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The Fast Adaptive Composite Grid (FAC) Method
for Elliptic Equations*

By S. McCormick and J. Thomas

Abstract. The fast adaptive composite grid (FAC) method is a systematic process for solving
differential boundary value problems. FAC uses global and local uniform grids both to define
the composite grid problem and to interact for its fast solution. It can with little added cost
substantially improve accuracy of the coarse grid solution and is very suitable for vector and
parallel computation. This paper develops both the theoretical and practical aspects of FAC
as it applies to elliptic problems.

1. Introduction. The need for local resolution in physical models occurs frequently
in practice. Special local features of the forcing function, operator coefficients,
boundary, and boundary conditions can demand resolution in restricted regions of
the domain that is much finer than the required global resolution. It is important
that the discretization and solution processes account for this locally, that is, that the
local phenomena do not precipitate a dramatic increase in the overall computation.
Unfortunately, this objective of efficiently adapting to local features is often in
conflict with the solution process: equation solvers can degrade or even fail to apply
in the presence of varying discretization scales; data structures that account for
irregular grids can be cumbersome; the computer architecture may not be able to
effectively account for grid irregularity (e.g., " vectorizability" may be inhibited); etc.
In fact, even the discretization process itself may find difficulty with this objective:
for finite differences, it is problematic to develop accurate difference formulae for
irregular grids; for finite elements, this objective is reflected in the substantial
overhead costs needed to automate the discretization.

The fast adaptive composite grid method (FAC [11]) is a discretization and
solution method designed to achieve efficient local resolution by constructing the
discretization based on various regular grids and using these grids as a basis for fast
solution. Its basic computational objective is to solve a "good" discretization on an
irregular grid by way of regular grids only. Its basic assumption is that both
discretization and solution on regular grids are easy by comparison.

Although FAC is in essence very similar to multi-level adaptive techniques
(MLAT; cf. [1], [3], [5], [10]) and local defect correction (LDC; cf. [8]), it differs in
several simple but important respects. First, FAC is a systematic approach that
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440 S. McCORMICK AND J. THOMAS

develops the discrete operator equation explicitly, not as an implicit result of the
technique itself. The importance of this is that FAC is generally more robust than
MLAT and more efficient than LDC (cf. [11] and [8]), for example. Moreover, its
convergence properties are well founded in theory (cf. [11] and Section 3 below).
Second, we believe that FAC is conceptually simpler, especially in its most basic
form as a correction scheme with exact solvers (see Subsections 3.1 and 4.5). This is
partly because FAC does not presume that the coarse grids are used for fast solution
of the fine grid equation and thereby clearly distinguishes between this role of the
coarse grid and that in transmitting fine grid accuracy throughout the domain.
Third, FAC is somewhat more general by description in that it allows for general
solvers in the treatment of each grid level, a necessity if FAC is to be patched into
existing applications software.

The point here is that the differences are not fundamental—in fact, simple
modifications lead to versions of MLAT, LDC, and FAC that are completely
equivalent—but that these differences can be critical to numerical performance.

There are other related multigrid-type methods (cf. [2], [9]), including the method
of aggregation (cf. [6], [12]). However, these schemes are not applied to local grid
discretizations. FAC is also related to other local grid techniques (cf. [4], [7]),
although these latter methods are designed for applications that allow local-global
communication through the emerging solution only. (As with other multigrid-type
techniques, FAC uses the equations for this communication and is usually able to
achieve an optimal computation complexity.)

After describing the basic FAC method (Section 2), we expand on the theory of
[11] (Section 3), treat several practical issues (Section 4), and demonstrate the typical
numerical performance of FAC on two sample problems (Section 5). This develop-
ment is restricted to the " variational" case (symmetric nonnegative-definite discreti-
zations) with the local grids already in place. We defer nonvariational and adaptive
considerations to later work. Note that we borrow freely from multigrid terminology
and its constructs.

2. Method. We describe in this section the basic FAC algorithm, restricting our
attention to the case of two grids, a global and a local one. (See Subsection 4.1 for
comments on the multi-level case.) For concreteness, we begin with a discussion of
our prototype case which we then quickly generalize in Subsection 2.2.

2.1. The Prototype Case (Poisson's Equation on a Staggered Grid). Consider the
two-dimensional cell-centered grid structure depicted in Figure 1. (An alternate but
somewhat more complex case can be developed for the vertex-centered structure
depicted in Figure 2. See Subsection 4.3.) We place in the region fl = [0,1] X [0,1] a
uniform global coarse grid G with m cells on a side; on the subregion £lF = [0, a] X
[0, a] with a = k/m and 1 < k < m, we place a uniform local fine grid SF with n
cells on a side. (In Figure 1, m = n = 4 and k = 2. Note that small cells are 1/4 the
size of the large ones.) The composite grid S is the union of the cells of 'Sp and the
cells of G in #ñF, the complement of ÜF in fi. We further partition the composite
grid so that 'S = Sc U S, U SF where S, consist of the n coarse cells bounding SF
and 'S,- consists of the remaining coarse cells. Note that ^c is insulated from 'Sp by
'S,. We similarly partition G = Gc U G, U GF.
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Figure 1

