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THE FAST AFFINE PROJECTION ALGORITHM 
Steven L. Gay and Sanjeev Tavathia 

Acoustics Research Department 
AT&T Bell Laboratories 
600 Mountain Avenue 

Murray Hill, New Jersey 07974 

ABSTRACT 

This paper discusses a new adaptive filtering algorithm called 
fast affine projections (FAP). FAP’s key features include LMS 
like complexity and memory requirements (low), and RLS like 
convergence (fast) for the important case where the excitation 
signal is speech. Another of FAP’s important features is that it 
causes no delay in the input or output signals. In addition, the 
algorithm is easily regularized resulting in robust performance 
even for highly colored excitation signals. The combination of 
these features make FAP an excellent candidate for the adaptive 
filter in the acoustic echo cancellation problem. A simple, low 
complexity numerical stablization method for the algorithm is 
also introduced. 

1. INTRODUCTION 
The affine projection algorithm (APA)[~]. is a generalization 

of the well known normalized least mean square (NLMS) 
adaptive filtering algorithm‘21. Under this interpretation, each tap 
weight vector update of NLMS is viewed as a one dimensional 
affine projection. In APA the projections are made in multiple 
dimensions. As the projection dimension increases, so does the 
convergence speed of the tap weight vector, and unfortunately, 
the algorithm’s computational complexity. Using techniques 
similar to those which led to fast (i.e., computationally efficient) 
recursive least squares (FLRS)[31 from recursive least squares 
(RLS)l4I, a fast version of APA, fast again, computationally 
efficient) affine projections (FAP)[’] [61 [$ may be derived*. As 
with RLS and FRLS, FAP requires the solution to a system of 
equations involving the implicit inverse of the excitation signal‘s 
covariance matrix (although with FAP the dimension of the 
covariance matrix is the dimension of the projection, N, not the 
length of the joint process estimation, L). FAP uses a sliding 
windowed FRLSr8I to assist in a recursive calculate of the 
solution. Since sliding windowed FRLS algorithms easily 
incorporate regularization of the covariance matrix inverse, FAP 
is regularized as well. The complexity of FAP is roughly 
2L+20N multiplications per sample period. For applications like 
acoustic echo cancellation, L is usually much larger than the 
required N making FAP’s complexity comparable to NLMS’s 
(2L multiplications per sample period). Moreover, FAP does not 
require significantly greater memory than NLMS. 

The adaptive filters discussed in this paper will be presented 
within the context of the echo cancellation problem. 

* An independent work covering a substantial portion of e fast 
technique shown here has been published in Japanese@ One 
difference is that the Japanese publication did not consider 
regularization in the fast algori+tn which is important for 
convergence in the presence of noise. 

2. THE AFFINE PROJECTION ALGORITHM 
The affine projection algorithm, in a relaxed and regularized 

form, is defined as follows: 

e n  = s n  -XLhn - 1 (1) 

(2) 

4 n Z h n - l  + P X n E n .  (3 1 
The excitation signal matrix, X,, is L by N and has the structure, 

(4) 

where the 5, = [x, , . . x,- L +  ] ’. The adaptive tap weight 
vector is kn=[ho , , ,  ..., h L - l , n ] f ,  where h i ,  is the i I h  tap at 
sample p o d  n. The vector, en, is of length N and consists of 
background noise and residual echo left uncancelled by the echo 
canceller’s L-length adaptive tap weight vector, h,. The N- 
length vector, sn, is the system output consisting of the response 
of the echo path impulse response, h, to the excitation and the 
additive system noise, y, ,  

The scalar 6 is the regularization parameter for the sample 
autocorrelation matrix inverse used in (2)  in the calculation of the 
N-length normalized residual echo vector, 5,. Where XLX, may 
have eigenvalues close to zero, creating problems for the inverse, 
X;X,+SI has 6 as its smallest eigenvalue which, if large 
enough, yields a well behaved inverse. The step-size parameter, 
p is the relaxation factor. As in NLMS, the algorithm is stable 
for OSp < 2. 

If N is set to one, relations (l), (2), and (3) reduce to the 
familiar NLMS algorithm, Thus, APA is a generalization of 
NLMS. 

