M) (Vp(r2)) = 8+ 09y — 5 Moy, (v5,)
= V() = 8 Uy + Moy (Vg(y5)) = 8+ Moy (v5)
= Vg(yy) = 8 Uy, + My, (U¢(’Y2) - s UWQ)
=d(m)+m - d(r)
= d(pr(y1)) +pr(m) - d(pr(r2))-

Since H'(Q;R") = H'(Q; A®z R) = HY(Q; A) ®z R and H*(Q; A) is finite by
Lemma we conclude H'(Q;R™) = 0. The description of the cocycles as
derivations and coboundaries as principal derivations (see [14, Exercise 2 in I1I.1
on page 60]) implies that there exists u € R™ such that for all y € T

u— My(u) = vy(y) — 5 vy
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holds. Hence the affine map f: R™ — R” sending = to sx + u is ¢-linear by the
following calculation:

O() - [() = My (f (@) + vg(y)
= My (s 2+ u) + vg(y)
=M, (s x)+ My (u) + vy
=s-M(x)+s-vy+u
= [ (M, () + vy)
= f(y- ). -

Lemma 4.25. Let N be a natural number and € > 0. Then there exists a number
Dy depending only on N such that the following holds:

Let X be a simplicial complex of dimension < N and let X’ be its barycentric
subdivision. Then we get for every x,y € X

1 1
dl)(($7y) < DN ' le/(l'vy)a
where dl;( and dl;{, denote the I -metric on X and X'

Proof. Tf X is the standard (2N + 1)-simplex Aspn 1, a direct inspection shows the
existence of a number Dy such that for every z,y € Ayny1 we have

1 1
dlA2N+l(1‘,y) <Dy - dl(AQNH)/(I,y)-

Now consider x,y € X. There is a subcomplex ¥ C X with at most 2(dim(X) + 2)
vertices containing these four points. We can identify Y with a simplicial subcom-
plex of Ao 1. Now the claim follows for the number Dy above since the I'-metric
is preserved under inclusions of simplicial subcomplexes and the barycentric subdi-
vision is compatible with inclusions of simplicial subcomplexes. O

Since I' acts properly and cocompactly on R™ x R, we can choose a I'-invariant
Riemannian metric b'. Let d" be the associated metric on R”™ x R. Notice that d"
is I-invariant, whereas the standard Euclidean metric on R™ x R is not necessarily
[-invariant. We will denote by Bl (z, s) the closed ball of radius r around the point
(z,s) € R" x R with respect to the metric d''. By B (x) we denote the closed
ball of radius r around x € R™ with respect to the Euclidean metric.

In the sequel we fix a word metric dr on T'. The Svarc-Milnor Lemma (see [I3,
Proposition 8.19 in Chapter 1.8 on page 140]) implies

Lemma 4.26. Letev: I' = R™ xR be the map given by evaluating the I'-action on
the origin. There exists positive real numbers C1 and Co such that for yo,v2 € T

d" (ev(m),ev(72)) < C1-dr(m1,72) + Co.

Lemma 4.27. If D is Z, denote by t a generator of Z and equip D with the
associated word metric dp. If D is Do, consider the standard presentation (s,t |
sts =t1 52 = 1) and equip D with the associated word metric dp.

Then there ezists a constant C3 > 0 such that for all v1,v2 € T’ we get

dp(mopr(m),mopr(n)) < Cs-dr(v1,72).

Proof. The word metrics for two different sets of generators are Lipschitz equivalent.
Hence it suffices to prove the claim for a particular choice of finite set of generators
on I'. Fix a set of generators of I' such that each generator is sent under the
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epimorphism mopr: I' — D to the unit element in D, to t or to s. Equip I" with
the associated word metric. Then we get for v1,v2 € T

dp(mopr(m), mopr(y2)) < dr(y1,72). O

Let W be an open cover of R® x R which is I'-invariant, i.e., for W € W and
v €W we have y- W = {v-w|w € W} € W. Recall that points in the realization
of the nerve [W| of the open cover W are formal sums z = ) ¢\ 2w - W, with
zw € [0,1] such that ) ;1) 2w = 1 and the intersection of all the W with zy # 0
is non-empty, i.e., {W | zw # 0} is a simplex in the nerve of W. There is a map

(4.28) BY:R xR — W, x> (BMw(x) W,
wew

where
aw ()
BIw() = =————
Dwew aw (2)
if we define
aw(z) == d" (z,(R" x R) \ W) = inf{d" (z,0) | w ¢ W}.

Since W is I'-invariant, the I'-action on W induces a simplicial I'-action on |W)|.
Since d is I'-invariant, the map 3"V is I'-equivariant. Let dill/\/l be the ['-metric
on |W|.
Lemma 4.29. Consider a natural number N and a real number w > 0. Suppose
that for every (x,s) € R™ x R there exists W € W such that BL(z,s) lies in W.

Suppose that the dimension of W is less or equal to N.
Then we get for (z,s), (y,t) € R" x R with d" ((z,s), (y,1)) < &%

1 . 2
dhs (B (@, 5), B (1) < 2T (2, 8), (3,1)).

Proof. This follows from [9, Proposition 5.3]. |

Lemma 4.30. Consider a real number w > 0 and a compact subset I C R. Then
there are positive real numbers o and o such that for all x € R™ and s € I

BY(x,5) € BS(x) x [s — /2,5 + a/2].
Proof. Choose a compact subset K C R™ such that A-K = R™. Since BL (K x 1) is
a compact subset of R” x R, we can find oo > 0 and «g > 0 such that BL(K x I) C
Bgh¢(0) x [~ap/2, /2] holds. Choose o1 > 0 and a3 > 0 such that K C B§'(0)

and I C [—a1/2,a1/2]. Put 0 := 09 + 01 and o = a9 + ;. Then we get for all
(z,s) € K x I by the triangle inequality

Bg(0) x [—an/2,a0/2] € Bg"(x) X [s — /2,5 + a/2].
Hence we get for all (x,s) € K x I
Bl(z,s) C B2(z) x [s — /2,5 + a/2]).

Since A - K = R™ and A acts isometrically with respect to both d®"¢ and d',
Lemma follows. O
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Consider the following setup. Let pr: I' — @ and 7: Q@ — D be the canonical
projections appearing in ([£3)) and [@4). Choose an element o € ' such that the
action p”: D x R — R of 7(o) is given by the map R — R, ¢ — ¢+ 1. Put
[y := pr—1(C), where C := (pr(c)) is the infinite cyclic subgroup of @ generated
by pr(c). We obtain an exact sequence

1—>A—>FO%>C’—>1.