( Staggered Grids )

The coarse grid G is represented by the cells defined by solid lines, the composite grid 9ß by
cells defined by solid and dotted lines, and the actual boundary by bold lines. The interface
'S, = G, between the local grid Sy and the global grid G consists of the four large cells with
exactly one side common to cells of ^F.

e-o-e-e-©

<>XXK o

o x X X >

o • • •

o       .       x       •       x X >

o • • •

4-9-e-e-e-e-o

Figure 2
(Aligned Grids)

The coarse grid G is represented by x's, the composite grid S by X's and »'s, and the actual
boundary points by ° 's. The interface between the coarse and fine levels consists of the three
X 's bordering 9F.
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442 S. McCORMICK AND J. THOMAS

Consider the singular Poisson equation

(2.1)
A* = <b      in ß,
% = 0      on 3Í2,

where ^ and <j> are functions on fi and % denotes the partial of ¥ in the direction
normal to the boundary 3S2. As a discretization of (2.1) on 'S, let if be the
symmetric nonnegative-definite matrix constructed according to Figure 3. Thus, =5?
is based on the usual five-point stencil in Sc and SF (except for the latter it reaches
to 'S, points with weight scaled by 1/4). At points of S„ <e reaches to its
immediate ^c U S, neighbors with value — l/8/i2, but to both of its SF neighbors
it reaches with value -l/4h2 (i.e., its weight to both totals 4 times its weight to a
point in !SC U 'S,). See Subsection 4.2 for a discussion of how S£ was derived.

The composite right-hand side / represents approximate integrated values of <J>
over appropriate squares. We assume here the crudest definition of / where its

•/I #     s/r

-■-*-

'Á      //,
---^9-

&-

'A

^T- ■'U , -v.,

/a 3/r

-4V-
J

3     f   V

—=/-
'/  V

' ■¥
- /

i y
&

^44- ^r

'g      -/a-

3

A

Y -J I V

•/ 3 h/j

/y
•ft//

Figure 3
( Stencil Elements for ^-Staggered Grids )

The entries of h2Se are depicted here, where h = l/2m = 1/8. The diagonal of h2&
corresponding to a cell has the value depicted in the cell's center. Its off-diagonal entries
connecting it to each neighboring cell with a common side have values depicted on that side.
For example, the stencil of h2SC on the southeast corner of <8F is '_{ 3_1 :1/4) and the stencil
for its 'S, neighbor is

-1/4
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( Stencil Elements for L-Staggered Grids )

The entries of h2L are depicted here, again with h = l/2m = 1/8. All off-diagonal connec-
tions of L are - 1/8A2; only the diagonal varies (according to boundary effects).

entries are the (approximate) values of <j> in the cell centers, scaled by a factor of h2
for 'Sp cells and by 4/i4 for Sc U S, cells. The target equation is then the composite
grid problem given by

(2.2) &<% = /,      Ve9.

(Throughout this paper we identify grids with their associated function spaces.)
To apply FAC to (2.2), first let the coarse grid operator L associated with G be

defined as in Figure 4. Let the prolongation or interpolation operator /: G -* S be
based on piecewise constant interpolation so that a = lu is such that uc = uc,
a, = u„ and the value of uF for a given cell of ^F is 1/4 the value of u for the
corresponding GF cell. For the restriction operator we choose the transpose IT:
'S -> G. Note that our operators satisfy the variational condition

(2.3) L = iTsei.

Now partition each vector and operator according to the partitions of S and G.
For example, we write

m =
ÍM
\Ufi

L-cc    '-ct
and    L =

0 \
-ic 'IF

Lp,    LFFj
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444 S. McCORMICK AND J. THOMAS

Letting id denote the appropriate identity operator, we then have

(i)     LFC, LCF, S£FC,   and    S£CF are all zero;

(2.4)
(Ü)        / =

id     0       0 \
0     id      0

\ 0     IFC    Ipp

(iii)    Gc = Sc and G,= S,\ and
(iv)     Lcc = ¿?cc, Lc, = 3:c,,   and    L,c = ¿c,c.

Actually, IFC = 0 for our prototype, but we do not expect this in general.
One two-level exact solver cycle of FAC applied to an approximation, a, of °U in

(2.2) with right-hand side/ is then denoted by a «- FAC(«*, /) and defined by:
Step 1. u «- L~XIT(/— ¿£a) (coarse grid approximation).
Step 2. a «- a + lu (coarse grid correction).
Step 3. aF «- yp\(fF - ■SCF,^,)   (local fine grid improvement).
Actually, the inverse in Step 1 is taken loosely here for our prototype since both L

and =S? are singular with null spaces t\(L) and r\(S£) spanned by e = 1 and eF= 1,
respectively. Thus by v = L~lg we really mean v = Üg, the minimal norm solution
of Lv = g = g — (g,e)e/ (e,e). (Here, Ü is the Moore-Penrose generalized in-
verse of L and (v,w) = vTw.) We can in this way analyze FAC on the spaces
orthogonal to the "physical constants" e and •

Í  €c  \
e=        eI       .