5,-1 9 . . . x n - ( N - I ) ]  

- 
Sn=Xthep + z n -  (5 1 

3. THE FAST AFFINE PROJECTION ALGORITHM 
The complexity of APA is 2LN+K,N2 multiplies per 

sample period, where K;, is a constant associated with the 
complexity of the inverse required in (2).  If a generalized 
Levinson algorithm is used to solve the systems of equations in 
(2),  Kiw is about 7. One way to somewhat mitigate this 
computational complexit is to only update the coefficients once 
every N sample periods[Jreducing the average complexity (over 
N sample periods) to 2L + K, N multiplies per sample period. 
This is known as PRA, the partial rank algorithm[’l. Simulations 
indicate that when very highly colored excitation signals are 
used, the convergence of PRA is somewhat inferior to APA. For 
speech excitation, however, we have found that PRA achieves 
close to the same convergence as APA. The main disadvantage 
of PRA is that its computational complexity is bursty. So, 
depending on the speed of the implementing technology, there is 
often a delay in the generation of the error vector, e, .  As will be 
shown below, FAP performs a complete N dim<nsional APA 
update each sample period with 2L+O(N) multiplies per 
sample; so there is no delay. 
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3.1 Fast Residual Echo Vector Calculation 
In this section we develop a fast method of updating the 

residual echo vector from sample period n-1 to sample period n. 
We start by expanding the a priori error calculation of (l) ,  

r 

where the L by N-1 matrix consists of the N-1 left-most 
columns of X,-, ,  and the N-1 length vector&,_, consists of the 
n- 1 upper elements of the vector L,, - 

From (6) we see that the lower N-1 elements of the a priori 
residual echo, e,, are the upper N-1 elements of the a posteriori 
error vector o f  sample period n-1, (where the 1 in the 
subscript denotes a posteriori rather %an a priori error), defined 
as, 

(7) e1 ,n- 1 =sn - 1 -Xi - I h n  - 1 

= k-pXL-lXn-~  

The matrix XA - I X, - has the similarity decomposition, 

where Vn-l  is an N by N unitary matrix and hnPl is a N by N 
diagonal matrix with its ith diagonal element being the ifi 
eigenvalue of XL-lXn-l, lLi,n-l. Defining the a priori and a 
posteriori modal error vectors, 

- e'n-l=Vi-lgn-l  and g ' l , n - l = V ~ - l ~ l , n - ~ ,  (10) 
respectively; we can multiply (8) from the left by Vi - and show 
that the i" a posteriori modal error vector element, e r ,  can 
be found from the i" a priori modal e m r  veck~i'element, 

XL-fXn-l =Vn-lhn-lVL-l (9) 

- e' i ,n- l t  by, 

From (1 1) it can be shown that 

Assume that 6 is chosen to be approximately equal to the power 
ofy,. Then, for thosemodes where, hi,n-l <<6, e i ,n- l  is mainly 
dominated by the background noise and little can be learned 
about he . So, suppressing these modes by multiplying them by 
1 - 1 wifi attenuate somewhat the background noise's effect on 
the overall echo path estimateLq. Applying this to (12) and 
multiplying Erom the left by V,- we have 

i 1 . n - 1  = ( ~ - P ) G - I .  (13) 
Replacing the lower N -  1 elements of (6) with the upper 

r 1 
N - 1 elements of (13), we have the residual echo update, 

From (8) we see that this approximation becomes an equality 
when 6=0,  but then, the inverse in (2) is not regularized. 
Simulations show that by making adjustments in 6 the 
convergence performance of APA with and without the 
approximation of equation (14) can be equated. 

The complexity of (14) is L operations to calculate e ,  and 
N-1 operations to update (1 - p)cn- For the case where p= 1 

the N-1 operations are obviously unnecessary. 
3.2 Fast Adaptive Coefficient Vector Calculation 

This section discusses a method by which the fidelity of e, is 
maintained at each sample period, but &,, is not. Here, we 
introduce an altemate coefficient vector, h,, whose update each 
sample period consists only of adding a weighted version of the 
last column of Xn[lol; just L multiplications as opposed to NL for 
the M A  update of equation (3). 