Obviously o lies in I'y and is mapped under pr|p,: I'o — C to a generator of C.
The subgroup I'y of I' has finite index.

Consider on R™ x R the flow ®,(x,t) = (z,t + 7). Fix an integer [ > 1. Let
L<; be the set of non-constant orbits under ® whose I'g-period is bounded by [,
i.e., there exists (x,s) € R™ x R which lies in the orbit, an element v € T’y and
an element 7 € R such that v - (z,s) = ®,(x,s) and 0 < 7 <[. The I'p-action on
R™ x R induces a I'-action on L<;. We want to prove

Lemma 4.31. The set L<;/Ty is finite.
Proof. For an integer k£ > 1 put
w={z €R"| Iy el withy -z =zand pr(y) = pr(o)*}.

We obtain a surjection

l
H ﬁ% —» ﬁgl
k=1

by sending = € L) to the orbit through (z,0) € R™ x R. This surjection is compat-
ible with the obvious A-action on the source and the restriction of the I'g-action on
the target to A. Hence it suffices to show that £} /A is finite for k =1,2,3....
An element ~ € T satisfies pr(y) = pr(o)* if and only if there exists a € A with
v = ac®. Let ¢: A — A be the Z-automorphism given by conjugation with .
We will consider A as a subgroup of R™ so that the action of a on R™ is given by
x— x+a Let a: Rz A Z, R be the R-isomorphisms which sends A ® a to
A-a. Let ¢g: R™ — R™ be the R-automorphism for which the following diagram

commutes:

Ry A -2 Re, A

| I
R™ o= R™
Notice that the element o* acts on R" — R™ by some affine motion. One easily

checks that there is an element w € R™ such that o -z = ¢r(x) + w holds for all
x € R". We conclude for a € A and z € R”

ac® - x =1 < (id—¢r)(z) —w = a.
Hence we get

r={zeR"| (id—¢p)(z) —w e A}.
Let 'y be the preimage of k- C under pr: I' — ). Since I'; has finite index in T’
and I is special affine by assumption, I'y is special affine. Since I is irreducible by

assumption, we conclude from Lemma, that I'y is irreducible. Lemma
implies that H'(k - C; A) = coker((ida —¢): A — A) is finite. We conclude that
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(id —¢r): R™ — R™ is bijective. Choose v € R™ with (id —¢r)(v) = w. Obviously
A is a subgroup of (id —¢g)~!(A4). We obtain a bijection of A-sets
£}, = (id—¢z) " (4)
by sending x to x + v. Hence it remains to show that (id —¢g)~'(A)/A is finite.
Since coker (idA —¢): A — A) is finite, we can find an integer d > 1 such that
d- A lies in the image of (id4 —¢). This implies that (id —¢g)~!(d- A) C A. Hence
we obtain an epimorphism

Af(d-A) = (id—¢r) " (A)/A—=  aw (id—¢r) ().

Since A/dA is finite, (id—¢gr) *(A)/A is finite. This finishes the proof of
Lemma 371 d

Now we are ready to give the proof of Proposition .22

Proof of Proposition [£22. Consider the setup introduced before Lemma .31l Us-
ing Lemma [.3T] one checks that the condition appearing in [8, Theorem 1.4] is
satisfied for I'g and the flow ®. Hence we obtain a natural number N such that for
every a > 0 there exists a VCyc-cover U of R™ x R with the following properties:
(i) dimU < N/[T : Tg);
(ii) For every z € X there exists U € U such that
P_ga)(@,t) = {Pr(2,0) | T € [~,a]} = {z} x [t —a,t +a] CU;

(iii) To\U is finite.

The number N above is the number N we are looking for in Proposition

Let Dy, C1, C5, and C3 be the constants appearing in Lemma .25 Lemma [4.26],
and Lemma [4.27] Consider any real numbers R > 0 and € > 0. Put

{64'DN'N2-(C'1-R+C’2)
W := max

€

(4.32) ,8~N'(C1'R+CQ)}.

Next we show that the statement appearing in Proposition 4.22]is true. Fix
a natural number m. Let o, and «,, > 0 be the real numbers coming from
Lemma [£30] for w defined in (£32)) and for I = [-m,m] C R. Hence we get
(4.33)  BlL(z,8) € B&(2) X [s — am /2,5 + /2] for z € R™, s € [-m,m)].

For this «,, choose the VCyc-cover U,,, of R™ x R as above. Recall that a VCyc-
cover U,, is an open cover such that for U € U,,,, and v € I" we have vU € U,,, and
YWUNU #0 = ~U = U and for every U € U,, the subgroup I'y := {y € U |
~U = U} of T is virtually cyclic.

Choose elements 71,72 ..., Vr:r,] in I' such that {¥1,% ..., 71, } = I'/To. Put

Voo ={v -U|U€€Up,i=1,2,...,[[:T]}.
Then V,, is an open cover satisfying
(i) Vi, is a D-invariant cover, i.e., y € I,V € V,, = AV € V,;;
(ii)) dimV,, < Nj;
(iii) For every (z,y) € R™ x R there exists V € V,, such that
q’[*am,am](%y) = {<I>T(a:,y) ‘ TE [_armamH cV;
(iv) T\V,, is finite.
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Next we show that we can find 7, > 0 such that for every (z,s) € R" x [-m,m
there exists V € V,, such that

(4.34) B(z) x [s — am /2,5 + ap /2] C V.

Suppose the contrary. Then we can find sequences (z;); in R™ and (s;); in [—m, m]
such that for no ¢ > 1 there exists V € V,, with the property Bf‘/lf(azz) X [s; —
Qm /2, 8; + am /2] C V. Since the T'-action on R™ x R is proper and cocompact,
there is a compact subset K C R"™ x R with I'- K = R™ x R. Hence we can find a
sequence (7;); in I" and an element (z,s) in R™ x R such that

lim ; - (z;,8:) = (7, 5).