\eF/4)

See Subsection 3.3 for a general discussion.
Note that FAC attempts to solve the composite grid problem (2.2) by way of

uniformly rectangular discrete Poisson equations. Without the component of L in
GF, then FAC would constitute a block Gauss-Seidel relaxation scheme with a block
each corresponding to Sc U S, and to 'Sp. The component of L in GF thus
represents an attempt to improve the approximate inverse of ££ in order to eliminate
the error remaining after Step 3; this is the key to making FAC a fast solver.

2.2. The General Case. The extension of the notation and definitions of Subsection
2.1 to our basic but more general case is now immediate. Specifically, following the
development in [11], consider the composite grid problem (2.2) where now S is, in
general, a space of real-valued functions defined on the composite grid (which again
we identify with 'S) contained in a region S2 of finite-dimensional Euclidean space.
Assume that JSP: 'S -> S is a symmetric positive-definite linear operator and that ^
admits a coarse grid G (perhaps G c 'S) in ß and an intergrid transfer /: G -* S
that is a full rank linear operator. For concreteness, we assume that the space S is
finite-dimensional and that G is of smaller dimension, so that the coarse grid
operator L: G -» G defined by (2.3) is symmetric, positive-definite and linear. Here,
again we choose IT: S -* G as the restriction operator.
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As in Subsection 2.1, we assume that the partitions G = GC[JG,UGF and
'S = ŒçU 'S, U Sp satisfy (2.4). Note that we assume no special properties like
connectedness of the local region ßF covered by 'Sp or any particular dimension of
the space in which ß lies.

The exact solver version of FAC is exactly as given in Subsection 2.1.

3. Theory. We provide here foundation for various two-level versions of FAC. (See
Subsection 4.1 for the multi-level case.) We begin with the version described in the
previous section where both the coarse and fine grid equations are solved exactly.

3.1. Basic Theory. Let the energy inner product be defined by (a, u>)<e= (a, ¿£u>)
and the induced energy norm by \\«\\(g and similarly for L. Let 8 = 8(L,f£) be
defined by 8 = p(L)p(¿?fï£~x) where p denotes spectral radius and <?L&~1 =
if-1 - IL'XIT. Let C = C(L,¿£) denote the maximum per cycle energy conver-
gence factor of FAC, i.e., the smallest C so that

||FAC(*,/)-#|U><C||*-#|U>
for any a, / in S.

Theorem 1. C < (5/(1 + S))1/2.

Proof. See [11].
Remark. In collaboration with Vance Faber of the Los Alamos National Labora-

tory, we were able to improve the bound C in this theorem by showing that we may
take 8 = p(L„Q) < p(L„)p(Q), where Q = P(@L£t°-x)P and

P =
'0     0     0^
0    id    0

\0     0     0
is the orthogonal projector of S onto S, = G,.

To guarantee an optimal complexity of FAC, it is necessary (though not always
sufficient) to establish that C <sc 1, by which we mean that a bound for C less than 1
exists that is independent of the mesh sizes of either L or „S?. But to use Theorem 1,
we must therefore show that 8 «; oo. As we noted in [11], this is easy to prove for
variationally formulated boundary value problems, provided the usual operator
regularity and approximation properties hold. Such is the case, for example, when
(2.2) is a finite element discretization of a second-order elliptic partial differential
equation with smooth coefficients and boundary, with essentially uniform grids G
and SF, and with piecewise polynomial basis functions of degree at least two. In
fact, 8 -« oo uniformly in the ratio of the mesh sizes of G and SF. But this theorem
is not yet sufficiently general to cover many of our practical applications.

First, it does not completely cover our prototype. The essential difficulty here is
that the prototype discretization, though variational, is based on piecewise constant
elements which are inadmissible functions for (2.1). Thus, to use Theorem 1, we
must derive estimates for 8 by, say, algebraic means, but we defer this to a future
paper. A second difficulty here is that it does not cover the case that S£ is singular;
we will treat this case in Subsection 3.3. A third difficulty is that we cannot
guarantee 8 «: oo uniformly in the grade of G, that is, the ratio of its largest to
smallest mesh size. In fact, we can easily construct Gc in general with a large enough
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mesh size relative to, say, G, so that 8 is as large as desired. C does not really
degrade for such cases, however, as we will deduce from our next theorem. (Other
limitations of Theorem 1 will be treated in subsequent sections.)

Theorem 2. Suppose G'c is a nonempty subspace (subgrid) of Gc and let G' = G'c
UG,UGf and S' = G'c U G, U SF. Assume J': 'S' -* S is a full rank linear
operator of the form

J' -
a> $i       fi

0       id      0
0        0      id

and let  &' = J'T<£J'   and L' = I'T£CI',  where I'  is I restricted to G'.  Then
C(L',J2")< C(L,£t°).