From (3) the APA tap update is, 
I f n = & n - l  + P X n E n *  (15) 

One can also express the current echo path estimate, h,, in tem 
of the original echo path estimate, ho, and the subsequent X i ' s  
and gi's, 

n-1 

hn=ho +P , x X n - i E n - i *  (16) 
r = O  

Now, expand the vectorhatrix multiplication, 
n-1N-1 

Assuming that x ,  = 0 for nIO, it can be shown that (1 7) can be 
rek t ten  as, 

N - 1  k 

i = O  j = O  n-l ~ - 1  
& n = h O + P  C z n - k  x & j , n - k + j  (18) 

+P x X n - k  & j , n - k + j .  
k = N  j=O 

If the first term and the second pair of summations on the right 
side of (18) are defined as 

and the first pair of summations in (18) is recognized as a 
vector-matrix multiplication, 

N - 1  k 

xn&=p 5 , - k  E j , n - k + j  (20) 
k=O j = O  

where, 

E n =  ~ ~ : ~ + & o , n - l  

E N - l , n + E N - Z . n - l +  . . . + & O . n - ( N - I ) ]  

then, (1 8) can be expressed as 

It is easily seen from (19) that 

A 

h n = h n - l  + P X n _ E n -  (22) 

h n = h n - l  + I G n - ( N - I )  E j , n - N + l + j  (23) 

= e n -  1 + t% -(N- 1 ,n (24) 

N - 1  * A  

j=O 
A 

Using (24) in (22) the current echo path estimate can alternately 
be expressed as 

Where E, is an N-1 length vector consisting of the upper most 
N-1 elements of En. 

recursively. By inspection, 

A - -  
I t n = h n + F X n E _ n  (25) 

Observing (21) it is seen that _En can also be calculated 
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(26) 

Now, consider the relationship between e,, and g,-l. Using 
(14) one could calculate e, from except for the fact that 
h n v 1  is not readily available. However, using (25) for h,-l in 
&e first row of (14), e ,  is, 

(27) 
where 

A J -  
en=en-PL,nEn-I 

2, =s, - g Z n -  1 ,  (28) 
(29) 

I - -  
L . n = L , n -  I + X n o I n - - X n - L c L n - L ,  

Relations (24) ,and (26) represent the efficient alternate 
coefficient update, h,, assuming that there is an efficient update 
for E,. Together these require L + N multiplications. Relations 
(27) arough (29) represent an efficient method to calculate e,, 
using E,, rather than h,. These require L+3N multiplications. 
3.3 Fast Normalized Residual Echo Vector Calculation 

We now turn to the problem of efficiently updatin the 
normalized residual echo vector, E,. Define R, =XiX, + f1, let 
14, and in denote the optimum forward and backward linear 
predictors ffor R,, and let E,,, and Eb,, denote &e& respgctive 
expected prediction error energies. Also, define R, and R, as 
N-1 by N-l matrices consisting of the upper left and lower right 
corners of R,, respectively. Then, given the following identities: 

and the definitions, 

(31) 
- - I  &=R,  E ,  and E,,=Rilz, ,  

(where e ,  is an N-1 length vector containing the N-1 lower 
elemengof E,), one can multiply (30) from the right by % and 
use (2) and (31) to obtain, 

and 
c.. 

(33) 

The quantities, E,,, Eb,,, a,, and kn can be calculated 
efficiently (complexity 1ON) using a sliding windowed FRLS 
algorithm181. 

is now investigated. It 
can easily be shown that 

Using (34), the definition of z,,, z,, (31), and (14) we have, 

The relationship between Ell and 

- -  
Rn=Rn-l. (34) 

(35) 
3.4 FAP 

The relations derived above are brought together in the 
relaxed FAP algorithm shown in ALGORITHM 1. 

Step 1 of the algorithm is of complexity 10N multiplications. 
Steps 3 and 9 are both of complexlty L, steps 2, 6, and 7 are each 
of complexity 2N, and steps 4,5, 8 and 10 are of complexity N. 
This gives an overall complexity of 2L+20N multiplications per 
sample period. If relaxation is eliminated, that is, p is set to one, 
the computational complexity can be reduced to 2L+14N 

- 
E, = R,?, =R,- I (1 - p)g,-l =( 1 -p)En-l. 