11— 00

Recall that I' acts diagonally on R™ x R, where the action on R comes from the
epimorphism I' — D with A as kernel and a proper D-action on R. Since [—m, m)]
is compact, the set {v;A |i > 1} CT'/A is finite. By passing to a subsequence, we
can arrange that it consists of precisely one element; in other words, there exists
an element v € I' and a sequence (6;) of elements in A such that 4; = v - §; holds
for 4 > 1. Hence we can assume

lim 0; - (x4, 8;) = (x, 8),
71— 00
otherwise replace (z,s) by v~ (,s).

Choose V' € V,, such that {z} X [s—aun, s+am] € V. Since {z} X [s—am, s+ )
is compact and V is open, we can find £ > 0 with Bguc(m) X [$— am, s+ am] CV.
We can choose i such that (6;-;, si) € Bgj5 (@) X [s—aun/2,s+am /2] and 1/i < {/2.
Hence BY)i(8i- i) X [si — oun /2, 5i+ o /2] is contained in BE™(x) X [s — ot $+ o]
We conclude

15 (0i - @i) X [si — /2,80 + /2] C V.
Since A acts isometrically on R™, we obtain
(1) X [55 — /2, 55+ /2] € 871 V.

Since 6; 'V € V,,, we get a contradiction. Hence ([€34) is true.
Now we define the desired number
Om

4.35 m = —.
(4.35) 3 -

Next consider a subgroup H C T' of finite index, and a natural number k satisfying
the assumptions appearing in assertion of Proposition €221 From now on put

m = [D : mopr(H)]. We can choose a pseudo k-expansive map

¢:T T
by Lemma EJ[(i)} Because of Lemma E23 we can assume
(4.36) H Cim(¢),

since the desired claim holds for H if it holds for some conjugate of H, compare
Remark 2.I8l There exists u € R such that the affine map a: R™ — R" sending =
to k- x + u is ¢-equivariant (see Lemma [£24]). Since

a X idg (Byi(z) X [s — am /2,5 + am /2]) = Bl (a(x)) X [s — am /2, s + am /2],
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and a is bijective, we conclude from [{34) that for every z € R™ and s € [—m, m]
there exists V' € V), satisfying

Bz?‘;m(:c) X [$ — m /2,8 + /2] C a x idg(V).

Since k > &, implies k - 0, > 0,, by our choice [£38) of &,, we conclude for every
z € R" and s € [-m, m]

B3 (x) X [s — an /2,8 + /2] € a x idr (V).

Now (#33) implies that for every x € R™ and s € [—m,m] there exists V € V,,
satisfying

(4.37) BL(z,5) C a x idg(V).

Next consider the open covering W,,, := {a xid(V) | V € V,,} of R™ x R. This is
an im(¢)-invariant covering, since the diffeomorphism a xid: R” xR — R™ X R is ¢-
equivariant and V,, is I-invariant. By ([@36]) we can consider W,, as a H-invariant

open covering of R™ x R. Since by definition m = [D : w o pr(H)], we conclude that
7 o pr(H) contains m - Z. This implies 7 o pr(H) - [-m,m] = R. Since for every
v € H we have v- BL(z,s) = B5 (v (z,s)), we conclude from (@37) that for every
(z,s) € R™ x R there exists W € W with BL((z,s)) € W. Hence Lemma

(applied in the case I' = H) implies that the H-equivariant map
BYVIR™ xR — |W)|

defined in (4£28) has the property that for (z,s),(y,t) € R™ x R with
d"((z,s), (y,t)) < &% we get

W3 dy (8% (), () < 2

Now consider the composite

" ((a:, s), (y, t))

ev n ,BW id /
T —=R"xR— (W] — W]

The map ev is I-invariant and in particular H-equivariant. Hence f is H-
equivariant. The H-action on |W| is simplicial. Hence the H-action on the barycen-
tric subdivision |WW’| is simplicial and cell preserving.

Next we show that the isotropy groups of the H-action on the space |W| = |[W/|
are all virtually cyclic. Consider z € |W|. Choose a simplex ¢ such that z lies in
its interior. Let the simplex o be given by {Wy, W1, ...W;} for pairwise distinct
elements W; € W. Then for every ~ in the isotropy group H. we must have

’y-{Wo,Wh...Wl} = {W(),Wl,...VVl}.

Hence H. operates on the finite set {Wy, Wi,...W,}. We conclude that H, con-
tains a subgroup ﬁlz of finite index such that v - Wy = Wy holds for all v € F;
By construction there is U € U such that W = f(U) or W = f(5-U) for some
fixed element 5 € I'. Let I/ C I' be the preimage of ﬁlz under the isomorphism
¢: T — im(¢). Hence either v/ - U = U for all 4 € T” or 57 14"3-U = U for all
v € T. Since U is a VCyc-covering, the group I'” is virtually cyclic. Since it is
isomorphic to a subgroup of finite index of H,, the isotropy group H, is virtually
cyclic.
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Consider 71,72 in ' with dr(v1,72) < R. We want to show
1
(4.39) diyy (f(1), f(12)) < e
Lemma implies
d" (GV(’Y1), eV(’YQ)) <C;-dr (’71,72) +C <C1- R+ Co.
Our choice of w in [AL32)) guarantees C; - R+ Cy < g% Hence

w
d" (ev(m),ev(y2)) < N
We conclude from (E38))

1 . N2
(8% o ev(n). 87 o evlra)) < S o). exn)
A2
< 64wN (Cr- R+ Cy).

Lemma (.25 implies

1 4-N2.Dnx-(Ci-R+C
Ay (FOn), S32)) < v (G R+Cy)

w
Our choice of w in ([@32)) implies

64-N?-Dy - (Cr- R+ Ch)
w

A

<e.

This finishes the proof of ([@39).