Proof. See [11].
The significance of this theorem is that it yields bounds by way of Theorem 1 for

the case that the coarse grid is badly graded by virtue of the coarseness of Gc. More
precisely, although 8' = 8(L', £?') may be large when the ratio of the mesh sizes in
G'c and G, U GF is large, Theorem 2 shows that C = C(L',£f") may not be
adversely affected by this ratio. For example, if we imagine G' itself to be a
composite grid created by placing a local fine grid patch (that includes G, U GF) on
a very coarse global grid, where the coarse and fine grids are both uniform, then G'
may be badly graded. Yet the convergence bound C is no worse than the case of
uniform Gc where G'c is refined to be in balance with G, U GF.

Theorem 2 does not cover the case where a large grade of G arises from the ratio
of the mesh sizes of Gc U G, and GF. This can develop in practice if G is itself a
composite grid where its local grid is exactly GF. The next theorem covers this case.

Theorem 3. Suppose now that G'F is a nonempty subspace of GF. Let G' = GCU G,
U G'F and L' = I'TSei' where I' is I restricted to G'. Then

C(L,^)^ C(L',<£).

Proof. This follows trivially from the proof of Theorem 1 by appealing to the
variational setting and concluding that the accuracy in the coarse grid solution of
Step 1 cannot be better for G' than it is for G.

3.2. Approximate Solvers. For the theory here to be of general practical value, it
must allow for the use of inexact solvers in Steps 1 and 3 of FAC. It may be that
iterative methods are used in Step 3 of many practical algorithms. But more
critically, FAC will often be used in a multi-level setting by placing several
increasingly finer local grids about isolated phenomena. This has the effect that all
but the very coarsest level is itself a composite grid and the solver corresponding to
Step 1 for this level is just FAC. In short, a multi-level version of FAC necessarily
involves approximate solvers.

To treat such cases, suppose 0 < a, ß < 1 where ß < 1 - C and C = C(L, áC).
Then one approximate solver cycle of FAC is denoted by u *- FACa/8(«,/) and
defined by:

Stepl.    Let r = IT(/- tfa) and set u «- L  lr + q where \\q\\L < /8||L_1r||L.
Step 2.   t¿ <— í¿ + lu.
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Step 3.   Let  ¿F = /F - SfF,u, and set vF ^\^F}SF + aF, where Hp/r-H^    <
a\\«F - &FF¿F\\<eFF- Set «F *~ VF-

Step 1 requires that LU = r be solved to within a relative energy error of ß. This
means that the error in the initial vector u must be reduced by a fixed factor ß. Step
3 requires a similar condition, namely, that aF be improved as an approximate
solution of £PFFq/F = âF at least by a factor of a. Note that FAC(«*,/) =
FAC00 (*,/).

Theorem 4. Suppose the energy convergence bound C = C(L,&) for FAC satisfies
C < 1 and let ß < 1 - C and a < 1. Then, a bound on the energy convergence factor
Ca,ß for FACatß is given by Ca,ß < ((1 - a2)(C + ß)2 + a2)1/2 < 1.

Proof. Assume without loss of generality that /= 0 and that a is arbitrary. Note
that a is now the actual error in (2.2). We first consider the case a = 0 so that

FACBi„(*,/) = FAC(*,/) + Qq
where Qq is just FAC(q, 0) with Step 1 suppressed. Since Q cannot increase energy,
then

The last inequality follows from noting as in [11] that &L = Sc°~l - ILlIT is
nonnegative. The conclusion for a = 0 now follows from noting that

||FACa>„i>,/) ¡^ ||FAC(*,/) |U+ \\Qq\\*< (C + ß)\\*\\se.
Now   lift   the   restriction   that   a = 0   and   let   va = FACa/3(«,/)   and   v° =
FAC0 ß(u, /). We must show that

(3.1) |Mk< Caj\\«\\*.
To this end, note first that vF = ^F^F= -SeFFSeFI«, where *° is FACaj3(*,0)
with Step 3 suppressed. Thus,

(3.2) || fF\<eFF = \vF + ¿¿"pp&pju, \seFF < «||uF + ££FFyF,u, \<£ff .

A little calculation shows that

|| Va Ù < || »ï + &Ï&FI«0! |*„ + II v° f<e
and that

Thus, by (3.2) we have

(3.3) |M|^< ||«,°||* + a2{\\«°Ù- \W°Ù).
But

(3-4) \W°Ù< (C + ß)2\\«U
and

(3-5) ||*°||*«||*||*.
(3.3)—(3.5) now combine to prove (3.1) and the theorem is proved.
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3.3. Singular and Nearly Singular Equations. When Sf is singular, as for our
prototye case, FAC may be modified to apply without difficulty provided the
singularity is global and exactly represented in L. Specifically, we require that
(3.6a) SfFF is nonsingular,

(3.6b) Tj(JSP)caf(J),
where r/ denotes null space and !% denotes range. (Note that (3.6b) is equivalent to
the assumption that -q(Sf) = Ir\(L).) The modification of FAC is achieved by
replacing L"1 in Step 1 by tf. Replacing L"1 by Ü also in 8 = 8(L, &), we then
have the following result.

Theorem 5. Suppose /e !%(£?) so that (2.2) has a solution. Then, the estimates in
Theorems 1-4 apply here to the singular case provided (3.6) holds.