ALGORITHM 1: FAP 

0 )  Initialization: E,,,  and go=[1,1)_']', io=[? ,1] = 8' . 

1) Use sliding windowed FRLS to update 
Eb,n* a n -  and b n .  

- -  
2) 5 , n  = s , n - l  + x n @ n  - X n - L @ n - L  

3) Zn=s,-&lZ,-1 

4) en =en-PGr,n_En - I 

A 

A ,f - 

1 

r - !  

(33) 

(24) 

(35) 

multiplications per sample peri~d[~][a. 

4. SIMULATIONS 
Figure 1 shows a comparison of the convergence of NLMS, 

FTF (Fast Transversal Filter, an FRLS technique), and FAP 
coefficient error magnitudes. The excitation signal was speech 
sampled at 8 KHz, the echo path of length, L =  1000, was fixed 
and the white gaussian additive noise, y , ,  was 30 dl3 down from 
the the echo. Soft initialization was used for both algorithms. 
For FTF, Ea,O and Eb,O were both set to 20; (where 0," is the 
average power of x,) and h, the forgetting factor was set to 
(3L- 1)/3L. For FAP, Ea,o and Eb,O were set to 6=200,2 and N 
was 50. FAP converges at roughly the same rate as FTF with 
about 2L complexity versus 7L complexity, respectively. Both 
FAP and FTF converge faster than NLMS. 

In figure 2 we show the convergence of NLMS and FAF' with 
various orders of projections. Once again, speech was the 
excitation, the length of the filter was lo00 samples, and the 
signal to noise ratio was 30 dB. We see that quite a bit of 
improvement is gained with just N=2 and that increasing N to 10 
does not improve the speed of convergence significantly. 
However, if N is further increased to 50, there is again a 
significant gain in the speed of convergence. Note that for FAF', 
the increase f" N=2 to N=50 does not significantly increase 
the computational complexity. Thus, very perceptible increases 
in convergence are realized with only moderate increases in 
computational complexity. 

5. NUMERICAL CONSIDERATIONS 
FAP uses the sliding window technique to update and 

downdate data in its implicit regularized sample correlation 
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matrix and cross correlation vector. Errors introduced by finite 
arithmetic in practical implementations of the algorithm therefore 
cause the correlation matrix and cross correlation vector to take 
random walks with respect to their infinite precision 
counterparts. A stablized sliding windowed FRLS algorithmf"] 
has been introduced, with complexity 14N multiplications per 
sample period (rather than 1ON for non-stablized versions). 
However, even this algorithm is stable only for stationary 
signals, a class of signals which certainly does not include 
speech. Another approach, which is very straightforward and 
rather elegant for FAP, is to periodically start a new sliding 
window in parallel with the old sliding window, and when the 
data is the same in both processes, replace the old sliding 
window based parameters with the new ones. Although this 
increases the sliding window based parameter calculations by 
about 50% on average (assuming the restarting is done every 
L+N sample periods), the overall cost is small since only those 
parameters with computational complexity proportional to N are 
affected. The overall complexity is only 2L+21N for FAP 
without relaxation and 2L+30N for FAP with relaxation. Since 
this approach is basically a periodic restart, it is numerically 
stable for all signals. 

6. CONCLUSIONS 
This papa has discussed a fast version of the affine 

projection algorithm, FAF'. When the length of the adaptive filter 
is L and the dimension of the affine projection @erformed each 
sample period) is N, FAP's complexity is either 2L+14N or 
2L+20N depending on whether the relaxation parameter is one or 
smaller, respectively. Simulations demonstrate that FAP 
converges as fast as FRLS methods when the excitation signal is 
speech. The implicit correlation matrix inverse of FAP is 
regularized, so the algorithm is easily stabilized for even highly 
colored excitation. Finally, a simple, low complexity numerical 
stabilazation method for the algorithm was also introduced. 
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Figure 1. Comparison of coefficient error for FAP, FTF, and 
NLMS with speech as excitation. 
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Figure 2. Comparison of FAP for different orders of projection, 
N, with speech excitation. 
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