Since H acts simplicially on |W]|, it acts simplicially and cell preserving on [W'|.
Put E := |W'|. We have already shown that all isotropy groups of the H-action on
F are virtually cyclic. The H-map f: I’ — E has the desired properties because
of ([#39)). This finishes the proof of statement |(i)| appearing in Proposition

Next we prove statement of Proposition Choose an integer m satisfying

m> 2 G

(4.40) ;

We conclude from Lemma [£.27] that for all ;1,72 € T’

dp(mopr(y1),mopr(12)) < Cs - dr(vi,72)

holds. Let ev: D — R be the map given by evaluation of the standard group action
of D on the origin 0. One easily checks for 61,2 € D

dee (ev(dl), eV((52)) S dD ((51, (52)
Let the desired map f be the composite
L
FTQ5 DR SR
It satisfies for all y1,v2 € T
C
dr (f(1), f(12)) < EB ~dr(71,72)-

Let E be the simplicial complex whose underlying space is R and for which the set
of zero-simplices is % -Z. Then we get for z,y € R
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Hence we obtain for all v1,v, € T’

da(F0n), F0) < 208 (0, 70)

The choice of the integer m in (£40) guarantees

2-C3-R
—— < e
m
Hence
1
for y1,7v2 €T

The standard operation of D on R is simplicial and cell preserving. Consider
the group homomorphism ¢,,: D — D which sends ¢ to t™ and, if D = D, s to
s, where we use the standard presentations of Z and D,. The map m -id: R — R
is ¢m-equivariant if we equip source and target with the standard D-action.

Now consider any subgroup H C T' with [D : w o pr(H)] > 2 - m. We conclude
mopr(H) C im(¢,,). Since ¢, is injective, we can define an H-action on E by
defining h-e = § - e for e € E and any 6 € D for which ¢,,(d) = 7 o pr(h) holds.
One easily checks that the map f is H-equivariant. Since the isotropy groups of
the standard D-action on R are finite and the epimorphism 7: @ — D has a finite
kernel and the kernel of pr is A, the isotropy group H, of any e € E satisfies
AC H, and [H, : A] < co. Now define the desired natural number p by u = 2m.
This finishes the proof of Proposition O

4.6. Proof of the Farrell-Jones Conjecture for irreducible special affine
groups.

Proposition 4.41 (The Farrell-Jones Conjecture for irreducible special affine
groups). Both the K -theoretic and the L-theoretic FJC hold for all irreducible spe-
cial affine groups.

Proof. Because of Theorem [2.10, Theorem 2,16, and Theorem B.I]it suffices to show
that a special affine group G is a Farrell-Hsiang group with respect to the family
F of virtually finitely generated abelian groups in the sense of Definition 214l

Let N be the natural number appearing in Proposition Consider any real
numbers R > 0 and € > 0. Let p be the natural number and (,),<1 be the
sequence appearing in Proposition Now choose a natural number 7 such that
p < 7and &, <7 for all n < . For this choice of 7 we choose r, s as appearing
in Proposition IO Let oy s: I' = Ay %, @, be the epimorphism appearing in
Proposition L1001 The map «, s will play the role of the map ag . appearing in
Definition 2.14]

Let H be a hyperelementary subgroup of Ay x, . Q.. Recall that H is the
preimage of H under o, .. We have to construct the desired simplicial complex Ey
and the map fg: G — Eg as demanded in Definition 214l If [D : 7o pr(H)] > u,
then we obtain the desired pair (Eg, fg) from assertion of Proposition

Suppose that [D : mopr(H)] < p. Then by our choice of 7 we have 7 > &(Dsropr(T)]

and p < 7. In particular [D : wopr(H)] > 7 is not true. Hence by Proposition E10]
we obtain an integer k such that the assumption appearing in assertion of
Proposition is satisfied and the conclusion of assertion [(i)| of Proposition
gives the desired pair (Eg, fr). Hence G is a Farrell-Hsiang group with respect to
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the family F of virtually finitely generated abelian groups. This finishes the proof
of Proposition .41l O

5. VIRTUALLY POLY-Z-GROUPS

This section is devoted to the proof of Theorem [Tl It will be done by induction
over the virtual cohomological dimension. We will need the following ingredients.

Definition 5.1 ((Virtually) poly-Z). We call a group G’ poly-Z if there exists a
finite sequence
{}=G,cGc---cG,=¢
of subgroups such that G_; is normal in G} with infinite cyclic quotient G}/G}_,
fori=1,2,...,n.
We call a group G virtually poly-Z if it contains a subgroup G’ of finite index
such that G’ is poly-Z.

Let G be a virtually poly-Z-group. Let G’ C G be any subgroup of finite index,
for which there exists a finite sequence {1} = G; C G; C --- C G!, = G’ of
subgroups such that G}_, is normal in G with an infinite cyclic quotient G;/G’_;
for i =1,2,...,n. We call the number r(G) := n the Hirsch rank of G. We will
see that it depends only on G but not on the particular choice of subgroup G’ C G
and the filtration {1} =G, C G C---C G, =G".

Lemma 5.2 (Virtual cohomological dimension of virtually poly-Z-groups). Let G
be a virtually poly-Z-group. Then
(i) 7(G) = ved(G);
(il) We get r(G) = max{i | H;(G';Z/2) # 0} for one (and hence all) poly-Z
subgroup G' C G of finite index;
(iii) There exists a finite r(G)-dimensional model for the classifying space of
proper G-actions EG and for any model EG we have dim(EG) > r(G);
(iv) Subgroups and a quotient groups of virtually poly-Z-groups are again vir-
tually poly-7;
(v) Consider an extension of groups
1—-Gy— Gi— Gy — 1.

Suppose that two of them are virtually poly-Z. Then all of them are virtu-
ally poly-Z and we get for their cohomological dimensions

VCd(Gl) = VCd(Go) + VCd(GQ).

Proof. Assertions and are proved in [29] Example 5.2.6]. The proof of
the other assertions is now obvious using induction over the Hirsch rank. ]

The next result is taken from [23, Lemma 4.4].
Lemma 5.3. Let G be a virtually poly-Z-group. Then there exists an exact sequence
1-Gy—G—=T—=1
satisfying
(i) The group Gy is either finite or a virtually poly-Z-group with ved(Gp) <
ved(G) — 2;

(ii) T is either a crystallographic or special affine group.