Proof. A careful examination of the proof of Theorem 1 in [11] shows that it
applies here with the only modification being the replacement of the inverse by the
generalized inverse. (Note, for example, that our assumption on / allows us again to
assume without loss of generality that /= 0.) Extending the proofs of Theorems 2-4
is completely straightforward.

Two warnings are in order concerning the singular case. First, the restriction
/e <%(£?) in Theorem 5 is needed to ensure that the coarse grid approximation in
Step 1 is sensible. Specifically, if /=fa + /ri where fa e ®(S£) and / S ij(jS?) =
¿%±(£t°), then the coarse grid approximation would not necessarily approximate
Sf^fa. That is, even though IT(fa - <£a) is in tjx (L) = ®(L) because fa - ¿Pa is
in i)-1 (£?) = (Iy(L))L , generally IT/V is not in tj(L). More to the point, ILfIT/v is
generally not in t\(SP). Thus, t}(£?) components of / can feed r/-1 (=Sf ) components
of a, thereby diverting a from its approximation of Ufa To avoid this when a basis
for T}(y) is known, / should be a priori eliminated by orthogonalization. For
example, before applying FAC to our prototype, we simply set /*- Pe/ where
P, = id - eeT/Je.

The second warning is that the component of a in t\(Sf) will generally change
during an FAC cycle. This may be of no concern, but when it is, a solution with a
particular rj(Sf) component can be approximated a posteriori again by orthogonali-
zation with respect to a basis for t)(£P) when it is known. For example, the minimal
norm solution ty = SfY for our prototype can be approximated by setting u «- Peu
after FAC is applied.

We now observe directly that there is also no difficulty with the nearly singular
case, provided we have a condition analogous to (3.6b). Specifically, if i? has
eigenvalues near zero in some relative sense, then we require that their associated
eigenvectors are well approximated on grid G. For example, let S? be our prototype
operator and consider the perturbation <5?e = S£+ eid, e > 0. Note that Lt = L +
eITI and that the eigenvector, e, of JS? belonging to e satisfies e = le, that is, this
eigenvector is exactly represented on G. But since ITIe = ITe, then Le(e/e) = ITe
from which follows IL~HTe = e/e and, therefore, £?,(£?/xe) = 0. From this, we can
conclude that 8(Le,Sfe) = (1 + 0(e)) 8(L, Sf) or, loosely speaking, that the near
singularity of ¿t°e does not adversely affect our estimate for C. Of course, for
FACa 0, we must have an approximate solver in Steps 1 and 3 that is able to deal
effectively with nearly singular matrices.
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4. Practical Matters. In the following subsections, we discuss in brief several issues
that are important for practical implementation of FAC.

4.1. Multi-level FAC. For simplicity, we have thus far restricted our development
to the two-level case. Extension to the general multi-level case is, however, fairly
straightforward. Specifically, we suppose now that grid S is a composite of a coarse
grid G° and a sequence of p > 1 increasingly finer local grids, where the region ß'F
covered by a given local grid G'F contains the region covered by the next finer one
G'F+X, 0 < i < p — 1. This local refinement sequence thus gives rise to a sequence of
global grids G°,GX,...,GP = S that are equipped with interpolation operators
Ii+1: Gl -* G'+x and their induced grid operators V: G' -» G', i = 0,1,..., p - 1.
Write Lp = Sf and assume that each grid pair G' and G'+l together with their
operators and partitions satisfy the assumptions of Subsection 2.2. Now suppose
/' e C is given and that «' e G' is an approximate solution of the level i problem

(4.1) L'U'-f*.
With the cycling parameter ¡i > 1 given, then one multi-level ¡i-cycle version of
FACa ß on level i is denoted by u' «- FACpa ß(ul,fl) and defined recursively by:

Step 1.   If i = 0, set «' <- L'Y + q where \\q\\L, < ß\\Lrfi\\v and stop. Other-
wise go to Step 2.

Step 2.    Set/'-Wr(/' - L'tOandw'"1 ^ 0. 'Dom'"1 *- FAC/i^m'-1,/'"-1)
p times.

Step 3.   Let bF = fF - Lpju', and set vF «- L'FFbF + qF where H^ll^ <
«II"f - £ff*jHliV Let u'f *- »F-

Note that only the coarsest level G° is approximately solved according to the
parameter ß. The approximate solver for all other levels i < p is in fact FACpa ß
itself. Note also that the computation on each level / > 0 is only on the local grids
G'p.

The simplest cycling scheme is given by choosing p. = 1 which, borrowing from
multigrid terminology, yields the sawtooth or slash cycle version that on level p is
written as up «- FAC/aß(up, f) and given simply by:

Step 1.    For i = p, p - !,...,!, set fl~x <- /''(/' - L>') and u'-1 *- 0.
S/ep 2.   Set w° «- L0")"0 + ? where ||9||i0 < i8||L0"yo||Lo.
Step 3.   For i = 1,2,...,p, set m' <- m' + Vu1'1. Let bF = fF- LF,u:, and set

t;'F <- L'fX + If where ||^||¿.ff < a\\u'F - LCFbF\\L¡FF. Set wF «- t;'F.
Another type of cychng scheme is accommodative (again borrowing from multi-

grid terminology) which is denoted by u' «- FAC^la ^(m',/') and defined by:
Stepl.    Same as FACju,Q/3.
Step 2.   Let/'-1«-/,r(/'-LV)aiid«'-1«-O.Do«'-1«-FACila>i,i(«'-1,/'-1)

until ii«'/1 - L-^yr'iiz,- < flurry/" W
5/ep 3. Same as FACpa ß.

Of course, FAC/4ajg requires an estimate of the relative error in the energy norm.
When such estimates are not directly available, they may be made by way of the
energy functional F(u)= (Lu — 2f, u) or by appealing to the residual norm r(u) =
\\Lu - f\\. Such estimates are usually acceptable in connection with FAC because of
its strong convergence properties. (The behavior of \\u - U\\L may not be reflected
in  F(u) for methods that converge only sublinearly or erratically; neither is it
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reflected in r(u) for methods like simple relaxation that tend to dispose the error to
the smooth end of the spectrum of L.)

An important point here is that the convergence bound in Theorem 4 applies
directly to FACAaß. On the other hand, unless we are willing to accept a bound for
FAC pa ß that depends on p, then we must have a condition that relates p and the
two-grid bounds C" = Ca0(L'_1, Ü). For example, if we let C = raax.1<i<pCt\ then
a convergence bound on FACpttj8 is any C > C,ß that satisfies C2,x - C2 + C2 = 0.
Note that a p can always be found that guarantees the existence of such a C < 1
provided ß, C < 1. But only if C < 1/2 will p = 2 suffice and only if C = 0 = 0
will p = 1 suffice! However, our numerical experiments suggest that FAC/aj3
converges with a bound C < 1 independent of p; this is important in terms of
complexity, since the coarse grids "may swamp the computation for p > 1. It is just
that our theory does not yet cover this case.

Note for the exact solver FAC/00 that there is no real purpose in having
subsequent refinements over precisely .the same geometric region; that is, if Ü'F =
ß'/1, then the computation on Gi is completely wasted. Of course, for FAC/a/8 in
general, such "intermediate" grids may be critical to complexity by providing initial
guesses for the local fine-grid problems that are much better than the coarser grids
can provide.

4.2. Sf Construction. Perhaps one of the more critical aspects of FAC is the
construction of a composite grid operator Sf that yields acceptable discretization
properties, especially with respect to truncation error. We describe one possibility
here that assumes that the only serious difficulty is in dealing with the nonuniform-
ity of S.

Figure 5
( Extended Fine Grid-Staggered Grids )

The composite grid 'S is represented by the cells defined by solid Unes, the extended grid G by
solid and dotted Unes.
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To be specific, suppose S is a subgrid of the extended fine grid G, where we have
in mind Figure 5 for our prototype in which the local fine grid is extended over the
entire domain ß. Let L be an operator defined on G and suppose that the
interpolation operator I: S -» G is linear and full rank and that f E G. (We suppose
that acceptable L, I, and f are easily constructed.) The composite grid problem (2.2)
is then constructed by setting SP = lrLI and /= lrf. Note that only the entries of SP
involving <S, are irregular, that is, it may not be necessary to appeal explicitly to L
for entries of SP corresponding to Sc. (See, for example, the prototype SP depicted in
Figure 3.) Note also that \T is used as the transfer from G to S; any (global) scalar
multiple of \T will do, but \T must not be scaled locally.

The assumption here is of course that we do not need the solution U in G of

(4.2) LU = f,
but rather are willing to accept the best energy approximation to it in !M(\). In fact,
this is in tune with the basic assumption of FAC that there is significantly less
resolution needed in ^ßf than in ßF. The specific assumption here, which is
somewhat subtle, is that we want to solve (2.2) to within an energy error tolerance
that is some fixed factor y < 1 of the error in the coarse grid approximation to its
solution. That is, the convergence criterion is that the approximation a must satisfy

(4.3) ||«-#|U.<Y||/L-1/y-<ír-|L,.
(A more stringent criterion may, however, be needed in such special cases as the
removal of singularities described in Subsection 4.7.) We can meet this criterion
simply by performing i cycles of some version of FAC with convergence bound C
provided Ce <¿ y. The importance of this observation is that, if C «: 1, then the
computational complexity of this FAC can then be predicted from the algorithm
details and the complexities of the approximate solvers and grid transfers, assuming
of course that the cycling scheme is fixed as opposed to accommodative.

4.3. 'S and J Construction. Construction of S and J are not entirely straightfor-
ward. In our experiments we have appealed to a finite element setting based either
on constant or bilinear elements corresponding, respectively, to the staggered and
aligned grids in Figures 1 and 2. Though the staggered grid case is very simple
conceptually and computationally, convergence is expectedly slow and our theory
does not directly imply C ■« 1. On the other hand, fast convergence for aligned
grids with second degree elliptic boundary value problems is well established in both
theory (Section 3) and numerical experiments (Section 5); but complexity is some-
what higher and some care is necessary in constructing S and J (e.g., it is
inappropriate here to place fine grid points between adjacent points of G, in Figure
2 by assuming their values are " free").