Now we are ready to prove Theorem [l
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Proof. We use induction over the virtual cohomological dimension of the virtually
poly-Z-group G. The induction beginning ved(G) < 1 is trivial since in this case G
must be virtually cyclic by Lemma [(5.2l For the induction step choose an extension

153G -GS Tro1

as appearing in Lemma Consider any virtually cyclic subgroup V' C I'". Then
we obtain an exact sequence

1= Gyg—pr V)=V =1

Since Gy is virtually poly-Z with ved(Gg) < ved(G) — 2, we conclude from
Lemma [5.2 that pr=*(V) is virtually poly-Z with ved(pr=!(V)) < ved(G). Hence
both the K-theoretic and the L-theoretic FJC hold for pr=1(V). Because of
Theorem [2.7] it remains to prove that both the K-theoretic and the L-theoretic
FJC hold for I'. If T" is crystallographic or an irreducible special affine group,
this follows from Theorem [B.1] and Proposition 41l Hence it remains to prove
both the K-theoretic and the L-theoretic FJC for the special affine group I' pro-
vided that it admits an epimorphism p: I' — IV to some virtually finitely generated
abelian group I'V with ved(IV) > 2. If K is the kernel of p, we obtain the exact
sequence 1 — K — T 2 I - 1. We conclude from Lemma that K is a
virtually poly-Z-group with ved(K) < ved(T) — 2 < ved(G) — 2. Hence for any vir-
tually cyclic subgroup Vof I'” the preimage p~1 (V) is a virtually poly-Z-group with
ved(p™'(V)) < ved(G) by Lemma By the induction hypothesis p~1(V) satis-
fies both the K-theoretic and the L-theoretic FJC. Since the same is true for IV by
Theorem [B.], we conclude from Theorem [2.7] that I" satisfies both the K-theoretic
and the L-theoretic FJC. This finishes the proof of Theorem 11 (]

6. COCOMPACT LATTICES IN VIRTUALLY CONNECTED LIE GROUPS

In this section we prove Theorem

The main work which remains to be done is to give the proof of Proposition
below which is very similar to the one of [23, pages 264-265]. We call a Lie group
semisimple if its Lie algebra is semisimple. A subgroup G C L of a Lie group L is
called a cocompact lattice if G is discrete and L/G compact.

Proposition 6.1. In order to prove Theorem it suffices to prove that every vir-
tually poly-Z-group and every group which operates cocompactly, isometrically, and
properly on a complete, simply connected Riemannian manifold with mon-positive
sectional curvature satisfy the K- and L-theoretic FJC.

Its proof needs some preparation.

Lemma 6.2. Let L be a virtually connected Lie group. Let K be the mazximal
connected normal compact subgroup of L. Let G C L be a cocompact lattice. Let G
be the image of G under the projection L — L/K. Then

(i) If L is semisimple, then L/K is semisimple;

(ii) Fwvery connected normal compact subgroup of L/K is trivial;

(ili) G C L/K is a cocompact lattice;
(iv) If G satisfies the FJC, then G satisfies the FJC.
Proof. Any quotient of a semisimple Lie algebra is again semisimple.
If H is a normal compact connected subgroup of L/K, then its preimage under
the projection L — L/K is a normal compact connected subgroup of L.
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Since K is compact, G N K is a finite group.
We have the exact sequence 1 - GNK — G — G — 1. Now apply Corol-
lary 2111 O

In the sequel we denote by L¢ the component of the identity,

Lemma 6.3. Proposition is true provided that G is a cocompact lattice in a
virtually connected semisimple Lie group L.

The statement of this lemma unravels as follows. Let G be a cocompact lattice
in a virtually connected semisimple Lie group L. Assume that every virtually poly-
Z-group and every group which operates cocompactly, isometrically, and properly
on a complete, simply connected Riemannian manifold with non-positive sectional
curvature satisfies the K- and L-theoretic FJC. Then G satisfies the K- and L-
theoretic FJC.

Proof of Lemma [6.3 Because of Lemma [6.2] we can assume without loss of general-
ity that L is a virtually connected semisimple Lie group for which every connected
normal compact subgroup K C L is trivial. Let Z C L be the normal subgroup of
elements in L which commute with every element in L¢. Put L := L/Z. Let Gz
be the intersection G N Z and G the image of G under the projection pr: L — L.
Then the following statements are true:

(i) Gz is virtually finitely generated abelian;
(ii) G is a cocompact lattice of L;
(iii) L is a virtually connected semisimple Lie group whose center is trivial.

For the proof of assertion we can assume without loss of generality that L
is connected since L is virtually connected and since a group is already finitely
generated if it contains a finitely generated subgroup of finite index. Then Z is
just the center of L and in particular an abelian Lie group. The intersection Gz of
G and Z is a cocompact discrete subgroup of an abelian Lie group Z and hence a
finitely generated abelian group.

Assertion follows by inspecting the proof of [34) Corollary 5.17 on page 84]
which applies directly to our case since all compact connected normal subgroups of
L are trivial.

Next we prove assertion Obviously L is virtually connected and semisimple
since the quotient of a semisimple Lie algebra is again semisimple. Let Z C L
be the center of L. Let Z' C L be its preimage under the projection L — L.
Consider g € L° and ¢’ € Z’. Then ¢’gg’ g~ ! belongs to Z. Choose a path w in
L connecting 1 and g in L. Then ¢g'w(t)(g') " *w(t)~! is a path in Z connecting 1

and ¢’g¢’""'g~'. Since L is semisimple, Z C L is discrete. Hence ¢'gg' " 'g~' = 1.

This implies ¢’ € Z. Hence Z = Z' and we conclude that the center of L is trivial.

Because of Corollary it suffices to show that G satisfies the FJC.

By [I, Theorem A.5] there exists a maximal compact subgroup K C L and the
space L/K is contractible. Then K NL° is a maximal compact subgroup of I° and
L/K =IL°/(KNL). Since L is semisimple, its Lie algebra contains no compact
ideal and its center is finite, the quotient

M:=T/K=L/(KNL")

equipped with a Z—invari_ant Riemannian metric is a symmetric space of a non-
compact type such that T = Isom(M)¢ and K N L° = (Isom(M)¢), for Isom(M)
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the group of isometries (see [19, Section 2.2 on page 70]). Hence M has non-positive
sectional curvature (see [25 Proposition 4.2 in V.4 on page 244, Theorem 3.1 in
V.3 on page 241]). Obviously G acts properly cocompactly and isometrically on
M. By assumption G satisfy the FJC. This finishes the proof of Lemma 63 O

Lemma 6.4. Let G be a lattice in a virtually connected Lie group L. Assume that
every compact connected normal subgroup of L is trivial. Let N be the nilradical in
L. Then Gy : =GN N 1is a lattice in N.

Proof. Let S be the semisimple part of L¢. By [38, Theorem 1.6 on page 106] it
suffices to show that S has no non-trivial compact factors that act trivially on R
and L. Assume that K is such a factor. Let L¢ = RS be the Levi decomposition
of L¢. (We mention as a caveat that S is not necessarily a closed subgroup of L¢;
nor is RN .S necessarily discrete; although RN S is countable.) Since K is a factor
of S it is a normal subgroup of S and therefore sKs~! C K for all s € S. Because
K acts trivially on R we have rKr~! C K for all » € R. Since L¢* = RS, we
conclude that K is a normal subgroup of L¢. Consequently, K is a normal compact
connected subgroup of L¢ and therefore contained in the unique maximal normal
compact connected subgroup K., of L°. This subgroup K,,,, is a characteristic
subgroup of L. Thus K,,,, is in addition normal in L and therefore trivial. Hence
K is trivial. (]

Proof of Proposition [l We proceed by induction on (the manifold) dimension
of L, i.e., we assume that Proposition [G.1] is true for all virtually connected Lie
groups L’ where dim L’ < dim L. We may assume, because of Lemma [6.2] that
every compact connected normal subgroup of L is trivial. Consider the sequence of
normal subgroups of L,

N<R<L*<L

where L€ is the connected component of L containing the identity, R is the radical
of L, and N is the nilradical of L. And let

Gy :=GNN.

By Lemma Gy is a cocompact lattice in N. Therefore G/Gy is a cocompact
lattice in L/N as well.

We now distinguish two cases. First consider the case that NV is non-trivial.
Then dim L/N < dim L and G/G y satisfies the FJC by our inductive assumption.
Now consider the following exact sequence:

1-Gy—>G—=G/Gy —1

and observe that Gy is a virtually poly-Z-group by a result of Mostow (This follows
from Theorem and [34] Proposition 3.7 on page 52].) Hence G satisfies the

FJC because of Corollary
Next consider the case that N is trivial. Then R = R/N is abelian. Hence R =
N = 1. Therefore L is semisimple and G satisfies the FJC because of Lemma [6.3]
O

Now we are ready to prove Theorem

Proof of Theorem [[L2. We have proved the FJC for virtually poly-Z-groups in
Theorem [£.41] Since every group G which acts cocompactly, isometrically, and
properly on a complete, simply connected Riemannian manifold with non-positive
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sectional curvature is a cocompact CAT(0)-group, it satisfies the FJC by the main
results from [6,[39]. Now apply Proposition O

7. FUNDAMENTAL GROUPS OF 3-MANIFOLDS
In this section we sketch the proof of Corollary [L3]

Remark 7.1 (Pseudo-isotopy). Let m be the fundamental group of a 3-manifold.
Roushon (see [35], [36]) gives a proof of the Farrell-Jones Conjecture for pseudo-
isotopy with a wreath product for the family VCyc for m. Its proof relies on the
assumption that the Farrell-Jones Conjecture for pseudo-isotopy is true for poly-
Z-groups as stated in Farrell-Jones [23]. Unfortunately that proof depends on [23|
Theorem 4.8] whose proof in turn has never appeared. Hence the proof of the
Farrell-Jones Conjecture for pseudo-isotopy with a wreath product for the family
VCyc for 7 is not complete.

Discussion of proof of Corollary [[3. In this paper we have proved both the K-
theoretic and the L-theoretic FJC for virtually poly-Z-groups in Theorem [I.Il One
can check that the rather involved argument by Roushon (see [35], [36]) for pseudo-
isotopy goes through in our setting.

This check above has been carried out in detail and in a comprehensible way in
the Diplom-Arbeit by Philipp Kiihl [27] axiomatically. A group G satisfies the FJC
with wreath products if for any finite group F' the wreath product G F' satisfies the
FJC. Kiihl proves following Roushon that the FJC with wreath products holds for
the fundamental group of every 3-manifold, if the following is true:

e The FJC with wreath products holds for Z? x, Z for any automorphism
o 7% - 72

e The FJC holds for fundamental groups of closed Riemannian manifolds
with a non-positive sectional curvature;

e Theorem and Theorem 2.7 are true.

Since a wreath product G F' for a finite group F and a group which is virtually
poly-Z is again virtually poly-Z, the FJC with wreath product holds for all virtually
poly-Z-groups if and only if the FJC holds for all virtually poly-Z-groups. Hence
the axioms above are satisfied. (]

Remark 7.2 (Virtually weak strongly poly-surface groups). Roushon defines weak
strongly poly-surface groups in [36, Definition 1.2.1]. His argument in the proof
of [36, Theorem 1.2.2] carries over to our setting and shows that virtually weak
strongly poly-surface groups satisfy the K- and L-theoretic Farrell-Jones
Conjectures with additive categories as coeflicients with respect to the family VCyc
(see Definitions 2] and [22).

8. REDUCING THE FAMILY VCYC

In this subsection we explain how one can reduce the family of subgroups in our
setting of equivariant additive categories as coefficients.

Definition 8.1 (Hyperelementary group). Let [ be a prime. A (possibly infinite)

group G is called [-hyperelementary if it can be written as an extension 1 — C' —

G — L — 1 for a cyclic group C and a finite group L whose order is a power of [.
We call G hyperelementary if G is l-hyperelementary for some prime [.
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If G is finite, this reduces to the usual definition. Notice that for a finite I-
hyperelementary group L one can arrange that the order of the finite cyclic group
C appearing in the extension 1 - C' — G — L — 1 is prime to [. Subgroups and
quotient groups of [-hyperelementary groups are [-hyperelementary again. For a
group G we denote by H the family of hyperelementary subgroups of G.

The following result has been proved for K-theory and untwisted coefficients by
Quinn [32] and our proof is strongly motivated by his argument.

Theorem 8.2 (Hyperelementary induction). Let G be a group and let A be an
additive G-category (with involution). Then both relative assembly maps

asmb$ Ve O (B (G); Ka) — HE (Eveye(G); Ka)

and
asmb$ TVEVe: HG (B (G); LY ™) = HE (Byeyo(G); L)

induced by the up to G-homotopy unique G-map Ey(G) — Evyeyc(G) are bijective
forallmn € Z.

Proof. Because of the Transitivity Principle 2210 we can assume without loss of
generality that G is virtually cyclic. If G is finite, the claim follows from Bartels-
Liick [4l Theorem 2.9 and Lemma 4.1]. There only the case of the fibered FJC for
coefficients in a ring (without G-action) is treated but the proof carries directly over
to the case of coefficients in an additive G-category with coefficients. Notice that
action of the Swan group of a group G which is well known in the untwisted case
carries directly over to the case of additive G-category with coefficients. Hence we
can assume in the sequel that G is an infinite virtual cyclic group and Theorem [B2]
holds for all finite groups.