Note that FAC is applicable to virtually any dimension of the underlying
geometry. In fact, FAC can be very effective for three-dimensional models, since
local phenomena can often be "captured" with relatively small grid patches. Note
also that FAC need not be restricted to rectangular grid structures; it can be used
when the local patches are in boundary fitted coordinates, for example.

4.4. Five-Point Formulae. Our prototype FAC scheme preserves the five-point
structure of L (except, of course, at G,), but the more accurate aligned grid case
requires nine-point formulae. As a compromise between accuracy and complexity,
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instead of solving the coarse and local grid equations exactly or using iterative
schemes based on the nine-point stencil, we can develop approximate solvers based
on judiciously chosen five-point formulae. For example, let L and SPFF be based on
the nine-point stencil discretization of Poisson's equation for the aligned grid case
illustrated in Figure 2. In particular, if we start with L based on the nine-point
stencil

(-1     -1     -1\
1        8     -1

\-l     -1     -l)
and use linear interpolation, then we are led to the stencils

—¿

!   1-1     -1     -1\ l   /- 1\
SPFF-   -1        8     -1      and    L -

3h2      i     _x        i 3h2
•1        8     -1
1     -1     -11     -1     -1,

(Note the scale for L. Other stencil entries for SP are depicted in Figure 6.) Consider
the approximating five-point stencils

*---£(-!     "j     -l)    and    ¿--±[-1     -\    -l).

Now the coarse grid step in FAC involves (approximately) solving an equation of
the form

(4.4) LU = f.
The point here is that we may replace this equation with the defect correction step

(4.5) ««- u- L~l(Lu-f).

Similar comments hold for SPFF. Note that the residual Lu - f is computed using
the nine-point formula, but the subsequent computation of the (approximate)
inverse uses the five-point formula. Note also that Theorem 4 applies here directly,
even when the equations for L are solved only approximately.

4.5. Correction (CS) vs. Full Approximation (FAS) Scheme. MLAT [5] is devel-
oped in an FAS mode in the sense that the coarse grid maintains an approximation
to the solution, not the correction. This no doubt offers certain advantages in that it
facilitates error estimation, extrapolation, and grid adaption, so it can be useful to
implement FAC in such a mode. However, the CS version described here has its own
attributes, including conceptual simplicity (although this is quite subjective), some
computational simplicity (especially for FAC00 since the composite grid residuals
are zero in ^c and SF), and roundoff error advantages (the composite grid residual
may be accumulated in double precision; carrying the full approximation on all
levels would eliminate the advantage of doing this).

4.6. Conservation of Mass. FAC was developed as a response to some difficulties
encountered in applying MLAT to the "five-spot" oil reservoir simulation problem
described in Subsection 5.2. To be more specific, suppose L is defined so that the
solution of the coarse grid equation exhibits some conservation property. For
example, for cell-centered grids, L can be constructed by using the differences
across cell edges to enforce (say) energy conservation within each cell. Such
constructions provide an "exact" sense of (discrete) conservation so that exact local
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Figure 6
( Irregular Stencil Elements for SP-Aligned Grids )

The off-diagonal entries of 3?/l,h2, with h = 1/8, corresponding to each type of irregular
neighbor pair are depicted as connections between these pairs. All other types of connections
not shown correspond to the regular 9-point stencil and have value -1. The diagonal entries
are such that the row sums of ¿£ are zero (depending of course on the boundary conditions
and how they are implemented). Note for example that the stencil at the corner point of 'S, is

3/t2

-1
-1/4
1/2 -2

1/2

-1
17/2

-1/4

conservation can in principle be achieved, even though the accuracy of the ap-
proximation itself is inhibited by discretization error. It may seem questionable to
demand that conservation be achieved beyond the accuracy of truncation, but the
practical point here is that application engineers often make such demands.

With MLAT, maintenance of conservation is not at all straightforward. If the
measure of conservation is to assess the local strengths of the right-hand side
("sources" and "sinks") on G, then the FAS transfer will generally be in conflict
because it has the effect of significantly altering the original strengths (i.e., values of
/). It is therefore generally true that coarse grid conservation is damaged, even
though the accuracy of its approximation may be well below coarse grid discretiza-
tion error. Attempts to correct this loss of conservation can be quite ad hoc and may
inhibit convergence.

Maintaining conservation for FAC is not so problematic. The essential point here
is that the measure should be taken via the composite grid equation (2.2). That is, if
SP is constructed in conservation form, then the extent to which conservation is
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attained on 'S can be assessed via the residual * —/— SPu. In fact, Step 1 of FAC
can be viewed as a mechanism for constructing artificial sources and sinks at points
of G, in order to force the coarse grid equations to approximate the conservation
objective of 'S. In any event, this objective is not in conflict with, but is precisely the
same as, the goal of discretization, so conservation on S can be achieved to any
desired accuracy.