The holonomy number h(G) of an infinite virtually cyclic group G is the min-
imum over all integers n > 1 such that there exists an extension 1 - C — G —
@ — 1 for an infinite cyclic group C' and a finite group @ with |Q| = n. We will
use induction over the holonomy number ~A(G). The induction beginning h(G) =1
is trivial since in this case G is infinite cyclic and both H and VCyc consists of all
subgroups. It remains to explain the induction step.

So fix an infinite virtually cyclic subgroup G with holonomy number h(G) >
2. We have to prove Theorem for G under the assumption that we know
Theorem already for all finite groups and for all infinite virtually cyclic sub-
groups whose holonomy number is smaller than h(G).

Fix an extension

(8.3) 1505625 Q1.

for an infinite cyclic group C' and a finite group Q with |Q| = h(G). Let F be the
family of subgroups of G which are either finite, infinite virtually cyclic groups H C
G with holonomy number h(H) < h(G), or hyperelementary. This is indeed a family
since for any infinite virtually cyclic subgroups H C K we have h(H) < h(K) and
subgroups of hyperelementary groups are hyperelementary. Since the claim holds
for all finite groups and all infinite virtually cyclic groups whose holonomy number
is smaller than the one of G, it suffices because of the Transitivity Principle 2-10]
to prove that G satisfies the Farrell-Jones Conjecture with respect to the family F.
This will be done by proving that G is a Farrell-Hsiang group with respect to the
family F in the sense of Definition [Z14] (see Theorem 2.10).
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For an integer s define Cy := C/sC and G5 := G/sC. We obtain an induced
exact sequence

15056, 25051
Denote by
as: G— Gy
the projection. .
In the sequel we abbreviate H := o !(H) for a subgroup H C G.

Lemma 8.4. In order to prove Theorem it suffices to find for given real numbers
R, e > 0 a natural number s with the following property: For every hyperelementary
subgroup H C G4 there exists a one-dimensional simplicial compler Ey with a cell
preserving simplicial H-action and an H-map fr: G — E such that dg(g1,92) < R
implies d'' (fu(g1), fu(g1)) < € and all H-isotropy groups of Eg belong to F.

Proof. This follows from Theorem a

In the next step we reduce the claim further to a question about indices. Choose
an epimorphism 7¢: G — A with a finite kernel onto a crystallographic group
(see [32] Lemma 4.2.1]). Then A is either Dy, or Z. The subgroup Aa is infinite
cyclic. If A =27, then A = Ax. If A = Do, then Ax C A has index two.

Lemma 8.5. In order to prove Theorem it suffices to find for a given natural
number i a natural number s with the following property: For every hyperelementary
subgroup H C G we have H € F or [A : 7% (H)] > i.

Proof of Lemma B3l We show that the assumptions in Lemma imply the ones
appearing in Lemma [84l We only treat the difficult case A = D, the case A = Z
is then obvious.

We have fixed a word metric dg on G. Equip D, with respect to the word
metric with respect to the standard presentation. Since 7€ is surjective, we can
find constants C7 and C5 such that for g1, g2 € G we get

(8.6) dp., (7%(91),7%(92)) < C1 - da(g1,92) + Co.

Fix real numbers r, e > 0. Put

2C1R + 2C
(8.7) = #.
€
Now choose s such that we have H € F or [A : 7% (H| > i for every hyperelementary
subgroup H C G;. It H € F, we can choose fg to be the projection G — pt. Hence
we can assume in the sequel [A : 79 (H| > i.

By Lemma we can find an i-expansive map ¢: Doy — Do with 7% (H) C
im(¢) and an element v € R such that the affine map a: R — R sending x to i-z+u
is ¢-invariant. Let E'g be the simplicial complex whose underlying space is R and
whose set of zero-simplices is {m/2 | m € Z}. The standard D-action on R yields
a cell preserving simplicial action on Ey with finite stabilizers. Define a map

G —1
fu:G =Dy = F 25 F,

where ev is given by evaluating the Do.-action on 0 € R.
One easily checks for di,ds € D

e (ev(dl), eV(dg)) S dDoc (dl, dg)
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We get for z1,29 € E
dll (Il, .IQ) S 2- deuc(xl’ IQ).
This implies together with (86]) and (81) for g1, 92 € G with dg(g1,92) < R

d" (fu(91), fu(g2)) = d* (e oevor®(gi),a " oevor(g,))

<2. deuc(afl ° eVOTl'G(gl)vail oev OWG(QQ))

\}

< = d™(evor©(gu), evorn(g2))

IN

IN

- (C1-da(g1,92) + Ca)
C1R +2C,

]

1
2
7 dp., (Wc(gl)’ 7TG(92))
2
1
2

<
=e.

Since 7%(H) C im(¢), we can define an H-action on E by requiring that h € H
acts on Ey by the standard De-action for the element d € Do which is uniquely
determined by ¢(d) = 7%(h). This H-action is a cell preserving simplicial action

and the map fy is H-equivariant. Hence fg has all the desired properties. This
finishes the proof of Lemma a

Now we continue with the proof of Theorem We will show that the assump-
tions appearing in Lemma are satisfied.

If the group @ appearing in ([83) is a p-group, then G itself is hyperelementary
and the claim is true because G € F. Hence we can assume in the sequel that we
can fix two different primes p and ¢ which divide the order of Q.

Let i be a given natural number. Let log,(|Q|) be the integer n for which
|Q| = p™ - m for some natural number m prime to p holds. Choose a natural
number 7 satisfying

prlog, (1R
> 1
ker(7G: G — A)| ~
g lega (1R
> 1
ker(7G: G — A)| ~
r > log,(IQ));
r> logq(|Q\)
Our desired number s will be
s=p"q".
We have to show for any hyperelementary subgroup H C G
(8.8) H e For[Aa : (n%(H) N Ap)] > .

Consider an [-hyperelementary subgroup H C Gg. Since p and ¢ are different we
can assume without loss of generality that p # . Denote by H, C H the p-Sylow
subgroup of H. Since H is l-hyperelementary and [ # p, the subgroup H, is
normal in H and a cyclic p-group. Denote by @, C @ the image of H, under the
projection pr,: Gs — Q. Suppose that pr,(H) # Q. Then the holonomy number
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of H is smaller than the one of G and H belongs by the induction hypothesis to F.
Hence we can assume in the sequel

(8.9) pry(H) = Q.

This implies that @), C @ is a normal cyclic p-subgroup of @) and is the p-Sylow
subgroup of Q.

Denote by @, the preimage of @, under pr: G — Q. The conjugation action
p: Q — aut(C) of @ on C associated to the exact sequence (83) yields by restriction
a @p-action.

We begin with the case, where this (),-action is non-trivial. Then we must have
p = 2 and the target of the epimorphism 7¢: G — A is A = Dy = Z x_3q Z/2.
We obtain a commutative diagram

l—C— g—2 90—

T

1—Z——Zx_gZ/]2—Z]2——1

where j is injective and both 7¢ and 7% are surjective. Let H’ be the image

of H under the composite G5 = G/p¢"C — G/q"C 2, Z/j(q"C) x_ia Z]2 —
7.)q"7 % _iq 72, where 7€ is induced by 7&. Then H’ agrees with the image of H
G
under the composite G ~— Zx_3q7/2 — 7./q" x_3q7/2. Since H and hence H' is
I-hyperelementary for | # 2 and Z/q"Z x _iq Z/2 is 2-hyperelementary, H' is cyclic.
Since pry(Hz) = Q2 and the surjectivity of 79: Q — Z/2 implies 79(Q2) = Z/2,
the image of H' under the projection Z/q" x_iq Z/2 — Z/2 is Z/2. Since H' is
cyclic, g is different from p = 2 and hence odd, we conclude Z/¢"NH' = {0}. Hence
[Z :(Zn WG(F))] > [Z/qr :(Z/q" N H’)] =q".

Since by our choice of r we have ¢" > 4, assertion (B8] holds.
Hence it remains to treat the case where @), acts trivially on C. By restriction
the exact sequence (B3] yields the exact sequence

i —— Pr ‘@
1-C—=Qp ——Qp— 1.
In the sequel we identify C with its image ¢(C) under the injection i: C' — G.
Since @, acts trivially on C and is a finite cyclic p-group, the group @p is a finitely
generated abelian group of rank one. Let T' C ap be the torsion subgroup. Fix an
infinite cyclic subgroup Z C Q_p such that
TOZL=Q,.

Recall that p divides the order of @ and that @, is a p-Sylow subgroup of Q. In
particular @, is non-trivial. Let n > 1 be the natural number for which |Q,| = p™.
Since pr|r: T — @, is injective, T is a cyclic p-group of order p™ for some natural
number m < n. Since r > n by our choice of r holds, p"C' C {0} x Z. We get

T2/ C =Gl
Suppose that H N'T = {0}. Let K be the kernel of the composite

725 0 0/q,
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We have K C Q,. Since HNT = {0} implies K NT = {0}, the restriction of the
canonical projection Q_p =T®&Z — 7Z to K is injective and hence K is infinite
cyclic. This implies h(H) < |Q/Q,| < |Q| = h(G) and hence H € F. Therefore we
can assume in the sequel

(8.10) HNT + {0}

Let H' be the image of H under the projection G/sC — G/p"C. Recall that H,
is a cyclic p-group and a normal p-Sylow group of H and is mapped under the
projection Gy — @ to Q. Let

H,CQy/p'C=ToL/p'C

be the image of H, under the projection G/sC — G/p"C. Then H1/7 is normal in
H' and is the p-Sylow subgroup of H’. Since C/p"C C Q,/p"C is a subgroup of
order p”, we conclude
! T o ! T
H'NnC/p"C=H,NnC/p"C.

The intersection H NT is p-torsion, because T is p-torsion. Thus HNT C Fp =
oy '(Hp). Therefore we can conclude H, NT # {0} from [8I0). Since H) is cyclic
and H, NT # {0}, we must have H, NZ/p"C = {0}. Since |T|- H,, is contained in
Z/p"C, we conclude |T'|- H, = {0} and hence the order of |H,| divides the order of
|T|. This implies

(8.11) |H,| < |T] < p.

We conclude

(G H| = [Gs: H]
>[G/p'C: H|
>[C/p"C: (C/p"C N H)]
=[C/pC:(C/p"Cn Hy)
__le/pra
C/y C )
I¢/pC|
[H
> P
pn
— p’r—n.
This and our choice of r implies
— G:H| T
. G > [ p > .
(87 () 2 1m0y 2 Ther(rey] =
Hence assertion (88) is true. This finishes the proof of Theorem O

We will use the following result from [I8, Corollary 1.2, Remark 1.6]. See
also [17].
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Theorem 8.12. Let G be a group. Let VCyc; be the family of subgroups which
are either finite or admit an epimorphism onto Z with a finite kernel. Obuviously
VCyc; C VCyc. Then for an any additive G-category A the relative assembly map

asmb VYV HE (Byeye, (G);Ka) = HS (Byeye(G); Ka)
is bijective for allm € Z.
The Transitivity Principle 210} Theorem [82] and Theorem imply

Corollary 8.13. Let G be a group. Let Hjy be the family of subgroups which are
either finite or which are hyperelementary and admit an epimorphism onto Z with
a finite kernel. Obviously Hy C VCyc. Then for an any additive G-category A the
relative assembly map

asmb YO HT (B, (G); Ka) = HY (Bveye(G); Ka)
is bijective for alln € 7Z.

Every infinite p-hyperelementary group for odd p admits an epimorphism to Z
with a finite kernel. A 2-hyperelementary group G admits an epimorphism to Z with
a finite kernel if and only if there exists a central extension 1 - Z - G — P — 1
for a finite 2-group P.

Theorem 8.14. Let G be a group. Let VCyc; be the family of subgroups which
are either finite or admit an epimorphism onto Z with a finite kernel. Let Fin
be the family of finite groups. Obviously Fin C VCyc;. Then for an any additive
G-category A the relative assembly map

asmb$ T VY HE (Erp(G); LY ™) = HS (Byeye, (G); LY ™)
is bijective for allm € Z.

Sketch of proof. The argument given in [28, Lemma 4.2] goes through since it is
based on the Wang sequence for a semidirect product F'xZ which can be generalized
for additive categories as coefficients. O
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