4.7. Removing Singularities. An interesting possibility is to use FAC for removing
singularities. More precisely, we imagine that there are advantages to representing (a
component of) the solution by a continuous (explicit or implicit) equation in some
local region of the domain. The composite grid would then consist of a global
discrete coarse grid G and a local continuous region SF; the composite operator
would then consist of the usual discretization on Sc U S, and a continuous
equation in 'Sp. The latter may consist of the differential equation itself, or perhaps a
formal, explicit representation of a component of the solution based on local
information together with the usual discretization to approximate the remaining
component. We will report on this concept elsewhere.

4.8. Large-Scale Computation. The basic FAC premise is that it can increase
accuracy without a commensurate increase in cost. Assuming that special local
phenomena precipitate the need for higher local resolution, then FAC allows this
resolution to remain local. Furthermore, it allows the computation to be restricted to
uniform discretizations or, more precisely, to problems that have characteristics
similar to the basic grid G. Both of these features make FAC attractive in a
large-scale computational environment, the first by expanding capabilities beyond
machine limitations and the second by taking maximum advantage of the host
machine architecture. Concerning the latter, FAC lends itself to both vector and
multiprocessor computation. In fact, FAC may be used in a multiprocessor machine
as a vehicle for communicating between processors that have been assigned in
correspondence to a partition of a fine global grid.

5. Numerical Results. We report here on numerical experiments with FAC applied
to two types of problems, one a modification of our prototype with a re-entrant
boundary and the other a singular, aligned grid discretization of the so-called
five-spot problem in oil reservoir simulation. All experiments were performed on a
Cyber 205.

5.1. Modified Prototype. Inspired by the model of a fire in a structure of
rectangular rooms with adjoining windows and doors, we consider the simplified
geometry depicted in Figure 7. On this staggered grid we discretize (2.1) as before,
except that the boundary conditions on the external boundary are now Dirichlet.
(The re-entrant boundary condition is Neumann.)

Table 1 depicts convergence rates for two sizes of problems and two types of fine
grid solvers. The size is determined by the values of m and n (here, G and 'Sp have
2m X m and 2n X n cells, respectively). In both cases, the door is m/4 cells wide.
The solvers are all Gauss-Seidel with the number of sweeps being NS = 1, 2, 3 and
100 (the latter to simulate an exact solver.) The coarse grid is solved by 100
Gauss-Seidel sweeps in each case. The asymptotic rate CR is determined as the
apparent limit of the ratios of the composite grid residuals after subsequent cycles of
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- H

Figure 7
( Modified Prototype )

This is similar to Figure 1 except that the region now consists of two squares adjoined by a
"door", that is, the region is a rectangle with a re-entrant boundary almost bisecting it. The
local fine grid VF has the same structure as G (except that the door is relatively larger) and is
placed to increase resolution about the opening.

FAC. (This was checked against the energy errors which were known by construc-
tion.) Note that the "exact" version achieves a rate of about 1/4 and that the rate
for one sweep Gauss-Seidel is about double that. Interestingly enough, there is
almost nothing to gain by a few more sweeps, suggesting that the exact solver
achieves its increased error reduction by eliminating smooth components.

5.2. Five-Spot Problem. Consider the so-called five-spot problem given by (2.1)
with <j> = asw — aNE, where asw and aNE are Dirac delta functions at the respective
southwest and northeast corners of ß. This represents the discrete pressure equation
in a subregion of an oil field (of constant permeability) with an injection and
extraction well at opposing corners of ß. This problem is similar to our prototype
except that here we use aligned grids and construct SF = Sf* U S^E by placing a
fine grid patch in the southwest and northeast corners of ß. Thus, Sf^ is as
depicted in Figure 2 and Sfn is exactly the same but in the opposing corner. Let m
(nsw and nNE)be the number of grid points of G CSf1 and Sf^, respectively) in
each coordinate direction. In Figure 2, m = 5 and nsw ,NE _= 4.

Table 1
( Staggered Grids )

FAC per cycle convergence factors for various values of the number (NS) of fine grid
Gauss-Seidel relaxations.

M
To"
32

N
To"
32

NS = 1
0.44
0.47

CR
NS = 2 NS = 3

0.43
0.46

0.42
0.45

NS = 100
0.23
0.25
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Table 2
(Aligned Grids)

Convergence factors scaled by 103 for successive cycles of FAC. All subsequent factors were
0.044.

Cycle Number
I I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23

32    36   27   40   25   48   23    58   26   60   31    54   36   50   40   47   42   45   43   45   43   44

In our experiments, we used the " nine-point" discretization of Figure 6 with ghost
points and one-sided differencing at the boundary. Using direct ehmination on both
the coarse and fine levels, we restricted our tests to the case nsw = nNE = 4 but
varied m = 5, 9,17, 33, and 65. Table 2 depicts the ratios of composite grid residual
norms on successive FAC cycles for n = 65. (Results for the other values of n were
almost identical.) Note that the asymptotic convergence factor is 0.044 and that this
is approximately achieved at the outset.
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